x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / irda / sa1100_ir.c
blobc412e80261737b6cc34b3ce986879f139cd0dd54
1 /*
2 * linux/drivers/net/irda/sa1100_ir.c
4 * Copyright (C) 2000-2001 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * Infra-red driver for the StrongARM SA1100 embedded microprocessor
12 * Note that we don't have to worry about the SA1111's DMA bugs in here,
13 * so we use the straight forward dma_map_* functions with a null pointer.
15 * This driver takes one kernel command line parameter, sa1100ir=, with
16 * the following options:
17 * max_rate:baudrate - set the maximum baud rate
18 * power_leve:level - set the transmitter power level
19 * tx_lpm:0|1 - set transmit low power mode
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/types.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/netdevice.h>
27 #include <linux/slab.h>
28 #include <linux/rtnetlink.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/dma-mapping.h>
34 #include <net/irda/irda.h>
35 #include <net/irda/wrapper.h>
36 #include <net/irda/irda_device.h>
38 #include <asm/irq.h>
39 #include <mach/dma.h>
40 #include <mach/hardware.h>
41 #include <asm/mach/irda.h>
43 static int power_level = 3;
44 static int tx_lpm;
45 static int max_rate = 4000000;
47 struct sa1100_irda {
48 unsigned char hscr0;
49 unsigned char utcr4;
50 unsigned char power;
51 unsigned char open;
53 int speed;
54 int newspeed;
56 struct sk_buff *txskb;
57 struct sk_buff *rxskb;
58 dma_addr_t txbuf_dma;
59 dma_addr_t rxbuf_dma;
60 dma_regs_t *txdma;
61 dma_regs_t *rxdma;
63 struct device *dev;
64 struct irda_platform_data *pdata;
65 struct irlap_cb *irlap;
66 struct qos_info qos;
68 iobuff_t tx_buff;
69 iobuff_t rx_buff;
72 #define IS_FIR(si) ((si)->speed >= 4000000)
74 #define HPSIR_MAX_RXLEN 2047
77 * Allocate and map the receive buffer, unless it is already allocated.
79 static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
81 if (si->rxskb)
82 return 0;
84 si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
86 if (!si->rxskb) {
87 printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
88 return -ENOMEM;
92 * Align any IP headers that may be contained
93 * within the frame.
95 skb_reserve(si->rxskb, 1);
97 si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
98 HPSIR_MAX_RXLEN,
99 DMA_FROM_DEVICE);
100 return 0;
104 * We want to get here as soon as possible, and get the receiver setup.
105 * We use the existing buffer.
107 static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
109 if (!si->rxskb) {
110 printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
111 return;
115 * First empty receive FIFO
117 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
120 * Enable the DMA, receiver and receive interrupt.
122 sa1100_clear_dma(si->rxdma);
123 sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN);
124 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;
128 * Set the IrDA communications speed.
130 static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
132 unsigned long flags;
133 int brd, ret = -EINVAL;
135 switch (speed) {
136 case 9600: case 19200: case 38400:
137 case 57600: case 115200:
138 brd = 3686400 / (16 * speed) - 1;
141 * Stop the receive DMA.
143 if (IS_FIR(si))
144 sa1100_stop_dma(si->rxdma);
146 local_irq_save(flags);
148 Ser2UTCR3 = 0;
149 Ser2HSCR0 = HSCR0_UART;
151 Ser2UTCR1 = brd >> 8;
152 Ser2UTCR2 = brd;
155 * Clear status register
157 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
158 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
160 if (si->pdata->set_speed)
161 si->pdata->set_speed(si->dev, speed);
163 si->speed = speed;
165 local_irq_restore(flags);
166 ret = 0;
167 break;
169 case 4000000:
170 local_irq_save(flags);
172 si->hscr0 = 0;
174 Ser2HSSR0 = 0xff;
175 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
176 Ser2UTCR3 = 0;
178 si->speed = speed;
180 if (si->pdata->set_speed)
181 si->pdata->set_speed(si->dev, speed);
183 sa1100_irda_rx_alloc(si);
184 sa1100_irda_rx_dma_start(si);
186 local_irq_restore(flags);
188 break;
190 default:
191 break;
194 return ret;
198 * Control the power state of the IrDA transmitter.
