x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / tulip / de4x5.c
bloba8349b7200b5a2e601b7013ea2de0003b06a0d12
1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
4 Copyright 1994, 1995 Digital Equipment Corporation.
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
9 The author may be reached at davies@maniac.ultranet.com.
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
50 So far the driver is known to work with the following cards:
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
82 Upto 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
99 To utilise this ability, you have to do 8 things:
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
114 insmod de4x5
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
238 TO DO:
239 ------
241 Revision History
242 ----------------
244 Version Date Description
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/slab.h>
454 #include <linux/pci.h>
455 #include <linux/eisa.h>
456 #include <linux/delay.h>
457 #include <linux/init.h>
458 #include <linux/spinlock.h>
459 #include <linux/crc32.h>
460 #include <linux/netdevice.h>
461 #include <linux/etherdevice.h>
462 #include <linux/skbuff.h>
463 #include <linux/time.h>
464 #include <linux/types.h>
465 #include <linux/unistd.h>
466 #include <linux/ctype.h>
467 #include <linux/dma-mapping.h>
468 #include <linux/moduleparam.h>
469 #include <linux/bitops.h>
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <asm/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
480 #include "de4x5.h"
482 static const char version[] __devinitconst =
483 KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
485 #define c_char const char
488 ** MII Information
490 struct phy_table {
491 int reset; /* Hard reset required? */
492 int id; /* IEEE OUI */
493 int ta; /* One cycle TA time - 802.3u is confusing here */
494 struct { /* Non autonegotiation (parallel) speed det. */
495 int reg;
496 int mask;
497 int value;
498 } spd;
501 struct mii_phy {
502 int reset; /* Hard reset required? */
503 int id; /* IEEE OUI */
504 int ta; /* One cycle TA time */
505 struct { /* Non autonegotiation (parallel) speed det. */
506 int reg;
507 int mask;
508 int value;
509 } spd;
510 int addr; /* MII address for the PHY */
511 u_char *gep; /* Start of GEP sequence block in SROM */
512 u_char *rst; /* Start of reset sequence in SROM */
513 u_int mc; /* Media Capabilities */
514 u_int ana; /* NWay Advertisement */
515 u_int fdx; /* Full DupleX capabilities for each media */
516 u_int ttm; /* Transmit Threshold Mode for each media */
517 u_int mci; /* 21142 MII Connector Interrupt info */
520 #define DE4X5_MAX_PHY 8 /* Allow upto 8 attached PHY devices per board */
522 struct sia_phy {
523 u_char mc; /* Media Code */
524 u_char ext; /* csr13-15 valid when set */
525 int csr13; /* SIA Connectivity Register */
526 int csr14; /* SIA TX/RX Register */
527 int csr15; /* SIA General Register */
528 int gepc; /* SIA GEP Control Information */
529 int gep; /* SIA GEP Data */
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
536 static struct phy_table phy_info[] = {
537 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
538 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
539 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
540 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
541 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
549 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
554 ** Define special SROM detection cases
556 static c_char enet_det[][ETH_ALEN] = {
557 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
561 #define SMC 1
562 #define ACCTON 2
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
569 static c_char srom_repair_info[][100] = {
570 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
571 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573 0x00,0x18,}
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
589 ** For a compiled in driver, place e.g.
590 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
599 struct parameters {
600 bool fdx;
601 int autosense;
604 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
606 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
609 ** Ethernet PROM defines
611 #define PROBE_LENGTH 32
612 #define ETH_PROM_SIG 0xAA5500FFUL
615 ** Ethernet Info
617 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ 1518 /* Packet + CRC */
619 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
621 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
622 #define PKT_HDR_LEN 14 /* Addresses and data length info */
623 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
628 ** EISA bus defines
630 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
633 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
641 ** Ethernet PROM defines for DC21040
643 #define PROBE_LENGTH 32
644 #define ETH_PROM_SIG 0xAA5500FFUL
647 ** PCI Bus defines
649 #define PCI_MAX_BUS_NUM 8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
651 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
659 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
660 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
661 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
662 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
663 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
664 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
666 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
672 #ifndef DEC_ONLY /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
679 ** DE4X5 IRQ ENABLE/DISABLE
681 #define ENABLE_IRQs { \
682 imr |= lp->irq_en;\
683 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
686 #define DISABLE_IRQs {\
687 imr = inl(DE4X5_IMR);\
688 imr &= ~lp->irq_en;\
689 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
692 #define UNMASK_IRQs {\
693 imr |= lp->irq_mask;\
694 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
697 #define MASK_IRQs {\
698 imr = inl(DE4X5_IMR);\
699 imr &= ~lp->irq_mask;\
700 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
704 ** DE4X5 START/STOP
706 #define START_DE4X5 {\
707 omr = inl(DE4X5_OMR);\
708 omr |= OMR_ST | OMR_SR;\
709 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
712 #define STOP_DE4X5 {\
713 omr = inl(DE4X5_OMR);\
714 omr &= ~(OMR_ST|OMR_SR);\
715 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
719 ** DE4X5 SIA RESET
721 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
726 #define DE4X5_AUTOSENSE_MS 250
729 ** SROM Structure
731 struct de4x5_srom {
732 char sub_vendor_id[2];
733 char sub_system_id[2];
734 char reserved[12];
735 char id_block_crc;
736 char reserved2;
737 char version;
738 char num_controllers;
739 char ieee_addr[6];
740 char info[100];
741 short chksum;
743 #define SUB_VENDOR_ID 0x500a
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
753 #define NUM_RX_DESC 8 /* Number of RX descriptors */
754 #define NUM_TX_DESC 32 /* Number of TX descriptors */
755 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
756 /* Multiple of 4 for DC21040 */
757 /* Allows 512 byte alignment */
758 struct de4x5_desc {
759 volatile __le32 status;
760 __le32 des1;
761 __le32 buf;
762 __le32 next;
763 DESC_ALIGN
767 ** The DE4X5 private structure
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
771 increase DE4X5_PKT_STAT_SZ */
773 struct pkt_stats {
774 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
775 u_int unicast;
776 u_int multicast;
777 u_int broadcast;
778 u_int excessive_collisions;
779 u_int tx_underruns;
780 u_int excessive_underruns;
781 u_int rx_runt_frames;
782 u_int rx_collision;
783 u_int rx_dribble;
784 u_int rx_overflow;
787 struct de4x5_private {
788 char adapter_name[80]; /* Adapter name */
789 u_long interrupt; /* Aligned ISR flag */
790 struct de4x5_desc *rx_ring; /* RX descriptor ring */
791 struct de4x5_desc *tx_ring; /* TX descriptor ring */
792 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
793 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
794 int rx_new, rx_old; /* RX descriptor ring pointers */
795 int tx_new, tx_old; /* TX descriptor ring pointers */
796 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
797 char frame[64]; /* Min sized packet for loopback*/
798 spinlock_t lock; /* Adapter specific spinlock */
799 struct net_device_stats stats; /* Public stats */
800 struct pkt_stats pktStats; /* Private stats counters */
801 char rxRingSize;
802 char txRingSize;
803 int bus; /* EISA or PCI */
804 int bus_num; /* PCI Bus number */
805 int device; /* Device number on PCI bus */
806 int state; /* Adapter OPENED or CLOSED */
807 int chipset; /* DC21040, DC21041 or DC21140 */
808 s32 irq_mask; /* Interrupt Mask (Enable) bits */
809 s32 irq_en; /* Summary interrupt bits */
810 int media; /* Media (eg TP), mode (eg 100B)*/
811 int c_media; /* Remember the last media conn */
812 bool fdx; /* media full duplex flag */
813 int linkOK; /* Link is OK */
814 int autosense; /* Allow/disallow autosensing */
815 bool tx_enable; /* Enable descriptor polling */
816 int setup_f; /* Setup frame filtering type */
817 int local_state; /* State within a 'media' state */
818 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
819 struct sia_phy sia; /* SIA PHY Information */
820 int active; /* Index to active PHY device */
821 int mii_cnt; /* Number of attached PHY's */
822 int timeout; /* Scheduling counter */
823 struct timer_list timer; /* Timer info for kernel */
824 int tmp; /* Temporary global per card */
825 struct {
826 u_long lock; /* Lock the cache accesses */
827 s32 csr0; /* Saved Bus Mode Register */
828 s32 csr6; /* Saved Operating Mode Reg. */
829 s32 csr7; /* Saved IRQ Mask Register */
830 s32 gep; /* Saved General Purpose Reg. */
831 s32 gepc; /* Control info for GEP */
832 s32 csr13; /* Saved SIA Connectivity Reg. */
833 s32 csr14; /* Saved SIA TX/RX Register */
834 s32 csr15; /* Saved SIA General Register */
835 int save_cnt; /* Flag if state already saved */
836 struct sk_buff_head queue; /* Save the (re-ordered) skb's */
837 } cache;
838 struct de4x5_srom srom; /* A copy of the SROM */
839 int cfrv; /* Card CFRV copy */
840 int rx_ovf; /* Check for 'RX overflow' tag */
841 bool useSROM; /* For non-DEC card use SROM */
842 bool useMII; /* Infoblock using the MII */
843 int asBitValid; /* Autosense bits in GEP? */
844 int asPolarity; /* 0 => asserted high */
845 int asBit; /* Autosense bit number in GEP */
846 int defMedium; /* SROM default medium */
847 int tcount; /* Last infoblock number */
848 int infoblock_init; /* Initialised this infoblock? */
849 int infoleaf_offset; /* SROM infoleaf for controller */
850 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
851 int infoblock_media; /* infoblock media */
852 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
853 u_char *rst; /* Pointer to Type 5 reset info */
854 u_char ibn; /* Infoblock number */
855 struct parameters params; /* Command line/ #defined params */
856 struct device *gendev; /* Generic device */
857 dma_addr_t dma_rings; /* DMA handle for rings */
858 int dma_size; /* Size of the DMA area */
859 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
867 ** o the chipset is the same
868 ** o the bus number is the same and > 0
869 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
874 static struct {
875 int chipset;
876 int bus;
877 int irq;
878 u_char addr[ETH_ALEN];
879 } last = {0,};
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 ** tx_old = tx_new Empty ring
885 ** tx_old = tx_new+1 Full ring
886 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 lp->tx_old -lp->tx_new-1)
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
895 ** Public Functions
897 static int de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899 struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int de4x5_close(struct net_device *dev);
902 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void set_multicast_list(struct net_device *dev);
905 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
908 ** Private functions
910 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int de4x5_init(struct net_device *dev);
912 static int de4x5_sw_reset(struct net_device *dev);
913 static int de4x5_rx(struct net_device *dev);
914 static int de4x5_tx(struct net_device *dev);
915 static void de4x5_ast(struct net_device *dev);
916 static int de4x5_txur(struct net_device *dev);
917 static int de4x5_rx_ovfc(struct net_device *dev);
919 static int autoconf_media(struct net_device *dev);
920 static void create_packet(struct net_device *dev, char *frame, int len);
921 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int dc21040_autoconf(struct net_device *dev);
923 static int dc21041_autoconf(struct net_device *dev);
924 static int dc21140m_autoconf(struct net_device *dev);
925 static int dc2114x_autoconf(struct net_device *dev);
926 static int srom_autoconf(struct net_device *dev);
927 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int test_for_100Mb(struct net_device *dev, int msec);
931 static int wait_for_link(struct net_device *dev);
932 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int is_spd_100(struct net_device *dev);
934 static int is_100_up(struct net_device *dev);
935 static int is_10_up(struct net_device *dev);
936 static int is_anc_capable(struct net_device *dev);
937 static int ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void de4x5_free_rx_buffs(struct net_device *dev);
940 static void de4x5_free_tx_buffs(struct net_device *dev);
941 static void de4x5_save_skbs(struct net_device *dev);
942 static void de4x5_rst_desc_ring(struct net_device *dev);
943 static void de4x5_cache_state(struct net_device *dev, int flag);
944 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void de4x5_setup_intr(struct net_device *dev);
948 static void de4x5_init_connection(struct net_device *dev);
949 static int de4x5_reset_phy(struct net_device *dev);
950 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int test_tp(struct net_device *dev, s32 msec);
953 static int EISA_signature(char *name, struct device *device);
954 static int PCI_signature(char *name, struct de4x5_private *lp);
955 static void DevicePresent(struct net_device *dev, u_long iobase);
956 static void enet_addr_rst(u_long aprom_addr);
957 static int de4x5_bad_srom(struct de4x5_private *lp);
958 static short srom_rd(u_long address, u_char offset);
959 static void srom_latch(u_int command, u_long address);
960 static void srom_command(u_int command, u_long address);
961 static void srom_address(u_int command, u_long address, u_char offset);
962 static short srom_data(u_int command, u_long address);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command, u_long addr);
965 static int getfrom_srom(u_long addr);
966 static int srom_map_media(struct net_device *dev);
967 static int srom_infoleaf_info(struct net_device *dev);
968 static void srom_init(struct net_device *dev);
969 static void srom_exec(struct net_device *dev, u_char *p);
970 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int mii_rdata(u_long ioaddr);
973 static void mii_wdata(int data, int len, u_long ioaddr);
974 static void mii_ta(u_long rw, u_long ioaddr);
975 static int mii_swap(int data, int len);
976 static void mii_address(u_char addr, u_long ioaddr);
977 static void sendto_mii(u32 command, int data, u_long ioaddr);
978 static int getfrom_mii(u32 command, u_long ioaddr);
979 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int mii_get_phy(struct net_device *dev);
981 static void SetMulticastFilter(struct net_device *dev);
982 static int get_hw_addr(struct net_device *dev);
983 static void srom_repair(struct net_device *dev, int card);
984 static int test_bad_enet(struct net_device *dev, int status);
985 static int an_exception(struct de4x5_private *lp);
986 static char *build_setup_frame(struct net_device *dev, int mode);
987 static void disable_ast(struct net_device *dev);
988 static long de4x5_switch_mac_port(struct net_device *dev);
989 static int gep_rd(struct net_device *dev);
990 static void gep_wr(s32 data, struct net_device *dev);
991 static void yawn(struct net_device *dev, int state);
992 static void de4x5_parse_params(struct net_device *dev);
993 static void de4x5_dbg_open(struct net_device *dev);
994 static void de4x5_dbg_mii(struct net_device *dev, int k);
995 static void de4x5_dbg_media(struct net_device *dev);
996 static void de4x5_dbg_srom(struct de4x5_srom *p);
997 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int de4x5_strncmp(char *a, char *b, int n);
999 static int dc21041_infoleaf(struct net_device *dev);
1000 static int dc21140_infoleaf(struct net_device *dev);
1001 static int dc21142_infoleaf(struct net_device *dev);
1002 static int dc21143_infoleaf(struct net_device *dev);
1003 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1009 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1012 ** Note now that module autoprobing is allowed under EISA and PCI. The
1013 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1014 ** to "do the right thing".
1017 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1019 module_param(io, int, 0);
1020 module_param(de4x5_debug, int, 0);
1021 module_param(dec_only, int, 0);
1022 module_param(args, charp, 0);
1024 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1025 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1026 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1027 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1028 MODULE_LICENSE("GPL");
1031 ** List the SROM infoleaf functions and chipsets
1033 struct InfoLeaf {
1034 int chipset;
1035 int (*fn)(struct net_device *);
1037 static struct InfoLeaf infoleaf_array[] = {
1038 {DC21041, dc21041_infoleaf},
1039 {DC21140, dc21140_infoleaf},
1040 {DC21142, dc21142_infoleaf},
1041 {DC21143, dc21143_infoleaf}
1043 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1046 ** List the SROM info block functions
1048 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1049 type0_infoblock,
1050 type1_infoblock,
1051 type2_infoblock,
1052 type3_infoblock,
1053 type4_infoblock,
1054 type5_infoblock,
1055 compact_infoblock
1058 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1061 ** Miscellaneous defines...
