x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / sfc / bitfield.h
blobd54d84c267b906a4331f847008302b95566d2a33
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #ifndef EFX_BITFIELD_H
12 #define EFX_BITFIELD_H
15 * Efx bitfield access
17 * Efx NICs make extensive use of bitfields up to 128 bits
18 * wide. Since there is no native 128-bit datatype on most systems,
19 * and since 64-bit datatypes are inefficient on 32-bit systems and
20 * vice versa, we wrap accesses in a way that uses the most efficient
21 * datatype.
23 * The NICs are PCI devices and therefore little-endian. Since most
24 * of the quantities that we deal with are DMAed to/from host memory,
25 * we define our datatypes (efx_oword_t, efx_qword_t and
26 * efx_dword_t) to be little-endian.
29 /* Lowest bit numbers and widths */
30 #define EFX_DUMMY_FIELD_LBN 0
31 #define EFX_DUMMY_FIELD_WIDTH 0
32 #define EFX_DWORD_0_LBN 0
33 #define EFX_DWORD_0_WIDTH 32
34 #define EFX_DWORD_1_LBN 32
35 #define EFX_DWORD_1_WIDTH 32
36 #define EFX_DWORD_2_LBN 64
37 #define EFX_DWORD_2_WIDTH 32
38 #define EFX_DWORD_3_LBN 96
39 #define EFX_DWORD_3_WIDTH 32
41 /* Specified attribute (e.g. LBN) of the specified field */
42 #define EFX_VAL(field, attribute) field ## _ ## attribute
43 /* Low bit number of the specified field */
44 #define EFX_LOW_BIT(field) EFX_VAL(field, LBN)
45 /* Bit width of the specified field */
46 #define EFX_WIDTH(field) EFX_VAL(field, WIDTH)
47 /* High bit number of the specified field */
48 #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1)
49 /* Mask equal in width to the specified field.
51 * For example, a field with width 5 would have a mask of 0x1f.
53 * The maximum width mask that can be generated is 64 bits.
55 #define EFX_MASK64(width) \
56 ((width) == 64 ? ~((u64) 0) : \
57 (((((u64) 1) << (width))) - 1))
59 /* Mask equal in width to the specified field.
61 * For example, a field with width 5 would have a mask of 0x1f.
63 * The maximum width mask that can be generated is 32 bits. Use
64 * EFX_MASK64 for higher width fields.
66 #define EFX_MASK32(width) \
67 ((width) == 32 ? ~((u32) 0) : \
68 (((((u32) 1) << (width))) - 1))
70 /* A doubleword (i.e. 4 byte) datatype - little-endian in HW */
71 typedef union efx_dword {
72 __le32 u32[1];
73 } efx_dword_t;
75 /* A quadword (i.e. 8 byte) datatype - little-endian in HW */
76 typedef union efx_qword {
77 __le64 u64[1];
78 __le32 u32[2];
79 efx_dword_t dword[2];
80 } efx_qword_t;
82 /* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */
83 typedef union efx_oword {
84 __le64 u64[2];
85 efx_qword_t qword[2];
86 __le32 u32[4];
87 efx_dword_t dword[4];
88 } efx_oword_t;
90 /* Format string and value expanders for printk */
91 #define EFX_DWORD_FMT "%08x"
92 #define EFX_QWORD_FMT "%08x:%08x"
93 #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x"
94 #define EFX_DWORD_VAL(dword) \
95 ((unsigned int) le32_to_cpu((dword).u32[0]))
96 #define EFX_QWORD_VAL(qword) \
97 ((unsigned int) le32_to_cpu((qword).u32[1])), \
98 ((unsigned int) le32_to_cpu((qword).u32[0]))
99 #define EFX_OWORD_VAL(oword) \
100 ((unsigned int) le32_to_cpu((oword).u32[3])), \
101 ((unsigned int) le32_to_cpu((oword).u32[2])), \
102 ((unsigned int) le32_to_cpu((oword).u32[1])), \
103 ((unsigned int) le32_to_cpu((oword).u32[0]))
106 * Extract bit field portion [low,high) from the native-endian element
107 * which contains bits [min,max).
109 * For example, suppose "element" represents the high 32 bits of a
110 * 64-bit value, and we wish to extract the bits belonging to the bit
111 * field occupying bits 28-45 of this 64-bit value.
113 * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give
115 * ( element ) << 4
117 * The result will contain the relevant bits filled in in the range
118 * [0,high-low), with garbage in bits [high-low+1,...).
