2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
54 #include <net/ieee80211_radiotap.h>
56 #include <asm/unaligned.h>
62 static u8 ath5k_calinterval
= 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
63 static int modparam_nohwcrypt
;
64 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
65 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
67 static int modparam_all_channels
;
68 module_param_named(all_channels
, modparam_all_channels
, bool, S_IRUGO
);
69 MODULE_PARM_DESC(all_channels
, "Expose all channels the device can use.");
77 MODULE_AUTHOR("Jiri Slaby");
78 MODULE_AUTHOR("Nick Kossifidis");
79 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
80 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
81 MODULE_LICENSE("Dual BSD/GPL");
82 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
86 static const struct pci_device_id ath5k_pci_id_table
[] = {
87 { PCI_VDEVICE(ATHEROS
, 0x0207) }, /* 5210 early */
88 { PCI_VDEVICE(ATHEROS
, 0x0007) }, /* 5210 */
89 { PCI_VDEVICE(ATHEROS
, 0x0011) }, /* 5311 - this is on AHB bus !*/
90 { PCI_VDEVICE(ATHEROS
, 0x0012) }, /* 5211 */
91 { PCI_VDEVICE(ATHEROS
, 0x0013) }, /* 5212 */
92 { PCI_VDEVICE(3COM_2
, 0x0013) }, /* 3com 5212 */
93 { PCI_VDEVICE(3COM
, 0x0013) }, /* 3com 3CRDAG675 5212 */
94 { PCI_VDEVICE(ATHEROS
, 0x1014) }, /* IBM minipci 5212 */
95 { PCI_VDEVICE(ATHEROS
, 0x0014) }, /* 5212 combatible */
96 { PCI_VDEVICE(ATHEROS
, 0x0015) }, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS
, 0x0016) }, /* 5212 combatible */
98 { PCI_VDEVICE(ATHEROS
, 0x0017) }, /* 5212 combatible */
99 { PCI_VDEVICE(ATHEROS
, 0x0018) }, /* 5212 combatible */
100 { PCI_VDEVICE(ATHEROS
, 0x0019) }, /* 5212 combatible */
101 { PCI_VDEVICE(ATHEROS
, 0x001a) }, /* 2413 Griffin-lite */
102 { PCI_VDEVICE(ATHEROS
, 0x001b) }, /* 5413 Eagle */
103 { PCI_VDEVICE(ATHEROS
, 0x001c) }, /* PCI-E cards */
104 { PCI_VDEVICE(ATHEROS
, 0x001d) }, /* 2417 Nala */
107 MODULE_DEVICE_TABLE(pci
, ath5k_pci_id_table
);
110 static const struct ath5k_srev_name srev_names
[] = {
111 { "5210", AR5K_VERSION_MAC
, AR5K_SREV_AR5210
},
112 { "5311", AR5K_VERSION_MAC
, AR5K_SREV_AR5311
},
113 { "5311A", AR5K_VERSION_MAC
, AR5K_SREV_AR5311A
},
114 { "5311B", AR5K_VERSION_MAC
, AR5K_SREV_AR5311B
},
115 { "5211", AR5K_VERSION_MAC
, AR5K_SREV_AR5211
},
116 { "5212", AR5K_VERSION_MAC
, AR5K_SREV_AR5212
},
117 { "5213", AR5K_VERSION_MAC
, AR5K_SREV_AR5213
},
118 { "5213A", AR5K_VERSION_MAC
, AR5K_SREV_AR5213A
},
119 { "2413", AR5K_VERSION_MAC
, AR5K_SREV_AR2413
},
120 { "2414", AR5K_VERSION_MAC
, AR5K_SREV_AR2414
},
121 { "5424", AR5K_VERSION_MAC
, AR5K_SREV_AR5424
},
122 { "5413", AR5K_VERSION_MAC
, AR5K_SREV_AR5413
},
123 { "5414", AR5K_VERSION_MAC
, AR5K_SREV_AR5414
},
124 { "2415", AR5K_VERSION_MAC
, AR5K_SREV_AR2415
},
125 { "5416", AR5K_VERSION_MAC
, AR5K_SREV_AR5416
},
126 { "5418", AR5K_VERSION_MAC
, AR5K_SREV_AR5418
},
127 { "2425", AR5K_VERSION_MAC
, AR5K_SREV_AR2425
},
128 { "2417", AR5K_VERSION_MAC
, AR5K_SREV_AR2417
},
129 { "xxxxx", AR5K_VERSION_MAC
, AR5K_SREV_UNKNOWN
},
130 { "5110", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5110
},
131 { "5111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111
},
132 { "5111A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111A
},
133 { "2111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2111
},
134 { "5112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112
},
135 { "5112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112A
},
136 { "5112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112B
},
137 { "2112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112
},
138 { "2112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112A
},
139 { "2112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112B
},
140 { "2413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2413
},
141 { "5413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5413
},
142 { "2316", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2316
},
143 { "2317", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2317
},
144 { "5424", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5424
},
145 { "5133", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5133
},
146 { "xxxxx", AR5K_VERSION_RAD
, AR5K_SREV_UNKNOWN
},
149 static const struct ieee80211_rate ath5k_rates
[] = {
151 .hw_value
= ATH5K_RATE_CODE_1M
, },
153 .hw_value
= ATH5K_RATE_CODE_2M
,
154 .hw_value_short
= ATH5K_RATE_CODE_2M
| AR5K_SET_SHORT_PREAMBLE
,
155 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
157 .hw_value
= ATH5K_RATE_CODE_5_5M
,
158 .hw_value_short
= ATH5K_RATE_CODE_5_5M
| AR5K_SET_SHORT_PREAMBLE
,
159 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
161 .hw_value
= ATH5K_RATE_CODE_11M
,
162 .hw_value_short
= ATH5K_RATE_CODE_11M
| AR5K_SET_SHORT_PREAMBLE
,
163 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
165 .hw_value
= ATH5K_RATE_CODE_6M
,
168 .hw_value
= ATH5K_RATE_CODE_9M
,
171 .hw_value
= ATH5K_RATE_CODE_12M
,
174 .hw_value
= ATH5K_RATE_CODE_18M
,
177 .hw_value
= ATH5K_RATE_CODE_24M
,
180 .hw_value
= ATH5K_RATE_CODE_36M
,
183 .hw_value
= ATH5K_RATE_CODE_48M
,
186 .hw_value
= ATH5K_RATE_CODE_54M
,
192 * Prototypes - PCI stack related functions
194 static int __devinit
ath5k_pci_probe(struct pci_dev
*pdev
,
195 const struct pci_device_id
*id
);
196 static void __devexit
ath5k_pci_remove(struct pci_dev
*pdev
);
198 static int ath5k_pci_suspend(struct pci_dev
*pdev
,
200 static int ath5k_pci_resume(struct pci_dev
*pdev
);
202 #define ath5k_pci_suspend NULL
203 #define ath5k_pci_resume NULL
204 #endif /* CONFIG_PM */
206 static struct pci_driver ath5k_pci_driver
= {
207 .name
= KBUILD_MODNAME
,
208 .id_table
= ath5k_pci_id_table
,
209 .probe
= ath5k_pci_probe
,
210 .remove
= __devexit_p(ath5k_pci_remove
),
211 .suspend
= ath5k_pci_suspend
,
212 .resume
= ath5k_pci_resume
,
218 * Prototypes - MAC 802.11 stack related functions
220 static int ath5k_tx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
);
221 static int ath5k_tx_queue(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
222 struct ath5k_txq
*txq
);
223 static int ath5k_reset(struct ath5k_softc
*sc
, struct ieee80211_channel
*chan
);
224 static int ath5k_reset_wake(struct ath5k_softc
*sc
);
225 static int ath5k_start(struct ieee80211_hw
*hw
);
226 static void ath5k_stop(struct ieee80211_hw
*hw
);
227 static int ath5k_add_interface(struct ieee80211_hw
*hw
,
228 struct ieee80211_if_init_conf
*conf
);
229 static void ath5k_remove_interface(struct ieee80211_hw
*hw
,
230 struct ieee80211_if_init_conf
*conf
);
231 static int ath5k_config(struct ieee80211_hw
*hw
, u32 changed
);
232 static u64
ath5k_prepare_multicast(struct ieee80211_hw
*hw
,
233 int mc_count
, struct dev_addr_list
*mc_list
);
234 static void ath5k_configure_filter(struct ieee80211_hw
*hw
,
235 unsigned int changed_flags
,
236 unsigned int *new_flags
,
238 static int ath5k_set_key(struct ieee80211_hw
*hw
,
239 enum set_key_cmd cmd
,
240 struct ieee80211_vif
*vif
, struct ieee80211_sta
*sta
,
241 struct ieee80211_key_conf
*key
);
242 static int ath5k_get_stats(struct ieee80211_hw
*hw
,
243 struct ieee80211_low_level_stats
*stats
);
244 static int ath5k_get_tx_stats(struct ieee80211_hw
*hw
,
245 struct ieee80211_tx_queue_stats
*stats
);
246 static u64
ath5k_get_tsf(struct ieee80211_hw
*hw
);
247 static void ath5k_set_tsf(struct ieee80211_hw
*hw
, u64 tsf
);
248 static void ath5k_reset_tsf(struct ieee80211_hw