1063 #define RESET_DE4X5 {\
1064 int i;\
1065 i=inl(DE4X5_BMR);\
1066 mdelay(1);\
1067 outl(i | BMR_SWR, DE4X5_BMR);\
1068 mdelay(1);\
1069 outl(i, DE4X5_BMR);\
1070 mdelay(1);\
1071 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1072 mdelay(1);\
1075 #define PHY_HARD_RESET {\
1076 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1077 mdelay(1); /* Assert for 1ms */\
1078 outl(0x00, DE4X5_GEP);\
1079 mdelay(2); /* Wait for 2ms */\
1082 static const struct net_device_ops de4x5_netdev_ops = {
1083 .ndo_open = de4x5_open,
1084 .ndo_stop = de4x5_close,
1085 .ndo_start_xmit = de4x5_queue_pkt,
1086 .ndo_get_stats = de4x5_get_stats,
1087 .ndo_set_multicast_list = set_multicast_list,
1088 .ndo_do_ioctl = de4x5_ioctl,
1089 .ndo_change_mtu = eth_change_mtu,
1090 .ndo_set_mac_address= eth_mac_addr,
1091 .ndo_validate_addr = eth_validate_addr,
1095 static int __devinit
1096 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1098 char name[DE4X5_NAME_LENGTH + 1];
1099 struct de4x5_private *lp = netdev_priv(dev);
1100 struct pci_dev *pdev = NULL;
1101 int i, status=0;
1103 dev_set_drvdata(gendev, dev);
1105 /* Ensure we're not sleeping */
1106 if (lp->bus == EISA) {
1107 outb(WAKEUP, PCI_CFPM);
1108 } else {
1109 pdev = to_pci_dev (gendev);
1110 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1112 mdelay(10);
1114 RESET_DE4X5;
1116 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1117 return -ENXIO; /* Hardware could not reset */
1121 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1123 lp->useSROM = false;
1124 if (lp->bus == PCI) {
1125 PCI_signature(name, lp);
1126 } else {
1127 EISA_signature(name, gendev);
1130 if (*name == '\0') { /* Not found a board signature */
1131 return -ENXIO;
1134 dev->base_addr = iobase;
1135 printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1137 status = get_hw_addr(dev);
1138 printk(", h/w address %pM\n", dev->dev_addr);
1140 if (status != 0) {
1141 printk(" which has an Ethernet PROM CRC error.\n");
1142 return -ENXIO;
1143 } else {
1144 skb_queue_head_init(&lp->cache.queue);
1145 lp->cache.gepc = GEP_INIT;
1146 lp->asBit = GEP_SLNK;
1147 lp->asPolarity = GEP_SLNK;
1148 lp->asBitValid = ~0;
1149 lp->timeout = -1;
1150 lp->gendev = gendev;
1151 spin_lock_init(&lp->lock);
1152 init_timer(&lp->timer);
1153 lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1154 lp->timer.data = (unsigned long)dev;
1155 de4x5_parse_params(dev);
1158 ** Choose correct autosensing in case someone messed up
1160 lp->autosense = lp->params.autosense;
1161 if (lp->chipset != DC21140) {
1162 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1163 lp->params.autosense = TP;
1165 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1166 lp->params.autosense = BNC;
1169 lp->fdx = lp->params.fdx;
1170 sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1172 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1173 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1174 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1175 #endif
1176 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1177 &lp->dma_rings, GFP_ATOMIC);
1178 if (lp->rx_ring == NULL) {
1179 return -ENOMEM;
1182 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1185 ** Set up the RX descriptor ring (Intels)
1186 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1188 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1189 for (i=0; i<NUM_RX_DESC; i++) {
1190 lp->rx_ring[i].status = 0;
1191 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1192 lp->rx_ring[i].buf = 0;
1193 lp->rx_ring[i].next = 0;
1194 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1197 #else
1199 dma_addr_t dma_rx_bufs;
1201 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1202 * sizeof(struct de4x5_desc);
1203 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1204 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1205 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1206 for (i=0; i<NUM_RX_DESC; i++) {
1207 lp->rx_ring[i].status = 0;
1208 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1209 lp->rx_ring[i].buf =
1210 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1211 lp->rx_ring[i].next = 0;
1212 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1216 #endif
1218 barrier();
1220 lp->rxRingSize = NUM_RX_DESC;
1221 lp->txRingSize = NUM_TX_DESC;
1223 /* Write the end of list marker to the descriptor lists */
1224 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1225 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1227 /* Tell the adapter where the TX/RX rings are located. */
1228 outl(lp->dma_rings, DE4X5_RRBA);
1229 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1230 DE4X5_TRBA);
1232 /* Initialise the IRQ mask and Enable/Disable */
1233 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1234 lp->irq_en = IMR_NIM | IMR_AIM;
1236 /* Create a loopback packet frame for later media probing */
1237 create_packet(dev, lp->frame, sizeof(lp->frame));
1239 /* Check if the RX overflow bug needs testing for */
1240 i = lp->cfrv & 0x000000fe;
1241 if ((lp->chipset == DC21140) && (i == 0x20)) {
1242 lp->rx_ovf = 1;
1245 /* Initialise the SROM pointers if possible */
1246 if (lp->useSROM) {
1247 lp->state = INITIALISED;
1248 if (srom_infoleaf_info(dev)) {
1249 dma_free_coherent (gendev, lp->dma_size,
1250 lp->rx_ring, lp->dma_rings);
1251 return -ENXIO;
1253 srom_init(dev);
1256 lp->state = CLOSED;
1259 ** Check for an MII interface
1261 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1262 mii_get_phy(dev);
1265 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1266 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1269 if (de4x5_debug & DEBUG_VERSION) {
1270 printk(version);
1273 /* The DE4X5-specific entries in the device structure. */
1274 SET_NETDEV_DEV(dev, gendev);
1275 dev->netdev_ops = &de4x5_netdev_ops;
1276 dev->mem_start = 0;
1278 /* Fill in the generic fields of the device structure. */
1279 if ((status = register_netdev (dev))) {
1280 dma_free_coherent (gendev, lp->dma_size,
1281 lp->rx_ring, lp->dma_rings);
1282 return status;
1285 /* Let the adapter sleep to save power */
1286 yawn(dev, SLEEP);
1288 return status;
1292 static int
1293 de4x5_open(struct net_device *dev)
1295 struct de4x5_private *lp = netdev_priv(dev);
1296 u_long iobase = dev->base_addr;
1297 int i, status = 0;
1298 s32 omr;
1300 /* Allocate the RX buffers */
1301 for (i=0; i<lp->rxRingSize; i++) {
1302 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1303 de4x5_free_rx_buffs(dev);
1304 return -EAGAIN;
1309 ** Wake up the adapter
1311 yawn(dev, WAKEUP);
1314 ** Re-initialize the DE4X5...
1316 status = de4x5_init(dev);
1317 spin_lock_init(&lp->lock);
1318 lp->state = OPEN;
1319 de4x5_dbg_open(dev);
1321 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1322 lp->adapter_name, dev)) {
1323 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1324 if (request_irq(dev->irq, de4x5_interrupt, IRQF_DISABLED | IRQF_SHARED,
1325 lp->adapter_name, dev)) {
1326 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1327 disable_ast(dev);
1328 de4x5_free_rx_buffs(dev);
1329 de4x5_free_tx_buffs(dev);
1330 yawn(dev, SLEEP);
1331 lp->state = CLOSED;
1332 return -EAGAIN;
1333 } else {
1334 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1335 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1339 lp->interrupt = UNMASK_INTERRUPTS;
1340 dev->trans_start = jiffies;
1342 START_DE4X5;
1344 de4x5_setup_intr(dev);
1346 if (de4x5_debug & DEBUG_OPEN) {
1347 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1348 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1349 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1350 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1351 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1352 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1353 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1354 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1357 return status;
1361 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1362 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1363 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1364 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1365 ** to be data corruption problems if it is larger (UDP errors seen from a
1366 ** ttcp source).
1368 static int
1369 de4x5_init(struct net_device *dev)
1371 /* Lock out other processes whilst setting up the hardware */
1372 netif_stop_queue(dev);
1374 de4x5_sw_reset(dev);
1376 /* Autoconfigure the connected port */
1377 autoconf_media(dev);
1379 return 0;
1382 static int
1383 de4x5_sw_reset(struct net_device *dev)
1385 struct de4x5_private *lp = netdev_priv(dev);
1386 u_long iobase = dev->base_addr;
1387 int i, j, status = 0;
1388 s32 bmr, omr;
1390 /* Select the MII or SRL port now and RESET the MAC */
1391 if (!lp->useSROM) {
1392 if (lp->phy[lp->active].id != 0) {
1393 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1394 } else {
1395 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1397 de4x5_switch_mac_port(dev);
1401 ** Set the programmable burst length to 8 longwords for all the DC21140
1402 ** Fasternet chips and 4 longwords for all others: DMA errors result
1403 ** without these values. Cache align 16 long.
1405 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1406 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1407 outl(bmr, DE4X5_BMR);
1409 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1410 if (lp->chipset == DC21140) {
1411 omr |= (OMR_SDP | OMR_SB);
1413 lp->setup_f = PERFECT;
1414 outl(lp->dma_rings, DE4X5_RRBA);
1415 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1416 DE4X5_TRBA);
1418 lp->rx_new = lp->rx_old = 0;
1419 lp->tx_new = lp->tx_old = 0;
1421 for (i = 0; i < lp->rxRingSize; i++) {
1422 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1425 for (i = 0; i < lp->txRingSize; i++) {
1426 lp->tx_ring[i].status = cpu_to_le32(0);
1429 barrier();
1431 /* Build the setup frame depending on filtering mode */
1432 SetMulticastFilter(dev);
1434 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1435 outl(omr|OMR_ST, DE4X5_OMR);
1437 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1439 for (j=0, i=0;(i<500) && (j==0);i++) { /* Upto 500ms delay */
1440 mdelay(1);
1441 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1443 outl(omr, DE4X5_OMR); /* Stop everything! */
1445 if (j == 0) {
1446 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1447 inl(DE4X5_STS));
1448 status = -EIO;
1451 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1452 lp->tx_old = lp->tx_new;
1454 return status;
1458 ** Writes a socket buffer address to the next available transmit descriptor.
1460 static netdev_tx_t
1461 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1463 struct de4x5_private *lp = netdev_priv(dev);
1464 u_long iobase = dev->base_addr;
1465 u_long flags = 0;
1467 netif_stop_queue(dev);
1468 if (!lp->tx_enable) /* Cannot send for now */
1469 return NETDEV_TX_LOCKED;
1472 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1473 ** interrupts are lost by delayed descriptor status updates relative to
1474 ** the irq assertion, especially with a busy PCI bus.
1476 spin_lock_irqsave(&lp->lock, flags);
1477 de4x5_tx(dev);
1478 spin_unlock_irqrestore(&lp->lock, flags);
1480 /* Test if cache is already locked - requeue skb if so */
1481 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1482 return NETDEV_TX_LOCKED;
1484 /* Transmit descriptor ring full or stale skb */
1485 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1486 if (lp->interrupt) {
1487 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1488 } else {
1489 de4x5_put_cache(dev, skb);
1491 if (de4x5_debug & DEBUG_TX) {
1492 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1494 } else if (skb->len > 0) {
1495 /* If we already have stuff queued locally, use that first */
1496 if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1497 de4x5_put_cache(dev, skb);
1498 skb = de4x5_get_cache(dev);
1501 while (skb && !netif_queue_stopped(dev) &&
1502 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1503 spin_lock_irqsave(&lp->lock, flags);
1504 netif_stop_queue(dev);
1505 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1506 lp->stats.tx_bytes += skb->len;
1507 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1509 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1510 dev->trans_start = jiffies;
1512 if (TX_BUFFS_AVAIL) {
1513 netif_start_queue(dev); /* Another pkt may be queued */
1515 skb = de4x5_get_cache(dev);
1516 spin_unlock_irqrestore(&lp->lock, flags);
1518 if (skb) de4x5_putb_cache(dev, skb);
1521 lp->cache.lock = 0;
1523 return NETDEV_TX_OK;
1527 ** The DE4X5 interrupt handler.
1529 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1530 ** so that the asserted interrupt always has some real data to work with -
1531 ** if these I/O accesses are ever changed to memory accesses, ensure the
1532 ** STS write is read immediately to complete the transaction if the adapter
1533 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1534 ** is high and descriptor status bits cannot be set before the associated
1535 ** interrupt is asserted and this routine entered.
1537 static irqreturn_t
1538 de4x5_interrupt(int irq, void *dev_id)
1540 struct net_device *dev = dev_id;
1541 struct de4x5_private *lp;
1542 s32 imr, omr, sts, limit;
1543 u_long iobase;
1544 unsigned int handled = 0;
1546 lp = netdev_priv(dev);
1547 spin_lock(&lp->lock);
1548 iobase = dev->base_addr;
1550 DISABLE_IRQs; /* Ensure non re-entrancy */
1552 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1553 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1555 synchronize_irq(dev->irq);
1557 for (limit=0; limit<8; limit++) {
1558 sts = inl(DE4X5_STS); /* Read IRQ status */
1559 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1561 if (!(sts & lp->irq_mask)) break;/* All done */
1562 handled = 1;
1564 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1565 de4x5_rx(dev);
1567 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1568 de4x5_tx(dev);
1570 if (sts & STS_LNF) { /* TP Link has failed */
1571 lp->irq_mask &= ~IMR_LFM;
1574 if (sts & STS_UNF) { /* Transmit underrun */
1575 de4x5_txur(dev);
1578 if (sts & STS_SE) { /* Bus Error */
1579 STOP_DE4X5;
1580 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1581 dev->name, sts);
1582 spin_unlock(&lp->lock);
1583 return IRQ_HANDLED;
1587 /* Load the TX ring with any locally stored packets */
1588 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1589 while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1590 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1592 lp->cache.lock = 0;
1595 lp->interrupt = UNMASK_INTERRUPTS;
1596 ENABLE_IRQs;
1597 spin_unlock(&lp->lock);
1599 return IRQ_RETVAL(handled);
1602 static int
1603 de4x5_rx(struct net_device *dev)
1605 struct de4x5_private *lp = netdev_priv(dev);
1606 u_long iobase = dev->base_addr;
1607 int entry;
1608 s32 status;
1610 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1611 entry=lp->rx_new) {
1612 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1614 if (lp->rx_ovf) {
1615 if (inl(DE4X5_MFC) & MFC_FOCM) {
1616 de4x5_rx_ovfc(dev);
1617 break;
1621 if (status & RD_FS) { /* Remember the start of frame */
1622 lp->rx_old = entry;
1625 if (status & RD_LS) { /* Valid frame status */
1626 if (lp->tx_enable) lp->linkOK++;
1627 if (status & RD_ES) { /* There was an error. */
1628 lp->stats.rx_errors++; /* Update the error stats. */
1629 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1630 if (status & RD_CE) lp->stats.rx_crc_errors++;
1631 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1632 if (status & RD_TL) lp->stats.rx_length_errors++;
1633 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1634 if (status & RD_CS) lp->pktStats.rx_collision++;
1635 if (status & RD_DB) lp->pktStats.rx_dribble++;
1636 if (status & RD_OF) lp->pktStats.rx_overflow++;
1637 } else { /* A valid frame received */
1638 struct sk_buff *skb;
1639 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1640 >> 16) - 4;
1642 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1643 printk("%s: Insufficient memory; nuking packet.\n",
1644 dev->name);
1645 lp->stats.rx_dropped++;
1646 } else {
1647 de4x5_dbg_rx(skb, pkt_len);
1649 /* Push up the protocol stack */
1650 skb->protocol=eth_type_trans(skb,dev);
1651 de4x5_local_stats(dev, skb->data, pkt_len);
1652 netif_rx(skb);
1654 /* Update stats */
1655 lp->stats.rx_packets++;
1656 lp->stats.rx_bytes += pkt_len;
1660 /* Change buffer ownership for this frame, back to the adapter */
1661 for (;lp->rx_old!=entry;lp->rx_old=(++lp->rx_old)%lp->rxRingSize) {
1662 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1663 barrier();
1665 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1666 barrier();
1670 ** Update entry information
1672 lp->rx_new = (++lp->rx_new) % lp->rxRingSize;
1675 return 0;
1678 static inline void
1679 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1681 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1682 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1683 DMA_TO_DEVICE);
1684 if ((u_long) lp->tx_skb[entry] > 1)
1685 dev_kfree_skb_irq(lp->tx_skb[entry]);
1686 lp->tx_skb[entry] = NULL;
1690 ** Buffer sent - check for TX buffer errors.
