x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wimax / i2400m / rx.c
blob07c32e68909f93c33ceb08fd58d332c848193fa9
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Handle incoming traffic and deliver it to the control or data planes
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 * - Use skb_clone(), break up processing in chunks
40 * - Split transport/device specific
41 * - Make buffer size dynamic to exert less memory pressure
42 * - RX reorder support
44 * This handles the RX path.
46 * We receive an RX message from the bus-specific driver, which
47 * contains one or more payloads that have potentially different
48 * destinataries (data or control paths).
50 * So we just take that payload from the transport specific code in
51 * the form of an skb, break it up in chunks (a cloned skb each in the
52 * case of network packets) and pass it to netdev or to the
53 * command/ack handler (and from there to the WiMAX stack).
55 * PROTOCOL FORMAT
57 * The format of the buffer is:
59 * HEADER (struct i2400m_msg_hdr)
60 * PAYLOAD DESCRIPTOR 0 (struct i2400m_pld)
61 * PAYLOAD DESCRIPTOR 1
62 * ...
63 * PAYLOAD DESCRIPTOR N
64 * PAYLOAD 0 (raw bytes)
65 * PAYLOAD 1
66 * ...
67 * PAYLOAD N
69 * See tx.c for a deeper description on alignment requirements and
70 * other fun facts of it.
72 * DATA PACKETS
74 * In firmwares <= v1.3, data packets have no header for RX, but they
75 * do for TX (currently unused).
77 * In firmware >= 1.4, RX packets have an extended header (16
78 * bytes). This header conveys information for management of host
79 * reordering of packets (the device offloads storage of the packets
80 * for reordering to the host). Read below for more information.
82 * The header is used as dummy space to emulate an ethernet header and
83 * thus be able to act as an ethernet device without having to reallocate.
85 * DATA RX REORDERING
87 * Starting in firmware v1.4, the device can deliver packets for
88 * delivery with special reordering information; this allows it to
89 * more effectively do packet management when some frames were lost in
90 * the radio traffic.
92 * Thus, for RX packets that come out of order, the device gives the
93 * driver enough information to queue them properly and then at some
94 * point, the signal to deliver the whole (or part) of the queued
95 * packets to the networking stack. There are 16 such queues.
97 * This only happens when a packet comes in with the "need reorder"
98 * flag set in the RX header. When such bit is set, the following
99 * operations might be indicated:
101 * - reset queue: send all queued packets to the OS
103 * - queue: queue a packet
105 * - update ws: update the queue's window start and deliver queued
106 * packets that meet the criteria
108 * - queue & update ws: queue a packet, update the window start and
109 * deliver queued packets that meet the criteria
111 * (delivery criteria: the packet's [normalized] sequence number is
112 * lower than the new [normalized] window start).
114 * See the i2400m_roq_*() functions for details.
116 * ROADMAP
118 * i2400m_rx
119 * i2400m_rx_msg_hdr_check
120 * i2400m_rx_pl_descr_check
121 * i2400m_rx_payload
122 * i2400m_net_rx
123 * i2400m_rx_edata
124 * i2400m_net_erx
125 * i2400m_roq_reset
126 * i2400m_net_erx
127 * i2400m_roq_queue
128 * __i2400m_roq_queue
129 * i2400m_roq_update_ws
130 * __i2400m_roq_update_ws
131 * i2400m_net_erx
132 * i2400m_roq_queue_update_ws
133 * __i2400m_roq_queue
134 * __i2400m_roq_update_ws
135 * i2400m_net_erx
136 * i2400m_rx_ctl
137 * i2400m_msg_size_check
138 * i2400m_report_hook_work [in a workqueue]
139 * i2400m_report_hook
140 * wimax_msg_to_user
141 * i2400m_rx_ctl_ack
142 * wimax_msg_to_user_alloc
143 * i2400m_rx_trace
144 * i2400m_msg_size_check
145 * wimax_msg
147 #include <linux/kernel.h>
148 #include <linux/if_arp.h>
149 #include <linux/netdevice.h>
150 #include <linux/workqueue.h>
151 #include "i2400m.h"
154 #define D_SUBMODULE rx
155 #include "debug-levels.h"
157 struct i2400m_report_hook_args {
158 struct sk_buff *skb_rx;
159 const struct i2400m_l3l4_hdr *l3l4_hdr;
160 size_t size;
165 * Execute i2400m_report_hook in a workqueue
167 * Unpacks arguments from the deferred call, executes it and then
168 * drops the references.
170 * Obvious NOTE: References are needed because we are a separate
171 * thread; otherwise the buffer changes under us because it is
172 * released by the original caller.