199 * State:
200 * 0 - off
201 * 1 - short range, lowest power
202 * 2 - medium range, medium power
203 * 3 - maximum range, high power
205 * Currently, only assabet is known to support this.
207 static int
208 __sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
210 int ret = 0;
211 if (si->pdata->set_power)
212 ret = si->pdata->set_power(si->dev, state);
213 return ret;
216 static inline int
217 sa1100_set_power(struct sa1100_irda *si, unsigned int state)
219 int ret;
221 ret = __sa1100_irda_set_power(si, state);
222 if (ret == 0)
223 si->power = state;
225 return ret;
228 static int sa1100_irda_startup(struct sa1100_irda *si)
230 int ret;
233 * Ensure that the ports for this device are setup correctly.
235 if (si->pdata->startup) {
236 ret = si->pdata->startup(si->dev);
237 if (ret)
238 return ret;
242 * Configure PPC for IRDA - we want to drive TXD2 low.
243 * We also want to drive this pin low during sleep.
245 PPSR &= ~PPC_TXD2;
246 PSDR &= ~PPC_TXD2;
247 PPDR |= PPC_TXD2;
250 * Enable HP-SIR modulation, and ensure that the port is disabled.
252 Ser2UTCR3 = 0;
253 Ser2HSCR0 = HSCR0_UART;
254 Ser2UTCR4 = si->utcr4;
255 Ser2UTCR0 = UTCR0_8BitData;
256 Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
259 * Clear status register
261 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
263 ret = sa1100_irda_set_speed(si, si->speed = 9600);
264 if (ret) {
265 Ser2UTCR3 = 0;
266 Ser2HSCR0 = 0;
268 if (si->pdata->shutdown)
269 si->pdata->shutdown(si->dev);
272 return ret;
275 static void sa1100_irda_shutdown(struct sa1100_irda *si)
278 * Stop all DMA activity.
280 sa1100_stop_dma(si->rxdma);
281 sa1100_stop_dma(si->txdma);
283 /* Disable the port. */
284 Ser2UTCR3 = 0;
285 Ser2HSCR0 = 0;
287 if (si->pdata->shutdown)
288 si->pdata->shutdown(si->dev);
291 #ifdef CONFIG_PM
293 * Suspend the IrDA interface.
295 static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
297 struct net_device *dev = platform_get_drvdata(pdev);
298 struct sa1100_irda *si;
300 if (!dev)
301 return 0;
303 si = netdev_priv(dev);
304 if (si->open) {
306 * Stop the transmit queue
308 netif_device_detach(dev);
309 disable_irq(dev->irq);
310 sa1100_irda_shutdown(si);
311 __sa1100_irda_set_power(si, 0);
314 return 0;
318 * Resume the IrDA interface.
320 static int sa1100_irda_resume(struct platform_device *pdev)
322 struct net_device *dev = platform_get_drvdata(pdev);
323 struct sa1100_irda *si;
325 if (!dev)
326 return 0;
328 si = netdev_priv(dev);
329 if (si->open) {
331 * If we missed a speed change, initialise at the new speed
332 * directly. It is debatable whether this is actually
333 * required, but in the interests of continuing from where
334 * we left off it is desireable. The converse argument is
335 * that we should re-negotiate at 9600 baud again.
337 if (si->newspeed) {
338 si->speed = si->newspeed;
339 si->newspeed = 0;
342 sa1100_irda_startup(si);
343 __sa1100_irda_set_power(si, si->power);
344 enable_irq(dev->irq);
347 * This automatically wakes up the queue
349 netif_device_attach(dev);
352 return 0;
354 #else
355 #define sa1100_irda_suspend NULL
356 #define sa1100_irda_resume NULL
357 #endif
360 * HP-SIR format interrupt service routines.
362 static void sa1100_irda_hpsir_irq(struct net_device *dev)
364 struct sa1100_irda *si = netdev_priv(dev);
365 int status;
367 status = Ser2UTSR0;
370 * Deal with any receive errors first. The bytes in error may be
371 * the only bytes in the receive FIFO, so we do this first.