*hw
);
249 static int ath5k_beacon_update(struct ieee80211_hw
*hw
,
250 struct ieee80211_vif
*vif
);
251 static void ath5k_bss_info_changed(struct ieee80211_hw
*hw
,
252 struct ieee80211_vif
*vif
,
253 struct ieee80211_bss_conf
*bss_conf
,
255 static void ath5k_sw_scan_start(struct ieee80211_hw
*hw
);
256 static void ath5k_sw_scan_complete(struct ieee80211_hw
*hw
);
258 static const struct ieee80211_ops ath5k_hw_ops
= {
260 .start
= ath5k_start
,
262 .add_interface
= ath5k_add_interface
,
263 .remove_interface
= ath5k_remove_interface
,
264 .config
= ath5k_config
,
265 .prepare_multicast
= ath5k_prepare_multicast
,
266 .configure_filter
= ath5k_configure_filter
,
267 .set_key
= ath5k_set_key
,
268 .get_stats
= ath5k_get_stats
,
270 .get_tx_stats
= ath5k_get_tx_stats
,
271 .get_tsf
= ath5k_get_tsf
,
272 .set_tsf
= ath5k_set_tsf
,
273 .reset_tsf
= ath5k_reset_tsf
,
274 .bss_info_changed
= ath5k_bss_info_changed
,
275 .sw_scan_start
= ath5k_sw_scan_start
,
276 .sw_scan_complete
= ath5k_sw_scan_complete
,
280 * Prototypes - Internal functions
283 static int ath5k_attach(struct pci_dev
*pdev
,
284 struct ieee80211_hw
*hw
);
285 static void ath5k_detach(struct pci_dev
*pdev
,
286 struct ieee80211_hw
*hw
);
287 /* Channel/mode setup */
288 static inline short ath5k_ieee2mhz(short chan
);
289 static unsigned int ath5k_copy_channels(struct ath5k_hw
*ah
,
290 struct ieee80211_channel
*channels
,
293 static int ath5k_setup_bands(struct ieee80211_hw
*hw
);
294 static int ath5k_chan_set(struct ath5k_softc
*sc
,
295 struct ieee80211_channel
*chan
);
296 static void ath5k_setcurmode(struct ath5k_softc
*sc
,
298 static void ath5k_mode_setup(struct ath5k_softc
*sc
);
300 /* Descriptor setup */
301 static int ath5k_desc_alloc(struct ath5k_softc
*sc
,
302 struct pci_dev
*pdev
);
303 static void ath5k_desc_free(struct ath5k_softc
*sc
,
304 struct pci_dev
*pdev
);
306 static int ath5k_rxbuf_setup(struct ath5k_softc
*sc
,
307 struct ath5k_buf
*bf
);
308 static int ath5k_txbuf_setup(struct ath5k_softc
*sc
,
309 struct ath5k_buf
*bf
,
310 struct ath5k_txq
*txq
);
311 static inline void ath5k_txbuf_free(struct ath5k_softc
*sc
,
312 struct ath5k_buf
*bf
)
317 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, bf
->skb
->len
,
319 dev_kfree_skb_any(bf
->skb
);
323 static inline void ath5k_rxbuf_free(struct ath5k_softc
*sc
,
324 struct ath5k_buf
*bf
)
329 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, sc
->rxbufsize
,
331 dev_kfree_skb_any(bf
->skb
);
337 static struct ath5k_txq
*ath5k_txq_setup(struct ath5k_softc
*sc
,
338 int qtype
, int subtype
);
339 static int ath5k_beaconq_setup(struct ath5k_hw
*ah
);
340 static int ath5k_beaconq_config(struct ath5k_softc
*sc
);
341 static void ath5k_txq_drainq(struct ath5k_softc
*sc
,
342 struct ath5k_txq
*txq
);
343 static void ath5k_txq_cleanup(struct ath5k_softc
*sc
);
344 static void ath5k_txq_release(struct ath5k_softc
*sc
);
346 static int ath5k_rx_start(struct ath5k_softc
*sc
);
347 static void ath5k_rx_stop(struct ath5k_softc
*sc
);
348 static unsigned int ath5k_rx_decrypted(struct ath5k_softc
*sc
,
349 struct ath5k_desc
*ds
,
351 struct ath5k_rx_status
*rs
);
352 static void ath5k_tasklet_rx(unsigned long data
);
354 static void ath5k_tx_processq(struct ath5k_softc
*sc
,
355 struct ath5k_txq
*txq
);
356 static void ath5k_tasklet_tx(unsigned long data
);
357 /* Beacon handling */
358 static int ath5k_beacon_setup(struct ath5k_softc
*sc
,
359 struct ath5k_buf
*bf
);
360 static void ath5k_beacon_send(struct ath5k_softc
*sc
);
361 static void ath5k_beacon_config(struct ath5k_softc
*sc
);
362 static void ath5k_beacon_update_timers(struct ath5k_softc
*sc
, u64 bc_tsf
);
363 static void ath5k_tasklet_beacon(unsigned long data
);
365 static inline u64
ath5k_extend_tsf(struct ath5k_hw
*ah
, u32 rstamp
)
367 u64 tsf
= ath5k_hw_get_tsf64(ah
);
369 if ((tsf
& 0x7fff) < rstamp
)
372 return (tsf
& ~0x7fff) | rstamp
;
375 /* Interrupt handling */
376 static int ath5k_init(struct ath5k_softc
*sc
);
377 static int ath5k_stop_locked(struct ath5k_softc
*sc
);
378 static int ath5k_stop_hw(struct ath5k_softc
*sc
);
379 static irqreturn_t
ath5k_intr(int irq
, void *dev_id
);
380 static void ath5k_tasklet_reset(unsigned long data
);
382 static void ath5k_tasklet_calibrate(unsigned long data
);
385 * Module init/exit functions
394 ret
= pci_register_driver(&ath5k_pci_driver
);
396 printk(KERN_ERR
"ath5k_pci: can't register pci driver\n");
406 pci_unregister_driver(&ath5k_pci_driver
);
408 ath5k_debug_finish();
411 module_init(init_ath5k_pci
);
412 module_exit(exit_ath5k_pci
);
415 /********************\
416 * PCI Initialization *
417 \********************/
420 ath5k_chip_name(enum ath5k_srev_type type
, u_int16_t val
)
422 const char *name
= "xxxxx";
425 for (i
= 0; i
< ARRAY_SIZE(srev_names
); i
++) {
426 if (srev_names
[i
].sr_type
!= type
)
429 if ((val
& 0xf0) == srev_names
[i
].sr_val
)
430 name
= srev_names
[i
].sr_name
;
432 if ((val
& 0xff) == srev_names
[i
].sr_val
) {
433 name
= srev_names
[i
].sr_name
;
442 ath5k_pci_probe(struct pci_dev
*pdev
,
443 const struct pci_device_id
*id
)
446 struct ath5k_softc
*sc
;
447 struct ieee80211_hw
*hw
;
451 ret
= pci_enable_device(pdev
);
453 dev_err(&pdev
->dev
, "can't enable device\n");
457 /* XXX 32-bit addressing only */
458 ret
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
460 dev_err(&pdev
->dev
, "32-bit DMA not available\n");
465 * Cache line size is used to size and align various
466 * structures used to communicate with the hardware.
468 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &csz
);
471 * Linux 2.4.18 (at least) writes the cache line size
472 * register as a 16-bit wide register which is wrong.
473 * We must have this setup properly for rx buffer
474 * DMA to work so force a reasonable value here if it
477 csz
= L1_CACHE_BYTES
>> 2;
478 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, csz
);
481 * The default setting of latency timer yields poor results,
482 * set it to the value used by other systems. It may be worth
483 * tweaking this setting more.
485 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xa8);
487 /* Enable bus mastering */
488 pci_set_master(pdev
);
491 * Disable the RETRY_TIMEOUT register (0x41) to keep
492 * PCI Tx retries from interfering with C3 CPU state.
494 pci_write_config_byte(pdev
, 0x41, 0);
496 ret
= pci_request_region(pdev
, 0, "ath5k");
498 dev_err(&pdev
->dev
, "cannot reserve PCI memory region\n");
502 mem
= pci_iomap(pdev
, 0, 0);
504 dev_err(&pdev
->dev
, "cannot remap PCI memory region\n") ;
510 * Allocate hw (mac80211 main struct)
511 * and hw->priv (driver private data)
513 hw
= ieee80211_alloc_hw(sizeof(*sc
), &ath5k_hw_ops
);
515 dev_err(&pdev
->dev
, "cannot allocate ieee80211_hw\n");
520 dev_info(&pdev
->dev
, "registered as '%s'\n", wiphy_name(hw
->wiphy
));
522 /* Initialize driver private data */
523 SET_IEEE80211_DEV(hw
, &pdev
->dev
);
524 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
525 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
526 IEEE80211_HW_SIGNAL_DBM
|
527 IEEE80211_HW_NOISE_DBM
;
529 hw
->wiphy
->interface_modes
=
530 BIT(NL80211_IFTYPE_AP
) |
531 BIT(NL80211_IFTYPE_STATION
) |
532 BIT(NL80211_IFTYPE_ADHOC
) |
533 BIT(NL80211_IFTYPE_MESH_POINT
);
535 hw
->extra_tx_headroom
= 2;
536 hw
->channel_change_time
= 5000;
541 ath5k_debug_init_device(sc
);
544 * Mark the device as detached to avoid processing
545 * interrupts until setup is complete.