174 static
175 void i2400m_report_hook_work(struct work_struct *ws)
177 struct i2400m_work *iw =
178 container_of(ws, struct i2400m_work, ws);
179 struct i2400m_report_hook_args *args = (void *) iw->pl;
180 if (iw->i2400m->ready)
181 i2400m_report_hook(iw->i2400m, args->l3l4_hdr, args->size);
182 kfree_skb(args->skb_rx);
183 i2400m_put(iw->i2400m);
184 kfree(iw);
189 * Process an ack to a command
191 * @i2400m: device descriptor
192 * @payload: pointer to message
193 * @size: size of the message
195 * Pass the acknodledgment (in an skb) to the thread that is waiting
196 * for it in i2400m->msg_completion.
198 * We need to coordinate properly with the thread waiting for the
199 * ack. Check if it is waiting or if it is gone. We loose the spinlock
200 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
201 * but this is not so speed critical).
203 static
204 void i2400m_rx_ctl_ack(struct i2400m *i2400m,
205 const void *payload, size_t size)
207 struct device *dev = i2400m_dev(i2400m);
208 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
209 unsigned long flags;
210 struct sk_buff *ack_skb;
212 /* Anyone waiting for an answer? */
213 spin_lock_irqsave(&i2400m->rx_lock, flags);
214 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
215 dev_err(dev, "Huh? reply to command with no waiters\n");
216 goto error_no_waiter;
218 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
220 ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
222 /* Check waiter didn't time out waiting for the answer... */
223 spin_lock_irqsave(&i2400m->rx_lock, flags);
224 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
225 d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
226 goto error_waiter_cancelled;
228 if (ack_skb == NULL) {
229 dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
230 i2400m->ack_skb = ERR_PTR(-ENOMEM);
231 } else
232 i2400m->ack_skb = ack_skb;
233 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
234 complete(&i2400m->msg_completion);
235 return;
237 error_waiter_cancelled:
238 kfree_skb(ack_skb);
239 error_no_waiter:
240 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
241 return;
246 * Receive and process a control payload
248 * @i2400m: device descriptor
249 * @skb_rx: skb that contains the payload (for reference counting)
250 * @payload: pointer to message
251 * @size: size of the message
253 * There are two types of control RX messages: reports (asynchronous,
254 * like your every day interrupts) and 'acks' (reponses to a command,
255 * get or set request).
257 * If it is a report, we run hooks on it (to extract information for
258 * things we need to do in the driver) and then pass it over to the
259 * WiMAX stack to send it to user space.
261 * NOTE: report processing is done in a workqueue specific to the
262 * generic driver, to avoid deadlocks in the system.
264 * If it is not a report, it is an ack to a previously executed
265 * command, set or get, so wake up whoever is waiting for it from
266 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
268 * Note that the sizes we pass to other functions from here are the
269 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
270 * verified in _msg_size_check() that they are congruent.
272 * For reports: We can't clone the original skb where the data is
273 * because we need to send this up via netlink; netlink has to add
274 * headers and we can't overwrite what's preceeding the payload...as
275 * it is another message. So we just dup them.
277 static
278 void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
279 const void *payload, size_t size)
281 int result;
282 struct device *dev = i2400m_dev(i2400m);
283 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
284 unsigned msg_type;
286 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
287 if (result < 0) {
288 dev_err(dev, "HW BUG? device sent a bad message: %d\n",
289 result);
290 goto error_check;
292 msg_type = le16_to_cpu(l3l4_hdr->type);
293 d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
294 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
295 msg_type, size);
296 d_dump(2, dev, l3l4_hdr, size);
297 if (msg_type & I2400M_MT_REPORT_MASK) {
298 /* These hooks have to be ran serialized; as well, the
299 * handling might force the execution of commands, and
300 * that might cause reentrancy issues with
301 * bus-specific subdrivers and workqueues. So we run
302 * it in a separate workqueue. */
303 struct i2400m_report_hook_args args = {
304 .skb_rx = skb_rx,
305 .l3l4_hdr = l3l4_hdr,
306 .size = size
308 if (unlikely(i2400m->ready == 0)) /* only send if up */
309 return;
310 skb_get(skb_rx);
311 i2400m_queue_work(i2400m, i2400m_report_hook_work,
312 GFP_KERNEL, &args, sizeof(args));
313 if (unlikely(i2400m->trace_msg_from_user))
314 wimax_msg(&i2400m->wimax_dev, "echo",
315 l3l4_hdr, size, GFP_KERNEL);
316 result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
317 GFP_KERNEL);
318 if (result < 0)
319 dev_err(dev, "error sending report to userspace: %d\n",
320 result);
321 } else /* an ack to a CMD, GET or SET */
322 i2400m_rx_ctl_ack(i2400m, payload, size);
323 error_check:
324 return;
329 * Receive and send up a trace
331 * @i2400m: device descriptor
332 * @skb_rx: skb that contains the trace (for reference counting)
333 * @payload: pointer to trace message inside the skb
334 * @size: size of the message
336 * THe i2400m might produce trace information (diagnostics) and we
337 * send them through a different kernel-to-user pipe (to avoid
338 * clogging it).