373 while (status & UTSR0_EIF) {
374 int stat, data;
376 stat = Ser2UTSR1;
377 data = Ser2UTDR;
379 if (stat & (UTSR1_FRE | UTSR1_ROR)) {
380 dev->stats.rx_errors++;
381 if (stat & UTSR1_FRE)
382 dev->stats.rx_frame_errors++;
383 if (stat & UTSR1_ROR)
384 dev->stats.rx_fifo_errors++;
385 } else
386 async_unwrap_char(dev, &dev->stats, &si->rx_buff, data);
388 status = Ser2UTSR0;
392 * We must clear certain bits.
394 Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
396 if (status & UTSR0_RFS) {
398 * There are at least 4 bytes in the FIFO. Read 3 bytes
399 * and leave the rest to the block below.
401 async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
402 async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
403 async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
406 if (status & (UTSR0_RFS | UTSR0_RID)) {
408 * Fifo contains more than 1 character.
410 do {
411 async_unwrap_char(dev, &dev->stats, &si->rx_buff,
412 Ser2UTDR);
413 } while (Ser2UTSR1 & UTSR1_RNE);
417 if (status & UTSR0_TFS && si->tx_buff.len) {
419 * Transmitter FIFO is not full
421 do {
422 Ser2UTDR = *si->tx_buff.data++;
423 si->tx_buff.len -= 1;
424 } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);
426 if (si->tx_buff.len == 0) {
427 dev->stats.tx_packets++;
428 dev->stats.tx_bytes += si->tx_buff.data -
429 si->tx_buff.head;
432 * We need to ensure that the transmitter has
433 * finished.
436 rmb();
437 while (Ser2UTSR1 & UTSR1_TBY);
440 * Ok, we've finished transmitting. Now enable
441 * the receiver. Sometimes we get a receive IRQ
442 * immediately after a transmit...
444 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
445 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
447 if (si->newspeed) {
448 sa1100_irda_set_speed(si, si->newspeed);
449 si->newspeed = 0;
452 /* I'm hungry! */
453 netif_wake_queue(dev);
458 static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
460 struct sk_buff *skb = si->rxskb;
461 dma_addr_t dma_addr;
462 unsigned int len, stat, data;
464 if (!skb) {
465 printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
466 return;
470 * Get the current data position.
472 dma_addr = sa1100_get_dma_pos(si->rxdma);
473 len = dma_addr - si->rxbuf_dma;
474 if (len > HPSIR_MAX_RXLEN)
475 len = HPSIR_MAX_RXLEN;
476 dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE);
478 do {
480 * Read Status, and then Data.
482 stat = Ser2HSSR1;
483 rmb();
484 data = Ser2HSDR;
486 if (stat & (HSSR1_CRE | HSSR1_ROR)) {
487 dev->stats.rx_errors++;
488 if (stat & HSSR1_CRE)
489 dev->stats.rx_crc_errors++;
490 if (stat & HSSR1_ROR)
491 dev->stats.rx_frame_errors++;
492 } else
493 skb->data[len++] = data;
496 * If we hit the end of frame, there's
497 * no point in continuing.
499 if (stat & HSSR1_EOF)
500 break;
501 } while (Ser2HSSR0 & HSSR0_EIF);
503 if (stat & HSSR1_EOF) {
504 si->rxskb = NULL;
506 skb_put(skb, len);
507 skb->dev = dev;
508 skb_reset_mac_header(skb);
509 skb->protocol = htons(ETH_P_IRDA);
510 dev->stats.rx_packets++;
511 dev->stats.rx_bytes += len;
514 * Before we pass the buffer up, allocate a new one.
516 sa1100_irda_rx_alloc(si);
518 netif_rx(skb);
519 } else {
521 * Remap the buffer.
523 si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
524 HPSIR_MAX_RXLEN,
525 DMA_FROM_DEVICE);
530 * FIR format interrupt service routine. We only have to
531 * handle RX events; transmit events go via the TX DMA handler.
533 * No matter what, we disable RX, process, and the restart RX.
535 static void sa1100_irda_fir_irq(struct net_device *dev)
537 struct sa1100_irda *si = netdev_priv(dev);
540 * Stop RX DMA
542 sa1100_stop_dma(si->rxdma);
545 * Framing error - we throw away the packet completely.