547 __set_bit(ATH_STAT_INVALID
, sc
->status
);
549 sc
->iobase
= mem
; /* So we can unmap it on detach */
550 sc
->common
.cachelsz
= csz
<< 2; /* convert to bytes */
551 sc
->opmode
= NL80211_IFTYPE_STATION
;
553 mutex_init(&sc
->lock
);
554 spin_lock_init(&sc
->rxbuflock
);
555 spin_lock_init(&sc
->txbuflock
);
556 spin_lock_init(&sc
->block
);
558 /* Set private data */
559 pci_set_drvdata(pdev
, hw
);
561 /* Setup interrupt handler */
562 ret
= request_irq(pdev
->irq
, ath5k_intr
, IRQF_SHARED
, "ath", sc
);
564 ATH5K_ERR(sc
, "request_irq failed\n");
568 /* Initialize device */
569 sc
->ah
= ath5k_hw_attach(sc
);
570 if (IS_ERR(sc
->ah
)) {
571 ret
= PTR_ERR(sc
->ah
);
575 /* set up multi-rate retry capabilities */
576 if (sc
->ah
->ah_version
== AR5K_AR5212
) {
578 hw
->max_rate_tries
= 11;
581 /* Finish private driver data initialization */
582 ret
= ath5k_attach(pdev
, hw
);
586 ATH5K_INFO(sc
, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
587 ath5k_chip_name(AR5K_VERSION_MAC
, sc
->ah
->ah_mac_srev
),
589 sc
->ah
->ah_phy_revision
);
591 if (!sc
->ah
->ah_single_chip
) {
592 /* Single chip radio (!RF5111) */
593 if (sc
->ah
->ah_radio_5ghz_revision
&&
594 !sc
->ah
->ah_radio_2ghz_revision
) {
595 /* No 5GHz support -> report 2GHz radio */
596 if (!test_bit(AR5K_MODE_11A
,
597 sc
->ah
->ah_capabilities
.cap_mode
)) {
598 ATH5K_INFO(sc
, "RF%s 2GHz radio found (0x%x)\n",
599 ath5k_chip_name(AR5K_VERSION_RAD
,
600 sc
->ah
->ah_radio_5ghz_revision
),
601 sc
->ah
->ah_radio_5ghz_revision
);
602 /* No 2GHz support (5110 and some
603 * 5Ghz only cards) -> report 5Ghz radio */
604 } else if (!test_bit(AR5K_MODE_11B
,
605 sc
->ah
->ah_capabilities
.cap_mode
)) {
606 ATH5K_INFO(sc
, "RF%s 5GHz radio found (0x%x)\n",
607 ath5k_chip_name(AR5K_VERSION_RAD
,
608 sc
->ah
->ah_radio_5ghz_revision
),
609 sc
->ah
->ah_radio_5ghz_revision
);
610 /* Multiband radio */
612 ATH5K_INFO(sc
, "RF%s multiband radio found"
614 ath5k_chip_name(AR5K_VERSION_RAD
,
615 sc
->ah
->ah_radio_5ghz_revision
),
616 sc
->ah
->ah_radio_5ghz_revision
);
619 /* Multi chip radio (RF5111 - RF2111) ->
620 * report both 2GHz/5GHz radios */
621 else if (sc
->ah
->ah_radio_5ghz_revision
&&
622 sc
->ah
->ah_radio_2ghz_revision
){
623 ATH5K_INFO(sc
, "RF%s 5GHz radio found (0x%x)\n",
624 ath5k_chip_name(AR5K_VERSION_RAD
,
625 sc
->ah
->ah_radio_5ghz_revision
),
626 sc
->ah
->ah_radio_5ghz_revision
);
627 ATH5K_INFO(sc
, "RF%s 2GHz radio found (0x%x)\n",
628 ath5k_chip_name(AR5K_VERSION_RAD
,
629 sc
->ah
->ah_radio_2ghz_revision
),
630 sc
->ah
->ah_radio_2ghz_revision
);
635 /* ready to process interrupts */
636 __clear_bit(ATH_STAT_INVALID
, sc
->status
);
640 ath5k_hw_detach(sc
->ah
);
642 free_irq(pdev
->irq
, sc
);
644 ieee80211_free_hw(hw
);
646 pci_iounmap(pdev
, mem
);
648 pci_release_region(pdev
, 0);
650 pci_disable_device(pdev
);
655 static void __devexit
656 ath5k_pci_remove(struct pci_dev
*pdev
)
658 struct ieee80211_hw
*hw
= pci_get_drvdata(pdev
);
659 struct ath5k_softc
*sc
= hw
->priv
;
661 ath5k_debug_finish_device(sc
);
662 ath5k_detach(pdev
, hw
);
663 ath5k_hw_detach(sc
->ah
);
664 free_irq(pdev
->irq
, sc
);
665 pci_iounmap(pdev
, sc
->iobase
);
666 pci_release_region(pdev
, 0);
667 pci_disable_device(pdev
);
668 ieee80211_free_hw(hw
);
673 ath5k_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
675 struct ieee80211_hw
*hw
= pci_get_drvdata(pdev
);
676 struct ath5k_softc
*sc
= hw
->priv
;
680 pci_save_state(pdev
);
681 pci_disable_device(pdev
);
682 pci_set_power_state(pdev
, PCI_D3hot
);
688 ath5k_pci_resume(struct pci_dev
*pdev
)
690 struct ieee80211_hw
*hw
= pci_get_drvdata(pdev
);
691 struct ath5k_softc
*sc
= hw
->priv
;
694 pci_restore_state(pdev
);
696 err
= pci_enable_device(pdev
);
701 * Suspend/Resume resets the PCI configuration space, so we have to
702 * re-disable the RETRY_TIMEOUT register (0x41) to keep
703 * PCI Tx retries from interfering with C3 CPU state
705 pci_write_config_byte(pdev
, 0x41, 0);
707 ath5k_led_enable(sc
);
710 #endif /* CONFIG_PM */
713 /***********************\
714 * Driver Initialization *
715 \***********************/
717 static int ath5k_reg_notifier(struct wiphy
*wiphy
, struct regulatory_request
*request
)
719 struct ieee80211_hw
*hw
= wiphy_to_ieee80211_hw(wiphy
);
720 struct ath5k_softc
*sc
= hw
->priv
;
721 struct ath_regulatory
*regulatory
= &sc
->common
.regulatory
;
723 return ath_reg_notifier_apply(wiphy
, request
, regulatory
);
727 ath5k_attach(struct pci_dev
*pdev
, struct ieee80211_hw
*hw
)
729 struct ath5k_softc
*sc
= hw
->priv
;
730 struct ath5k_hw
*ah
= sc
->ah
;
731 struct ath_regulatory
*regulatory
= &sc
->common
.regulatory
;
732 u8 mac
[ETH_ALEN
] = {};
735 ATH5K_DBG(sc
, ATH5K_DEBUG_ANY
, "devid 0x%x\n", pdev
->device
);
738 * Check if the MAC has multi-rate retry support.
739 * We do this by trying to setup a fake extended
740 * descriptor. MAC's that don't have support will
741 * return false w/o doing anything. MAC's that do
742 * support it will return true w/o doing anything.
744 ret
= ah
->ah_setup_mrr_tx_desc(ah
, NULL
, 0, 0, 0, 0, 0, 0);
748 __set_bit(ATH_STAT_MRRETRY
, sc
->status
);
751 * Collect the channel list. The 802.11 layer
752 * is resposible for filtering this list based
753 * on settings like the phy mode and regulatory
754 * domain restrictions.
756 ret
= ath5k_setup_bands(hw
);
758 ATH5K_ERR(sc
, "can't get channels\n");
762 /* NB: setup here so ath5k_rate_update is happy */
763 if (test_bit(AR5K_MODE_11A
, ah
->ah_modes
))
764 ath5k_setcurmode(sc
, AR5K_MODE_11A
);
766 ath5k_setcurmode(sc
, AR5K_MODE_11B
);
769 * Allocate tx+rx descriptors and populate the lists.
771 ret
= ath5k_desc_alloc(sc
, pdev
);
773 ATH5K_ERR(sc
, "can't allocate descriptors\n");
778 * Allocate hardware transmit queues: one queue for
779 * beacon frames and one data queue for each QoS
780 * priority. Note that hw functions handle reseting
781 * these queues at the needed time.
783 ret
= ath5k_beaconq_setup(ah
);
785 ATH5K_ERR(sc
, "can't setup a beacon xmit queue\n");
789 sc
->cabq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_CAB
, 0);
790 if (IS_ERR(sc
->cabq
)) {
791 ATH5K_ERR(sc
, "can't setup cab queue\n");
792 ret
= PTR_ERR(sc
->cabq
);
796 sc
->txq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BK
);
797 if (IS_ERR(sc
->txq
)) {
798 ATH5K_ERR(sc
, "can't setup xmit queue\n");
799 ret
= PTR_ERR(sc
->txq
);
803 tasklet_init(&sc
->rxtq
, ath5k_tasklet_rx
, (unsigned long)sc
);
804 tasklet_init(&sc
->txtq
, ath5k_tasklet_tx
, (unsigned long)sc
);
805 tasklet_init(&sc
->restq
, ath5k_tasklet_reset
, (unsigned long)sc
);
806 tasklet_init(&sc
->calib
, ath5k_tasklet_calibrate
, (unsigned long)sc
);
807 tasklet_init(&sc
->beacontq
, ath5k_tasklet_beacon
, (unsigned long)sc
);
809 ret
= ath5k_eeprom_read_mac(ah
, mac
);
811 ATH5K_ERR(sc
, "unable to read address from EEPROM: 0x%04x\n",
816 SET_IEEE80211_PERM_ADDR(hw
, mac
);
817 /* All MAC address bits matter for ACKs */
818 memset(sc
->bssidmask
, 0xff, ETH_ALEN
);
819 ath5k_hw_set_bssid_mask(sc
->ah
, sc
->bssidmask
);
821 regulatory
->current_rd
= ah
->ah_capabilities
.cap_eeprom
.ee_regdomain
;
822 ret
= ath_regd_init(regulatory
, hw
->wiphy
, ath5k_reg_notifier
);
824 ATH5K_ERR(sc
, "can't initialize regulatory system\n");
828 ret
= ieee80211_register_hw(hw
);
830 ATH5K_ERR(sc
, "can't register ieee80211 hw\n");
834 if (!ath_is_world_regd(regulatory
))
835 regulatory_hint(hw
->wiphy
, regulatory
->alpha2
);
841 ath5k_txq_release(sc
);
843 ath5k_hw_release_tx_queue(ah
, sc
->bhalq
);
845 ath5k_desc_free(sc
, pdev
);
851 ath5k_detach(struct pci_dev
*pdev
, struct ieee80211_hw
*hw
)
853 struct ath5k_softc
*sc
= hw
->priv
;
856 * NB: the order of these is important:
857 * o call the 802.11 layer before detaching ath5k_hw to
858 * insure callbacks into the driver to delete global
859 * key cache entries can be handled
860 * o reclaim the tx queue data structures after calling
861 * the 802.11 layer as we'll get called back to reclaim
862 * node state and potentially want to use them
863 * o to cleanup the tx queues the hal is called, so detach
865 * XXX: ??? detach ath5k_hw ???