340 * As in i2400m_rx_ctl(), we can't clone the original skb where the
341 * data is because we need to send this up via netlink; netlink has to
342 * add headers and we can't overwrite what's preceeding the
343 * payload...as it is another message. So we just dup them.
345 static
346 void i2400m_rx_trace(struct i2400m *i2400m,
347 const void *payload, size_t size)
349 int result;
350 struct device *dev = i2400m_dev(i2400m);
351 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
352 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
353 unsigned msg_type;
355 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
356 if (result < 0) {
357 dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
358 result);
359 goto error_check;
361 msg_type = le16_to_cpu(l3l4_hdr->type);
362 d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
363 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
364 msg_type, size);
365 d_dump(2, dev, l3l4_hdr, size);
366 if (unlikely(i2400m->ready == 0)) /* only send if up */
367 return;
368 result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
369 if (result < 0)
370 dev_err(dev, "error sending trace to userspace: %d\n",
371 result);
372 error_check:
373 return;
378 * Reorder queue data stored on skb->cb while the skb is queued in the
379 * reorder queues.
381 struct i2400m_roq_data {
382 unsigned sn; /* Serial number for the skb */
383 enum i2400m_cs cs; /* packet type for the skb */
388 * ReOrder Queue
390 * @ws: Window Start; sequence number where the current window start
391 * is for this queue
392 * @queue: the skb queue itself
393 * @log: circular ring buffer used to log information about the
394 * reorder process in this queue that can be displayed in case of
395 * error to help diagnose it.
397 * This is the head for a list of skbs. In the skb->cb member of the
398 * skb when queued here contains a 'struct i2400m_roq_data' were we
399 * store the sequence number (sn) and the cs (packet type) coming from
400 * the RX payload header from the device.
402 struct i2400m_roq
404 unsigned ws;
405 struct sk_buff_head queue;
406 struct i2400m_roq_log *log;
410 static
411 void __i2400m_roq_init(struct i2400m_roq *roq)
413 roq->ws = 0;
414 skb_queue_head_init(&roq->queue);
418 static
419 unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
421 return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
422 / sizeof(*roq);
427 * Normalize a sequence number based on the queue's window start
429 * nsn = (sn - ws) % 2048
431 * Note that if @sn < @roq->ws, we still need a positive number; %'s
432 * sign is implementation specific, so we normalize it by adding 2048
433 * to bring it to be positive.
435 static
436 unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
438 int r;
439 r = ((int) sn - (int) roq->ws) % 2048;
440 if (r < 0)
441 r += 2048;
442 return r;
447 * Circular buffer to keep the last N reorder operations
449 * In case something fails, dumb then to try to come up with what
450 * happened.
452 enum {
453 I2400M_ROQ_LOG_LENGTH = 32,
456 struct i2400m_roq_log {
457 struct i2400m_roq_log_entry {
458 enum i2400m_ro_type type;
459 unsigned ws, count, sn, nsn, new_ws;
460 } entry[I2400M_ROQ_LOG_LENGTH];
461 unsigned in, out;
465 /* Print a log entry */
466 static
467 void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
468 unsigned e_index,
469 struct i2400m_roq_log_entry *e)
471 struct device *dev = i2400m_dev(i2400m);
473 switch(e->type) {
474 case I2400M_RO_TYPE_RESET:
475 dev_err(dev, "q#%d reset ws %u cnt %u sn %u/%u"
476 " - new nws %u\n",
477 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
478 break;
479 case I2400M_RO_TYPE_PACKET:
480 dev_err(dev, "q#%d queue ws %u cnt %u sn %u/%u\n",
481 index, e->ws, e->count, e->sn, e->nsn);
482 break;
483 case I2400M_RO_TYPE_WS:
484 dev_err(dev, "q#%d update_ws ws %u cnt %u sn %u/%u"
485 " - new nws %u\n",
486 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
487 break;
488 case I2400M_RO_TYPE_PACKET_WS:
489 dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
490 " - new nws %u\n",
491 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
492 break;
493 default:
494 dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
495 index, e_index, e->type);
496 break;
501 static
502 void i2400m_roq_log_add(struct i2400m *i2400m,
503 struct i2400m_roq *roq, enum i2400m_ro_type type,
504 unsigned ws, unsigned count, unsigned sn,
505 unsigned nsn, unsigned new_ws)
507 struct i2400m_roq_log_entry *e;
508 unsigned cnt_idx;
509 int index = __i2400m_roq_index(i2400m, roq);
511 /* if we run out of space, we eat from the end */
512 if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
513 roq->log->out++;
514 cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
515 e = &roq->log->entry[cnt_idx];
517 e->type = type;
518 e->ws = ws;
519 e->count = count;
520 e->sn = sn;
521 e->nsn = nsn;
522 e->new_ws = new_ws;
524 if (d_test(1))
525 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
529 /* Dump all the entries in the FIFO and reinitialize it */
530 static
531 void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
533 unsigned cnt, cnt_idx;
534 struct i2400m_roq_log_entry *e;
535 int index = __i2400m_roq_index(i2400m, roq);
537 BUG_ON(roq->log->out > roq->log->in);
538 for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
539 cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
540 e = &roq->log->entry[cnt_idx];
541 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
542 memset(e, 0, sizeof(*e));
544 roq->log->in = roq->log->out = 0;
549 * Backbone for the queuing of an skb (by normalized sequence number)
551 * @i2400m: device descriptor
552 * @roq: reorder queue where to add
553 * @skb: the skb to add
554 * @sn: the sequence number of the skb
555 * @nsn: the normalized sequence number of the skb (pre-computed by the
556 * caller from the @sn and @roq->ws).