1692 static int
1693 de4x5_tx(struct net_device *dev)
1695 struct de4x5_private *lp = netdev_priv(dev);
1696 u_long iobase = dev->base_addr;
1697 int entry;
1698 s32 status;
1700 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1701 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1702 if (status < 0) { /* Buffer not sent yet */
1703 break;
1704 } else if (status != 0x7fffffff) { /* Not setup frame */
1705 if (status & TD_ES) { /* An error happened */
1706 lp->stats.tx_errors++;
1707 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1708 if (status & TD_LC) lp->stats.tx_window_errors++;
1709 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1710 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1711 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1713 if (TX_PKT_PENDING) {
1714 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1716 } else { /* Packet sent */
1717 lp->stats.tx_packets++;
1718 if (lp->tx_enable) lp->linkOK++;
1720 /* Update the collision counter */
1721 lp->stats.collisions += ((status & TD_EC) ? 16 :
1722 ((status & TD_CC) >> 3));
1724 /* Free the buffer. */
1725 if (lp->tx_skb[entry] != NULL)
1726 de4x5_free_tx_buff(lp, entry);
1729 /* Update all the pointers */
1730 lp->tx_old = (++lp->tx_old) % lp->txRingSize;
1733 /* Any resources available? */
1734 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1735 if (lp->interrupt)
1736 netif_wake_queue(dev);
1737 else
1738 netif_start_queue(dev);
1741 return 0;
1744 static void
1745 de4x5_ast(struct net_device *dev)
1747 struct de4x5_private *lp = netdev_priv(dev);
1748 int next_tick = DE4X5_AUTOSENSE_MS;
1749 int dt;
1751 if (lp->useSROM)
1752 next_tick = srom_autoconf(dev);
1753 else if (lp->chipset == DC21140)
1754 next_tick = dc21140m_autoconf(dev);
1755 else if (lp->chipset == DC21041)
1756 next_tick = dc21041_autoconf(dev);
1757 else if (lp->chipset == DC21040)
1758 next_tick = dc21040_autoconf(dev);
1759 lp->linkOK = 0;
1761 dt = (next_tick * HZ) / 1000;
1763 if (!dt)
1764 dt = 1;
1766 mod_timer(&lp->timer, jiffies + dt);
1769 static int
1770 de4x5_txur(struct net_device *dev)
1772 struct de4x5_private *lp = netdev_priv(dev);
1773 u_long iobase = dev->base_addr;
1774 int omr;
1776 omr = inl(DE4X5_OMR);
1777 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1778 omr &= ~(OMR_ST|OMR_SR);
1779 outl(omr, DE4X5_OMR);
1780 while (inl(DE4X5_STS) & STS_TS);
1781 if ((omr & OMR_TR) < OMR_TR) {
1782 omr += 0x4000;
1783 } else {
1784 omr |= OMR_SF;
1786 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1789 return 0;
1792 static int
1793 de4x5_rx_ovfc(struct net_device *dev)
1795 struct de4x5_private *lp = netdev_priv(dev);
1796 u_long iobase = dev->base_addr;
1797 int omr;
1799 omr = inl(DE4X5_OMR);
1800 outl(omr & ~OMR_SR, DE4X5_OMR);
1801 while (inl(DE4X5_STS) & STS_RS);
1803 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1804 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1805 lp->rx_new = (++lp->rx_new % lp->rxRingSize);
1808 outl(omr, DE4X5_OMR);
1810 return 0;
1813 static int
1814 de4x5_close(struct net_device *dev)
1816 struct de4x5_private *lp = netdev_priv(dev);
1817 u_long iobase = dev->base_addr;
1818 s32 imr, omr;
1820 disable_ast(dev);
1822 netif_stop_queue(dev);
1824 if (de4x5_debug & DEBUG_CLOSE) {
1825 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1826 dev->name, inl(DE4X5_STS));
1830 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1832 DISABLE_IRQs;
1833 STOP_DE4X5;
1835 /* Free the associated irq */
1836 free_irq(dev->irq, dev);
1837 lp->state = CLOSED;
1839 /* Free any socket buffers */
1840 de4x5_free_rx_buffs(dev);
1841 de4x5_free_tx_buffs(dev);
1843 /* Put the adapter to sleep to save power */
1844 yawn(dev, SLEEP);
1846 return 0;
1849 static struct net_device_stats *
1850 de4x5_get_stats(struct net_device *dev)
1852 struct de4x5_private *lp = netdev_priv(dev);
1853 u_long iobase = dev->base_addr;
1855 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1857 return &lp->stats;
1860 static void
1861 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1863 struct de4x5_private *lp = netdev_priv(dev);
1864 int i;
1866 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1867 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1868 lp->pktStats.bins[i]++;
1869 i = DE4X5_PKT_STAT_SZ;
1872 if (buf[0] & 0x01) { /* Multicast/Broadcast */
1873 if ((*(s32 *)&buf[0] == -1) && (*(s16 *)&buf[4] == -1)) {
1874 lp->pktStats.broadcast++;
1875 } else {
1876 lp->pktStats.multicast++;
1878 } else if ((*(s32 *)&buf[0] == *(s32 *)&dev->dev_addr[0]) &&
1879 (*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) {
1880 lp->pktStats.unicast++;
1883 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1884 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1885 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1888 return;
1892 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1893 ** If the flag is changed on a descriptor that is being read by the hardware,
1894 ** I assume PCI transaction ordering will mean you are either successful or
1895 ** just miss asserting the change to the hardware. Anyway you're messing with
1896 ** a descriptor you don't own, but this shouldn't kill the chip provided
1897 ** the descriptor register is read only to the hardware.
1899 static void
1900 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1902 struct de4x5_private *lp = netdev_priv(dev);
1903 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1904 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1906 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1907 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1908 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1909 lp->tx_skb[lp->tx_new] = skb;
1910 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1911 barrier();
1913 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1914 barrier();
1918 ** Set or clear the multicast filter for this adaptor.
1920 static void
1921 set_multicast_list(struct net_device *dev)
1923 struct de4x5_private *lp = netdev_priv(dev);
1924 u_long iobase = dev->base_addr;
1926 /* First, double check that the adapter is open */
1927 if (lp->state == OPEN) {
1928 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1929 u32 omr;
1930 omr = inl(DE4X5_OMR);
1931 omr |= OMR_PR;
1932 outl(omr, DE4X5_OMR);
1933 } else {
1934 SetMulticastFilter(dev);
1935 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1936 SETUP_FRAME_LEN, (struct sk_buff *)1);
1938 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1939 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1940 dev->trans_start = jiffies;
1946 ** Calculate the hash code and update the logical address filter
1947 ** from a list of ethernet multicast addresses.
1948 ** Little endian crc one liner from Matt Thomas, DEC.
1950 static void
1951 SetMulticastFilter(struct net_device *dev)
1953 struct de4x5_private *lp = netdev_priv(dev);
1954 struct dev_mc_list *dmi=dev->mc_list;
1955 u_long iobase = dev->base_addr;
1956 int i, j, bit, byte;
1957 u16 hashcode;
1958 u32 omr, crc;
1959 char *pa;
1960 unsigned char *addrs;
1962 omr = inl(DE4X5_OMR);
1963 omr &= ~(OMR_PR | OMR_PM);
1964 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1966 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 14)) {
1967 omr |= OMR_PM; /* Pass all multicasts */
1968 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1969 for (i=0;i<dev->mc_count;i++) { /* for each address in the list */
1970 addrs=dmi->dmi_addr;
1971 dmi=dmi->next;
1972 if ((*addrs & 0x01) == 1) { /* multicast address? */
1973 crc = ether_crc_le(ETH_ALEN, addrs);
1974 hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */
1976 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1977 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1979 byte <<= 1; /* calc offset into setup frame */
1980 if (byte & 0x02) {
1981 byte -= 1;
1983 lp->setup_frame[byte] |= bit;
1986 } else { /* Perfect filtering */
1987 for (j=0; j<dev->mc_count; j++) {
1988 addrs=dmi->dmi_addr;
1989 dmi=dmi->next;
1990 for (i=0; i<ETH_ALEN; i++) {
1991 *(pa + (i&1)) = *addrs++;
1992 if (i & 0x01) pa += 4;
1996 outl(omr, DE4X5_OMR);
1998 return;
2001 #ifdef CONFIG_EISA
2003 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
2005 static int __init de4x5_eisa_probe (struct device *gendev)
2007 struct eisa_device *edev;
2008 u_long iobase;
2009 u_char irq, regval;
2010 u_short vendor;
2011 u32 cfid;
2012 int status, device;
2013 struct net_device *dev;
2014 struct de4x5_private *lp;
2016 edev = to_eisa_device (gendev);
2017 iobase = edev->base_addr;
2019 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2020 return -EBUSY;
2022 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2023 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2024 status = -EBUSY;
2025 goto release_reg_1;
2028 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2029 status = -ENOMEM;
2030 goto release_reg_2;
2032 lp = netdev_priv(dev);
2034 cfid = (u32) inl(PCI_CFID);
2035 lp->cfrv = (u_short) inl(PCI_CFRV);
2036 device = (cfid >> 8) & 0x00ffff00;
2037 vendor = (u_short) cfid;
2039 /* Read the EISA Configuration Registers */
2040 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2041 #ifdef CONFIG_ALPHA
2042 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2043 * care about the EISA configuration, and thus doesn't
2044 * configure the PLX bridge properly. Oh well... Simply mimic
2045 * the EISA config file to sort it out. */
2047 /* EISA REG1: Assert DecChip 21040 HW Reset */
2048 outb (ER1_IAM | 1, EISA_REG1);
2049 mdelay (1);
2051 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2052 outb (ER1_IAM, EISA_REG1);
2053 mdelay (1);
2055 /* EISA REG3: R/W Burst Transfer Enable */
2056 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2058 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2059 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2060 #endif
2061 irq = de4x5_irq[(regval >> 1) & 0x03];
2063 if (is_DC2114x) {
2064 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2066 lp->chipset = device;
2067 lp->bus = EISA;
2069 /* Write the PCI Configuration Registers */
2070 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2071 outl(0x00006000, PCI_CFLT);
2072 outl(iobase, PCI_CBIO);
2074 DevicePresent(dev, EISA_APROM);
2076 dev->irq = irq;
2078 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2079 return 0;
2082 free_netdev (dev);
2083 release_reg_2:
2084 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2085 release_reg_1:
2086 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2088 return status;
2091 static int __devexit de4x5_eisa_remove (struct device *device)
2093 struct net_device *dev;
2094 u_long iobase;
2096 dev = dev_get_drvdata(device);
2097 iobase = dev->base_addr;
2099 unregister_netdev (dev);
2100 free_netdev (dev);
2101 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2102 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2104 return 0;
2107 static struct eisa_device_id de4x5_eisa_ids[] = {
2108 { "DEC4250", 0 }, /* 0 is the board name index... */
2109 { "" }
2111 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2113 static struct eisa_driver de4x5_eisa_driver = {
2114 .id_table = de4x5_eisa_ids,
2115 .driver = {
2116 .name = "de4x5",
2117 .probe = de4x5_eisa_probe,
2118 .remove = __devexit_p (de4x5_eisa_remove),
2121 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2122 #endif
2124 #ifdef CONFIG_PCI
2127 ** This function searches the current bus (which is >0) for a DECchip with an
2128 ** SROM, so that in multiport cards that have one SROM shared between multiple
2129 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2130 ** For single port cards this is a time waster...
2132 static void __devinit
2133 srom_search(struct net_device *dev, struct pci_dev *pdev)
2135 u_char pb;
2136 u_short vendor, status;
2137 u_int irq = 0, device;
2138 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2139 int i, j;
2140 struct de4x5_private *lp = netdev_priv(dev);
2141 struct list_head *walk;
2143 list_for_each(walk, &pdev->bus_list) {
2144 struct pci_dev *this_dev = pci_dev_b(walk);
2146 /* Skip the pci_bus list entry */
2147 if (list_entry(walk, struct pci_bus, devices) == pdev->bus) continue;
2149 vendor = this_dev->vendor;
2150 device = this_dev->device << 8;
2151 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2153 /* Get the chip configuration revision register */
2154 pb = this_dev->bus->number;
2156 /* Set the device number information */
2157 lp->device = PCI_SLOT(this_dev->devfn);
2158 lp->bus_num = pb;
2160 /* Set the chipset information */
2161 if (is_DC2114x) {
2162 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2163 ? DC21142 : DC21143);
2165 lp->chipset = device;
2167 /* Get the board I/O address (64 bits on sparc64) */
2168 iobase = pci_resource_start(this_dev, 0);
2170 /* Fetch the IRQ to be used */
2171 irq = this_dev->irq;
2172 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2174 /* Check if I/O accesses are enabled */
2175 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2176 if (!(status & PCI_COMMAND_IO)) continue;
2178 /* Search for a valid SROM attached to this DECchip */
2179 DevicePresent(dev, DE4X5_APROM);
2180 for (j=0, i=0; i<ETH_ALEN; i++) {
2181 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2183 if (j != 0 && j != 6 * 0xff) {
2184 last.chipset = device;
2185 last.bus = pb;
2186 last.irq = irq;
2187 for (i=0; i<ETH_ALEN; i++) {
2188 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2190 return;
2194 return;
2198 ** PCI bus I/O device probe
2199 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2200 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2201 ** enabled by the user first in the set up utility. Hence we just check for
2202 ** enabled features and silently ignore the card if they're not.
2204 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2205 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2206 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2207 ** PC doesn't conform to the PCI standard)!
2209 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2210 ** kernels use the V0.535[n] drivers.
2213 static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2214 const struct pci_device_id *ent)
2216 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2217 u_short vendor, status;
2218 u_int irq = 0, device;
2219 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2220 int error;
2221 struct net_device *dev;
2222 struct de4x5_private *lp;
2224 dev_num = PCI_SLOT(pdev->devfn);
2225 pb = pdev->bus->number;
2227 if (io) { /* probe a single PCI device */
2228 pbus = (u_short)(io >> 8);
2229 dnum = (u_short)(io & 0xff);
2230 if ((pbus != pb) || (dnum != dev_num))
2231 return -ENODEV;
2234 vendor = pdev->vendor;
2235 device = pdev->device << 8;
2236 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2237 return -ENODEV;
2239 /* Ok, the device seems to be for us. */
2240 if ((error = pci_enable_device (pdev)))
2241 return error;
2243 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2244 error = -ENOMEM;
2245 goto disable_dev;
2248 lp = netdev_priv(dev);
2249 lp->bus = PCI;
2250 lp->bus_num = 0;
2252 /* Search for an SROM on this bus */
2253 if (lp->bus_num != pb) {
2254 lp->bus_num = pb;
2255 srom_search(dev, pdev);
2258 /* Get the chip configuration revision register */
2259 lp->cfrv = pdev->revision;
2261 /* Set the device number information */
2262 lp->device = dev_num;
2263 lp->bus_num = pb;
2265 /* Set the chipset information */
2266 if (is_DC2114x) {
2267 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2269 lp->chipset = device;
2271 /* Get the board I/O address (64 bits on sparc64) */
2272 iobase = pci_resource_start(pdev, 0);
2274 /* Fetch the IRQ to be used */
2275 irq = pdev->irq;
2276 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2277 error = -ENODEV;
2278 goto free_dev;
2281 /* Check if I/O accesses and Bus Mastering are enabled */
2282 pci_read_config_word(pdev, PCI_COMMAND, &status);
2283 #ifdef __powerpc__
2284 if (!(status & PCI_COMMAND_IO)) {
2285 status |= PCI_COMMAND_IO;
2286 pci_write_config_word(pdev, PCI_COMMAND, status);
2287 pci_read_config_word(pdev, PCI_COMMAND, &status);
2289 #endif /* __powerpc__ */
2290 if (!(status & PCI_COMMAND_IO)) {
2291 error = -ENODEV;
2292 goto free_dev;
2295 if (!(status & PCI_COMMAND_MASTER)) {
2296 status |= PCI_COMMAND_MASTER;
2297 pci_write_config_word(pdev, PCI_COMMAND, status);
2298 pci_read_config_word(pdev, PCI_COMMAND, &status);
2300 if (!(status & PCI_COMMAND_MASTER)) {
2301 error = -ENODEV;
2302 goto free_dev;
2305 /* Check the latency timer for values >= 0x60 */
2306 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2307 if (timer < 0x60) {
2308 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2311 DevicePresent(dev, DE4X5_APROM);
2313 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2314 error = -EBUSY;
2315 goto free_dev;
2318 dev->irq = irq;
2320 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2321 goto release;
2324 return 0;
2326 release:
2327 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2328 free_dev:
2329 free_netdev (dev);
2330 disable_dev:
2331 pci_disable_device (pdev);
2332 return error;
2335 static void __devexit de4x5_pci_remove (struct pci_dev *pdev)
2337 struct net_device *dev;
2338 u_long iobase;
2340 dev = dev_get_drvdata(&pdev->dev);
2341 iobase = dev->base_addr;
2343 unregister_netdev (dev);
2344 free_netdev (dev);
2345 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2346 pci_disable_device (pdev);
2349 static struct pci_device_id de4x5_pci_tbl[] = {
2350 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2351 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2352 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2353 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2354 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2355 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2356 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2357 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2358 { },
2361 static struct pci_driver de4x5_pci_driver = {
2362 .name = "de4x5",
2363 .id_table = de4x5_pci_tbl,
2364 .probe = de4x5_pci_probe,
2365 .remove = __devexit_p (de4x5_pci_remove),
2368 #endif
2371 ** Auto configure the media here rather than setting the port at compile
2372 ** time. This routine is called by de4x5_init() and when a loss of media is
2373 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2374 ** [TP] or no recent receive activity) to check whether the user has been
2375 ** sneaky and changed the port on us.