546 * Clearing RXE flushes the error conditions and data
547 * from the fifo.
549 if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
550 dev->stats.rx_errors++;
552 if (Ser2HSSR0 & HSSR0_FRE)
553 dev->stats.rx_frame_errors++;
556 * Clear out the DMA...
558 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
561 * Clear selected status bits now, so we
562 * don't miss them next time around.
564 Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
568 * Deal with any receive errors. The any of the lowest
569 * 8 bytes in the FIFO may contain an error. We must read
570 * them one by one. The "error" could even be the end of
571 * packet!
573 if (Ser2HSSR0 & HSSR0_EIF)
574 sa1100_irda_fir_error(si, dev);
577 * No matter what happens, we must restart reception.
579 sa1100_irda_rx_dma_start(si);
582 static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
584 struct net_device *dev = dev_id;
585 if (IS_FIR(((struct sa1100_irda *)netdev_priv(dev))))
586 sa1100_irda_fir_irq(dev);
587 else
588 sa1100_irda_hpsir_irq(dev);
589 return IRQ_HANDLED;
593 * TX DMA completion handler.
595 static void sa1100_irda_txdma_irq(void *id)
597 struct net_device *dev = id;
598 struct sa1100_irda *si = netdev_priv(dev);
599 struct sk_buff *skb = si->txskb;
601 si->txskb = NULL;
604 * Wait for the transmission to complete. Unfortunately,
605 * the hardware doesn't give us an interrupt to indicate
606 * "end of frame".
609 rmb();
610 while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
613 * Clear the transmit underrun bit.
615 Ser2HSSR0 = HSSR0_TUR;
618 * Do we need to change speed? Note that we're lazy
619 * here - we don't free the old rxskb. We don't need
620 * to allocate a buffer either.
622 if (si->newspeed) {
623 sa1100_irda_set_speed(si, si->newspeed);
624 si->newspeed = 0;
628 * Start reception. This disables the transmitter for
629 * us. This will be using the existing RX buffer.
631 sa1100_irda_rx_dma_start(si);
634 * Account and free the packet.
636 if (skb) {
637 dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE);
638 dev->stats.tx_packets ++;
639 dev->stats.tx_bytes += skb->len;
640 dev_kfree_skb_irq(skb);
644 * Make sure that the TX queue is available for sending
645 * (for retries). TX has priority over RX at all times.
647 netif_wake_queue(dev);
650 static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
652 struct sa1100_irda *si = netdev_priv(dev);
653 int speed = irda_get_next_speed(skb);
656 * Does this packet contain a request to change the interface
657 * speed? If so, remember it until we complete the transmission
658 * of this frame.
660 if (speed != si->speed && speed != -1)
661 si->newspeed = speed;
664 * If this is an empty frame, we can bypass a lot.
666 if (skb->len == 0) {
667 if (si->newspeed) {
668 si->newspeed = 0;
669 sa1100_irda_set_speed(si, speed);
671 dev_kfree_skb(skb);
672 return NETDEV_TX_OK;
675 if (!IS_FIR(si)) {
676 netif_stop_queue(dev);
678 si->tx_buff.data = si->tx_buff.head;
679 si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data,
680 si->tx_buff.truesize);
683 * Set the transmit interrupt enable. This will fire
684 * off an interrupt immediately. Note that we disable
685 * the receiver so we won't get spurious characteres
686 * received.
688 Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;
690 dev_kfree_skb(skb);
691 } else {
692 int mtt = irda_get_mtt(skb);
695 * We must not be transmitting...
697 BUG_ON(si->txskb);
699 netif_stop_queue(dev);
701 si->txskb = skb;
702 si->txbuf_dma = dma_map_single(si->dev, skb->data,
703 skb->len, DMA_TO_DEVICE);
705 sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);
708 * If we have a mean turn-around time, impose the specified
709 * specified delay. We could shorten this by timing from
710 * the point we received the packet.
712 if (mtt)
713 udelay(mtt);
715 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE;
718 dev->trans_start = jiffies;
720 return NETDEV_TX_OK;
723 static int
724 sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
726 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
727 struct sa1100_irda *si = netdev_priv(dev);
728 int ret = -EOPNOTSUPP;
730 switch (cmd) {
731 case SIOCSBANDWIDTH:
732 if (capable(CAP_NET_ADMIN)) {
734 * We are unable to set the speed if the
735 * device is not running.
