x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / sfc / rx.c
blob98bff5ada09ada5d5023ff2e741e72d0b5f56c2a
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/ip.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <net/ip.h>
17 #include <net/checksum.h>
18 #include "net_driver.h"
19 #include "rx.h"
20 #include "efx.h"
21 #include "falcon.h"
22 #include "selftest.h"
23 #include "workarounds.h"
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH 8
28 /* Size of buffer allocated for skb header area. */
29 #define EFX_SKB_HEADERS 64u
32 * rx_alloc_method - RX buffer allocation method
34 * This driver supports two methods for allocating and using RX buffers:
35 * each RX buffer may be backed by an skb or by an order-n page.
37 * When LRO is in use then the second method has a lower overhead,
38 * since we don't have to allocate then free skbs on reassembled frames.
40 * Values:
41 * - RX_ALLOC_METHOD_AUTO = 0
42 * - RX_ALLOC_METHOD_SKB = 1
43 * - RX_ALLOC_METHOD_PAGE = 2
45 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
46 * controlled by the parameters below.
48 * - Since pushing and popping descriptors are separated by the rx_queue
49 * size, so the watermarks should be ~rxd_size.
50 * - The performance win by using page-based allocation for LRO is less
51 * than the performance hit of using page-based allocation of non-LRO,
52 * so the watermarks should reflect this.
54 * Per channel we maintain a single variable, updated by each channel:
56 * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
57 * RX_ALLOC_FACTOR_SKB)
58 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
59 * limits the hysteresis), and update the allocation strategy:
61 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
62 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
64 static int rx_alloc_method = RX_ALLOC_METHOD_PAGE;
66 #define RX_ALLOC_LEVEL_LRO 0x2000
67 #define RX_ALLOC_LEVEL_MAX 0x3000
68 #define RX_ALLOC_FACTOR_LRO 1
69 #define RX_ALLOC_FACTOR_SKB (-2)
71 /* This is the percentage fill level below which new RX descriptors
72 * will be added to the RX descriptor ring.
74 static unsigned int rx_refill_threshold = 90;
76 /* This is the percentage fill level to which an RX queue will be refilled
77 * when the "RX refill threshold" is reached.
79 static unsigned int rx_refill_limit = 95;
82 * RX maximum head room required.
84 * This must be at least 1 to prevent overflow and at least 2 to allow
85 * pipelined receives.
87 #define EFX_RXD_HEAD_ROOM 2
89 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
91 /* Offset is always within one page, so we don't need to consider
92 * the page order.
94 return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
96 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
98 return PAGE_SIZE << efx->rx_buffer_order;
103 * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
105 * @rx_queue: Efx RX queue
106 * @rx_buf: RX buffer structure to populate
108 * This allocates memory for a new receive buffer, maps it for DMA,
109 * and populates a struct efx_rx_buffer with the relevant
110 * information. Return a negative error code or 0 on success.
112 static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue,
113 struct efx_rx_buffer *rx_buf)
115 struct efx_nic *efx = rx_queue->efx;
116 struct net_device *net_dev = efx->net_dev;
117 int skb_len = efx->rx_buffer_len;
119 rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
120 if (unlikely(!rx_buf->skb))
121 return -ENOMEM;
123 /* Adjust the SKB for padding and checksum */
124 skb_reserve(rx_buf->skb, NET_IP_ALIGN);
125 rx_buf->len = skb_len - NET_IP_ALIGN;
126 rx_buf->data = (char *)rx_buf->skb->data;
127 rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
129 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
130 rx_buf->data, rx_buf->len,
131 PCI_DMA_FROMDEVICE);
133 if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) {
134 dev_kfree_skb_any(rx_buf->skb);
135 rx_buf->skb = NULL;
136 return -EIO;
139 return 0;
143 * efx_init_rx_buffer_page - create new RX buffer using page-based allocation
145 * @rx_queue: Efx RX queue
146 * @rx_buf: RX buffer structure to populate
148 * This allocates memory for a new receive buffer, maps it for DMA,
149 * and populates a struct efx_rx_buffer with the relevant
150 * information. Return a negative error code or 0 on success.