120 #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \
121 (((low > max) || (high < min)) ? 0 : \
122 ((low > min) ? \
123 ((native_element) >> (low - min)) : \
124 ((native_element) << (min - low))))
127 * Extract bit field portion [low,high) from the 64-bit little-endian
128 * element which contains bits [min,max)
130 #define EFX_EXTRACT64(element, min, max, low, high) \
131 EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high)
134 * Extract bit field portion [low,high) from the 32-bit little-endian
135 * element which contains bits [min,max)
137 #define EFX_EXTRACT32(element, min, max, low, high) \
138 EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high)
140 #define EFX_EXTRACT_OWORD64(oword, low, high) \
141 ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \
142 EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \
143 EFX_MASK64(high + 1 - low))
145 #define EFX_EXTRACT_QWORD64(qword, low, high) \
146 (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \
147 EFX_MASK64(high + 1 - low))
149 #define EFX_EXTRACT_OWORD32(oword, low, high) \
150 ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \
151 EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \
152 EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \
153 EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \
154 EFX_MASK32(high + 1 - low))
156 #define EFX_EXTRACT_QWORD32(qword, low, high) \
157 ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \
158 EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \
159 EFX_MASK32(high + 1 - low))
161 #define EFX_EXTRACT_DWORD(dword, low, high) \
162 (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \
163 EFX_MASK32(high + 1 - low))
165 #define EFX_OWORD_FIELD64(oword, field) \
166 EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \
167 EFX_HIGH_BIT(field))
169 #define EFX_QWORD_FIELD64(qword, field) \
170 EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \
171 EFX_HIGH_BIT(field))
173 #define EFX_OWORD_FIELD32(oword, field) \
174 EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \
175 EFX_HIGH_BIT(field))
177 #define EFX_QWORD_FIELD32(qword, field) \
178 EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \
179 EFX_HIGH_BIT(field))
181 #define EFX_DWORD_FIELD(dword, field) \
182 EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \
183 EFX_HIGH_BIT(field))
185 #define EFX_OWORD_IS_ZERO64(oword) \
186 (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0)
188 #define EFX_QWORD_IS_ZERO64(qword) \
189 (((qword).u64[0]) == (__force __le64) 0)
191 #define EFX_OWORD_IS_ZERO32(oword) \
192 (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \
193 == (__force __le32) 0)
195 #define EFX_QWORD_IS_ZERO32(qword) \
196 (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0)
198 #define EFX_DWORD_IS_ZERO(dword) \
199 (((dword).u32[0]) == (__force __le32) 0)
201 #define EFX_OWORD_IS_ALL_ONES64(oword) \
202 (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0))
204 #define EFX_QWORD_IS_ALL_ONES64(qword) \
205 ((qword).u64[0] == ~((__force __le64) 0))
207 #define EFX_OWORD_IS_ALL_ONES32(oword) \
208 (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \
209 == ~((__force __le32) 0))
211 #define EFX_QWORD_IS_ALL_ONES32(qword) \
212 (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0))
214 #define EFX_DWORD_IS_ALL_ONES(dword) \
215 ((dword).u32[0] == ~((__force __le32) 0))
217 #if BITS_PER_LONG == 64
218 #define EFX_OWORD_FIELD EFX_OWORD_FIELD64
219 #define EFX_QWORD_FIELD EFX_QWORD_FIELD64
220 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64
221 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64
222 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64
223 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64
224 #else
225 #define EFX_OWORD_FIELD EFX_OWORD_FIELD32
226 #define EFX_QWORD_FIELD EFX_QWORD_FIELD32
227 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32
228 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32
229 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32
230 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32
231 #endif
234 * Construct bit field portion
236 * Creates the portion of the bit field [low,high) that lies within
237 * the range [min,max).
239 #define EFX_INSERT_NATIVE64(min, max, low, high, value) \
240 (((low > max) || (high < min)) ? 0 : \
241 ((low > min) ? \
242 (((u64) (value)) << (low - min)) : \
243 (((u64) (value)) >> (min - low))))
245 #define EFX_INSERT_NATIVE32(min, max, low, high, value) \
246 (((low > max) || (high < min)) ? 0 : \
247 ((low > min) ? \
248 (((u32) (value)) << (low - min)) : \
249 (((u32) (value)) >> (min - low))))
251 #define EFX_INSERT_NATIVE(min, max, low, high, value) \
252 ((((max - min) >= 32) || ((high - low) >= 32)) ? \
253 EFX_INSERT_NATIVE64(min, max, low, high, value) : \
254 EFX_INSERT_NATIVE32(min, max, low, high, value))
257 * Construct bit field portion
259 * Creates the portion of the named bit field that lies within the
260 * range [min,max).
262 #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \
263 EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \
264 EFX_HIGH_BIT(field), value)
267 * Construct bit field
269 * Creates the portion of the named bit fields that lie within the
270 * range [min,max).