558 * We try first a couple of quick cases:
560 * - the queue is empty
561 * - the skb would be appended to the queue
563 * These will be the most common operations.
565 * If these fail, then we have to do a sorted insertion in the queue,
566 * which is the slowest path.
568 * We don't have to acquire a reference count as we are going to own it.
570 static
571 void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
572 struct sk_buff *skb, unsigned sn, unsigned nsn)
574 struct device *dev = i2400m_dev(i2400m);
575 struct sk_buff *skb_itr;
576 struct i2400m_roq_data *roq_data_itr, *roq_data;
577 unsigned nsn_itr;
579 d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
580 i2400m, roq, skb, sn, nsn);
582 roq_data = (struct i2400m_roq_data *) &skb->cb;
583 BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
584 roq_data->sn = sn;
585 d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
586 roq, roq->ws, nsn, roq_data->sn);
588 /* Queues will be empty on not-so-bad environments, so try
589 * that first */
590 if (skb_queue_empty(&roq->queue)) {
591 d_printf(2, dev, "ERX: roq %p - first one\n", roq);
592 __skb_queue_head(&roq->queue, skb);
593 goto out;
595 /* Now try append, as most of the operations will be that */
596 skb_itr = skb_peek_tail(&roq->queue);
597 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
598 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
599 /* NSN bounds assumed correct (checked when it was queued) */
600 if (nsn >= nsn_itr) {
601 d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
602 roq, skb_itr, nsn_itr, roq_data_itr->sn);
603 __skb_queue_tail(&roq->queue, skb);
604 goto out;
606 /* None of the fast paths option worked. Iterate to find the
607 * right spot where to insert the packet; we know the queue is
608 * not empty, so we are not the first ones; we also know we
609 * are not going to be the last ones. The list is sorted, so
610 * we have to insert before the the first guy with an nsn_itr
611 * greater that our nsn. */
612 skb_queue_walk(&roq->queue, skb_itr) {
613 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
614 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
615 /* NSN bounds assumed correct (checked when it was queued) */
616 if (nsn_itr > nsn) {
617 d_printf(2, dev, "ERX: roq %p - queued before %p "
618 "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
619 roq_data_itr->sn);
620 __skb_queue_before(&roq->queue, skb_itr, skb);
621 goto out;
624 /* If we get here, that is VERY bad -- print info to help
625 * diagnose and crash it */
626 dev_err(dev, "SW BUG? failed to insert packet\n");
627 dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
628 roq, roq->ws, skb, nsn, roq_data->sn);
629 skb_queue_walk(&roq->queue, skb_itr) {
630 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
631 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
632 /* NSN bounds assumed correct (checked when it was queued) */
633 dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
634 roq, skb_itr, nsn_itr, roq_data_itr->sn);
636 BUG();
637 out:
638 d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
639 i2400m, roq, skb, sn, nsn);
640 return;
645 * Backbone for the update window start operation
647 * @i2400m: device descriptor
648 * @roq: Reorder queue
649 * @sn: New sequence number
651 * Updates the window start of a queue; when doing so, it must deliver
652 * to the networking stack all the queued skb's whose normalized
653 * sequence number is lower than the new normalized window start.