737 if (si->open) {
738 ret = sa1100_irda_set_speed(si,
739 rq->ifr_baudrate);
740 } else {
741 printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
742 ret = 0;
745 break;
747 case SIOCSMEDIABUSY:
748 ret = -EPERM;
749 if (capable(CAP_NET_ADMIN)) {
750 irda_device_set_media_busy(dev, TRUE);
751 ret = 0;
753 break;
755 case SIOCGRECEIVING:
756 rq->ifr_receiving = IS_FIR(si) ? 0
757 : si->rx_buff.state != OUTSIDE_FRAME;
758 break;
760 default:
761 break;
764 return ret;
767 static int sa1100_irda_start(struct net_device *dev)
769 struct sa1100_irda *si = netdev_priv(dev);
770 int err;
772 si->speed = 9600;
774 err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
775 if (err)
776 goto err_irq;
778 err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
779 NULL, NULL, &si->rxdma);
780 if (err)
781 goto err_rx_dma;
783 err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit",
784 sa1100_irda_txdma_irq, dev, &si->txdma);
785 if (err)
786 goto err_tx_dma;
789 * The interrupt must remain disabled for now.
791 disable_irq(dev->irq);
794 * Setup the serial port for the specified speed.
796 err = sa1100_irda_startup(si);
797 if (err)
798 goto err_startup;
801 * Open a new IrLAP layer instance.
803 si->irlap = irlap_open(dev, &si->qos, "sa1100");
804 err = -ENOMEM;
805 if (!si->irlap)
806 goto err_irlap;
809 * Now enable the interrupt and start the queue
811 si->open = 1;
812 sa1100_set_power(si, power_level); /* low power mode */
813 enable_irq(dev->irq);
814 netif_start_queue(dev);
815 return 0;
817 err_irlap:
818 si->open = 0;
819 sa1100_irda_shutdown(si);
820 err_startup:
821 sa1100_free_dma(si->txdma);
822 err_tx_dma:
823 sa1100_free_dma(si->rxdma);
824 err_rx_dma:
825 free_irq(dev->irq, dev);
826 err_irq:
827 return err;
830 static int sa1100_irda_stop(struct net_device *dev)
832 struct sa1100_irda *si = netdev_priv(dev);
834 disable_irq(dev->irq);
835 sa1100_irda_shutdown(si);
838 * If we have been doing DMA receive, make sure we
839 * tidy that up cleanly.
841 if (si->rxskb) {
842 dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN,
843 DMA_FROM_DEVICE);
844 dev_kfree_skb(si->rxskb);
845 si->rxskb = NULL;
848 /* Stop IrLAP */
849 if (si->irlap) {
850 irlap_close(si->irlap);
851 si->irlap = NULL;
854 netif_stop_queue(dev);
855 si->open = 0;
858 * Free resources
860 sa1100_free_dma(si->txdma);
861 sa1100_free_dma(si->rxdma);
862 free_irq(dev->irq, dev);
864 sa1100_set_power(si, 0);
866 return 0;
869 static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
871 io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
872 if (io->head != NULL) {
873 io->truesize = size;
874 io->in_frame = FALSE;
875 io->state = OUTSIDE_FRAME;
876 io->data = io->head;
878 return io->head ? 0 : -ENOMEM;
881 static const struct net_device_ops sa1100_irda_netdev_ops = {
882 .ndo_open = sa1100_irda_start,
883 .ndo_stop = sa1100_irda_stop,
884 .ndo_start_xmit = sa1100_irda_hard_xmit,
885 .ndo_do_ioctl = sa1100_irda_ioctl,
888 static int sa1100_irda_probe(struct platform_device *pdev)
890 struct net_device *dev;
891 struct sa1100_irda *si;
892 unsigned int baudrate_mask;
893 int err;
895 if (!pdev->dev.platform_data)
896 return -EINVAL;
898 err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
899 if (err)
900 goto err_mem_1;
901 err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
902 if (err)
903 goto err_mem_2;
904 err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
905 if (err)
906 goto err_mem_3;
908 dev = alloc_irdadev(sizeof(struct sa1100_irda));
909 if (!dev)
910 goto err_mem_4;
912 si = netdev_priv(dev);
913 si->dev = &pdev->dev;
914 si->pdata = pdev->dev.platform_data;
917 * Initialise the HP-SIR buffers
919 err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
920 if (err)
921 goto err_mem_5;
922 err = sa1100_irda_init_iobuf(&si->tx_buff, 4000);
923 if (err)
924 goto err_mem_5;
926 dev->netdev_ops = &sa1100_irda_netdev_ops;
927 dev->irq = IRQ_Ser2ICP;
929 irda_init_max_qos_capabilies(&si->qos);
932 * We support original IRDA up to 115k2. (we don't currently
933 * support 4Mbps). Min Turn Time set to 1ms or greater.