152 static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue,
153 struct efx_rx_buffer *rx_buf)
155 struct efx_nic *efx = rx_queue->efx;
156 int bytes, space, offset;
158 bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
160 /* If there is space left in the previously allocated page,
161 * then use it. Otherwise allocate a new one */
162 rx_buf->page = rx_queue->buf_page;
163 if (rx_buf->page == NULL) {
164 dma_addr_t dma_addr;
166 rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
167 efx->rx_buffer_order);
168 if (unlikely(rx_buf->page == NULL))
169 return -ENOMEM;
171 dma_addr = pci_map_page(efx->pci_dev, rx_buf->page,
172 0, efx_rx_buf_size(efx),
173 PCI_DMA_FROMDEVICE);
175 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
176 __free_pages(rx_buf->page, efx->rx_buffer_order);
177 rx_buf->page = NULL;
178 return -EIO;
181 rx_queue->buf_page = rx_buf->page;
182 rx_queue->buf_dma_addr = dma_addr;
183 rx_queue->buf_data = (page_address(rx_buf->page) +
184 EFX_PAGE_IP_ALIGN);
187 rx_buf->len = bytes;
188 rx_buf->data = rx_queue->buf_data;
189 offset = efx_rx_buf_offset(rx_buf);
190 rx_buf->dma_addr = rx_queue->buf_dma_addr + offset;
192 /* Try to pack multiple buffers per page */
193 if (efx->rx_buffer_order == 0) {
194 /* The next buffer starts on the next 512 byte boundary */
195 rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff);
196 offset += ((bytes + 0x1ff) & ~0x1ff);
198 space = efx_rx_buf_size(efx) - offset;
199 if (space >= bytes) {
200 /* Refs dropped on kernel releasing each skb */
201 get_page(rx_queue->buf_page);
202 goto out;
206 /* This is the final RX buffer for this page, so mark it for
207 * unmapping */
208 rx_queue->buf_page = NULL;
209 rx_buf->unmap_addr = rx_queue->buf_dma_addr;
211 out:
212 return 0;
215 /* This allocates memory for a new receive buffer, maps it for DMA,
216 * and populates a struct efx_rx_buffer with the relevant
217 * information.
219 static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue,
220 struct efx_rx_buffer *new_rx_buf)
222 int rc = 0;
224 if (rx_queue->channel->rx_alloc_push_pages) {
225 new_rx_buf->skb = NULL;
226 rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf);
227 rx_queue->alloc_page_count++;
228 } else {
229 new_rx_buf->page = NULL;
230 rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf);
231 rx_queue->alloc_skb_count++;
234 if (unlikely(rc < 0))
235 EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__,
236 rx_queue->queue, rc);
237 return rc;
240 static void efx_unmap_rx_buffer(struct efx_nic *efx,
241 struct efx_rx_buffer *rx_buf)
243 if (rx_buf->page) {
244 EFX_BUG_ON_PARANOID(rx_buf->skb);
245 if (rx_buf->unmap_addr) {
246 pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr,
247 efx_rx_buf_size(efx),
248 PCI_DMA_FROMDEVICE);
249 rx_buf->unmap_addr = 0;
251 } else if (likely(rx_buf->skb)) {
252 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
253 rx_buf->len, PCI_DMA_FROMDEVICE);
257 static void efx_free_rx_buffer(struct efx_nic *efx,
258 struct efx_rx_buffer *rx_buf)
260 if (rx_buf->page) {
261 __free_pages(rx_buf->page, efx->rx_buffer_order);
262 rx_buf->page = NULL;
263 } else if (likely(rx_buf->skb)) {
264 dev_kfree_skb_any(rx_buf->skb);
265 rx_buf->skb = NULL;
269 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
270 struct efx_rx_buffer *rx_buf)
272 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
273 efx_free_rx_buffer(rx_queue->efx, rx_buf);
277 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
278 * @rx_queue: RX descriptor queue
279 * @retry: Recheck the fill level
280 * This will aim to fill the RX descriptor queue up to
281 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
282 * memory to do so, the caller should retry.
284 static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
285 int retry)
287 struct efx_rx_buffer *rx_buf;
288 unsigned fill_level, index;
289 int i, space, rc = 0;
291 /* Calculate current fill level. Do this outside the lock,
292 * because most of the time we'll end up not wanting to do the
293 * fill anyway.