866 * Other than that, it's straightforward...
868 ieee80211_unregister_hw(hw
);
869 ath5k_desc_free(sc
, pdev
);
870 ath5k_txq_release(sc
);
871 ath5k_hw_release_tx_queue(sc
->ah
, sc
->bhalq
);
872 ath5k_unregister_leds(sc
);
875 * NB: can't reclaim these until after ieee80211_ifdetach
876 * returns because we'll get called back to reclaim node
877 * state and potentially want to use them.
884 /********************\
885 * Channel/mode setup *
886 \********************/
889 * Convert IEEE channel number to MHz frequency.
892 ath5k_ieee2mhz(short chan
)
894 if (chan
<= 14 || chan
>= 27)
895 return ieee80211chan2mhz(chan
);
897 return 2212 + chan
* 20;
901 * Returns true for the channel numbers used without all_channels modparam.
903 static bool ath5k_is_standard_channel(short chan
)
905 return ((chan
<= 14) ||
907 ((chan
& 3) == 0 && chan
>= 36 && chan
<= 64) ||
909 ((chan
& 3) == 0 && chan
>= 100 && chan
<= 140) ||
911 ((chan
& 3) == 1 && chan
>= 149 && chan
<= 165));
915 ath5k_copy_channels(struct ath5k_hw
*ah
,
916 struct ieee80211_channel
*channels
,
920 unsigned int i
, count
, size
, chfreq
, freq
, ch
;
922 if (!test_bit(mode
, ah
->ah_modes
))
927 case AR5K_MODE_11A_TURBO
:
928 /* 1..220, but 2GHz frequencies are filtered by check_channel */
930 chfreq
= CHANNEL_5GHZ
;
934 case AR5K_MODE_11G_TURBO
:
936 chfreq
= CHANNEL_2GHZ
;
939 ATH5K_WARN(ah
->ah_sc
, "bad mode, not copying channels\n");
943 for (i
= 0, count
= 0; i
< size
&& max
> 0; i
++) {
945 freq
= ath5k_ieee2mhz(ch
);
947 /* Check if channel is supported by the chipset */
948 if (!ath5k_channel_ok(ah
, freq
, chfreq
))
951 if (!modparam_all_channels
&& !ath5k_is_standard_channel(ch
))
954 /* Write channel info and increment counter */
955 channels
[count
].center_freq
= freq
;
956 channels
[count
].band
= (chfreq
== CHANNEL_2GHZ
) ?
957 IEEE80211_BAND_2GHZ
: IEEE80211_BAND_5GHZ
;
961 channels
[count
].hw_value
= chfreq
| CHANNEL_OFDM
;
963 case AR5K_MODE_11A_TURBO
:
964 case AR5K_MODE_11G_TURBO
:
965 channels
[count
].hw_value
= chfreq
|
966 CHANNEL_OFDM
| CHANNEL_TURBO
;
969 channels
[count
].hw_value
= CHANNEL_B
;
980 ath5k_setup_rate_idx(struct ath5k_softc
*sc
, struct ieee80211_supported_band
*b
)
984 for (i
= 0; i
< AR5K_MAX_RATES
; i
++)
985 sc
->rate_idx
[b
->band
][i
] = -1;
987 for (i
= 0; i
< b
->n_bitrates
; i
++) {
988 sc
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value
] = i
;
989 if (b
->bitrates
[i
].hw_value_short
)
990 sc
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value_short
] = i
;
995 ath5k_setup_bands(struct ieee80211_hw
*hw
)
997 struct ath5k_softc
*sc
= hw
->priv
;
998 struct ath5k_hw
*ah
= sc
->ah
;
999 struct ieee80211_supported_band
*sband
;
1000 int max_c
, count_c
= 0;
1003 BUILD_BUG_ON(ARRAY_SIZE(sc
->sbands
) < IEEE80211_NUM_BANDS
);
1004 max_c
= ARRAY_SIZE(sc
->channels
);
1007 sband
= &sc
->sbands
[IEEE80211_BAND_2GHZ
];
1008 sband
->band
= IEEE80211_BAND_2GHZ
;
1009 sband
->bitrates
= &sc
->rates
[IEEE80211_BAND_2GHZ
][0];
1011 if (test_bit(AR5K_MODE_11G
, sc
->ah
->ah_capabilities
.cap_mode
)) {
1013 memcpy(sband
->bitrates
, &ath5k_rates
[0],
1014 sizeof(struct ieee80211_rate
) * 12);
1015 sband
->n_bitrates
= 12;
1017 sband
->channels
= sc
->channels
;
1018 sband
->n_channels
= ath5k_copy_channels(ah
, sband
->channels
,
1019 AR5K_MODE_11G
, max_c
);
1021 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
1022 count_c
= sband
->n_channels
;
1024 } else if (test_bit(AR5K_MODE_11B
, sc
->ah
->ah_capabilities
.cap_mode
)) {
1026 memcpy(sband
->bitrates
, &ath5k_rates
[0],
1027 sizeof(struct ieee80211_rate
) * 4);
1028 sband
->n_bitrates
= 4;
1030 /* 5211 only supports B rates and uses 4bit rate codes
1031 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
1034 if (ah
->ah_version
== AR5K_AR5211
) {
1035 for (i
= 0; i
< 4; i
++) {
1036 sband
->bitrates
[i
].hw_value
=
1037 sband
->bitrates
[i
].hw_value
& 0xF;
1038 sband
->bitrates
[i
].hw_value_short
=
1039 sband
->bitrates
[i
].hw_value_short
& 0xF;
1043 sband
->channels
= sc
->channels
;
1044 sband
->n_channels
= ath5k_copy_channels(ah
, sband
->channels
,
1045 AR5K_MODE_11B
, max_c
);
1047 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
1048 count_c
= sband
->n_channels
;
1051 ath5k_setup_rate_idx(sc
, sband
);
1053 /* 5GHz band, A mode */
1054 if (test_bit(AR5K_MODE_11A
, sc
->ah
->ah_capabilities
.cap_mode
)) {
1055 sband
= &sc
->sbands
[IEEE80211_BAND_5GHZ
];
1056 sband
->band
= IEEE80211_BAND_5GHZ
;
1057 sband
->bitrates
= &sc
->rates
[IEEE80211_BAND_5GHZ
][0];
1059 memcpy(sband
->bitrates
, &ath5k_rates
[4],
1060 sizeof(struct ieee80211_rate
) * 8);
1061 sband
->n_bitrates
= 8;
1063 sband
->channels
= &sc
->channels
[count_c
];
1064 sband
->n_channels
= ath5k_copy_channels(ah
, sband
->channels
,
1065 AR5K_MODE_11A
, max_c
);
1067 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = sband
;
1069 ath5k_setup_rate_idx(sc
, sband
);
1071 ath5k_debug_dump_bands(sc
);
1077 * Set/change channels. We always reset the chip.
1078 * To accomplish this we must first cleanup any pending DMA,
1079 * then restart stuff after a la ath5k_init.
1081 * Called with sc->lock.
1084 ath5k_chan_set(struct ath5k_softc
*sc
, struct ieee80211_channel
*chan
)
1086 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "(%u MHz) -> (%u MHz)\n",
1087 sc
->curchan
->center_freq
, chan
->center_freq
);
1090 * To switch channels clear any pending DMA operations;
1091 * wait long enough for the RX fifo to drain, reset the
1092 * hardware at the new frequency, and then re-enable
1093 * the relevant bits of the h/w.
1095 return ath5k_reset(sc
, chan
);
1099 ath5k_setcurmode(struct ath5k_softc
*sc
, unsigned int mode
)
1103 if (mode
== AR5K_MODE_11A
) {
1104 sc
->curband
= &sc
->sbands
[IEEE80211_BAND_5GHZ
];
1106 sc
->curband
= &sc
->sbands
[IEEE80211_BAND_2GHZ
];
1111 ath5k_mode_setup(struct ath5k_softc
*sc
)
1113 struct ath5k_hw
*ah
= sc
->ah
;
1116 ah
->ah_op_mode
= sc
->opmode
;
1118 /* configure rx filter */
1119 rfilt
= sc
->filter_flags
;
1120 ath5k_hw_set_rx_filter(ah
, rfilt
);
1122 if (ath5k_hw_hasbssidmask(ah
))
1123 ath5k_hw_set_bssid_mask(ah
, sc
->bssidmask
);
1125 /* configure operational mode */
1126 ath5k_hw_set_opmode(ah
);
1128 ath5k_hw_set_mcast_filter(ah
, 0, 0);
1129 ATH5K_DBG(sc
, ATH5K_DEBUG_MODE
, "RX filter 0x%x\n", rfilt
);
1133 ath5k_hw_to_driver_rix(struct ath5k_softc
*sc
, int hw_rix
)
1137 /* return base rate on errors */
1138 if (WARN(hw_rix
< 0 || hw_rix
>= AR5K_MAX_RATES
,
1139 "hw_rix out of bounds: %x\n", hw_rix
))
1142 rix
= sc
->rate_idx
[sc
->curband
->band
][hw_rix
];
1143 if (WARN(rix
< 0, "invalid hw_rix: %x\n", hw_rix
))
1154 struct sk_buff
*ath5k_rx_skb_alloc(struct ath5k_softc
*sc
, dma_addr_t
*skb_addr
)
1156 struct sk_buff
*skb
;
1159 * Allocate buffer with headroom_needed space for the
1160 * fake physical layer header at the start.