655 static
656 unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
657 unsigned sn)
659 struct device *dev = i2400m_dev(i2400m);
660 struct sk_buff *skb_itr, *tmp_itr;
661 struct i2400m_roq_data *roq_data_itr;
662 unsigned new_nws, nsn_itr;
664 new_nws = __i2400m_roq_nsn(roq, sn);
665 if (unlikely(new_nws >= 1024) && d_test(1)) {
666 dev_err(dev, "SW BUG? __update_ws new_nws %u (sn %u ws %u)\n",
667 new_nws, sn, roq->ws);
668 WARN_ON(1);
669 i2400m_roq_log_dump(i2400m, roq);
671 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
672 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
673 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
674 /* NSN bounds assumed correct (checked when it was queued) */
675 if (nsn_itr < new_nws) {
676 d_printf(2, dev, "ERX: roq %p - release skb %p "
677 "(nsn %u/%u new nws %u)\n",
678 roq, skb_itr, nsn_itr, roq_data_itr->sn,
679 new_nws);
680 __skb_unlink(skb_itr, &roq->queue);
681 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
683 else
684 break; /* rest of packets all nsn_itr > nws */
686 roq->ws = sn;
687 return new_nws;
692 * Reset a queue
694 * @i2400m: device descriptor
695 * @cin: Queue Index
697 * Deliver all the packets and reset the window-start to zero. Name is
698 * kind of misleading.
700 static
701 void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
703 struct device *dev = i2400m_dev(i2400m);
704 struct sk_buff *skb_itr, *tmp_itr;
705 struct i2400m_roq_data *roq_data_itr;
707 d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
708 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
709 roq->ws, skb_queue_len(&roq->queue),
710 ~0, ~0, 0);
711 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
712 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
713 d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
714 roq, skb_itr, roq_data_itr->sn);
715 __skb_unlink(skb_itr, &roq->queue);
716 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
718 roq->ws = 0;
719 d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
720 return;
725 * Queue a packet
727 * @i2400m: device descriptor
728 * @cin: Queue Index
729 * @skb: containing the packet data
730 * @fbn: First block number of the packet in @skb
731 * @lbn: Last block number of the packet in @skb
733 * The hardware is asking the driver to queue a packet for later
734 * delivery to the networking stack.
736 static
737 void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
738 struct sk_buff * skb, unsigned lbn)
740 struct device *dev = i2400m_dev(i2400m);
741 unsigned nsn, len;
743 d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
744 i2400m, roq, skb, lbn);
745 len = skb_queue_len(&roq->queue);
746 nsn = __i2400m_roq_nsn(roq, lbn);
747 if (unlikely(nsn >= 1024)) {
748 dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
749 nsn, lbn, roq->ws);
750 i2400m_roq_log_dump(i2400m, roq);
751 i2400m->bus_reset(i2400m, I2400M_RT_WARM);
752 } else {
753 __i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
754 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
755 roq->ws, len, lbn, nsn, ~0);
757 d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
758 i2400m, roq, skb, lbn);
759 return;
764 * Update the window start in a reorder queue and deliver all skbs
765 * with a lower window start
767 * @i2400m: device descriptor
768 * @roq: Reorder queue
769 * @sn: New sequence number
771 static
772 void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
773 unsigned sn)
775 struct device *dev = i2400m_dev(i2400m);
776 unsigned old_ws, nsn, len;
778 d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
779 old_ws = roq->ws;
780 len = skb_queue_len(&roq->queue);
781 nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
782 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
783 old_ws, len, sn, nsn, roq->ws);
784 d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
785 return;
790 * Queue a packet and update the window start
792 * @i2400m: device descriptor
793 * @cin: Queue Index
794 * @skb: containing the packet data
795 * @fbn: First block number of the packet in @skb
796 * @sn: Last block number of the packet in @skb
798 * Note that unlike i2400m_roq_update_ws(), which sets the new window
799 * start to @sn, in here we'll set it to @sn + 1.
801 static
802 void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
803 struct sk_buff * skb, unsigned sn)
805 struct device *dev = i2400m_dev(i2400m);
806 unsigned nsn, old_ws, len;
808 d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
809 i2400m, roq, skb, sn);
810 len = skb_queue_len(&roq->queue);
811 nsn = __i2400m_roq_nsn(roq, sn);
812 old_ws = roq->ws;
813 if (unlikely(nsn >= 1024)) {
814 dev_err(dev, "SW BUG? queue_update_ws nsn %u (sn %u ws %u)\n",
815 nsn, sn, roq->ws);
816 i2400m_roq_log_dump(i2400m, roq);
817 i2400m->bus_reset(i2400m, I2400M_RT_WARM);
818 } else {
819 /* if the queue is empty, don't bother as we'd queue
820 * it and inmediately unqueue it -- just deliver it */
821 if (len == 0) {
822 struct i2400m_roq_data *roq_data;
823 roq_data = (struct i2400m_roq_data *) &skb->cb;
824 i2400m_net_erx(i2400m, skb, roq_data->cs);
826 else
827 __i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
828 __i2400m_roq_update_ws(i2400m, roq, sn + 1);
829 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
830 old_ws, len, sn, nsn, roq->ws);
832 d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
833 i2400m, roq, skb, sn);
834 return;
839 * Receive and send up an extended data packet
841 * @i2400m: device descriptor
842 * @skb_rx: skb that contains the extended data packet
843 * @single_last: 1 if the payload is the only one or the last one of
844 * the skb.