2377 static int
2378 autoconf_media(struct net_device *dev)
2380 struct de4x5_private *lp = netdev_priv(dev);
2381 u_long iobase = dev->base_addr;
2383 disable_ast(dev);
2385 lp->c_media = AUTO; /* Bogus last media */
2386 inl(DE4X5_MFC); /* Zero the lost frames counter */
2387 lp->media = INIT;
2388 lp->tcount = 0;
2390 de4x5_ast(dev);
2392 return lp->media;
2396 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2397 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2398 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2399 ** The only way to test for that is to place a loopback packet onto the
2400 ** network and watch for errors. Since we're messing with the interrupt mask
2401 ** register, disable the board interrupts and do not allow any more packets to
2402 ** be queued to the hardware. Re-enable everything only when the media is
2403 ** found.
2404 ** I may have to "age out" locally queued packets so that the higher layer
2405 ** timeouts don't effectively duplicate packets on the network.
2407 static int
2408 dc21040_autoconf(struct net_device *dev)
2410 struct de4x5_private *lp = netdev_priv(dev);
2411 u_long iobase = dev->base_addr;
2412 int next_tick = DE4X5_AUTOSENSE_MS;
2413 s32 imr;
2415 switch (lp->media) {
2416 case INIT:
2417 DISABLE_IRQs;
2418 lp->tx_enable = false;
2419 lp->timeout = -1;
2420 de4x5_save_skbs(dev);
2421 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2422 lp->media = TP;
2423 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2424 lp->media = BNC_AUI;
2425 } else if (lp->autosense == EXT_SIA) {
2426 lp->media = EXT_SIA;
2427 } else {
2428 lp->media = NC;
2430 lp->local_state = 0;
2431 next_tick = dc21040_autoconf(dev);
2432 break;
2434 case TP:
2435 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2436 TP_SUSPECT, test_tp);
2437 break;
2439 case TP_SUSPECT:
2440 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2441 break;
2443 case BNC:
2444 case AUI:
2445 case BNC_AUI:
2446 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2447 BNC_AUI_SUSPECT, ping_media);
2448 break;
2450 case BNC_AUI_SUSPECT:
2451 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2452 break;
2454 case EXT_SIA:
2455 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2456 NC, EXT_SIA_SUSPECT, ping_media);
2457 break;
2459 case EXT_SIA_SUSPECT:
2460 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2461 break;
2463 case NC:
2464 /* default to TP for all */
2465 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2466 if (lp->media != lp->c_media) {
2467 de4x5_dbg_media(dev);
2468 lp->c_media = lp->media;
2470 lp->media = INIT;
2471 lp->tx_enable = false;
2472 break;
2475 return next_tick;
2478 static int
2479 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2480 int next_state, int suspect_state,
2481 int (*fn)(struct net_device *, int))
2483 struct de4x5_private *lp = netdev_priv(dev);
2484 int next_tick = DE4X5_AUTOSENSE_MS;
2485 int linkBad;
2487 switch (lp->local_state) {
2488 case 0:
2489 reset_init_sia(dev, csr13, csr14, csr15);
2490 lp->local_state++;
2491 next_tick = 500;
2492 break;
2494 case 1:
2495 if (!lp->tx_enable) {
2496 linkBad = fn(dev, timeout);
2497 if (linkBad < 0) {
2498 next_tick = linkBad & ~TIMER_CB;
2499 } else {
2500 if (linkBad && (lp->autosense == AUTO)) {
2501 lp->local_state = 0;
2502 lp->media = next_state;
2503 } else {
2504 de4x5_init_connection(dev);
2507 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2508 lp->media = suspect_state;
2509 next_tick = 3000;
2511 break;
2514 return next_tick;
2517 static int
2518 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2519 int (*fn)(struct net_device *, int),
2520 int (*asfn)(struct net_device *))
2522 struct de4x5_private *lp = netdev_priv(dev);
2523 int next_tick = DE4X5_AUTOSENSE_MS;
2524 int linkBad;
2526 switch (lp->local_state) {
2527 case 1:
2528 if (lp->linkOK) {
2529 lp->media = prev_state;
2530 } else {
2531 lp->local_state++;
2532 next_tick = asfn(dev);
2534 break;
2536 case 2:
2537 linkBad = fn(dev, timeout);
2538 if (linkBad < 0) {
2539 next_tick = linkBad & ~TIMER_CB;
2540 } else if (!linkBad) {
2541 lp->local_state--;
2542 lp->media = prev_state;
2543 } else {
2544 lp->media = INIT;
2545 lp->tcount++;
2549 return next_tick;
2553 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2554 ** before BNC, because the BNC port will indicate activity if it's not
2555 ** terminated correctly. The only way to test for that is to place a loopback
2556 ** packet onto the network and watch for errors. Since we're messing with
2557 ** the interrupt mask register, disable the board interrupts and do not allow
2558 ** any more packets to be queued to the hardware. Re-enable everything only
2559 ** when the media is found.
2561 static int
2562 dc21041_autoconf(struct net_device *dev)
2564 struct de4x5_private *lp = netdev_priv(dev);
2565 u_long iobase = dev->base_addr;
2566 s32 sts, irqs, irq_mask, imr, omr;
2567 int next_tick = DE4X5_AUTOSENSE_MS;
2569 switch (lp->media) {
2570 case INIT:
2571 DISABLE_IRQs;
2572 lp->tx_enable = false;
2573 lp->timeout = -1;
2574 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2575 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2576 lp->media = TP; /* On chip auto negotiation is broken */
2577 } else if (lp->autosense == TP) {
2578 lp->media = TP;
2579 } else if (lp->autosense == BNC) {
2580 lp->media = BNC;
2581 } else if (lp->autosense == AUI) {
2582 lp->media = AUI;
2583 } else {
2584 lp->media = NC;
2586 lp->local_state = 0;
2587 next_tick = dc21041_autoconf(dev);
2588 break;
2590 case TP_NW:
2591 if (lp->timeout < 0) {
2592 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2593 outl(omr | OMR_FDX, DE4X5_OMR);
2595 irqs = STS_LNF | STS_LNP;
2596 irq_mask = IMR_LFM | IMR_LPM;
2597 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2598 if (sts < 0) {
2599 next_tick = sts & ~TIMER_CB;
2600 } else {
2601 if (sts & STS_LNP) {
2602 lp->media = ANS;
2603 } else {
2604 lp->media = AUI;
2606 next_tick = dc21041_autoconf(dev);
2608 break;
2610 case ANS:
2611 if (!lp->tx_enable) {
2612 irqs = STS_LNP;
2613 irq_mask = IMR_LPM;
2614 sts = test_ans(dev, irqs, irq_mask, 3000);
2615 if (sts < 0) {
2616 next_tick = sts & ~TIMER_CB;
2617 } else {
2618 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2619 lp->media = TP;
2620 next_tick = dc21041_autoconf(dev);
2621 } else {
2622 lp->local_state = 1;
2623 de4x5_init_connection(dev);
2626 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2627 lp->media = ANS_SUSPECT;
2628 next_tick = 3000;
2630 break;
2632 case ANS_SUSPECT:
2633 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2634 break;
2636 case TP:
2637 if (!lp->tx_enable) {
2638 if (lp->timeout < 0) {
2639 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2640 outl(omr & ~OMR_FDX, DE4X5_OMR);
2642 irqs = STS_LNF | STS_LNP;
2643 irq_mask = IMR_LFM | IMR_LPM;
2644 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2645 if (sts < 0) {
2646 next_tick = sts & ~TIMER_CB;
2647 } else {
2648 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2649 if (inl(DE4X5_SISR) & SISR_NRA) {
2650 lp->media = AUI; /* Non selected port activity */
2651 } else {
2652 lp->media = BNC;
2654 next_tick = dc21041_autoconf(dev);
2655 } else {
2656 lp->local_state = 1;
2657 de4x5_init_connection(dev);
2660 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2661 lp->media = TP_SUSPECT;
2662 next_tick = 3000;
2664 break;
2666 case TP_SUSPECT:
2667 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2668 break;
2670 case AUI:
2671 if (!lp->tx_enable) {
2672 if (lp->timeout < 0) {
2673 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2674 outl(omr & ~OMR_FDX, DE4X5_OMR);
2676 irqs = 0;
2677 irq_mask = 0;
2678 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2679 if (sts < 0) {
2680 next_tick = sts & ~TIMER_CB;
2681 } else {
2682 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2683 lp->media = BNC;
2684 next_tick = dc21041_autoconf(dev);
2685 } else {
2686 lp->local_state = 1;
2687 de4x5_init_connection(dev);
2690 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2691 lp->media = AUI_SUSPECT;
2692 next_tick = 3000;
2694 break;
2696 case AUI_SUSPECT:
2697 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2698 break;
2700 case BNC:
2701 switch (lp->local_state) {
2702 case 0:
2703 if (lp->timeout < 0) {
2704 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2705 outl(omr & ~OMR_FDX, DE4X5_OMR);
2707 irqs = 0;
2708 irq_mask = 0;
2709 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2710 if (sts < 0) {
2711 next_tick = sts & ~TIMER_CB;
2712 } else {
2713 lp->local_state++; /* Ensure media connected */
2714 next_tick = dc21041_autoconf(dev);
2716 break;
2718 case 1:
2719 if (!lp->tx_enable) {
2720 if ((sts = ping_media(dev, 3000)) < 0) {
2721 next_tick = sts & ~TIMER_CB;
2722 } else {
2723 if (sts) {
2724 lp->local_state = 0;
2725 lp->media = NC;
2726 } else {
2727 de4x5_init_connection(dev);
2730 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2731 lp->media = BNC_SUSPECT;
2732 next_tick = 3000;
2734 break;
2736 break;
2738 case BNC_SUSPECT:
2739 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2740 break;
2742 case NC:
2743 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2744 outl(omr | OMR_FDX, DE4X5_OMR);
2745 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2746 if (lp->media != lp->c_media) {
2747 de4x5_dbg_media(dev);
2748 lp->c_media = lp->media;
2750 lp->media = INIT;
2751 lp->tx_enable = false;
2752 break;
2755 return next_tick;
2759 ** Some autonegotiation chips are broken in that they do not return the
2760 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2761 ** register, except at the first power up negotiation.
2763 static int
2764 dc21140m_autoconf(struct net_device *dev)
2766 struct de4x5_private *lp = netdev_priv(dev);
2767 int ana, anlpa, cap, cr, slnk, sr;
2768 int next_tick = DE4X5_AUTOSENSE_MS;
2769 u_long imr, omr, iobase = dev->base_addr;
2771 switch(lp->media) {
2772 case INIT:
2773 if (lp->timeout < 0) {
2774 DISABLE_IRQs;
2775 lp->tx_enable = false;
2776 lp->linkOK = 0;
2777 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2779 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2780 next_tick &= ~TIMER_CB;
2781 } else {
2782 if (lp->useSROM) {
2783 if (srom_map_media(dev) < 0) {
2784 lp->tcount++;
2785 return next_tick;
2787 srom_exec(dev, lp->phy[lp->active].gep);
2788 if (lp->infoblock_media == ANS) {
2789 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2790 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2792 } else {
2793 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2794 SET_10Mb;
2795 if (lp->autosense == _100Mb) {
2796 lp->media = _100Mb;
2797 } else if (lp->autosense == _10Mb) {
2798 lp->media = _10Mb;
2799 } else if ((lp->autosense == AUTO) &&
2800 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2801 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2802 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2803 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2804 lp->media = ANS;
2805 } else if (lp->autosense == AUTO) {
2806 lp->media = SPD_DET;
2807 } else if (is_spd_100(dev) && is_100_up(dev)) {
2808 lp->media = _100Mb;
2809 } else {
2810 lp->media = NC;
2813 lp->local_state = 0;
2814 next_tick = dc21140m_autoconf(dev);
2816 break;
2818 case ANS:
2819 switch (lp->local_state) {
2820 case 0:
2821 if (lp->timeout < 0) {
2822 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2824 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2825 if (cr < 0) {
2826 next_tick = cr & ~TIMER_CB;
2827 } else {
2828 if (cr) {
2829 lp->local_state = 0;
2830 lp->media = SPD_DET;
2831 } else {
2832 lp->local_state++;
2834 next_tick = dc21140m_autoconf(dev);
2836 break;
2838 case 1:
2839 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2840 next_tick = sr & ~TIMER_CB;
2841 } else {
2842 lp->media = SPD_DET;
2843 lp->local_state = 0;
2844 if (sr) { /* Success! */
2845 lp->tmp = MII_SR_ASSC;
2846 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2847 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2848 if (!(anlpa & MII_ANLPA_RF) &&
2849 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2850 if (cap & MII_ANA_100M) {
2851 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2852 lp->media = _100Mb;
2853 } else if (cap & MII_ANA_10M) {
2854 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2856 lp->media = _10Mb;
2859 } /* Auto Negotiation failed to finish */
2860 next_tick = dc21140m_autoconf(dev);
2861 } /* Auto Negotiation failed to start */
2862 break;
2864 break;
2866 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2867 if (lp->timeout < 0) {
2868 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2869 (~gep_rd(dev) & GEP_LNP));
2870 SET_100Mb_PDET;
2872 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2873 next_tick = slnk & ~TIMER_CB;
2874 } else {
2875 if (is_spd_100(dev) && is_100_up(dev)) {
2876 lp->media = _100Mb;
2877 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2878 lp->media = _10Mb;
2879 } else {
2880 lp->media = NC;
2882 next_tick = dc21140m_autoconf(dev);
2884 break;
2886 case _100Mb: /* Set 100Mb/s */
2887 next_tick = 3000;
2888 if (!lp->tx_enable) {
2889 SET_100Mb;
2890 de4x5_init_connection(dev);
2891 } else {
2892 if (!lp->linkOK && (lp->autosense == AUTO)) {
2893 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2894 lp->media = INIT;
2895 lp->tcount++;
2896 next_tick = DE4X5_AUTOSENSE_MS;
2900 break;
2902 case BNC:
2903 case AUI:
2904 case _10Mb: /* Set 10Mb/s */
2905 next_tick = 3000;
2906 if (!lp->tx_enable) {
2907 SET_10Mb;
2908 de4x5_init_connection(dev);
2909 } else {
2910 if (!lp->linkOK && (lp->autosense == AUTO)) {
2911 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2912 lp->media = INIT;
2913 lp->tcount++;
2914 next_tick = DE4X5_AUTOSENSE_MS;
2918 break;
2920 case NC:
2921 if (lp->media != lp->c_media) {
2922 de4x5_dbg_media(dev);
2923 lp->c_media = lp->media;
2925 lp->media = INIT;
2926 lp->tx_enable = false;
2927 break;
2930 return next_tick;
2934 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2935 ** changing how I figure out the media - but trying to keep it backwards
2936 ** compatible with the de500-xa and de500-aa.
2937 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2938 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2939 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2940 ** active.
2941 ** When autonegotiation is working, the ANS part searches the SROM for
2942 ** the highest common speed (TP) link that both can run and if that can
2943 ** be full duplex. That infoblock is executed and then the link speed set.
2945 ** Only _10Mb and _100Mb are tested here.