1162 skb
= ath_rxbuf_alloc(&sc
->common
,
1163 sc
->rxbufsize
+ sc
->common
.cachelsz
- 1,
1167 ATH5K_ERR(sc
, "can't alloc skbuff of size %u\n",
1168 sc
->rxbufsize
+ sc
->common
.cachelsz
- 1);
1172 *skb_addr
= pci_map_single(sc
->pdev
,
1173 skb
->data
, sc
->rxbufsize
, PCI_DMA_FROMDEVICE
);
1174 if (unlikely(pci_dma_mapping_error(sc
->pdev
, *skb_addr
))) {
1175 ATH5K_ERR(sc
, "%s: DMA mapping failed\n", __func__
);
1183 ath5k_rxbuf_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
)
1185 struct ath5k_hw
*ah
= sc
->ah
;
1186 struct sk_buff
*skb
= bf
->skb
;
1187 struct ath5k_desc
*ds
;
1190 skb
= ath5k_rx_skb_alloc(sc
, &bf
->skbaddr
);
1197 * Setup descriptors. For receive we always terminate
1198 * the descriptor list with a self-linked entry so we'll
1199 * not get overrun under high load (as can happen with a
1200 * 5212 when ANI processing enables PHY error frames).
1202 * To insure the last descriptor is self-linked we create
1203 * each descriptor as self-linked and add it to the end. As
1204 * each additional descriptor is added the previous self-linked
1205 * entry is ``fixed'' naturally. This should be safe even
1206 * if DMA is happening. When processing RX interrupts we
1207 * never remove/process the last, self-linked, entry on the
1208 * descriptor list. This insures the hardware always has
1209 * someplace to write a new frame.
1212 ds
->ds_link
= bf
->daddr
; /* link to self */
1213 ds
->ds_data
= bf
->skbaddr
;
1214 ah
->ah_setup_rx_desc(ah
, ds
,
1215 skb_tailroom(skb
), /* buffer size */
1218 if (sc
->rxlink
!= NULL
)
1219 *sc
->rxlink
= bf
->daddr
;
1220 sc
->rxlink
= &ds
->ds_link
;
1225 ath5k_txbuf_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
,
1226 struct ath5k_txq
*txq
)
1228 struct ath5k_hw
*ah
= sc
->ah
;
1229 struct ath5k_desc
*ds
= bf
->desc
;
1230 struct sk_buff
*skb
= bf
->skb
;
1231 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
1232 unsigned int pktlen
, flags
, keyidx
= AR5K_TXKEYIX_INVALID
;
1233 struct ieee80211_rate
*rate
;
1234 unsigned int mrr_rate
[3], mrr_tries
[3];
1241 flags
= AR5K_TXDESC_INTREQ
| AR5K_TXDESC_CLRDMASK
;
1243 /* XXX endianness */
1244 bf
->skbaddr
= pci_map_single(sc
->pdev
, skb
->data
, skb
->len
,
1247 rate
= ieee80211_get_tx_rate(sc
->hw
, info
);
1249 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
1250 flags
|= AR5K_TXDESC_NOACK
;
1252 rc_flags
= info
->control
.rates
[0].flags
;
1253 hw_rate
= (rc_flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
) ?
1254 rate
->hw_value_short
: rate
->hw_value
;
1258 /* FIXME: If we are in g mode and rate is a CCK rate
1259 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1260 * from tx power (value is in dB units already) */
1261 if (info
->control
.hw_key
) {
1262 keyidx
= info
->control
.hw_key
->hw_key_idx
;
1263 pktlen
+= info
->control
.hw_key
->icv_len
;
1265 if (rc_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
1266 flags
|= AR5K_TXDESC_RTSENA
;
1267 cts_rate
= ieee80211_get_rts_cts_rate(sc
->hw
, info
)->hw_value
;
1268 duration
= le16_to_cpu(ieee80211_rts_duration(sc
->hw
,
1269 sc
->vif
, pktlen
, info
));
1271 if (rc_flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
1272 flags
|= AR5K_TXDESC_CTSENA
;
1273 cts_rate
= ieee80211_get_rts_cts_rate(sc
->hw
, info
)->hw_value
;
1274 duration
= le16_to_cpu(ieee80211_ctstoself_duration(sc
->hw
,
1275 sc
->vif
, pktlen
, info
));
1277 ret
= ah
->ah_setup_tx_desc(ah
, ds
, pktlen
,
1278 ieee80211_get_hdrlen_from_skb(skb
), AR5K_PKT_TYPE_NORMAL
,
1279 (sc
->power_level
* 2),
1281 info
->control
.rates
[0].count
, keyidx
, ah
->ah_tx_ant
, flags
,
1282 cts_rate
, duration
);
1286 memset(mrr_rate
, 0, sizeof(mrr_rate
));
1287 memset(mrr_tries
, 0, sizeof(mrr_tries
));
1288 for (i
= 0; i
< 3; i
++) {
1289 rate
= ieee80211_get_alt_retry_rate(sc
->hw
, info
, i
);
1293 mrr_rate
[i
] = rate
->hw_value
;
1294 mrr_tries
[i
] = info
->control
.rates
[i
+ 1].count
;
1297 ah
->ah_setup_mrr_tx_desc(ah
, ds
,
1298 mrr_rate
[0], mrr_tries
[0],
1299 mrr_rate
[1], mrr_tries
[1],
1300 mrr_rate
[2], mrr_tries
[2]);
1303 ds
->ds_data
= bf
->skbaddr
;
1305 spin_lock_bh(&txq
->lock
);
1306 list_add_tail(&bf
->list
, &txq
->q
);
1307 sc
->tx_stats
[txq
->qnum
].len
++;
1308 if (txq
->link
== NULL
) /* is this first packet? */
1309 ath5k_hw_set_txdp(ah
, txq
->qnum
, bf
->daddr
);
1310 else /* no, so only link it */
1311 *txq
->link
= bf
->daddr
;
1313 txq
->link
= &ds
->ds_link
;
1314 ath5k_hw_start_tx_dma(ah
, txq
->qnum
);
1316 spin_unlock_bh(&txq
->lock
);
1320 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, skb
->len
, PCI_DMA_TODEVICE
);
1324 /*******************\
1325 * Descriptors setup *
1326 \*******************/
1329 ath5k_desc_alloc(struct ath5k_softc
*sc
, struct pci_dev
*pdev
)
1331 struct ath5k_desc
*ds
;
1332 struct ath5k_buf
*bf
;
1337 /* allocate descriptors */
1338 sc
->desc_len
= sizeof(struct ath5k_desc
) *
1339 (ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
+ 1);
1340 sc
->desc
= pci_alloc_consistent(pdev
, sc
->desc_len
, &sc
->desc_daddr
);
1341 if (sc
->desc
== NULL
) {
1342 ATH5K_ERR(sc
, "can't allocate descriptors\n");
1347 da
= sc
->desc_daddr
;
1348 ATH5K_DBG(sc
, ATH5K_DEBUG_ANY
, "DMA map: %p (%zu) -> %llx\n",
1349 ds
, sc
->desc_len
, (unsigned long long)sc
->desc_daddr
);
1351 bf
= kcalloc(1 + ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
,
1352 sizeof(struct ath5k_buf
), GFP_KERNEL
);
1354 ATH5K_ERR(sc
, "can't allocate bufptr\n");
1360 INIT_LIST_HEAD(&sc
->rxbuf
);
1361 for (i
= 0; i
< ATH_RXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
1364 list_add_tail(&bf
->list
, &sc
->rxbuf
);
1367 INIT_LIST_HEAD(&sc
->txbuf
);
1368 sc
->txbuf_len
= ATH_TXBUF
;
1369 for (i
= 0; i
< ATH_TXBUF
; i
++, bf
++, ds
++,
1370 da
+= sizeof(*ds
)) {
1373 list_add_tail(&bf
->list
, &sc
->txbuf
);
1383 pci_free_consistent(pdev
, sc
->desc_len
, sc
->desc
, sc
->desc_daddr
);
1390 ath5k_desc_free(struct ath5k_softc
*sc
, struct pci_dev
*pdev
)
1392 struct ath5k_buf
*bf
;
1394 ath5k_txbuf_free(sc
, sc
->bbuf
);
1395 list_for_each_entry(bf
, &sc
->txbuf
, list
)
1396 ath5k_txbuf_free(sc
, bf
);
1397 list_for_each_entry(bf
, &sc
->rxbuf
, list
)
1398 ath5k_rxbuf_free(sc
, bf
);
1400 /* Free memory associated with all descriptors */
1401 pci_free_consistent(pdev
, sc
->desc_len
, sc
->desc
, sc
->desc_daddr
);
1415 static struct ath5k_txq
*
1416 ath5k_txq_setup(struct ath5k_softc
*sc
,
1417 int qtype
, int subtype
)
1419 struct ath5k_hw
*ah
= sc
->ah
;
1420 struct ath5k_txq
*txq
;
1421 struct ath5k_txq_info qi
= {
1422 .tqi_subtype
= subtype
,
1423 .tqi_aifs
= AR5K_TXQ_USEDEFAULT
,
1424 .tqi_cw_min
= AR5K_TXQ_USEDEFAULT
,
1425 .tqi_cw_max
= AR5K_TXQ_USEDEFAULT
1430 * Enable interrupts only for EOL and DESC conditions.