845 * @payload: pointer to the packet's data inside the skb
846 * @size: size of the payload
848 * Starting in v1.4 of the i2400m's firmware, the device can send data
849 * packets to the host in an extended format that; this incudes a 16
850 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
851 * we can fake ethernet headers for ethernet device emulation without
852 * having to copy packets around.
854 * This function handles said path.
857 * Receive and send up an extended data packet that requires no reordering
859 * @i2400m: device descriptor
860 * @skb_rx: skb that contains the extended data packet
861 * @single_last: 1 if the payload is the only one or the last one of
862 * the skb.
863 * @payload: pointer to the packet's data (past the actual extended
864 * data payload header).
865 * @size: size of the payload
867 * Pass over to the networking stack a data packet that might have
868 * reordering requirements.
870 * This needs to the decide if the skb in which the packet is
871 * contained can be reused or if it needs to be cloned. Then it has to
872 * be trimmed in the edges so that the beginning is the space for eth
873 * header and then pass it to i2400m_net_erx() for the stack
875 * Assumes the caller has verified the sanity of the payload (size,
876 * etc) already.
878 static
879 void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
880 unsigned single_last, const void *payload, size_t size)
882 struct device *dev = i2400m_dev(i2400m);
883 const struct i2400m_pl_edata_hdr *hdr = payload;
884 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
885 struct sk_buff *skb;
886 enum i2400m_cs cs;
887 u32 reorder;
888 unsigned ro_needed, ro_type, ro_cin, ro_sn;
889 struct i2400m_roq *roq;
890 struct i2400m_roq_data *roq_data;
892 BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
894 d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
895 "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
896 if (size < sizeof(*hdr)) {
897 dev_err(dev, "ERX: HW BUG? message with short header (%zu "
898 "vs %zu bytes expected)\n", size, sizeof(*hdr));
899 goto error;
902 if (single_last) {
903 skb = skb_get(skb_rx);
904 d_printf(3, dev, "ERX: skb %p reusing\n", skb);
905 } else {
906 skb = skb_clone(skb_rx, GFP_KERNEL);
907 if (skb == NULL) {
908 dev_err(dev, "ERX: no memory to clone skb\n");
909 net_dev->stats.rx_dropped++;
910 goto error_skb_clone;
912 d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
914 /* now we have to pull and trim so that the skb points to the
915 * beginning of the IP packet; the netdev part will add the
916 * ethernet header as needed - we know there is enough space
917 * because we checked in i2400m_rx_edata(). */
918 skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
919 skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
921 reorder = le32_to_cpu(hdr->reorder);
922 ro_needed = reorder & I2400M_RO_NEEDED;
923 cs = hdr->cs;
924 if (ro_needed) {
925 ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
926 ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
927 ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
929 roq = &i2400m->rx_roq[ro_cin];
930 roq_data = (struct i2400m_roq_data *) &skb->cb;
931 roq_data->sn = ro_sn;
932 roq_data->cs = cs;
933 d_printf(2, dev, "ERX: reorder needed: "
934 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
935 ro_type, ro_cin, roq->ws, ro_sn,
936 __i2400m_roq_nsn(roq, ro_sn), size);
937 d_dump(2, dev, payload, size);
938 switch(ro_type) {
939 case I2400M_RO_TYPE_RESET:
940 i2400m_roq_reset(i2400m, roq);
941 kfree_skb(skb); /* no data here */
942 break;
943 case I2400M_RO_TYPE_PACKET:
944 i2400m_roq_queue(i2400m, roq, skb, ro_sn);
945 break;
946 case I2400M_RO_TYPE_WS:
947 i2400m_roq_update_ws(i2400m, roq, ro_sn);
948 kfree_skb(skb); /* no data here */
949 break;
950 case I2400M_RO_TYPE_PACKET_WS:
951 i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
952 break;
953 default:
954 dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
957 else
958 i2400m_net_erx(i2400m, skb, cs);
959 error_skb_clone:
960 error:
961 d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
962 "size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
963 return;
968 * Act on a received payload
970 * @i2400m: device instance
971 * @skb_rx: skb where the transaction was received
972 * @single_last: 1 this is the only payload or the last one (so the
973 * skb can be reused instead of cloned).