272 #define EFX_INSERT_FIELDS_NATIVE(min, max, \
273 field1, value1, \
274 field2, value2, \
275 field3, value3, \
276 field4, value4, \
277 field5, value5, \
278 field6, value6, \
279 field7, value7, \
280 field8, value8, \
281 field9, value9, \
282 field10, value10) \
283 (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \
284 EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \
285 EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \
286 EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \
287 EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \
288 EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \
289 EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \
290 EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \
291 EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \
292 EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10)))
294 #define EFX_INSERT_FIELDS64(...) \
295 cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
297 #define EFX_INSERT_FIELDS32(...) \
298 cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
300 #define EFX_POPULATE_OWORD64(oword, ...) do { \
301 (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
302 (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \
303 } while (0)
305 #define EFX_POPULATE_QWORD64(qword, ...) do { \
306 (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
307 } while (0)
309 #define EFX_POPULATE_OWORD32(oword, ...) do { \
310 (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
311 (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
312 (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \
313 (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \
314 } while (0)
316 #define EFX_POPULATE_QWORD32(qword, ...) do { \
317 (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
318 (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
319 } while (0)
321 #define EFX_POPULATE_DWORD(dword, ...) do { \
322 (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
323 } while (0)
325 #if BITS_PER_LONG == 64
326 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64
327 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64
328 #else
329 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32
330 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32
331 #endif
333 /* Populate an octword field with various numbers of arguments */
334 #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD
335 #define EFX_POPULATE_OWORD_9(oword, ...) \
336 EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
337 #define EFX_POPULATE_OWORD_8(oword, ...) \
338 EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
339 #define EFX_POPULATE_OWORD_7(oword, ...) \
340 EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
341 #define EFX_POPULATE_OWORD_6(oword, ...) \
342 EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
343 #define EFX_POPULATE_OWORD_5(oword, ...) \
344 EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
345 #define EFX_POPULATE_OWORD_4(oword, ...) \
346 EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
347 #define EFX_POPULATE_OWORD_3(oword, ...) \
348 EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
349 #define EFX_POPULATE_OWORD_2(oword, ...) \
350 EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
351 #define EFX_POPULATE_OWORD_1(oword, ...) \
352 EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
353 #define EFX_ZERO_OWORD(oword) \
354 EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0)
355 #define EFX_SET_OWORD(oword) \
356 EFX_POPULATE_OWORD_4(oword, \
357 EFX_DWORD_0, 0xffffffff, \
358 EFX_DWORD_1, 0xffffffff, \
359 EFX_DWORD_2, 0xffffffff, \
360 EFX_DWORD_3, 0xffffffff)
362 /* Populate a quadword field with various numbers of arguments */
363 #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD
364 #define EFX_POPULATE_QWORD_9(qword, ...) \
365 EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
366 #define EFX_POPULATE_QWORD_8(qword, ...) \
367 EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
368 #define EFX_POPULATE_QWORD_7(qword, ...) \
369 EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
370 #define EFX_POPULATE_QWORD_6(qword, ...) \
371 EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
372 #define EFX_POPULATE_QWORD_5(qword, ...) \
373 EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
374 #define EFX_POPULATE_QWORD_4(qword, ...) \
375 EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
376 #define EFX_POPULATE_QWORD_3(qword, ...) \
377 EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
378 #define EFX_POPULATE_QWORD_2(qword, ...) \
379 EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
380 #define EFX_POPULATE_QWORD_1(qword, ...) \
381 EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
382 #define EFX_ZERO_QWORD(qword) \
383 EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0)
384 #define EFX_SET_QWORD(qword) \
385 EFX_POPULATE_QWORD_2(qword, \
386 EFX_DWORD_0, 0xffffffff, \
387 EFX_DWORD_1, 0xffffffff)
389 /* Populate a dword field with various numbers of arguments */
390 #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD
391 #define EFX_POPULATE_DWORD_9(dword, ...) \
392 EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
393 #define EFX_POPULATE_DWORD_8(dword, ...) \
394 EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
395 #define EFX_POPULATE_DWORD_7(dword, ...) \
396 EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
397 #define EFX_POPULATE_DWORD_6(dword, ...) \
398 EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
399 #define EFX_POPULATE_DWORD_5(dword, ...) \
400 EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
401 #define EFX_POPULATE_DWORD_4(dword, ...) \
402 EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
403 #define EFX_POPULATE_DWORD_3(dword, ...) \
404 EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
405 #define EFX_POPULATE_DWORD_2(dword, ...) \
406 EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
407 #define EFX_POPULATE_DWORD_1(dword, ...) \
408 EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
409 #define EFX_ZERO_DWORD(dword) \
410 EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0)
411 #define EFX_SET_DWORD(dword) \
412 EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff)
415 * Modify a named field within an already-populated structure. Used
416 * for read-modify-write operations.