1431 * We mark tx descriptors to receive a DESC interrupt
1432 * when a tx queue gets deep; otherwise waiting for the
1433 * EOL to reap descriptors. Note that this is done to
1434 * reduce interrupt load and this only defers reaping
1435 * descriptors, never transmitting frames. Aside from
1436 * reducing interrupts this also permits more concurrency.
1437 * The only potential downside is if the tx queue backs
1438 * up in which case the top half of the kernel may backup
1439 * due to a lack of tx descriptors.
1441 qi
.tqi_flags
= AR5K_TXQ_FLAG_TXEOLINT_ENABLE
|
1442 AR5K_TXQ_FLAG_TXDESCINT_ENABLE
;
1443 qnum
= ath5k_hw_setup_tx_queue(ah
, qtype
, &qi
);
1446 * NB: don't print a message, this happens
1447 * normally on parts with too few tx queues
1449 return ERR_PTR(qnum
);
1451 if (qnum
>= ARRAY_SIZE(sc
->txqs
)) {
1452 ATH5K_ERR(sc
, "hw qnum %u out of range, max %tu!\n",
1453 qnum
, ARRAY_SIZE(sc
->txqs
));
1454 ath5k_hw_release_tx_queue(ah
, qnum
);
1455 return ERR_PTR(-EINVAL
);
1457 txq
= &sc
->txqs
[qnum
];
1461 INIT_LIST_HEAD(&txq
->q
);
1462 spin_lock_init(&txq
->lock
);
1465 return &sc
->txqs
[qnum
];
1469 ath5k_beaconq_setup(struct ath5k_hw
*ah
)
1471 struct ath5k_txq_info qi
= {
1472 .tqi_aifs
= AR5K_TXQ_USEDEFAULT
,
1473 .tqi_cw_min
= AR5K_TXQ_USEDEFAULT
,
1474 .tqi_cw_max
= AR5K_TXQ_USEDEFAULT
,
1475 /* NB: for dynamic turbo, don't enable any other interrupts */
1476 .tqi_flags
= AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1479 return ath5k_hw_setup_tx_queue(ah
, AR5K_TX_QUEUE_BEACON
, &qi
);
1483 ath5k_beaconq_config(struct ath5k_softc
*sc
)
1485 struct ath5k_hw
*ah
= sc
->ah
;
1486 struct ath5k_txq_info qi
;
1489 ret
= ath5k_hw_get_tx_queueprops(ah
, sc
->bhalq
, &qi
);
1492 if (sc
->opmode
== NL80211_IFTYPE_AP
||
1493 sc
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1495 * Always burst out beacon and CAB traffic
1496 * (aifs = cwmin = cwmax = 0)
1501 } else if (sc
->opmode
== NL80211_IFTYPE_ADHOC
) {
1503 * Adhoc mode; backoff between 0 and (2 * cw_min).
1507 qi
.tqi_cw_max
= 2 * ah
->ah_cw_min
;
1510 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
1511 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1512 qi
.tqi_aifs
, qi
.tqi_cw_min
, qi
.tqi_cw_max
);
1514 ret
= ath5k_hw_set_tx_queueprops(ah
, sc
->bhalq
, &qi
);
1516 ATH5K_ERR(sc
, "%s: unable to update parameters for beacon "
1517 "hardware queue!\n", __func__
);
1521 return ath5k_hw_reset_tx_queue(ah
, sc
->bhalq
); /* push to h/w */;
1525 ath5k_txq_drainq(struct ath5k_softc
*sc
, struct ath5k_txq
*txq
)
1527 struct ath5k_buf
*bf
, *bf0
;
1530 * NB: this assumes output has been stopped and
1531 * we do not need to block ath5k_tx_tasklet
1533 spin_lock_bh(&txq
->lock
);
1534 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1535 ath5k_debug_printtxbuf(sc
, bf
);
1537 ath5k_txbuf_free(sc
, bf
);
1539 spin_lock_bh(&sc
->txbuflock
);
1540 sc
->tx_stats
[txq
->qnum
].len
--;
1541 list_move_tail(&bf
->list
, &sc
->txbuf
);
1543 spin_unlock_bh(&sc
->txbuflock
);
1546 spin_unlock_bh(&txq
->lock
);
1550 * Drain the transmit queues and reclaim resources.
1553 ath5k_txq_cleanup(struct ath5k_softc
*sc
)
1555 struct ath5k_hw
*ah
= sc
->ah
;
1558 /* XXX return value */
1559 if (likely(!test_bit(ATH_STAT_INVALID
, sc
->status
))) {
1560 /* don't touch the hardware if marked invalid */
1561 ath5k_hw_stop_tx_dma(ah
, sc
->bhalq
);
1562 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "beacon queue %x\n",
1563 ath5k_hw_get_txdp(ah
, sc
->bhalq
));
1564 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++)
1565 if (sc
->txqs
[i
].setup
) {
1566 ath5k_hw_stop_tx_dma(ah
, sc
->txqs
[i
].qnum
);
1567 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "txq [%u] %x, "
1570 ath5k_hw_get_txdp(ah
,
1575 ieee80211_wake_queues(sc
->hw
); /* XXX move to callers */
1577 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++)
1578 if (sc
->txqs
[i
].setup
)
1579 ath5k_txq_drainq(sc
, &sc
->txqs
[i
]);
1583 ath5k_txq_release(struct ath5k_softc
*sc
)
1585 struct ath5k_txq
*txq
= sc
->txqs
;
1588 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++, txq
++)
1590 ath5k_hw_release_tx_queue(sc
->ah
, txq
->qnum
);
1603 * Enable the receive h/w following a reset.
1606 ath5k_rx_start(struct ath5k_softc
*sc
)
1608 struct ath5k_hw
*ah
= sc
->ah
;
1609 struct ath5k_buf
*bf
;
1612 sc
->rxbufsize
= roundup(IEEE80211_MAX_LEN
, sc
->common
.cachelsz
);
1614 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "cachelsz %u rxbufsize %u\n",
1615 sc
->common
.cachelsz
, sc
->rxbufsize
);
1617 spin_lock_bh(&sc
->rxbuflock
);
1619 list_for_each_entry(bf
, &sc
->rxbuf
, list
) {
1620 ret
= ath5k_rxbuf_setup(sc
, bf
);
1622 spin_unlock_bh(&sc
->rxbuflock
);
1626 bf
= list_first_entry(&sc
->rxbuf
, struct ath5k_buf
, list
);
1627 ath5k_hw_set_rxdp(ah
, bf
->daddr
);
1628 spin_unlock_bh(&sc
->rxbuflock
);
1630 ath5k_hw_start_rx_dma(ah
); /* enable recv descriptors */
1631 ath5k_mode_setup(sc
); /* set filters, etc. */
1632 ath5k_hw_start_rx_pcu(ah
); /* re-enable PCU/DMA engine */
1640 * Disable the receive h/w in preparation for a reset.
1643 ath5k_rx_stop(struct ath5k_softc
*sc
)
1645 struct ath5k_hw
*ah
= sc
->ah
;
1647 ath5k_hw_stop_rx_pcu(ah
); /* disable PCU */
1648 ath5k_hw_set_rx_filter(ah
, 0); /* clear recv filter */
1649 ath5k_hw_stop_rx_dma(ah
); /* disable DMA engine */
1651 ath5k_debug_printrxbuffs(sc
, ah
);
1653 sc
->rxlink
= NULL
; /* just in case */
1657 ath5k_rx_decrypted(struct ath5k_softc
*sc
, struct ath5k_desc
*ds
,
1658 struct sk_buff
*skb
, struct ath5k_rx_status
*rs
)
1660 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
1661 unsigned int keyix
, hlen
;
1663 if (!(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1664 rs
->rs_keyix
!= AR5K_RXKEYIX_INVALID
)
1665 return RX_FLAG_DECRYPTED
;
1667 /* Apparently when a default key is used to decrypt the packet
1668 the hw does not set the index used to decrypt. In such cases
1669 get the index from the packet. */
1670 hlen
= ieee80211_hdrlen(hdr
->frame_control
);
1671 if (ieee80211_has_protected(hdr
->frame_control
) &&
1672 !(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1673 skb
->len
>= hlen
+ 4) {
1674 keyix
= skb
->data
[hlen
+ 3] >> 6;
1676 if (test_bit(keyix
, sc
->keymap
))
1677 return RX_FLAG_DECRYPTED
;
1685 ath5k_check_ibss_tsf(struct ath5k_softc
*sc
, struct sk_buff
*skb
,
1686 struct ieee80211_rx_status
*rxs
)
1690 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1692 if (ieee80211_is_beacon(mgmt
->frame_control
) &&
1693 le16_to_cpu(mgmt
->u
.beacon
.capab_info
) & WLAN_CAPABILITY_IBSS
&&
1694 memcmp(mgmt
->bssid
, sc
->ah
->ah_bssid
, ETH_ALEN
) == 0) {
1696 * Received an IBSS beacon with the same BSSID. Hardware *must*
1697 * have updated the local TSF. We have to work around various
1698 * hardware bugs, though...