295 fill_level = (rx_queue->added_count - rx_queue->removed_count);
296 EFX_BUG_ON_PARANOID(fill_level >
297 rx_queue->efx->type->rxd_ring_mask + 1);
299 /* Don't fill if we don't need to */
300 if (fill_level >= rx_queue->fast_fill_trigger)
301 return 0;
303 /* Record minimum fill level */
304 if (unlikely(fill_level < rx_queue->min_fill)) {
305 if (fill_level)
306 rx_queue->min_fill = fill_level;
309 /* Acquire RX add lock. If this lock is contended, then a fast
310 * fill must already be in progress (e.g. in the refill
311 * tasklet), so we don't need to do anything
313 if (!spin_trylock_bh(&rx_queue->add_lock))
314 return -1;
316 retry:
317 /* Recalculate current fill level now that we have the lock */
318 fill_level = (rx_queue->added_count - rx_queue->removed_count);
319 EFX_BUG_ON_PARANOID(fill_level >
320 rx_queue->efx->type->rxd_ring_mask + 1);
321 space = rx_queue->fast_fill_limit - fill_level;
322 if (space < EFX_RX_BATCH)
323 goto out_unlock;
325 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
326 " level %d to level %d using %s allocation\n",
327 rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
328 rx_queue->channel->rx_alloc_push_pages ? "page" : "skb");
330 do {
331 for (i = 0; i < EFX_RX_BATCH; ++i) {
332 index = (rx_queue->added_count &
333 rx_queue->efx->type->rxd_ring_mask);
334 rx_buf = efx_rx_buffer(rx_queue, index);
335 rc = efx_init_rx_buffer(rx_queue, rx_buf);
336 if (unlikely(rc))
337 goto out;
338 ++rx_queue->added_count;
340 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
342 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
343 "to level %d\n", rx_queue->queue,
344 rx_queue->added_count - rx_queue->removed_count);
346 out:
347 /* Send write pointer to card. */
348 falcon_notify_rx_desc(rx_queue);
350 /* If the fast fill is running inside from the refill tasklet, then
351 * for SMP systems it may be running on a different CPU to
352 * RX event processing, which means that the fill level may now be
353 * out of date. */
354 if (unlikely(retry && (rc == 0)))
355 goto retry;
357 out_unlock:
358 spin_unlock_bh(&rx_queue->add_lock);
360 return rc;
364 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
365 * @rx_queue: RX descriptor queue
367 * This will aim to fill the RX descriptor queue up to
368 * @rx_queue->@fast_fill_limit. If there is insufficient memory to do so,
369 * it will schedule a work item to immediately continue the fast fill
371 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
373 int rc;
375 rc = __efx_fast_push_rx_descriptors(rx_queue, 0);
376 if (unlikely(rc)) {
377 /* Schedule the work item to run immediately. The hope is
378 * that work is immediately pending to free some memory
379 * (e.g. an RX event or TX completion)
381 efx_schedule_slow_fill(rx_queue, 0);
385 void efx_rx_work(struct work_struct *data)
387 struct efx_rx_queue *rx_queue;
388 int rc;
390 rx_queue = container_of(data, struct efx_rx_queue, work.work);
392 if (unlikely(!rx_queue->channel->enabled))
393 return;
395 EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU "
396 "%d\n", rx_queue->queue, raw_smp_processor_id());
398 ++rx_queue->slow_fill_count;
399 /* Push new RX descriptors, allowing at least 1 jiffy for
400 * the kernel to free some more memory. */
401 rc = __efx_fast_push_rx_descriptors(rx_queue, 1);
402 if (rc)
403 efx_schedule_slow_fill(rx_queue, 1);
406 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
407 struct efx_rx_buffer *rx_buf,
408 int len, bool *discard,
409 bool *leak_packet)
411 struct efx_nic *efx = rx_queue->efx;
412 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
414 if (likely(len <= max_len))
415 return;
417 /* The packet must be discarded, but this is only a fatal error
418 * if the caller indicated it was
420 *discard = true;
422 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
423 EFX_ERR_RL(efx, " RX queue %d seriously overlength "
424 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
425 rx_queue->queue, len, max_len,
426 efx->type->rx_buffer_padding);
427 /* If this buffer was skb-allocated, then the meta
428 * data at the end of the skb will be trashed. So
429 * we have no choice but to leak the fragment.