935 baudrate_mask = IR_9600;
937 switch (max_rate) {
938 case 4000000: baudrate_mask |= IR_4000000 << 8;
939 case 115200: baudrate_mask |= IR_115200;
940 case 57600: baudrate_mask |= IR_57600;
941 case 38400: baudrate_mask |= IR_38400;
942 case 19200: baudrate_mask |= IR_19200;
945 si->qos.baud_rate.bits &= baudrate_mask;
946 si->qos.min_turn_time.bits = 7;
948 irda_qos_bits_to_value(&si->qos);
950 si->utcr4 = UTCR4_HPSIR;
951 if (tx_lpm)
952 si->utcr4 |= UTCR4_Z1_6us;
955 * Initially enable HP-SIR modulation, and ensure that the port
956 * is disabled.
958 Ser2UTCR3 = 0;
959 Ser2UTCR4 = si->utcr4;
960 Ser2HSCR0 = HSCR0_UART;
962 err = register_netdev(dev);
963 if (err == 0)
964 platform_set_drvdata(pdev, dev);
966 if (err) {
967 err_mem_5:
968 kfree(si->tx_buff.head);
969 kfree(si->rx_buff.head);
970 free_netdev(dev);
971 err_mem_4:
972 release_mem_region(__PREG(Ser2HSCR2), 0x04);
973 err_mem_3:
974 release_mem_region(__PREG(Ser2HSCR0), 0x1c);
975 err_mem_2:
976 release_mem_region(__PREG(Ser2UTCR0), 0x24);
978 err_mem_1:
979 return err;
982 static int sa1100_irda_remove(struct platform_device *pdev)
984 struct net_device *dev = platform_get_drvdata(pdev);
986 if (dev) {
987 struct sa1100_irda *si = netdev_priv(dev);
988 unregister_netdev(dev);
989 kfree(si->tx_buff.head);
990 kfree(si->rx_buff.head);
991 free_netdev(dev);
994 release_mem_region(__PREG(Ser2HSCR2), 0x04);
995 release_mem_region(__PREG(Ser2HSCR0), 0x1c);
996 release_mem_region(__PREG(Ser2UTCR0), 0x24);
998 return 0;
1001 static struct platform_driver sa1100ir_driver = {
1002 .probe = sa1100_irda_probe,
1003 .remove = sa1100_irda_remove,
1004 .suspend = sa1100_irda_suspend,
1005 .resume = sa1100_irda_resume,
1006 .driver = {
1007 .name = "sa11x0-ir",
1008 .owner = THIS_MODULE,
1012 static int __init sa1100_irda_init(void)
1015 * Limit power level a sensible range.
1017 if (power_level < 1)
1018 power_level = 1;
1019 if (power_level > 3)
1020 power_level = 3;
1022 return platform_driver_register(&sa1100ir_driver);
1025 static void __exit sa1100_irda_exit(void)
1027 platform_driver_unregister(&sa1100ir_driver);
1030 module_init(sa1100_irda_init);
1031 module_exit(sa1100_irda_exit);
1032 module_param(power_level, int, 0);
1033 module_param(tx_lpm, int, 0);
1034 module_param(max_rate, int, 0);
1036 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1037 MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1038 MODULE_LICENSE("GPL");
1039 MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1040 MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1041 MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
1042 MODULE_ALIAS("platform:sa11x0-ir");