1700 tsf
= ath5k_hw_get_tsf64(sc
->ah
);
1701 bc_tstamp
= le64_to_cpu(mgmt
->u
.beacon
.timestamp
);
1702 hw_tu
= TSF_TO_TU(tsf
);
1704 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
1705 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1706 (unsigned long long)bc_tstamp
,
1707 (unsigned long long)rxs
->mactime
,
1708 (unsigned long long)(rxs
->mactime
- bc_tstamp
),
1709 (unsigned long long)tsf
);
1712 * Sometimes the HW will give us a wrong tstamp in the rx
1713 * status, causing the timestamp extension to go wrong.
1714 * (This seems to happen especially with beacon frames bigger
1715 * than 78 byte (incl. FCS))
1716 * But we know that the receive timestamp must be later than the
1717 * timestamp of the beacon since HW must have synced to that.
1719 * NOTE: here we assume mactime to be after the frame was
1720 * received, not like mac80211 which defines it at the start.
1722 if (bc_tstamp
> rxs
->mactime
) {
1723 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
1724 "fixing mactime from %llx to %llx\n",
1725 (unsigned long long)rxs
->mactime
,
1726 (unsigned long long)tsf
);
1731 * Local TSF might have moved higher than our beacon timers,
1732 * in that case we have to update them to continue sending
1733 * beacons. This also takes care of synchronizing beacon sending
1734 * times with other stations.
1736 if (hw_tu
>= sc
->nexttbtt
)
1737 ath5k_beacon_update_timers(sc
, bc_tstamp
);
1742 ath5k_tasklet_rx(unsigned long data
)
1744 struct ieee80211_rx_status
*rxs
;
1745 struct ath5k_rx_status rs
= {};
1746 struct sk_buff
*skb
, *next_skb
;
1747 dma_addr_t next_skb_addr
;
1748 struct ath5k_softc
*sc
= (void *)data
;
1749 struct ath5k_buf
*bf
;
1750 struct ath5k_desc
*ds
;
1756 spin_lock(&sc
->rxbuflock
);
1757 if (list_empty(&sc
->rxbuf
)) {
1758 ATH5K_WARN(sc
, "empty rx buf pool\n");
1764 bf
= list_first_entry(&sc
->rxbuf
, struct ath5k_buf
, list
);
1765 BUG_ON(bf
->skb
== NULL
);
1769 /* bail if HW is still using self-linked descriptor */
1770 if (ath5k_hw_get_rxdp(sc
->ah
) == bf
->daddr
)
1773 ret
= sc
->ah
->ah_proc_rx_desc(sc
->ah
, ds
, &rs
);
1774 if (unlikely(ret
== -EINPROGRESS
))
1776 else if (unlikely(ret
)) {
1777 ATH5K_ERR(sc
, "error in processing rx descriptor\n");
1778 spin_unlock(&sc
->rxbuflock
);
1782 if (unlikely(rs
.rs_more
)) {
1783 ATH5K_WARN(sc
, "unsupported jumbo\n");
1787 if (unlikely(rs
.rs_status
)) {
1788 if (rs
.rs_status
& AR5K_RXERR_PHY
)
1790 if (rs
.rs_status
& AR5K_RXERR_DECRYPT
) {
1792 * Decrypt error. If the error occurred
1793 * because there was no hardware key, then
1794 * let the frame through so the upper layers
1795 * can process it. This is necessary for 5210
1796 * parts which have no way to setup a ``clear''
1799 * XXX do key cache faulting
1801 if (rs
.rs_keyix
== AR5K_RXKEYIX_INVALID
&&
1802 !(rs
.rs_status
& AR5K_RXERR_CRC
))
1805 if (rs
.rs_status
& AR5K_RXERR_MIC
) {
1806 rx_flag
|= RX_FLAG_MMIC_ERROR
;
1810 /* let crypto-error packets fall through in MNTR */
1812 ~(AR5K_RXERR_DECRYPT
|AR5K_RXERR_MIC
)) ||
1813 sc
->opmode
!= NL80211_IFTYPE_MONITOR
)
1817 next_skb
= ath5k_rx_skb_alloc(sc
, &next_skb_addr
);
1820 * If we can't replace bf->skb with a new skb under memory
1821 * pressure, just skip this packet
1826 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, sc
->rxbufsize
,
1827 PCI_DMA_FROMDEVICE
);
1828 skb_put(skb
, rs
.rs_datalen
);
1830 /* The MAC header is padded to have 32-bit boundary if the
1831 * packet payload is non-zero. The general calculation for
1832 * padsize would take into account odd header lengths:
1833 * padsize = (4 - hdrlen % 4) % 4; However, since only
1834 * even-length headers are used, padding can only be 0 or 2
1835 * bytes and we can optimize this a bit. In addition, we must
1836 * not try to remove padding from short control frames that do
1837 * not have payload. */
1838 hdrlen
= ieee80211_get_hdrlen_from_skb(skb
);
1839 padsize
= ath5k_pad_size(hdrlen
);
1841 memmove(skb
->data
+ padsize
, skb
->data
, hdrlen
);
1842 skb_pull(skb
, padsize
);
1844 rxs
= IEEE80211_SKB_RXCB(skb
);
1847 * always extend the mac timestamp, since this information is
1848 * also needed for proper IBSS merging.
1850 * XXX: it might be too late to do it here, since rs_tstamp is
1851 * 15bit only. that means TSF extension has to be done within
1852 * 32768usec (about 32ms). it might be necessary to move this to
1853 * the interrupt handler, like it is done in madwifi.
1855 * Unfortunately we don't know when the hardware takes the rx
1856 * timestamp (beginning of phy frame, data frame, end of rx?).
1857 * The only thing we know is that it is hardware specific...
1858 * On AR5213 it seems the rx timestamp is at the end of the
1859 * frame, but i'm not sure.
1861 * NOTE: mac80211 defines mactime at the beginning of the first
1862 * data symbol. Since we don't have any time references it's
1863 * impossible to comply to that. This affects IBSS merge only
1864 * right now, so it's not too bad...
1866 rxs
->mactime
= ath5k_extend_tsf(sc
->ah
, rs
.rs_tstamp
);
1867 rxs
->flag
= rx_flag
| RX_FLAG_TSFT
;
1869 rxs
->freq
= sc
->curchan
->center_freq
;
1870 rxs
->band
= sc
->curband
->band
;
1872 rxs
->noise
= sc
->ah
->ah_noise_floor
;
1873 rxs
->signal
= rxs
->noise
+ rs
.rs_rssi
;
1875 /* An rssi of 35 indicates you should be able use
1876 * 54 Mbps reliably. A more elaborate scheme can be used
1877 * here but it requires a map of SNR/throughput for each
1878 * possible mode used */
1879 rxs
->qual
= rs
.rs_rssi
* 100 / 35;
1881 /* rssi can be more than 35 though, anything above that
1882 * should be considered at 100% */
1883 if (rxs
->qual
> 100)
1886 rxs
->antenna
= rs
.rs_antenna
;
1887 rxs
->rate_idx
= ath5k_hw_to_driver_rix(sc
, rs
.rs_rate
);
1888 rxs
->flag
|= ath5k_rx_decrypted(sc
, ds
, skb
, &rs
);
1890 if (rxs
->rate_idx
>= 0 && rs
.rs_rate
==
1891 sc
->curband
->bitrates
[rxs
->rate_idx
].hw_value_short
)
1892 rxs
->flag
|= RX_FLAG_SHORTPRE
;
1894 ath5k_debug_dump_skb(sc
, skb
, "RX ", 0);
1896 /* check beacons in IBSS mode */
1897 if (sc
->opmode
== NL80211_IFTYPE_ADHOC
)
1898 ath5k_check_ibss_tsf(sc
, skb
, rxs
);
1900 ieee80211_rx(sc
->hw
, skb
);
1903 bf
->skbaddr
= next_skb_addr
;
1905 list_move_tail(&bf
->list
, &sc
->rxbuf
);
1906 } while (ath5k_rxbuf_setup(sc
, bf
) == 0);
1908 spin_unlock(&sc
->rxbuflock
);
1919 ath5k_tx_processq(struct ath5k_softc
*sc
, struct ath5k_txq
*txq
)
1921 struct ath5k_tx_status ts
= {};
1922 struct ath5k_buf
*bf
, *bf0
;
1923 struct ath5k_desc
*ds
;
1924 struct sk_buff
*skb
;
1925 struct ieee80211_tx_info
*info
;
1928 spin_lock(&txq
->lock
);
1929 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1932 ret
= sc
->ah
->ah_proc_tx_desc(sc
->ah
, ds
, &ts
);
1933 if (unlikely(ret
== -EINPROGRESS
))
1935 else if (unlikely(ret
)) {
1936 ATH5K_ERR(sc
, "error %d while processing queue %u\n",
1942 info
= IEEE80211_SKB_CB(skb
);
1945 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, skb
->len
,
1948 ieee80211_tx_info_clear_status(info
);
1949 for (i
= 0; i
< 4; i
++) {
1950 struct ieee80211_tx_rate
*r
=
1951 &info
->status
.rates
[i
];
1953 if (ts
.ts_rate
[i
]) {
1954 r
->idx
= ath5k_hw_to_driver_rix(sc
, ts
.ts_rate
[i
]);
1955 r
->count
= ts
.ts_retry
[i
];
1962 /* count the successful attempt as well */
1963 info
->status
.rates
[ts
.ts_final_idx
].count
++;
1965 if (unlikely(ts
.ts_status
)) {
1966 sc
->ll_stats
.dot11ACKFailureCount
++;
1967 if (ts
.ts_status
& AR5K_TXERR_FILT
)
1968 info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
1970 info
->flags
|= IEEE80211_TX_STAT_ACK
;
1971 info
->status
.ack_signal
= ts
.ts_rssi
;
1974 ieee80211_tx_status(sc
->hw
, skb
);
1975 sc
->tx_stats
[txq
->qnum
].count
++;
1977 spin_lock(&sc
->txbuflock
);
1978 sc
->tx_stats
[txq
->qnum
].len
--;
1979 list_move_tail(&bf
->list
, &sc
->txbuf
);
1981 spin_unlock(&sc
->txbuflock
);
1983 if (likely(list_empty(&txq
->q
)))
1985 spin_unlock(&txq
->lock
);
1986 if (sc
->txbuf_len
> ATH_TXBUF
/ 5)
1987 ieee80211_wake_queues(sc
->hw
);
1991 ath5k_tasklet_tx(unsigned long data
)
1994 struct ath5k_softc
*sc
= (void *)data
;
1996 for (i
=0; i
< AR5K_NUM_TX_QUEUES
; i
++)
1997 if (sc
->txqs
[i
].setup
&& (sc
->ah
->ah_txq_isr
& BIT(i
)))
1998 ath5k_tx_processq(sc
, &sc
->txqs
[i
]);
2007 * Setup the beacon frame for transmit.