419 #define EFX_INVERT_OWORD(oword) do { \
420 (oword).u64[0] = ~((oword).u64[0]); \
421 (oword).u64[1] = ~((oword).u64[1]); \
422 } while (0)
424 #define EFX_AND_OWORD(oword, from, mask) \
425 do { \
426 (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \
427 (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \
428 } while (0)
430 #define EFX_OR_OWORD(oword, from, mask) \
431 do { \
432 (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \
433 (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \
434 } while (0)
436 #define EFX_INSERT64(min, max, low, high, value) \
437 cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value))
439 #define EFX_INSERT32(min, max, low, high, value) \
440 cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value))
442 #define EFX_INPLACE_MASK64(min, max, low, high) \
443 EFX_INSERT64(min, max, low, high, EFX_MASK64(high + 1 - low))
445 #define EFX_INPLACE_MASK32(min, max, low, high) \
446 EFX_INSERT32(min, max, low, high, EFX_MASK32(high + 1 - low))
448 #define EFX_SET_OWORD64(oword, low, high, value) do { \
449 (oword).u64[0] = (((oword).u64[0] \
450 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
451 | EFX_INSERT64(0, 63, low, high, value)); \
452 (oword).u64[1] = (((oword).u64[1] \
453 & ~EFX_INPLACE_MASK64(64, 127, low, high)) \
454 | EFX_INSERT64(64, 127, low, high, value)); \
455 } while (0)
457 #define EFX_SET_QWORD64(qword, low, high, value) do { \
458 (qword).u64[0] = (((qword).u64[0] \
459 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
460 | EFX_INSERT64(0, 63, low, high, value)); \
461 } while (0)
463 #define EFX_SET_OWORD32(oword, low, high, value) do { \
464 (oword).u32[0] = (((oword).u32[0] \
465 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
466 | EFX_INSERT32(0, 31, low, high, value)); \
467 (oword).u32[1] = (((oword).u32[1] \
468 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
469 | EFX_INSERT32(32, 63, low, high, value)); \
470 (oword).u32[2] = (((oword).u32[2] \
471 & ~EFX_INPLACE_MASK32(64, 95, low, high)) \
472 | EFX_INSERT32(64, 95, low, high, value)); \
473 (oword).u32[3] = (((oword).u32[3] \
474 & ~EFX_INPLACE_MASK32(96, 127, low, high)) \
475 | EFX_INSERT32(96, 127, low, high, value)); \
476 } while (0)
478 #define EFX_SET_QWORD32(qword, low, high, value) do { \
479 (qword).u32[0] = (((qword).u32[0] \
480 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
481 | EFX_INSERT32(0, 31, low, high, value)); \
482 (qword).u32[1] = (((qword).u32[1] \
483 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
484 | EFX_INSERT32(32, 63, low, high, value)); \
485 } while (0)
487 #define EFX_SET_DWORD32(dword, low, high, value) do { \
488 (dword).u32[0] = (((dword).u32[0] \
489 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
490 | EFX_INSERT32(0, 31, low, high, value)); \
491 } while (0)
493 #define EFX_SET_OWORD_FIELD64(oword, field, value) \
494 EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \
495 EFX_HIGH_BIT(field), value)
497 #define EFX_SET_QWORD_FIELD64(qword, field, value) \
498 EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \
499 EFX_HIGH_BIT(field), value)
501 #define EFX_SET_OWORD_FIELD32(oword, field, value) \
502 EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \
503 EFX_HIGH_BIT(field), value)
505 #define EFX_SET_QWORD_FIELD32(qword, field, value) \
506 EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \
507 EFX_HIGH_BIT(field), value)
509 #define EFX_SET_DWORD_FIELD(dword, field, value) \
510 EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \
511 EFX_HIGH_BIT(field), value)
515 #if BITS_PER_LONG == 64
516 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64
517 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64
518 #else
519 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32
520 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32
521 #endif
523 #define EFX_SET_OWORD_FIELD_VER(efx, oword, field, value) do { \
524 if (falcon_rev(efx) >= FALCON_REV_B0) { \
525 EFX_SET_OWORD_FIELD((oword), field##_B0, (value)); \
526 } else { \
527 EFX_SET_OWORD_FIELD((oword), field##_A1, (value)); \
529 } while (0)
531 #define EFX_QWORD_FIELD_VER(efx, qword, field) \
532 (falcon_rev(efx) >= FALCON_REV_B0 ? \
533 EFX_QWORD_FIELD((qword), field##_B0) : \
534 EFX_QWORD_FIELD((qword), field##_A1))
536 /* Used to avoid compiler warnings about shift range exceeding width
537 * of the data types when dma_addr_t is only 32 bits wide.
539 #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t))
540 #define EFX_DMA_TYPE_WIDTH(width) \
541 (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH)
544 /* Static initialiser */
545 #define EFX_OWORD32(a, b, c, d) \
546 { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \
547 cpu_to_le32(c), cpu_to_le32(d) } }
549 #endif /* EFX_BITFIELD_H */