974 * @pld: payload descriptor
975 * @payload: payload data
977 * Upon reception of a payload, look at its guts in the payload
978 * descriptor and decide what to do with it. If it is a single payload
979 * skb or if the last skb is a data packet, the skb will be referenced
980 * and modified (so it doesn't have to be cloned).
982 static
983 void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
984 unsigned single_last, const struct i2400m_pld *pld,
985 const void *payload)
987 struct device *dev = i2400m_dev(i2400m);
988 size_t pl_size = i2400m_pld_size(pld);
989 enum i2400m_pt pl_type = i2400m_pld_type(pld);
991 d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
992 pl_type, pl_size);
993 d_dump(8, dev, payload, pl_size);
995 switch (pl_type) {
996 case I2400M_PT_DATA:
997 d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
998 i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
999 break;
1000 case I2400M_PT_CTRL:
1001 i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1002 break;
1003 case I2400M_PT_TRACE:
1004 i2400m_rx_trace(i2400m, payload, pl_size);
1005 break;
1006 case I2400M_PT_EDATA:
1007 d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1008 i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1009 break;
1010 default: /* Anything else shouldn't come to the host */
1011 if (printk_ratelimit())
1012 dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1013 pl_type);
1019 * Check a received transaction's message header
1021 * @i2400m: device descriptor
1022 * @msg_hdr: message header
1023 * @buf_size: size of the received buffer
1025 * Check that the declarations done by a RX buffer message header are
1026 * sane and consistent with the amount of data that was received.
1028 static
1029 int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1030 const struct i2400m_msg_hdr *msg_hdr,
1031 size_t buf_size)
1033 int result = -EIO;
1034 struct device *dev = i2400m_dev(i2400m);
1035 if (buf_size < sizeof(*msg_hdr)) {
1036 dev_err(dev, "RX: HW BUG? message with short header (%zu "
1037 "vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1038 goto error;
1040 if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1041 dev_err(dev, "RX: HW BUG? message received with unknown "
1042 "barker 0x%08x (buf_size %zu bytes)\n",
1043 le32_to_cpu(msg_hdr->barker), buf_size);
1044 goto error;
1046 if (msg_hdr->num_pls == 0) {
1047 dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1048 goto error;
1050 if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1051 dev_err(dev, "RX: HW BUG? message contains more payload "
1052 "than maximum; ignoring.\n");
1053 goto error;
1055 result = 0;
1056 error:
1057 return result;
1062 * Check a payload descriptor against the received data
1064 * @i2400m: device descriptor
1065 * @pld: payload descriptor
1066 * @pl_itr: offset (in bytes) in the received buffer the payload is
1067 * located
1068 * @buf_size: size of the received buffer
1070 * Given a payload descriptor (part of a RX buffer), check it is sane
1071 * and that the data it declares fits in the buffer.
1073 static
1074 int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1075 const struct i2400m_pld *pld,
1076 size_t pl_itr, size_t buf_size)
1078 int result = -EIO;
1079 struct device *dev = i2400m_dev(i2400m);
1080 size_t pl_size = i2400m_pld_size(pld);
1081 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1083 if (pl_size > i2400m->bus_pl_size_max) {
1084 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1085 "bigger than maximum %zu; ignoring message\n",
1086 pl_itr, pl_size, i2400m->bus_pl_size_max);
1087 goto error;
1089 if (pl_itr + pl_size > buf_size) { /* enough? */
1090 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1091 "goes beyond the received buffer "
1092 "size (%zu bytes); ignoring message\n",
1093 pl_itr, pl_size, buf_size);
1094 goto error;
1096 if (pl_type >= I2400M_PT_ILLEGAL) {
1097 dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1098 "ignoring message\n", pl_type);
1099 goto error;
1101 result = 0;
1102 error:
1103 return result;
1108 * i2400m_rx - Receive a buffer of data from the device
1110 * @i2400m: device descriptor
1111 * @skb: skbuff where the data has been received
1113 * Parse in a buffer of data that contains an RX message sent from the
1114 * device. See the file header for the format. Run all checks on the
1115 * buffer header, then run over each payload's descriptors, verify
1116 * their consistency and act on each payload's contents. If
1117 * everything is succesful, update the device's statistics.
1119 * Note: You need to set the skb to contain only the length of the
1120 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1122 * Returns:
1124 * 0 if ok, < 0 errno on error
1126 * If ok, this function owns now the skb and the caller DOESN'T have
1127 * to run kfree_skb() on it. However, on error, the caller still owns
1128 * the skb and it is responsible for releasing it.