2947 static int
2948 dc2114x_autoconf(struct net_device *dev)
2950 struct de4x5_private *lp = netdev_priv(dev);
2951 u_long iobase = dev->base_addr;
2952 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2953 int next_tick = DE4X5_AUTOSENSE_MS;
2955 switch (lp->media) {
2956 case INIT:
2957 if (lp->timeout < 0) {
2958 DISABLE_IRQs;
2959 lp->tx_enable = false;
2960 lp->linkOK = 0;
2961 lp->timeout = -1;
2962 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2963 if (lp->params.autosense & ~AUTO) {
2964 srom_map_media(dev); /* Fixed media requested */
2965 if (lp->media != lp->params.autosense) {
2966 lp->tcount++;
2967 lp->media = INIT;
2968 return next_tick;
2970 lp->media = INIT;
2973 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2974 next_tick &= ~TIMER_CB;
2975 } else {
2976 if (lp->autosense == _100Mb) {
2977 lp->media = _100Mb;
2978 } else if (lp->autosense == _10Mb) {
2979 lp->media = _10Mb;
2980 } else if (lp->autosense == TP) {
2981 lp->media = TP;
2982 } else if (lp->autosense == BNC) {
2983 lp->media = BNC;
2984 } else if (lp->autosense == AUI) {
2985 lp->media = AUI;
2986 } else {
2987 lp->media = SPD_DET;
2988 if ((lp->infoblock_media == ANS) &&
2989 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2990 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2991 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2992 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2993 lp->media = ANS;
2996 lp->local_state = 0;
2997 next_tick = dc2114x_autoconf(dev);
2999 break;
3001 case ANS:
3002 switch (lp->local_state) {
3003 case 0:
3004 if (lp->timeout < 0) {
3005 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3007 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
3008 if (cr < 0) {
3009 next_tick = cr & ~TIMER_CB;
3010 } else {
3011 if (cr) {
3012 lp->local_state = 0;
3013 lp->media = SPD_DET;
3014 } else {
3015 lp->local_state++;
3017 next_tick = dc2114x_autoconf(dev);
3019 break;
3021 case 1:
3022 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3023 if (sr < 0) {
3024 next_tick = sr & ~TIMER_CB;
3025 } else {
3026 lp->media = SPD_DET;
3027 lp->local_state = 0;
3028 if (sr) { /* Success! */
3029 lp->tmp = MII_SR_ASSC;
3030 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3031 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3032 if (!(anlpa & MII_ANLPA_RF) &&
3033 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3034 if (cap & MII_ANA_100M) {
3035 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3036 lp->media = _100Mb;
3037 } else if (cap & MII_ANA_10M) {
3038 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3039 lp->media = _10Mb;
3042 } /* Auto Negotiation failed to finish */
3043 next_tick = dc2114x_autoconf(dev);
3044 } /* Auto Negotiation failed to start */
3045 break;
3047 break;
3049 case AUI:
3050 if (!lp->tx_enable) {
3051 if (lp->timeout < 0) {
3052 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3053 outl(omr & ~OMR_FDX, DE4X5_OMR);
3055 irqs = 0;
3056 irq_mask = 0;
3057 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3058 if (sts < 0) {
3059 next_tick = sts & ~TIMER_CB;
3060 } else {
3061 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3062 lp->media = BNC;
3063 next_tick = dc2114x_autoconf(dev);
3064 } else {
3065 lp->local_state = 1;
3066 de4x5_init_connection(dev);
3069 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3070 lp->media = AUI_SUSPECT;
3071 next_tick = 3000;
3073 break;
3075 case AUI_SUSPECT:
3076 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3077 break;
3079 case BNC:
3080 switch (lp->local_state) {
3081 case 0:
3082 if (lp->timeout < 0) {
3083 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3084 outl(omr & ~OMR_FDX, DE4X5_OMR);
3086 irqs = 0;
3087 irq_mask = 0;
3088 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3089 if (sts < 0) {
3090 next_tick = sts & ~TIMER_CB;
3091 } else {
3092 lp->local_state++; /* Ensure media connected */
3093 next_tick = dc2114x_autoconf(dev);
3095 break;
3097 case 1:
3098 if (!lp->tx_enable) {
3099 if ((sts = ping_media(dev, 3000)) < 0) {
3100 next_tick = sts & ~TIMER_CB;
3101 } else {
3102 if (sts) {
3103 lp->local_state = 0;
3104 lp->tcount++;
3105 lp->media = INIT;
3106 } else {
3107 de4x5_init_connection(dev);
3110 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3111 lp->media = BNC_SUSPECT;
3112 next_tick = 3000;
3114 break;
3116 break;
3118 case BNC_SUSPECT:
3119 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3120 break;
3122 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3123 if (srom_map_media(dev) < 0) {
3124 lp->tcount++;
3125 lp->media = INIT;
3126 return next_tick;
3128 if (lp->media == _100Mb) {
3129 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3130 lp->media = SPD_DET;
3131 return (slnk & ~TIMER_CB);
3133 } else {
3134 if (wait_for_link(dev) < 0) {
3135 lp->media = SPD_DET;
3136 return PDET_LINK_WAIT;
3139 if (lp->media == ANS) { /* Do MII parallel detection */
3140 if (is_spd_100(dev)) {
3141 lp->media = _100Mb;
3142 } else {
3143 lp->media = _10Mb;
3145 next_tick = dc2114x_autoconf(dev);
3146 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3147 (((lp->media == _10Mb) || (lp->media == TP) ||
3148 (lp->media == BNC) || (lp->media == AUI)) &&
3149 is_10_up(dev))) {
3150 next_tick = dc2114x_autoconf(dev);
3151 } else {
3152 lp->tcount++;
3153 lp->media = INIT;
3155 break;
3157 case _10Mb:
3158 next_tick = 3000;
3159 if (!lp->tx_enable) {
3160 SET_10Mb;
3161 de4x5_init_connection(dev);
3162 } else {
3163 if (!lp->linkOK && (lp->autosense == AUTO)) {
3164 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3165 lp->media = INIT;
3166 lp->tcount++;
3167 next_tick = DE4X5_AUTOSENSE_MS;
3171 break;
3173 case _100Mb:
3174 next_tick = 3000;
3175 if (!lp->tx_enable) {
3176 SET_100Mb;
3177 de4x5_init_connection(dev);
3178 } else {
3179 if (!lp->linkOK && (lp->autosense == AUTO)) {
3180 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3181 lp->media = INIT;
3182 lp->tcount++;
3183 next_tick = DE4X5_AUTOSENSE_MS;
3187 break;
3189 default:
3190 lp->tcount++;
3191 printk("Huh?: media:%02x\n", lp->media);
3192 lp->media = INIT;
3193 break;
3196 return next_tick;
3199 static int
3200 srom_autoconf(struct net_device *dev)
3202 struct de4x5_private *lp = netdev_priv(dev);
3204 return lp->infoleaf_fn(dev);
3208 ** This mapping keeps the original media codes and FDX flag unchanged.
3209 ** While it isn't strictly necessary, it helps me for the moment...
3210 ** The early return avoids a media state / SROM media space clash.
3212 static int
3213 srom_map_media(struct net_device *dev)
3215 struct de4x5_private *lp = netdev_priv(dev);
3217 lp->fdx = false;
3218 if (lp->infoblock_media == lp->media)
3219 return 0;
3221 switch(lp->infoblock_media) {
3222 case SROM_10BASETF:
3223 if (!lp->params.fdx) return -1;
3224 lp->fdx = true;
3225 case SROM_10BASET:
3226 if (lp->params.fdx && !lp->fdx) return -1;
3227 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3228 lp->media = _10Mb;
3229 } else {
3230 lp->media = TP;
3232 break;
3234 case SROM_10BASE2:
3235 lp->media = BNC;
3236 break;
3238 case SROM_10BASE5:
3239 lp->media = AUI;
3240 break;
3242 case SROM_100BASETF:
3243 if (!lp->params.fdx) return -1;
3244 lp->fdx = true;
3245 case SROM_100BASET:
3246 if (lp->params.fdx && !lp->fdx) return -1;
3247 lp->media = _100Mb;
3248 break;
3250 case SROM_100BASET4:
3251 lp->media = _100Mb;
3252 break;
3254 case SROM_100BASEFF:
3255 if (!lp->params.fdx) return -1;
3256 lp->fdx = true;
3257 case SROM_100BASEF:
3258 if (lp->params.fdx && !lp->fdx) return -1;
3259 lp->media = _100Mb;
3260 break;
3262 case ANS:
3263 lp->media = ANS;
3264 lp->fdx = lp->params.fdx;
3265 break;
3267 default:
3268 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3269 lp->infoblock_media);
3270 return -1;
3271 break;
3274 return 0;
3277 static void
3278 de4x5_init_connection(struct net_device *dev)
3280 struct de4x5_private *lp = netdev_priv(dev);
3281 u_long iobase = dev->base_addr;
3282 u_long flags = 0;
3284 if (lp->media != lp->c_media) {
3285 de4x5_dbg_media(dev);
3286 lp->c_media = lp->media; /* Stop scrolling media messages */
3289 spin_lock_irqsave(&lp->lock, flags);
3290 de4x5_rst_desc_ring(dev);
3291 de4x5_setup_intr(dev);
3292 lp->tx_enable = true;
3293 spin_unlock_irqrestore(&lp->lock, flags);
3294 outl(POLL_DEMAND, DE4X5_TPD);
3296 netif_wake_queue(dev);
3298 return;
3302 ** General PHY reset function. Some MII devices don't reset correctly
3303 ** since their MII address pins can float at voltages that are dependent
3304 ** on the signal pin use. Do a double reset to ensure a reset.
3306 static int
3307 de4x5_reset_phy(struct net_device *dev)
3309 struct de4x5_private *lp = netdev_priv(dev);
3310 u_long iobase = dev->base_addr;
3311 int next_tick = 0;
3313 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3314 if (lp->timeout < 0) {
3315 if (lp->useSROM) {
3316 if (lp->phy[lp->active].rst) {
3317 srom_exec(dev, lp->phy[lp->active].rst);
3318 srom_exec(dev, lp->phy[lp->active].rst);
3319 } else if (lp->rst) { /* Type 5 infoblock reset */
3320 srom_exec(dev, lp->rst);
3321 srom_exec(dev, lp->rst);
3323 } else {
3324 PHY_HARD_RESET;
3326 if (lp->useMII) {
3327 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3330 if (lp->useMII) {
3331 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3333 } else if (lp->chipset == DC21140) {
3334 PHY_HARD_RESET;
3337 return next_tick;
3340 static int
3341 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3343 struct de4x5_private *lp = netdev_priv(dev);
3344 u_long iobase = dev->base_addr;
3345 s32 sts, csr12;
3347 if (lp->timeout < 0) {
3348 lp->timeout = msec/100;
3349 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3350 reset_init_sia(dev, csr13, csr14, csr15);
3353 /* set up the interrupt mask */
3354 outl(irq_mask, DE4X5_IMR);
3356 /* clear all pending interrupts */
3357 sts = inl(DE4X5_STS);
3358 outl(sts, DE4X5_STS);
3360 /* clear csr12 NRA and SRA bits */
3361 if ((lp->chipset == DC21041) || lp->useSROM) {
3362 csr12 = inl(DE4X5_SISR);
3363 outl(csr12, DE4X5_SISR);
3367 sts = inl(DE4X5_STS) & ~TIMER_CB;
3369 if (!(sts & irqs) && --lp->timeout) {
3370 sts = 100 | TIMER_CB;
3371 } else {
3372 lp->timeout = -1;
3375 return sts;
3378 static int
3379 test_tp(struct net_device *dev, s32 msec)
3381 struct de4x5_private *lp = netdev_priv(dev);
3382 u_long iobase = dev->base_addr;
3383 int sisr;
3385 if (lp->timeout < 0) {
3386 lp->timeout = msec/100;
3389 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3391 if (sisr && --lp->timeout) {
3392 sisr = 100 | TIMER_CB;
3393 } else {
3394 lp->timeout = -1;
3397 return sisr;
3401 ** Samples the 100Mb Link State Signal. The sample interval is important
3402 ** because too fast a rate can give erroneous results and confuse the
3403 ** speed sense algorithm.
3405 #define SAMPLE_INTERVAL 500 /* ms */
3406 #define SAMPLE_DELAY 2000 /* ms */
3407 static int
3408 test_for_100Mb(struct net_device *dev, int msec)
3410 struct de4x5_private *lp = netdev_priv(dev);
3411 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3413 if (lp->timeout < 0) {
3414 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3415 if (msec > SAMPLE_DELAY) {
3416 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3417 gep = SAMPLE_DELAY | TIMER_CB;
3418 return gep;
3419 } else {
3420 lp->timeout = msec/SAMPLE_INTERVAL;
3424 if (lp->phy[lp->active].id || lp->useSROM) {
3425 gep = is_100_up(dev) | is_spd_100(dev);
3426 } else {
3427 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3429 if (!(gep & ret) && --lp->timeout) {
3430 gep = SAMPLE_INTERVAL | TIMER_CB;
3431 } else {
3432 lp->timeout = -1;
3435 return gep;
3438 static int
3439 wait_for_link(struct net_device *dev)
3441 struct de4x5_private *lp = netdev_priv(dev);
3443 if (lp->timeout < 0) {
3444 lp->timeout = 1;
3447 if (lp->timeout--) {
3448 return TIMER_CB;
3449 } else {
3450 lp->timeout = -1;
3453 return 0;
3460 static int
3461 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3463 struct de4x5_private *lp = netdev_priv(dev);
3464 int test;
3465 u_long iobase = dev->base_addr;
3467 if (lp->timeout < 0) {
3468 lp->timeout = msec/100;
3471 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3472 test = (reg ^ (pol ? ~0 : 0)) & mask;
3474 if (test && --lp->timeout) {
3475 reg = 100 | TIMER_CB;
3476 } else {
3477 lp->timeout = -1;
3480 return reg;
3483 static int
3484 is_spd_100(struct net_device *dev)
3486 struct de4x5_private *lp = netdev_priv(dev);
3487 u_long iobase = dev->base_addr;
3488 int spd;
3490 if (lp->useMII) {
3491 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3492 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3493 spd &= lp->phy[lp->active].spd.mask;
3494 } else if (!lp->useSROM) { /* de500-xa */
3495 spd = ((~gep_rd(dev)) & GEP_SLNK);
3496 } else {
3497 if ((lp->ibn == 2) || !lp->asBitValid)
3498 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3500 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3501 (lp->linkOK & ~lp->asBitValid);
3504 return spd;
3507 static int
3508 is_100_up(struct net_device *dev)
3510 struct de4x5_private *lp = netdev_priv(dev);
3511 u_long iobase = dev->base_addr;
3513 if (lp->useMII) {
3514 /* Double read for sticky bits & temporary drops */
3515 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3516 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3517 } else if (!lp->useSROM) { /* de500-xa */
3518 return ((~gep_rd(dev)) & GEP_SLNK);
3519 } else {
3520 if ((lp->ibn == 2) || !lp->asBitValid)
3521 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3523 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3524 (lp->linkOK & ~lp->asBitValid));
3528 static int
3529 is_10_up(struct net_device *dev)
3531 struct de4x5_private *lp = netdev_priv(dev);
3532 u_long iobase = dev->base_addr;
3534 if (lp->useMII) {
3535 /* Double read for sticky bits & temporary drops */
3536 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3537 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3538 } else if (!lp->useSROM) { /* de500-xa */
3539 return ((~gep_rd(dev)) & GEP_LNP);
3540 } else {
3541 if ((lp->ibn == 2) || !lp->asBitValid)
3542 return (((lp->chipset & ~0x00ff) == DC2114x) ?
3543 (~inl(DE4X5_SISR)&SISR_LS10):
3546 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3547 (lp->linkOK & ~lp->asBitValid));
3551 static int
3552 is_anc_capable(struct net_device *dev)
3554 struct de4x5_private *lp = netdev_priv(dev);
3555 u_long iobase = dev->base_addr;
3557 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3558 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII));
3559 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3560 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3561 } else {
3562 return 0;
3567 ** Send a packet onto the media and watch for send errors that indicate the
3568 ** media is bad or unconnected.
3570 static int
3571 ping_media(struct net_device *dev, int msec)
3573 struct de4x5_private *lp = netdev_priv(dev);
3574 u_long iobase = dev->base_addr;
3575 int sisr;
3577 if (lp->timeout < 0) {
3578 lp->timeout = msec/100;
3580 lp->tmp = lp->tx_new; /* Remember the ring position */
3581 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3582 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
3583 outl(POLL_DEMAND, DE4X5_TPD);
3586 sisr = inl(DE4X5_SISR);
3588 if ((!(sisr & SISR_NCR)) &&
3589 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3590 (--lp->timeout)) {
3591 sisr = 100 | TIMER_CB;
3592 } else {
3593 if ((!(sisr & SISR_NCR)) &&
3594 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3595 lp->timeout) {
3596 sisr = 0;
3597 } else {
3598 sisr = 1;
3600 lp->timeout = -1;
3603 return sisr;
3607 ** This function does 2 things: on Intels it kmalloc's another buffer to
3608 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3609 ** into which the packet is copied.