431 *leak_packet = (rx_buf->skb != NULL);
432 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
433 } else {
434 EFX_ERR_RL(efx, " RX queue %d overlength RX event "
435 "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
438 rx_queue->channel->n_rx_overlength++;
441 /* Pass a received packet up through the generic LRO stack
443 * Handles driverlink veto, and passes the fragment up via
444 * the appropriate LRO method
446 static void efx_rx_packet_lro(struct efx_channel *channel,
447 struct efx_rx_buffer *rx_buf,
448 bool checksummed)
450 struct napi_struct *napi = &channel->napi_str;
452 /* Pass the skb/page into the LRO engine */
453 if (rx_buf->page) {
454 struct sk_buff *skb = napi_get_frags(napi);
456 if (!skb) {
457 put_page(rx_buf->page);
458 goto out;
461 skb_shinfo(skb)->frags[0].page = rx_buf->page;
462 skb_shinfo(skb)->frags[0].page_offset =
463 efx_rx_buf_offset(rx_buf);
464 skb_shinfo(skb)->frags[0].size = rx_buf->len;
465 skb_shinfo(skb)->nr_frags = 1;
467 skb->len = rx_buf->len;
468 skb->data_len = rx_buf->len;
469 skb->truesize += rx_buf->len;
470 skb->ip_summed =
471 checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
473 napi_gro_frags(napi);
475 out:
476 EFX_BUG_ON_PARANOID(rx_buf->skb);
477 rx_buf->page = NULL;
478 } else {
479 EFX_BUG_ON_PARANOID(!rx_buf->skb);
480 EFX_BUG_ON_PARANOID(!checksummed);
482 napi_gro_receive(napi, rx_buf->skb);
483 rx_buf->skb = NULL;
487 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
488 unsigned int len, bool checksummed, bool discard)
490 struct efx_nic *efx = rx_queue->efx;
491 struct efx_rx_buffer *rx_buf;
492 bool leak_packet = false;
494 rx_buf = efx_rx_buffer(rx_queue, index);
495 EFX_BUG_ON_PARANOID(!rx_buf->data);
496 EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
497 EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
499 /* This allows the refill path to post another buffer.
500 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
501 * isn't overwritten yet.
503 rx_queue->removed_count++;
505 /* Validate the length encoded in the event vs the descriptor pushed */
506 efx_rx_packet__check_len(rx_queue, rx_buf, len,
507 &discard, &leak_packet);
509 EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
510 rx_queue->queue, index,
511 (unsigned long long)rx_buf->dma_addr, len,
512 (checksummed ? " [SUMMED]" : ""),
513 (discard ? " [DISCARD]" : ""));
515 /* Discard packet, if instructed to do so */
516 if (unlikely(discard)) {
517 if (unlikely(leak_packet))
518 rx_queue->channel->n_skbuff_leaks++;
519 else
520 /* We haven't called efx_unmap_rx_buffer yet,
521 * so fini the entire rx_buffer here */
522 efx_fini_rx_buffer(rx_queue, rx_buf);
523 return;
526 /* Release card resources - assumes all RX buffers consumed in-order
527 * per RX queue
529 efx_unmap_rx_buffer(efx, rx_buf);
531 /* Prefetch nice and early so data will (hopefully) be in cache by
532 * the time we look at it.
534 prefetch(rx_buf->data);
536 /* Pipeline receives so that we give time for packet headers to be
537 * prefetched into cache.