1130 int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1132 int i, result;
1133 struct device *dev = i2400m_dev(i2400m);
1134 const struct i2400m_msg_hdr *msg_hdr;
1135 size_t pl_itr, pl_size, skb_len;
1136 unsigned long flags;
1137 unsigned num_pls, single_last;
1139 skb_len = skb->len;
1140 d_fnstart(4, dev, "(i2400m %p skb %p [size %zu])\n",
1141 i2400m, skb, skb_len);
1142 result = -EIO;
1143 msg_hdr = (void *) skb->data;
1144 result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb->len);
1145 if (result < 0)
1146 goto error_msg_hdr_check;
1147 result = -EIO;
1148 num_pls = le16_to_cpu(msg_hdr->num_pls);
1149 pl_itr = sizeof(*msg_hdr) + /* Check payload descriptor(s) */
1150 num_pls * sizeof(msg_hdr->pld[0]);
1151 pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1152 if (pl_itr > skb->len) { /* got all the payload descriptors? */
1153 dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1154 "%u payload descriptors (%zu each, total %zu)\n",
1155 skb->len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1156 goto error_pl_descr_short;
1158 /* Walk each payload payload--check we really got it */
1159 for (i = 0; i < num_pls; i++) {
1160 /* work around old gcc warnings */
1161 pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1162 result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1163 pl_itr, skb->len);
1164 if (result < 0)
1165 goto error_pl_descr_check;
1166 single_last = num_pls == 1 || i == num_pls - 1;
1167 i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1168 skb->data + pl_itr);
1169 pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1170 cond_resched(); /* Don't monopolize */
1172 kfree_skb(skb);
1173 /* Update device statistics */
1174 spin_lock_irqsave(&i2400m->rx_lock, flags);
1175 i2400m->rx_pl_num += i;
1176 if (i > i2400m->rx_pl_max)
1177 i2400m->rx_pl_max = i;
1178 if (i < i2400m->rx_pl_min)
1179 i2400m->rx_pl_min = i;
1180 i2400m->rx_num++;
1181 i2400m->rx_size_acc += skb->len;
1182 if (skb->len < i2400m->rx_size_min)
1183 i2400m->rx_size_min = skb->len;
1184 if (skb->len > i2400m->rx_size_max)
1185 i2400m->rx_size_max = skb->len;
1186 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1187 error_pl_descr_check:
1188 error_pl_descr_short:
1189 error_msg_hdr_check:
1190 d_fnend(4, dev, "(i2400m %p skb %p [size %zu]) = %d\n",
1191 i2400m, skb, skb_len, result);
1192 return result;
1194 EXPORT_SYMBOL_GPL(i2400m_rx);
1198 * Initialize the RX queue and infrastructure
1200 * This sets up all the RX reordering infrastructures, which will not
1201 * be used if reordering is not enabled or if the firmware does not
1202 * support it. The device is told to do reordering in
1203 * i2400m_dev_initialize(), where it also looks at the value of the
1204 * i2400m->rx_reorder switch before taking a decission.
1206 * Note we allocate the roq queues in one chunk and the actual logging
1207 * support for it (logging) in another one and then we setup the
1208 * pointers from the first to the last.
1210 int i2400m_rx_setup(struct i2400m *i2400m)
1212 int result = 0;
1213 struct device *dev = i2400m_dev(i2400m);
1215 i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1216 if (i2400m->rx_reorder) {
1217 unsigned itr;
1218 size_t size;
1219 struct i2400m_roq_log *rd;
1221 result = -ENOMEM;
1223 size = sizeof(i2400m->rx_roq[0]) * (I2400M_RO_CIN + 1);
1224 i2400m->rx_roq = kzalloc(size, GFP_KERNEL);
1225 if (i2400m->rx_roq == NULL) {
1226 dev_err(dev, "RX: cannot allocate %zu bytes for "
1227 "reorder queues\n", size);
1228 goto error_roq_alloc;
1231 size = sizeof(*i2400m->rx_roq[0].log) * (I2400M_RO_CIN + 1);
1232 rd = kzalloc(size, GFP_KERNEL);
1233 if (rd == NULL) {
1234 dev_err(dev, "RX: cannot allocate %zu bytes for "
1235 "reorder queues log areas\n", size);
1236 result = -ENOMEM;
1237 goto error_roq_log_alloc;
1240 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1241 __i2400m_roq_init(&i2400m->rx_roq[itr]);
1242 i2400m->rx_roq[itr].log = &rd[itr];
1245 return 0;
1247 error_roq_log_alloc:
1248 kfree(i2400m->rx_roq);
1249 error_roq_alloc:
1250 return result;
1254 /* Tear down the RX queue and infrastructure */
1255 void i2400m_rx_release(struct i2400m *i2400m)
1257 if (i2400m->rx_reorder) {
1258 unsigned itr;
1259 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++)
1260 __skb_queue_purge(&i2400m->rx_roq[itr].queue);
1261 kfree(i2400m->rx_roq[0].log);
1262 kfree(i2400m->rx_roq);