3611 static struct sk_buff *
3612 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3614 struct de4x5_private *lp = netdev_priv(dev);
3615 struct sk_buff *p;
3617 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3618 struct sk_buff *ret;
3619 u_long i=0, tmp;
3621 p = dev_alloc_skb(IEEE802_3_SZ + DE4X5_ALIGN + 2);
3622 if (!p) return NULL;
3624 tmp = virt_to_bus(p->data);
3625 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3626 skb_reserve(p, i);
3627 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3629 ret = lp->rx_skb[index];
3630 lp->rx_skb[index] = p;
3632 if ((u_long) ret > 1) {
3633 skb_put(ret, len);
3636 return ret;
3638 #else
3639 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3641 p = dev_alloc_skb(len + 2);
3642 if (!p) return NULL;
3644 skb_reserve(p, 2); /* Align */
3645 if (index < lp->rx_old) { /* Wrapped buffer */
3646 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3647 memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3648 memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3649 } else { /* Linear buffer */
3650 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3653 return p;
3654 #endif
3657 static void
3658 de4x5_free_rx_buffs(struct net_device *dev)
3660 struct de4x5_private *lp = netdev_priv(dev);
3661 int i;
3663 for (i=0; i<lp->rxRingSize; i++) {
3664 if ((u_long) lp->rx_skb[i] > 1) {
3665 dev_kfree_skb(lp->rx_skb[i]);
3667 lp->rx_ring[i].status = 0;
3668 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3671 return;
3674 static void
3675 de4x5_free_tx_buffs(struct net_device *dev)
3677 struct de4x5_private *lp = netdev_priv(dev);
3678 int i;
3680 for (i=0; i<lp->txRingSize; i++) {
3681 if (lp->tx_skb[i])
3682 de4x5_free_tx_buff(lp, i);
3683 lp->tx_ring[i].status = 0;
3686 /* Unload the locally queued packets */
3687 __skb_queue_purge(&lp->cache.queue);
3691 ** When a user pulls a connection, the DECchip can end up in a
3692 ** 'running - waiting for end of transmission' state. This means that we
3693 ** have to perform a chip soft reset to ensure that we can synchronize
3694 ** the hardware and software and make any media probes using a loopback
3695 ** packet meaningful.
3697 static void
3698 de4x5_save_skbs(struct net_device *dev)
3700 struct de4x5_private *lp = netdev_priv(dev);
3701 u_long iobase = dev->base_addr;
3702 s32 omr;
3704 if (!lp->cache.save_cnt) {
3705 STOP_DE4X5;
3706 de4x5_tx(dev); /* Flush any sent skb's */
3707 de4x5_free_tx_buffs(dev);
3708 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3709 de4x5_sw_reset(dev);
3710 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3711 lp->cache.save_cnt++;
3712 START_DE4X5;
3715 return;
3718 static void
3719 de4x5_rst_desc_ring(struct net_device *dev)
3721 struct de4x5_private *lp = netdev_priv(dev);
3722 u_long iobase = dev->base_addr;
3723 int i;
3724 s32 omr;
3726 if (lp->cache.save_cnt) {
3727 STOP_DE4X5;
3728 outl(lp->dma_rings, DE4X5_RRBA);
3729 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3730 DE4X5_TRBA);
3732 lp->rx_new = lp->rx_old = 0;
3733 lp->tx_new = lp->tx_old = 0;
3735 for (i = 0; i < lp->rxRingSize; i++) {
3736 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3739 for (i = 0; i < lp->txRingSize; i++) {
3740 lp->tx_ring[i].status = cpu_to_le32(0);
3743 barrier();
3744 lp->cache.save_cnt--;
3745 START_DE4X5;
3748 return;
3751 static void
3752 de4x5_cache_state(struct net_device *dev, int flag)
3754 struct de4x5_private *lp = netdev_priv(dev);
3755 u_long iobase = dev->base_addr;
3757 switch(flag) {
3758 case DE4X5_SAVE_STATE:
3759 lp->cache.csr0 = inl(DE4X5_BMR);
3760 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3761 lp->cache.csr7 = inl(DE4X5_IMR);
3762 break;
3764 case DE4X5_RESTORE_STATE:
3765 outl(lp->cache.csr0, DE4X5_BMR);
3766 outl(lp->cache.csr6, DE4X5_OMR);
3767 outl(lp->cache.csr7, DE4X5_IMR);
3768 if (lp->chipset == DC21140) {
3769 gep_wr(lp->cache.gepc, dev);
3770 gep_wr(lp->cache.gep, dev);
3771 } else {
3772 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3773 lp->cache.csr15);
3775 break;
3778 return;
3781 static void
3782 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3784 struct de4x5_private *lp = netdev_priv(dev);
3786 __skb_queue_tail(&lp->cache.queue, skb);
3789 static void
3790 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3792 struct de4x5_private *lp = netdev_priv(dev);
3794 __skb_queue_head(&lp->cache.queue, skb);
3797 static struct sk_buff *
3798 de4x5_get_cache(struct net_device *dev)
3800 struct de4x5_private *lp = netdev_priv(dev);
3802 return __skb_dequeue(&lp->cache.queue);
3806 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3807 ** is received and the auto-negotiation status is NWAY OK.
3809 static int
3810 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3812 struct de4x5_private *lp = netdev_priv(dev);
3813 u_long iobase = dev->base_addr;
3814 s32 sts, ans;
3816 if (lp->timeout < 0) {
3817 lp->timeout = msec/100;
3818 outl(irq_mask, DE4X5_IMR);
3820 /* clear all pending interrupts */
3821 sts = inl(DE4X5_STS);
3822 outl(sts, DE4X5_STS);
3825 ans = inl(DE4X5_SISR) & SISR_ANS;
3826 sts = inl(DE4X5_STS) & ~TIMER_CB;
3828 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3829 sts = 100 | TIMER_CB;
3830 } else {
3831 lp->timeout = -1;
3834 return sts;
3837 static void
3838 de4x5_setup_intr(struct net_device *dev)
3840 struct de4x5_private *lp = netdev_priv(dev);
3841 u_long iobase = dev->base_addr;
3842 s32 imr, sts;
3844 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3845 imr = 0;
3846 UNMASK_IRQs;
3847 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3848 outl(sts, DE4X5_STS);
3849 ENABLE_IRQs;
3852 return;
3858 static void
3859 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3861 struct de4x5_private *lp = netdev_priv(dev);
3862 u_long iobase = dev->base_addr;
3864 RESET_SIA;
3865 if (lp->useSROM) {
3866 if (lp->ibn == 3) {
3867 srom_exec(dev, lp->phy[lp->active].rst);
3868 srom_exec(dev, lp->phy[lp->active].gep);
3869 outl(1, DE4X5_SICR);
3870 return;
3871 } else {
3872 csr15 = lp->cache.csr15;
3873 csr14 = lp->cache.csr14;
3874 csr13 = lp->cache.csr13;
3875 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3876 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3878 } else {
3879 outl(csr15, DE4X5_SIGR);
3881 outl(csr14, DE4X5_STRR);
3882 outl(csr13, DE4X5_SICR);
3884 mdelay(10);
3886 return;
3890 ** Create a loopback ethernet packet
3892 static void
3893 create_packet(struct net_device *dev, char *frame, int len)
3895 int i;
3896 char *buf = frame;
3898 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3899 *buf++ = dev->dev_addr[i];
3901 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3902 *buf++ = dev->dev_addr[i];
3905 *buf++ = 0; /* Packet length (2 bytes) */
3906 *buf++ = 1;
3908 return;
3912 ** Look for a particular board name in the EISA configuration space
3914 static int
3915 EISA_signature(char *name, struct device *device)
3917 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3918 struct eisa_device *edev;
3920 *name = '\0';
3921 edev = to_eisa_device (device);
3922 i = edev->id.driver_data;
3924 if (i >= 0 && i < siglen) {
3925 strcpy (name, de4x5_signatures[i]);
3926 status = 1;
3929 return status; /* return the device name string */
3933 ** Look for a particular board name in the PCI configuration space
3935 static int
3936 PCI_signature(char *name, struct de4x5_private *lp)
3938 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3940 if (lp->chipset == DC21040) {
3941 strcpy(name, "DE434/5");
3942 return status;
3943 } else { /* Search for a DEC name in the SROM */
3944 int tmp = *((char *)&lp->srom + 19) * 3;
3945 strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3947 name[8] = '\0';
3948 for (i=0; i<siglen; i++) {
3949 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3951 if (i == siglen) {
3952 if (dec_only) {
3953 *name = '\0';
3954 } else { /* Use chip name to avoid confusion */
3955 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3956 ((lp->chipset == DC21041) ? "DC21041" :
3957 ((lp->chipset == DC21140) ? "DC21140" :
3958 ((lp->chipset == DC21142) ? "DC21142" :
3959 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3960 )))))));
3962 if (lp->chipset != DC21041) {
3963 lp->useSROM = true; /* card is not recognisably DEC */
3965 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3966 lp->useSROM = true;
3969 return status;
3973 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3974 ** the DC21040, else read the SROM for the other chips.
3975 ** The SROM may not be present in a multi-MAC card, so first read the
3976 ** MAC address and check for a bad address. If there is a bad one then exit
3977 ** immediately with the prior srom contents intact (the h/w address will
3978 ** be fixed up later).
3980 static void
3981 DevicePresent(struct net_device *dev, u_long aprom_addr)
3983 int i, j=0;
3984 struct de4x5_private *lp = netdev_priv(dev);
3986 if (lp->chipset == DC21040) {
3987 if (lp->bus == EISA) {
3988 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3989 } else {
3990 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
3992 } else { /* Read new srom */
3993 u_short tmp;
3994 __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3995 for (i=0; i<(ETH_ALEN>>1); i++) {
3996 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3997 j += tmp; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3998 *p = cpu_to_le16(tmp);
4000 if (j == 0 || j == 3 * 0xffff) {
4001 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
4002 return;
4005 p = (__le16 *)&lp->srom;
4006 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
4007 tmp = srom_rd(aprom_addr, i);
4008 *p++ = cpu_to_le16(tmp);
4010 de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
4013 return;
4017 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
4018 ** pointer correctly (at least on my DE425 EISA card), this routine should do
4019 ** it...from depca.c.
4021 static void
4022 enet_addr_rst(u_long aprom_addr)
4024 union {
4025 struct {
4026 u32 a;
4027 u32 b;
4028 } llsig;
4029 char Sig[sizeof(u32) << 1];
4030 } dev;
4031 short sigLength=0;
4032 s8 data;
4033 int i, j;
4035 dev.llsig.a = ETH_PROM_SIG;
4036 dev.llsig.b = ETH_PROM_SIG;
4037 sigLength = sizeof(u32) << 1;
4039 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4040 data = inb(aprom_addr);
4041 if (dev.Sig[j] == data) { /* track signature */
4042 j++;
4043 } else { /* lost signature; begin search again */
4044 if (data == dev.Sig[0]) { /* rare case.... */
4045 j=1;
4046 } else {
4047 j=0;
4052 return;
4056 ** For the bad status case and no SROM, then add one to the previous
4057 ** address. However, need to add one backwards in case we have 0xff
4058 ** as one or more of the bytes. Only the last 3 bytes should be checked
4059 ** as the first three are invariant - assigned to an organisation.
4061 static int
4062 get_hw_addr(struct net_device *dev)
4064 u_long iobase = dev->base_addr;
4065 int broken, i, k, tmp, status = 0;
4066 u_short j,chksum;
4067 struct de4x5_private *lp = netdev_priv(dev);
4069 broken = de4x5_bad_srom(lp);
4071 for (i=0,k=0,j=0;j<3;j++) {
4072 k <<= 1;
4073 if (k > 0xffff) k-=0xffff;
4075 if (lp->bus == PCI) {
4076 if (lp->chipset == DC21040) {
4077 while ((tmp = inl(DE4X5_APROM)) < 0);
4078 k += (u_char) tmp;
4079 dev->dev_addr[i++] = (u_char) tmp;
4080 while ((tmp = inl(DE4X5_APROM)) < 0);
4081 k += (u_short) (tmp << 8);
4082 dev->dev_addr[i++] = (u_char) tmp;
4083 } else if (!broken) {
4084 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4085 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4086 } else if ((broken == SMC) || (broken == ACCTON)) {
4087 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4088 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4090 } else {
4091 k += (u_char) (tmp = inb(EISA_APROM));
4092 dev->dev_addr[i++] = (u_char) tmp;
4093 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4094 dev->dev_addr[i++] = (u_char) tmp;
4097 if (k > 0xffff) k-=0xffff;
4099 if (k == 0xffff) k=0;
4101 if (lp->bus == PCI) {
4102 if (lp->chipset == DC21040) {
4103 while ((tmp = inl(DE4X5_APROM)) < 0);
4104 chksum = (u_char) tmp;
4105 while ((tmp = inl(DE4X5_APROM)) < 0);
4106 chksum |= (u_short) (tmp << 8);
4107 if ((k != chksum) && (dec_only)) status = -1;
4109 } else {
4110 chksum = (u_char) inb(EISA_APROM);
4111 chksum |= (u_short) (inb(EISA_APROM) << 8);
4112 if ((k != chksum) && (dec_only)) status = -1;
4115 /* If possible, try to fix a broken card - SMC only so far */
4116 srom_repair(dev, broken);
4118 #ifdef CONFIG_PPC_PMAC
4120 ** If the address starts with 00 a0, we have to bit-reverse
4121 ** each byte of the address.
4123 if ( machine_is(powermac) &&
4124 (dev->dev_addr[0] == 0) &&
4125 (dev->dev_addr[1] == 0xa0) )
4127 for (i = 0; i < ETH_ALEN; ++i)
4129 int x = dev->dev_addr[i];
4130 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4131 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4132 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4135 #endif /* CONFIG_PPC_PMAC */
4137 /* Test for a bad enet address */
4138 status = test_bad_enet(dev, status);
4140 return status;
4144 ** Test for enet addresses in the first 32 bytes. The built-in strncmp
4145 ** didn't seem to work here...?
4147 static int
4148 de4x5_bad_srom(struct de4x5_private *lp)
4150 int i, status = 0;
4152 for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4153 if (!de4x5_strncmp((char *)&lp->srom, (char *)&enet_det[i], 3) &&
4154 !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) {
4155 if (i == 0) {
4156 status = SMC;
4157 } else if (i == 1) {
4158 status = ACCTON;
4160 break;
4164 return status;
4167 static int
4168 de4x5_strncmp(char *a, char *b, int n)
4170 int ret=0;
4172 for (;n && !ret; n--) {
4173 ret = *a++ - *b++;
4176 return ret;
4179 static void
4180 srom_repair(struct net_device *dev, int card)
4182 struct de4x5_private *lp = netdev_priv(dev);
4184 switch(card) {
4185 case SMC:
4186 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4187 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4188 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4189 lp->useSROM = true;
4190 break;
4193 return;
4197 ** Assume that the irq's do not follow the PCI spec - this is seems
4198 ** to be true so far (2 for 2).
4200 static int
4201 test_bad_enet(struct net_device *dev, int status)
4203 struct de4x5_private *lp = netdev_priv(dev);
4204 int i, tmp;
4206 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4207 if ((tmp == 0) || (tmp == 0x5fa)) {
4208 if ((lp->chipset == last.chipset) &&
4209 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4210 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4211 for (i=ETH_ALEN-1; i>2; --i) {
4212 dev->dev_addr[i] += 1;
4213 if (dev->dev_addr[i] != 0) break;
4215 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4216 if (!an_exception(lp)) {
4217 dev->irq = last.irq;
4220 status = 0;
4222 } else if (!status) {
4223 last.chipset = lp->chipset;
4224 last.bus = lp->bus_num;
4225 last.irq = dev->irq;
4226 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4229 return status;
4233 ** List of board exceptions with correctly wired IRQs
4235 static int
4236 an_exception(struct de4x5_private *lp)
4238 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4239 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4240 return -1;
4243 return 0;
4247 ** SROM Read
4249 static short
4250 srom_rd(u_long addr, u_char offset)
4252 sendto_srom(SROM_RD | SROM_SR, addr);
4254 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4255 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4256 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4258 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4261 static void
4262 srom_latch(u_int command, u_long addr)
4264 sendto_srom(command, addr);
4265 sendto_srom(command | DT_CLK, addr);
4266 sendto_srom(command, addr);
4268 return;
4271 static void
4272 srom_command(u_int command, u_long addr)
4274 srom_latch(command, addr);
4275 srom_latch(command, addr);
4276 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4278 return;
4281 static void
4282 srom_address(u_int command, u_long addr, u_char offset)
4284 int i, a;
4286 a = offset << 2;
4287 for (i=0; i<6; i++, a <<= 1) {
4288 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4290 udelay(1);
4292 i = (getfrom_srom(addr) >> 3) & 0x01;
4294 return;
4297 static short
4298 srom_data(u_int command, u_long addr)
4300 int i;
4301 short word = 0;
4302 s32 tmp;
4304 for (i=0; i<16; i++) {
4305 sendto_srom(command | DT_CLK, addr);
4306 tmp = getfrom_srom(addr);
4307 sendto_srom(command, addr);
4309 word = (word << 1) | ((tmp >> 3) & 0x01);
4312 sendto_srom(command & 0x0000ff00, addr);
4314 return word;
4318 static void
4319 srom_busy(u_int command, u_long addr)
4321 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4323 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4324 mdelay(1);
4327 sendto_srom(command & 0x0000ff00, addr);
4329 return;
4333 static void
4334 sendto_srom(u_int command, u_long addr)
4336 outl(command, addr);
4337 udelay(1);
4339 return;
4342 static int
4343 getfrom_srom(u_long addr)
4345 s32 tmp;
4347 tmp = inl(addr);
4348 udelay(1);
4350 return tmp;
4353 static int
4354 srom_infoleaf_info(struct net_device *dev)
4356 struct de4x5_private *lp = netdev_priv(dev);
4357 int i, count;
4358 u_char *p;
4360 /* Find the infoleaf decoder function that matches this chipset */
4361 for (i=0; i<INFOLEAF_SIZE; i++) {
4362 if (lp->chipset == infoleaf_array[i].chipset) break;
4364 if (i == INFOLEAF_SIZE) {
4365 lp->useSROM = false;
4366 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4367 dev->name);
4368 return -ENXIO;
4371 lp->infoleaf_fn = infoleaf_array[i].fn;
4373 /* Find the information offset that this function should use */
4374 count = *((u_char *)&lp->srom + 19);
4375 p = (u_char *)&lp->srom + 26;
4377 if (count > 1) {
4378 for (i=count; i; --i, p+=3) {
4379 if (lp->device == *p) break;
4381 if (i == 0) {
4382 lp->useSROM = false;
4383 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4384 dev->name, lp->device);
4385 return -ENXIO;
4389 lp->infoleaf_offset = get_unaligned_le16(p + 1);
4391 return 0;
4395 ** This routine loads any type 1 or 3 MII info into the mii device
4396 ** struct and executes any type 5 code to reset PHY devices for this
4397 ** controller.