539 rx_buf->len = len;
540 if (rx_queue->channel->rx_pkt)
541 __efx_rx_packet(rx_queue->channel,
542 rx_queue->channel->rx_pkt,
543 rx_queue->channel->rx_pkt_csummed);
544 rx_queue->channel->rx_pkt = rx_buf;
545 rx_queue->channel->rx_pkt_csummed = checksummed;
548 /* Handle a received packet. Second half: Touches packet payload. */
549 void __efx_rx_packet(struct efx_channel *channel,
550 struct efx_rx_buffer *rx_buf, bool checksummed)
552 struct efx_nic *efx = channel->efx;
553 struct sk_buff *skb;
555 /* If we're in loopback test, then pass the packet directly to the
556 * loopback layer, and free the rx_buf here
558 if (unlikely(efx->loopback_selftest)) {
559 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
560 efx_free_rx_buffer(efx, rx_buf);
561 goto done;
564 if (rx_buf->skb) {
565 prefetch(skb_shinfo(rx_buf->skb));
567 skb_put(rx_buf->skb, rx_buf->len);
569 /* Move past the ethernet header. rx_buf->data still points
570 * at the ethernet header */
571 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
572 efx->net_dev);
575 if (likely(checksummed || rx_buf->page)) {
576 efx_rx_packet_lro(channel, rx_buf, checksummed);
577 goto done;
580 /* We now own the SKB */
581 skb = rx_buf->skb;
582 rx_buf->skb = NULL;
584 EFX_BUG_ON_PARANOID(rx_buf->page);
585 EFX_BUG_ON_PARANOID(rx_buf->skb);
586 EFX_BUG_ON_PARANOID(!skb);
588 /* Set the SKB flags */
589 skb->ip_summed = CHECKSUM_NONE;
591 skb_record_rx_queue(skb, channel->channel);
593 /* Pass the packet up */
594 netif_receive_skb(skb);
596 /* Update allocation strategy method */
597 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
599 done:
603 void efx_rx_strategy(struct efx_channel *channel)
605 enum efx_rx_alloc_method method = rx_alloc_method;
607 /* Only makes sense to use page based allocation if LRO is enabled */
608 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
609 method = RX_ALLOC_METHOD_SKB;
610 } else if (method == RX_ALLOC_METHOD_AUTO) {
611 /* Constrain the rx_alloc_level */
612 if (channel->rx_alloc_level < 0)
613 channel->rx_alloc_level = 0;
614 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
615 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
617 /* Decide on the allocation method */
618 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
619 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
622 /* Push the option */
623 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
626 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
628 struct efx_nic *efx = rx_queue->efx;
629 unsigned int rxq_size;
630 int rc;
632 EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
634 /* Allocate RX buffers */
635 rxq_size = (efx->type->rxd_ring_mask + 1) * sizeof(*rx_queue->buffer);
636 rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
637 if (!rx_queue->buffer)
638 return -ENOMEM;
640 rc = falcon_probe_rx(rx_queue);
641 if (rc) {
642 kfree(rx_queue->buffer);
643 rx_queue->buffer = NULL;
645 return rc;
648 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
650 struct efx_nic *efx = rx_queue->efx;
651 unsigned int max_fill, trigger, limit;
653 EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
655 /* Initialise ptr fields */
656 rx_queue->added_count = 0;
657 rx_queue->notified_count = 0;
658 rx_queue->removed_count = 0;
659 rx_queue->min_fill = -1U;
660 rx_queue->min_overfill = -1U;
662 /* Initialise limit fields */
663 max_fill = efx->type->rxd_ring_mask + 1 - EFX_RXD_HEAD_ROOM;
664 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
665 limit = max_fill * min(rx_refill_limit, 100U) / 100U;
667 rx_queue->max_fill = max_fill;
668 rx_queue->fast_fill_trigger = trigger;
669 rx_queue->fast_fill_limit = limit;
671 /* Set up RX descriptor ring */
672 falcon_init_rx(rx_queue);
675 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
677 int i;
678 struct efx_rx_buffer *rx_buf;
680 EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
682 falcon_fini_rx(rx_queue);
684 /* Release RX buffers NB start at index 0 not current HW ptr */
685 if (rx_queue->buffer) {
686 for (i = 0; i <= rx_queue->efx->type->rxd_ring_mask; i++) {
687 rx_buf = efx_rx_buffer(rx_queue, i);
688 efx_fini_rx_buffer(rx_queue, rx_buf);
692 /* For a page that is part-way through splitting into RX buffers */
693 if (rx_queue->buf_page != NULL) {
694 pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr,
695 efx_rx_buf_size(rx_queue->efx),
696 PCI_DMA_FROMDEVICE);
697 __free_pages(rx_queue->buf_page,
698 rx_queue->efx->rx_buffer_order);
699 rx_queue->buf_page = NULL;
703 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
705 EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
707 falcon_remove_rx(rx_queue);
709 kfree(rx_queue->buffer);
710 rx_queue->buffer = NULL;
714 module_param(rx_alloc_method, int, 0644);
715 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
717 module_param(rx_refill_threshold, uint, 0444);
718 MODULE_PARM_DESC(rx_refill_threshold,
719 "RX descriptor ring fast/slow fill threshold (%)");