4398 ** The info for the MII devices will be valid since the index used
4399 ** will follow the discovery process from MII address 1-31 then 0.
4401 static void
4402 srom_init(struct net_device *dev)
4404 struct de4x5_private *lp = netdev_priv(dev);
4405 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4406 u_char count;
4408 p+=2;
4409 if (lp->chipset == DC21140) {
4410 lp->cache.gepc = (*p++ | GEP_CTRL);
4411 gep_wr(lp->cache.gepc, dev);
4414 /* Block count */
4415 count = *p++;
4417 /* Jump the infoblocks to find types */
4418 for (;count; --count) {
4419 if (*p < 128) {
4420 p += COMPACT_LEN;
4421 } else if (*(p+1) == 5) {
4422 type5_infoblock(dev, 1, p);
4423 p += ((*p & BLOCK_LEN) + 1);
4424 } else if (*(p+1) == 4) {
4425 p += ((*p & BLOCK_LEN) + 1);
4426 } else if (*(p+1) == 3) {
4427 type3_infoblock(dev, 1, p);
4428 p += ((*p & BLOCK_LEN) + 1);
4429 } else if (*(p+1) == 2) {
4430 p += ((*p & BLOCK_LEN) + 1);
4431 } else if (*(p+1) == 1) {
4432 type1_infoblock(dev, 1, p);
4433 p += ((*p & BLOCK_LEN) + 1);
4434 } else {
4435 p += ((*p & BLOCK_LEN) + 1);
4439 return;
4443 ** A generic routine that writes GEP control, data and reset information
4444 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4446 static void
4447 srom_exec(struct net_device *dev, u_char *p)
4449 struct de4x5_private *lp = netdev_priv(dev);
4450 u_long iobase = dev->base_addr;
4451 u_char count = (p ? *p++ : 0);
4452 u_short *w = (u_short *)p;
4454 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4456 if (lp->chipset != DC21140) RESET_SIA;
4458 while (count--) {
4459 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4460 *p++ : get_unaligned_le16(w++)), dev);
4461 mdelay(2); /* 2ms per action */
4464 if (lp->chipset != DC21140) {
4465 outl(lp->cache.csr14, DE4X5_STRR);
4466 outl(lp->cache.csr13, DE4X5_SICR);
4469 return;
4473 ** Basically this function is a NOP since it will never be called,
4474 ** unless I implement the DC21041 SROM functions. There's no need
4475 ** since the existing code will be satisfactory for all boards.
4477 static int
4478 dc21041_infoleaf(struct net_device *dev)
4480 return DE4X5_AUTOSENSE_MS;
4483 static int
4484 dc21140_infoleaf(struct net_device *dev)
4486 struct de4x5_private *lp = netdev_priv(dev);
4487 u_char count = 0;
4488 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4489 int next_tick = DE4X5_AUTOSENSE_MS;
4491 /* Read the connection type */
4492 p+=2;
4494 /* GEP control */
4495 lp->cache.gepc = (*p++ | GEP_CTRL);
4497 /* Block count */
4498 count = *p++;
4500 /* Recursively figure out the info blocks */
4501 if (*p < 128) {
4502 next_tick = dc_infoblock[COMPACT](dev, count, p);
4503 } else {
4504 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4507 if (lp->tcount == count) {
4508 lp->media = NC;
4509 if (lp->media != lp->c_media) {
4510 de4x5_dbg_media(dev);
4511 lp->c_media = lp->media;
4513 lp->media = INIT;
4514 lp->tcount = 0;
4515 lp->tx_enable = false;
4518 return next_tick & ~TIMER_CB;
4521 static int
4522 dc21142_infoleaf(struct net_device *dev)
4524 struct de4x5_private *lp = netdev_priv(dev);
4525 u_char count = 0;
4526 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4527 int next_tick = DE4X5_AUTOSENSE_MS;
4529 /* Read the connection type */
4530 p+=2;
4532 /* Block count */
4533 count = *p++;
4535 /* Recursively figure out the info blocks */
4536 if (*p < 128) {
4537 next_tick = dc_infoblock[COMPACT](dev, count, p);
4538 } else {
4539 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4542 if (lp->tcount == count) {
4543 lp->media = NC;
4544 if (lp->media != lp->c_media) {
4545 de4x5_dbg_media(dev);
4546 lp->c_media = lp->media;
4548 lp->media = INIT;
4549 lp->tcount = 0;
4550 lp->tx_enable = false;
4553 return next_tick & ~TIMER_CB;
4556 static int
4557 dc21143_infoleaf(struct net_device *dev)
4559 struct de4x5_private *lp = netdev_priv(dev);
4560 u_char count = 0;
4561 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4562 int next_tick = DE4X5_AUTOSENSE_MS;
4564 /* Read the connection type */
4565 p+=2;
4567 /* Block count */
4568 count = *p++;
4570 /* Recursively figure out the info blocks */
4571 if (*p < 128) {
4572 next_tick = dc_infoblock[COMPACT](dev, count, p);
4573 } else {
4574 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4576 if (lp->tcount == count) {
4577 lp->media = NC;
4578 if (lp->media != lp->c_media) {
4579 de4x5_dbg_media(dev);
4580 lp->c_media = lp->media;
4582 lp->media = INIT;
4583 lp->tcount = 0;
4584 lp->tx_enable = false;
4587 return next_tick & ~TIMER_CB;
4591 ** The compact infoblock is only designed for DC21140[A] chips, so
4592 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4594 static int
4595 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4597 struct de4x5_private *lp = netdev_priv(dev);
4598 u_char flags, csr6;
4600 /* Recursively figure out the info blocks */
4601 if (--count > lp->tcount) {
4602 if (*(p+COMPACT_LEN) < 128) {
4603 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4604 } else {
4605 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4609 if ((lp->media == INIT) && (lp->timeout < 0)) {
4610 lp->ibn = COMPACT;
4611 lp->active = 0;
4612 gep_wr(lp->cache.gepc, dev);
4613 lp->infoblock_media = (*p++) & COMPACT_MC;
4614 lp->cache.gep = *p++;
4615 csr6 = *p++;
4616 flags = *p++;
4618 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4619 lp->defMedium = (flags & 0x40) ? -1 : 0;
4620 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4621 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4622 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4623 lp->useMII = false;
4625 de4x5_switch_mac_port(dev);
4628 return dc21140m_autoconf(dev);
4632 ** This block describes non MII media for the DC21140[A] only.
4634 static int
4635 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4637 struct de4x5_private *lp = netdev_priv(dev);
4638 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4640 /* Recursively figure out the info blocks */
4641 if (--count > lp->tcount) {
4642 if (*(p+len) < 128) {
4643 return dc_infoblock[COMPACT](dev, count, p+len);
4644 } else {
4645 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4649 if ((lp->media == INIT) && (lp->timeout < 0)) {
4650 lp->ibn = 0;
4651 lp->active = 0;
4652 gep_wr(lp->cache.gepc, dev);
4653 p+=2;
4654 lp->infoblock_media = (*p++) & BLOCK0_MC;
4655 lp->cache.gep = *p++;
4656 csr6 = *p++;
4657 flags = *p++;
4659 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4660 lp->defMedium = (flags & 0x40) ? -1 : 0;
4661 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4662 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4663 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4664 lp->useMII = false;
4666 de4x5_switch_mac_port(dev);
4669 return dc21140m_autoconf(dev);
4672 /* These functions are under construction! */
4674 static int
4675 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4677 struct de4x5_private *lp = netdev_priv(dev);
4678 u_char len = (*p & BLOCK_LEN)+1;
4680 /* Recursively figure out the info blocks */
4681 if (--count > lp->tcount) {
4682 if (*(p+len) < 128) {
4683 return dc_infoblock[COMPACT](dev, count, p+len);
4684 } else {
4685 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4689 p += 2;
4690 if (lp->state == INITIALISED) {
4691 lp->ibn = 1;
4692 lp->active = *p++;
4693 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4694 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4695 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4696 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4697 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4698 lp->phy[lp->active].ttm = get_unaligned_le16(p);
4699 return 0;
4700 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4701 lp->ibn = 1;
4702 lp->active = *p;
4703 lp->infoblock_csr6 = OMR_MII_100;
4704 lp->useMII = true;
4705 lp->infoblock_media = ANS;
4707 de4x5_switch_mac_port(dev);
4710 return dc21140m_autoconf(dev);
4713 static int
4714 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4716 struct de4x5_private *lp = netdev_priv(dev);
4717 u_char len = (*p & BLOCK_LEN)+1;
4719 /* Recursively figure out the info blocks */
4720 if (--count > lp->tcount) {
4721 if (*(p+len) < 128) {
4722 return dc_infoblock[COMPACT](dev, count, p+len);
4723 } else {
4724 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4728 if ((lp->media == INIT) && (lp->timeout < 0)) {
4729 lp->ibn = 2;
4730 lp->active = 0;
4731 p += 2;
4732 lp->infoblock_media = (*p) & MEDIA_CODE;
4734 if ((*p++) & EXT_FIELD) {
4735 lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4736 lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4737 lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4738 } else {
4739 lp->cache.csr13 = CSR13;
4740 lp->cache.csr14 = CSR14;
4741 lp->cache.csr15 = CSR15;
4743 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4744 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16);
4745 lp->infoblock_csr6 = OMR_SIA;
4746 lp->useMII = false;
4748 de4x5_switch_mac_port(dev);
4751 return dc2114x_autoconf(dev);
4754 static int
4755 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4757 struct de4x5_private *lp = netdev_priv(dev);
4758 u_char len = (*p & BLOCK_LEN)+1;
4760 /* Recursively figure out the info blocks */
4761 if (--count > lp->tcount) {
4762 if (*(p+len) < 128) {
4763 return dc_infoblock[COMPACT](dev, count, p+len);
4764 } else {
4765 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4769 p += 2;
4770 if (lp->state == INITIALISED) {
4771 lp->ibn = 3;
4772 lp->active = *p++;
4773 if (MOTO_SROM_BUG) lp->active = 0;
4774 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4775 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4776 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4777 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4778 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4779 lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4780 lp->phy[lp->active].mci = *p;
4781 return 0;
4782 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4783 lp->ibn = 3;
4784 lp->active = *p;
4785 if (MOTO_SROM_BUG) lp->active = 0;
4786 lp->infoblock_csr6 = OMR_MII_100;
4787 lp->useMII = true;
4788 lp->infoblock_media = ANS;
4790 de4x5_switch_mac_port(dev);
4793 return dc2114x_autoconf(dev);
4796 static int
4797 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4799 struct de4x5_private *lp = netdev_priv(dev);
4800 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4802 /* Recursively figure out the info blocks */
4803 if (--count > lp->tcount) {
4804 if (*(p+len) < 128) {
4805 return dc_infoblock[COMPACT](dev, count, p+len);
4806 } else {
4807 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4811 if ((lp->media == INIT) && (lp->timeout < 0)) {
4812 lp->ibn = 4;
4813 lp->active = 0;
4814 p+=2;
4815 lp->infoblock_media = (*p++) & MEDIA_CODE;
4816 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4817 lp->cache.csr14 = CSR14;
4818 lp->cache.csr15 = CSR15;
4819 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4820 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4821 csr6 = *p++;
4822 flags = *p++;
4824 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4825 lp->defMedium = (flags & 0x40) ? -1 : 0;
4826 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4827 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4828 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4829 lp->useMII = false;
4831 de4x5_switch_mac_port(dev);
4834 return dc2114x_autoconf(dev);
4838 ** This block type provides information for resetting external devices
4839 ** (chips) through the General Purpose Register.
4841 static int
4842 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4844 struct de4x5_private *lp = netdev_priv(dev);
4845 u_char len = (*p & BLOCK_LEN)+1;
4847 /* Recursively figure out the info blocks */
4848 if (--count > lp->tcount) {
4849 if (*(p+len) < 128) {
4850 return dc_infoblock[COMPACT](dev, count, p+len);
4851 } else {
4852 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4856 /* Must be initializing to run this code */
4857 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4858 p+=2;
4859 lp->rst = p;
4860 srom_exec(dev, lp->rst);
4863 return DE4X5_AUTOSENSE_MS;
4867 ** MII Read/Write
4870 static int
4871 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4873 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4874 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4875 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4876 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4877 mii_address(phyreg, ioaddr); /* PHY Register to read */
4878 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4880 return mii_rdata(ioaddr); /* Read data */
4883 static void
4884 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4886 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4887 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4888 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4889 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4890 mii_address(phyreg, ioaddr); /* PHY Register to write */
4891 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4892 data = mii_swap(data, 16); /* Swap data bit ordering */
4893 mii_wdata(data, 16, ioaddr); /* Write data */
4895 return;
4898 static int
4899 mii_rdata(u_long ioaddr)
4901 int i;
4902 s32 tmp = 0;
4904 for (i=0; i<16; i++) {
4905 tmp <<= 1;
4906 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4909 return tmp;
4912 static void
4913 mii_wdata(int data, int len, u_long ioaddr)
4915 int i;
4917 for (i=0; i<len; i++) {
4918 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4919 data >>= 1;
4922 return;
4925 static void
4926 mii_address(u_char addr, u_long ioaddr)
4928 int i;
4930 addr = mii_swap(addr, 5);
4931 for (i=0; i<5; i++) {
4932 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4933 addr >>= 1;
4936 return;
4939 static void
4940 mii_ta(u_long rw, u_long ioaddr)
4942 if (rw == MII_STWR) {
4943 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4944 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4945 } else {
4946 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4949 return;
4952 static int
4953 mii_swap(int data, int len)
4955 int i, tmp = 0;
4957 for (i=0; i<len; i++) {
4958 tmp <<= 1;
4959 tmp |= (data & 1);
4960 data >>= 1;
4963 return tmp;
4966 static void
4967 sendto_mii(u32 command, int data, u_long ioaddr)
4969 u32 j;
4971 j = (data & 1) << 17;
4972 outl(command | j, ioaddr);
4973 udelay(1);
4974 outl(command | MII_MDC | j, ioaddr);
4975 udelay(1);
4977 return;
4980 static int
4981 getfrom_mii(u32 command, u_long ioaddr)
4983 outl(command, ioaddr);
4984 udelay(1);
4985 outl(command | MII_MDC, ioaddr);
4986 udelay(1);
4988 return ((inl(ioaddr) >> 19) & 1);
4992 ** Here's 3 ways to calculate the OUI from the ID registers.
4994 static int
4995 mii_get_oui(u_char phyaddr, u_long ioaddr)
4998 union {
4999 u_short reg;
5000 u_char breg[2];
5001 } a;
5002 int i, r2, r3, ret=0;*/
5003 int r2, r3;
5005 /* Read r2 and r3 */
5006 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
5007 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
5008 /* SEEQ and Cypress way * /
5009 / * Shuffle r2 and r3 * /
5010 a.reg=0;
5011 r3 = ((r3>>10)|(r2<<6))&0x0ff;
5012 r2 = ((r2>>2)&0x3fff);
5014 / * Bit reverse r3 * /
5015 for (i=0;i<8;i++) {
5016 ret<<=1;
5017 ret |= (r3&1);
5018 r3>>=1;
5021 / * Bit reverse r2 * /
5022 for (i=0;i<16;i++) {
5023 a.reg<<=1;
5024 a.reg |= (r2&1);
5025 r2>>=1;
5028 / * Swap r2 bytes * /
5029 i=a.breg[0];
5030 a.breg[0]=a.breg[1];
5031 a.breg[1]=i;
5033 return ((a.reg<<8)|ret); */ /* SEEQ and Cypress way */
5034 /* return ((r2<<6)|(u_int)(r3>>10)); */ /* NATIONAL and BROADCOM way */
5035 return r2; /* (I did it) My way */
5039 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
5041 static int
5042 mii_get_phy(struct net_device *dev)
5044 struct de4x5_private *lp = netdev_priv(dev);
5045 u_long iobase = dev->base_addr;
5046 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
5047 int id;
5049 lp->active = 0;
5050 lp->useMII = true;
5052 /* Search the MII address space for possible PHY devices */
5053 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
5054 lp->phy[lp->active].addr = i;
5055 if (i==0) n++; /* Count cycles */
5056 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
5057 id = mii_get_oui(i, DE4X5_MII);
5058 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
5059 for (j=0; j<limit; j++) { /* Search PHY table */
5060 if (id != phy_info[j].id) continue; /* ID match? */
5061 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5062 if (k < DE4X5_MAX_PHY) {
5063 memcpy((char *)&lp->phy[k],
5064 (char *)&phy_info[j], sizeof(struct phy_table));
5065 lp->phy[k].addr = i;
5066 lp->mii_cnt++;
5067 lp->active++;
5068 } else {
5069 goto purgatory; /* Stop the search */
5071 break;
5073 if ((j == limit) && (i < DE4X5_MAX_MII)) {
5074 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5075 lp->phy[k].addr = i;
5076 lp->phy[k].id = id;
5077 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5078 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5079 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5080 lp->mii_cnt++;
5081 lp->active++;
5082 printk("%s: Using generic MII device control. If the board doesn't operate, \nplease mail the following dump to the author:\n", dev->name);
5083 j = de4x5_debug;
5084 de4x5_debug |= DEBUG_MII;
5085 de4x5_dbg_mii(dev, k);
5086 de4x5_debug = j;
5087 printk("\n");
5090 purgatory:
5091 lp->active = 0;
5092 if (lp->phy[0].id) { /* Reset the PHY devices */
5093 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5094 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5095 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5097 de4x5_dbg_mii(dev, k);
5100 if (!lp->mii_cnt) lp->useMII = false;
5102 return lp->mii_cnt;
5105 static char *
5106 build_setup_frame(struct net_device *dev, int mode)
5108 struct de4x5_private *lp = netdev_priv(dev);
5109 int i;
5110 char *pa = lp->setup_frame;
5112 /* Initialise the setup frame */
5113 if (mode == ALL) {
5114 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5117 if (lp->setup_f == HASH_PERF) {
5118 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5119 *(pa + i) = dev->dev_addr[i]; /* Host address */
5120 if (i & 0x01) pa += 2;
5122 *(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5123 } else {
5124 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5125 *(pa + (i&1)) = dev->dev_addr[i];
5126 if (i & 0x01) pa += 4;
5128 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5129 *(pa + (i&1)) = (char) 0xff;
5130 if (i & 0x01) pa += 4;
5134 return pa; /* Points to the next entry */
5137 static void
5138 disable_ast(struct net_device *dev)
5140 struct de4x5_private *lp = netdev_priv(dev);
5141 del_timer_sync(&lp->timer);
5144 static long
5145 de4x5_switch_mac_port(struct net_device *dev)
5147 struct de4x5_private *lp = netdev_priv(dev);
5148 u_long iobase = dev->base_addr;
5149 s32 omr;
5151 STOP_DE4X5;
5153 /* Assert the OMR_PS bit in CSR6 */
5154 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5155 OMR_FDX));
5156 omr |= lp->infoblock_csr6;
5157 if (omr & OMR_PS) omr |= OMR_HBD;
5158 outl(omr, DE4X5_OMR);
5160 /* Soft Reset */
5161 RESET_DE4X5;
5163 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5164 if (lp->chipset == DC21140) {
5165 gep_wr(lp->cache.gepc, dev);
5166 gep_wr(lp->cache.gep, dev);
5167 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5168 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5171 /* Restore CSR6 */
5172 outl(omr, DE4X5_OMR);
5174 /* Reset CSR8 */
5175 inl(DE4X5_MFC);
5177 return omr;
5180 static void
5181 gep_wr(s32 data, struct net_device *dev)
5183 struct de4x5_private *lp = netdev_priv(dev);
5184 u_long iobase = dev->base_addr;
5186 if (lp->chipset == DC21140) {
5187 outl(data, DE4X5_GEP);
5188 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5189 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5192 return;
5195 static int
5196 gep_rd(struct net_device *dev)
5198 struct de4x5_private *lp = netdev_priv(dev);
5199 u_long iobase = dev->base_addr;
5201 if (lp->chipset == DC21140) {
5202 return inl(DE4X5_GEP);
5203 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5204 return (inl(DE4X5_SIGR) & 0x000fffff);
5207 return 0;
5210 static void
5211 yawn(struct net_device *dev, int state)
5213 struct de4x5_private *lp = netdev_priv(dev);
5214 u_long iobase = dev->base_addr;
5216 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5218 if(lp->bus == EISA) {
5219 switch(state) {
5220 case WAKEUP:
5221 outb(WAKEUP, PCI_CFPM);
5222 mdelay(10);
5223 break;
5225 case SNOOZE:
5226 outb(SNOOZE, PCI_CFPM);
5227 break;
5229 case SLEEP:
5230 outl(0, DE4X5_SICR);
5231 outb(SLEEP, PCI_CFPM);
5232 break;
5234 } else {
5235 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5236 switch(state) {
5237 case WAKEUP:
5238 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5239 mdelay(10);
5240 break;
5242 case SNOOZE:
5243 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5244 break;
5246 case SLEEP:
5247 outl(0, DE4X5_SICR);
5248 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5249 break;
5253 return;
5256 static void
5257 de4x5_parse_params(struct net_device *dev)
5259 struct de4x5_private *lp = netdev_priv(dev);
5260 char *p, *q, t;
5262 lp->params.fdx = 0;
5263 lp->params.autosense = AUTO;
5265 if (args == NULL) return;
5267 if ((p = strstr(args, dev->name))) {
5268 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5269 t = *q;
5270 *q = '\0';
5272 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = 1;
5274 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5275 if (strstr(p, "TP")) {
5276 lp->params.autosense = TP;
5277 } else if (strstr(p, "TP_NW")) {
5278 lp->params.autosense = TP_NW;
5279 } else if (strstr(p, "BNC")) {
5280 lp->params.autosense = BNC;
5281 } else if (strstr(p, "AUI")) {
5282 lp->params.autosense = AUI;
5283 } else if (strstr(p, "BNC_AUI")) {
5284 lp->params.autosense = BNC;
5285 } else if (strstr(p, "10Mb")) {
5286 lp->params.autosense = _10Mb;
5287 } else if (strstr(p, "100Mb")) {
5288 lp->params.autosense = _100Mb;
5289 } else if (strstr(p, "AUTO")) {
5290 lp->params.autosense = AUTO;
5293 *q = t;
5296 return;
5299 static void
5300 de4x5_dbg_open(struct net_device *dev)
5302 struct de4x5_private *lp = netdev_priv(dev);
5303 int i;
5305 if (de4x5_debug & DEBUG_OPEN) {
5306 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5307 printk("\tphysical address: ");
5308 for (i=0;i<6;i++) {
5309 printk("%2.2x:",(short)dev->dev_addr[i]);
5311 printk("\n");
5312 printk("Descriptor head addresses:\n");
5313 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5314 printk("Descriptor addresses:\nRX: ");
5315 for (i=0;i<lp->rxRingSize-1;i++){
5316 if (i < 3) {
5317 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5320 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5321 printk("TX: ");
5322 for (i=0;i<lp->txRingSize-1;i++){
5323 if (i < 3) {
5324 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5327 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5328 printk("Descriptor buffers:\nRX: ");
5329 for (i=0;i<lp->rxRingSize-1;i++){
5330 if (i < 3) {
5331 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5334 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5335 printk("TX: ");
5336 for (i=0;i<lp->txRingSize-1;i++){
5337 if (i < 3) {
5338 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5341 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5342 printk("Ring size: \nRX: %d\nTX: %d\n",
5343 (short)lp->rxRingSize,
5344 (short)lp->txRingSize);
5347 return;
5350 static void
5351 de4x5_dbg_mii(struct net_device *dev, int k)
5353 struct de4x5_private *lp = netdev_priv(dev);
5354 u_long iobase = dev->base_addr;
5356 if (de4x5_debug & DEBUG_MII) {
5357 printk("\nMII device address: %d\n", lp->phy[k].addr);
5358 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5359 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5360 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5361 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5362 if (lp->phy[k].id != BROADCOM_T4) {
5363 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5364 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5366 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5367 if (lp->phy[k].id != BROADCOM_T4) {
5368 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5369 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5370 } else {
5371 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5375 return;
5378 static void
5379 de4x5_dbg_media(struct net_device *dev)
5381 struct de4x5_private *lp = netdev_priv(dev);
5383 if (lp->media != lp->c_media) {
5384 if (de4x5_debug & DEBUG_MEDIA) {
5385 printk("%s: media is %s%s\n", dev->name,
5386 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5387 (lp->media == TP ? "TP" :
5388 (lp->media == ANS ? "TP/Nway" :
5389 (lp->media == BNC ? "BNC" :
5390 (lp->media == AUI ? "AUI" :
5391 (lp->media == BNC_AUI ? "BNC/AUI" :
5392 (lp->media == EXT_SIA ? "EXT SIA" :
5393 (lp->media == _100Mb ? "100Mb/s" :
5394 (lp->media == _10Mb ? "10Mb/s" :
5395 "???"
5396 ))))))))), (lp->fdx?" full duplex.":"."));
5398 lp->c_media = lp->media;
5401 return;
5404 static void
5405 de4x5_dbg_srom(struct de4x5_srom *p)
5407 int i;
5409 if (de4x5_debug & DEBUG_SROM) {
5410 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5411 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5412 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5413 printk("SROM version: %02x\n", (u_char)(p->version));
5414 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5416 printk("Hardware Address: %pM\n", p->ieee_addr);
5417 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5418 for (i=0; i<64; i++) {
5419 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5423 return;
5426 static void
5427 de4x5_dbg_rx(struct sk_buff *skb, int len)
5429 int i, j;
5431 if (de4x5_debug & DEBUG_RX) {
5432 printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5433 skb->data, &skb->data[6],
5434 (u_char)skb->data[12],
5435 (u_char)skb->data[13],
5436 len);
5437 for (j=0; len>0;j+=16, len-=16) {
5438 printk(" %03x: ",j);
5439 for (i=0; i<16 && i<len; i++) {
5440 printk("%02x ",(u_char)skb->data[i+j]);
5442 printk("\n");
5446 return;
5450 ** Perform IOCTL call functions here. Some are privileged operations and the
5451 ** effective uid is checked in those cases. In the normal course of events
5452 ** this function is only used for my testing.
5454 static int
5455 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5457 struct de4x5_private *lp = netdev_priv(dev);
5458 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5459 u_long iobase = dev->base_addr;
5460 int i, j, status = 0;
5461 s32 omr;
5462 union {
5463 u8 addr[144];
5464 u16 sval[72];
5465 u32 lval[36];
5466 } tmp;
5467 u_long flags = 0;
5469 switch(ioc->cmd) {
5470 case DE4X5_GET_HWADDR: /* Get the hardware address */
5471 ioc->len = ETH_ALEN;
5472 for (i=0; i<ETH_ALEN; i++) {
5473 tmp.addr[i] = dev->dev_addr[i];
5475 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5476 break;
5478 case DE4X5_SET_HWADDR: /* Set the hardware address */
5479 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5480 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5481 if (netif_queue_stopped(dev))
5482 return -EBUSY;
5483 netif_stop_queue(dev);
5484 for (i=0; i<ETH_ALEN; i++) {
5485 dev->dev_addr[i] = tmp.addr[i];
5487 build_setup_frame(dev, PHYS_ADDR_ONLY);
5488 /* Set up the descriptor and give ownership to the card */
5489 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5490 SETUP_FRAME_LEN, (struct sk_buff *)1);
5491 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
5492 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5493 netif_wake_queue(dev); /* Unlock the TX ring */
5494 break;
5496 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5497 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5498 printk("%s: Boo!\n", dev->name);
5499 break;
5501 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5502 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5503 omr = inl(DE4X5_OMR);
5504 omr |= OMR_PM;
5505 outl(omr, DE4X5_OMR);
5506 break;
5508 case DE4X5_GET_STATS: /* Get the driver statistics */
5510 struct pkt_stats statbuf;
5511 ioc->len = sizeof(statbuf);
5512 spin_lock_irqsave(&lp->lock, flags);
5513 memcpy(&statbuf, &lp->pktStats, ioc->len);
5514 spin_unlock_irqrestore(&lp->lock, flags);
5515 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5516 return -EFAULT;
5517 break;
5519 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5520 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5521 spin_lock_irqsave(&lp->lock, flags);
5522 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5523 spin_unlock_irqrestore(&lp->lock, flags);
5524 break;
5526 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5527 tmp.addr[0] = inl(DE4X5_OMR);
5528 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5529 break;
5531 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5532 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5533 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5534 outl(tmp.addr[0], DE4X5_OMR);
5535 break;
5537 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5538 j = 0;
5539 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5540 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5541 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5542 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5543 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5544 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5545 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5546 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5547 ioc->len = j;
5548 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5549 break;
5551 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5553 case DE4X5_DUMP:
5554 j = 0;
5555 tmp.addr[j++] = dev->irq;
5556 for (i=0; i<ETH_ALEN; i++) {
5557 tmp.addr[j++] = dev->dev_addr[i];
5559 tmp.addr[j++] = lp->rxRingSize;
5560 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5561 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5563 for (i=0;i<lp->rxRingSize-1;i++){
5564 if (i < 3) {
5565 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5568 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5569 for (i=0;i<lp->txRingSize-1;i++){
5570 if (i < 3) {
5571 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5574 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5576 for (i=0;i<lp->rxRingSize-1;i++){
5577 if (i < 3) {
5578 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5581 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5582 for (i=0;i<lp->txRingSize-1;i++){
5583 if (i < 3) {
5584 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5587 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5589 for (i=0;i<lp->rxRingSize;i++){
5590 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5592 for (i=0;i<lp->txRingSize;i++){
5593 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5596 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5597 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5598 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5599 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5600 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5601 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5602 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5603 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5604 tmp.lval[j>>2] = lp->chipset; j+=4;
5605 if (lp->chipset == DC21140) {
5606 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5607 } else {
5608 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5609 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5610 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5611 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5613 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5614 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5615 tmp.lval[j>>2] = lp->active; j+=4;
5616 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5617 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5618 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5619 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5620 if (lp->phy[lp->active].id != BROADCOM_T4) {
5621 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5622 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5624 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5625 if (lp->phy[lp->active].id != BROADCOM_T4) {
5626 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5627 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5628 } else {
5629 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5633 tmp.addr[j++] = lp->txRingSize;
5634 tmp.addr[j++] = netif_queue_stopped(dev);
5636 ioc->len = j;
5637 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5638 break;
5641 default:
5642 return -EOPNOTSUPP;
5645 return status;
5648 static int __init de4x5_module_init (void)
5650 int err = 0;
5652 #ifdef CONFIG_PCI
5653 err = pci_register_driver(&de4x5_pci_driver);
5654 #endif
5655 #ifdef CONFIG_EISA
5656 err |= eisa_driver_register (&de4x5_eisa_driver);
5657 #endif
5659 return err;
5662 static void __exit de4x5_module_exit (void)
5664 #ifdef CONFIG_PCI
5665 pci_unregister_driver (&de4x5_pci_driver);
5666 #endif
5667 #ifdef CONFIG_EISA
5668 eisa_driver_unregister (&de4x5_eisa_driver);
5669 #endif
5672 module_init (de4x5_module_init);
5673 module_exit (de4x5_module_exit);