2010 ath5k_beacon_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
)
2012 struct sk_buff
*skb
= bf
->skb
;
2013 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2014 struct ath5k_hw
*ah
= sc
->ah
;
2015 struct ath5k_desc
*ds
;
2020 bf
->skbaddr
= pci_map_single(sc
->pdev
, skb
->data
, skb
->len
,
2022 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
, "skb %p [data %p len %u] "
2023 "skbaddr %llx\n", skb
, skb
->data
, skb
->len
,
2024 (unsigned long long)bf
->skbaddr
);
2025 if (pci_dma_mapping_error(sc
->pdev
, bf
->skbaddr
)) {
2026 ATH5K_ERR(sc
, "beacon DMA mapping failed\n");
2031 antenna
= ah
->ah_tx_ant
;
2033 flags
= AR5K_TXDESC_NOACK
;
2034 if (sc
->opmode
== NL80211_IFTYPE_ADHOC
&& ath5k_hw_hasveol(ah
)) {
2035 ds
->ds_link
= bf
->daddr
; /* self-linked */
2036 flags
|= AR5K_TXDESC_VEOL
;
2041 * If we use multiple antennas on AP and use
2042 * the Sectored AP scenario, switch antenna every
2043 * 4 beacons to make sure everybody hears our AP.
2044 * When a client tries to associate, hw will keep
2045 * track of the tx antenna to be used for this client
2046 * automaticaly, based on ACKed packets.
2048 * Note: AP still listens and transmits RTS on the
2049 * default antenna which is supposed to be an omni.
2051 * Note2: On sectored scenarios it's possible to have
2052 * multiple antennas (1omni -the default- and 14 sectors)
2053 * so if we choose to actually support this mode we need
2054 * to allow user to set how many antennas we have and tweak
2055 * the code below to send beacons on all of them.
2057 if (ah
->ah_ant_mode
== AR5K_ANTMODE_SECTOR_AP
)
2058 antenna
= sc
->bsent
& 4 ? 2 : 1;
2061 /* FIXME: If we are in g mode and rate is a CCK rate
2062 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
2063 * from tx power (value is in dB units already) */
2064 ds
->ds_data
= bf
->skbaddr
;
2065 ret
= ah
->ah_setup_tx_desc(ah
, ds
, skb
->len
,
2066 ieee80211_get_hdrlen_from_skb(skb
),
2067 AR5K_PKT_TYPE_BEACON
, (sc
->power_level
* 2),
2068 ieee80211_get_tx_rate(sc
->hw
, info
)->hw_value
,
2069 1, AR5K_TXKEYIX_INVALID
,
2070 antenna
, flags
, 0, 0);
2076 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, skb
->len
, PCI_DMA_TODEVICE
);
2081 * Transmit a beacon frame at SWBA. Dynamic updates to the
2082 * frame contents are done as needed and the slot time is
2083 * also adjusted based on current state.
2085 * This is called from software irq context (beacontq or restq
2086 * tasklets) or user context from ath5k_beacon_config.
2089 ath5k_beacon_send(struct ath5k_softc
*sc
)
2091 struct ath5k_buf
*bf
= sc
->bbuf
;
2092 struct ath5k_hw
*ah
= sc
->ah
;
2093 struct sk_buff
*skb
;
2095 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
, "in beacon_send\n");
2097 if (unlikely(bf
->skb
== NULL
|| sc
->opmode
== NL80211_IFTYPE_STATION
||
2098 sc
->opmode
== NL80211_IFTYPE_MONITOR
)) {
2099 ATH5K_WARN(sc
, "bf=%p bf_skb=%p\n", bf
, bf
? bf
->skb
: NULL
);
2103 * Check if the previous beacon has gone out. If
2104 * not don't don't try to post another, skip this
2105 * period and wait for the next. Missed beacons
2106 * indicate a problem and should not occur. If we
2107 * miss too many consecutive beacons reset the device.
2109 if (unlikely(ath5k_hw_num_tx_pending(ah
, sc
->bhalq
) != 0)) {
2111 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2112 "missed %u consecutive beacons\n", sc
->bmisscount
);
2113 if (sc
->bmisscount
> 10) { /* NB: 10 is a guess */
2114 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2115 "stuck beacon time (%u missed)\n",
2117 tasklet_schedule(&sc
->restq
);
2121 if (unlikely(sc
->bmisscount
!= 0)) {
2122 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2123 "resume beacon xmit after %u misses\n",
2129 * Stop any current dma and put the new frame on the queue.
2130 * This should never fail since we check above that no frames
2131 * are still pending on the queue.
2133 if (unlikely(ath5k_hw_stop_tx_dma(ah
, sc
->bhalq
))) {
2134 ATH5K_WARN(sc
, "beacon queue %u didn't start/stop ?\n", sc
->bhalq
);
2135 /* NB: hw still stops DMA, so proceed */
2138 /* refresh the beacon for AP mode */
2139 if (sc
->opmode
== NL80211_IFTYPE_AP
)
2140 ath5k_beacon_update(sc
->hw
, sc
->vif
);
2142 ath5k_hw_set_txdp(ah
, sc
->bhalq
, bf
->daddr
);
2143 ath5k_hw_start_tx_dma(ah
, sc
->bhalq
);
2144 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
, "TXDP[%u] = %llx (%p)\n",
2145 sc
->bhalq
, (unsigned long long)bf
->daddr
, bf
->desc
);
2147 skb
= ieee80211_get_buffered_bc(sc
->hw
, sc
->vif
);
2149 ath5k_tx_queue(sc
->hw
, skb
, sc
->cabq
);
2150 skb
= ieee80211_get_buffered_bc(sc
->hw
, sc
->vif
);
2158 * ath5k_beacon_update_timers - update beacon timers
2160 * @sc: struct ath5k_softc pointer we are operating on
2161 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2162 * beacon timer update based on the current HW TSF.
2164 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2165 * of a received beacon or the current local hardware TSF and write it to the
2166 * beacon timer registers.
2168 * This is called in a variety of situations, e.g. when a beacon is received,
2169 * when a TSF update has been detected, but also when an new IBSS is created or
2170 * when we otherwise know we have to update the timers, but we keep it in this
2171 * function to have it all together in one place.
2174 ath5k_beacon_update_timers(struct ath5k_softc
*sc
, u64 bc_tsf
)
2176 struct ath5k_hw
*ah
= sc
->ah
;
2177 u32 nexttbtt
, intval
, hw_tu
, bc_tu
;
2180 intval
= sc
->bintval
& AR5K_BEACON_PERIOD
;
2181 if (WARN_ON(!intval
))
2184 /* beacon TSF converted to TU */
2185 bc_tu
= TSF_TO_TU(bc_tsf
);
2187 /* current TSF converted to TU */
2188 hw_tsf
= ath5k_hw_get_tsf64(ah
);
2189 hw_tu
= TSF_TO_TU(hw_tsf
);
2192 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2195 * no beacons received, called internally.
2196 * just need to refresh timers based on HW TSF.
2198 nexttbtt
= roundup(hw_tu
+ FUDGE
, intval
);
2199 } else if (bc_tsf
== 0) {
2201 * no beacon received, probably called by ath5k_reset_tsf().
2202 * reset TSF to start with 0.
2205 intval
|= AR5K_BEACON_RESET_TSF
;
2206 } else if (bc_tsf
> hw_tsf
) {
2208 * beacon received, SW merge happend but HW TSF not yet updated.
2209 * not possible to reconfigure timers yet, but next time we
2210 * receive a beacon with the same BSSID, the hardware will
2211 * automatically update the TSF and then we need to reconfigure
2214 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2215 "need to wait for HW TSF sync\n");
2219 * most important case for beacon synchronization between STA.
2221 * beacon received and HW TSF has been already updated by HW.
2222 * update next TBTT based on the TSF of the beacon, but make
2223 * sure it is ahead of our local TSF timer.
2225 nexttbtt
= bc_tu
+ roundup(hw_tu
+ FUDGE
- bc_tu
, intval
);
2229 sc
->nexttbtt
= nexttbtt
;
2231 intval
|= AR5K_BEACON_ENA
;
2232 ath5k_hw_init_beacon(ah
, nexttbtt
, intval
);
2235 * debugging output last in order to preserve the time critical aspect
2239 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2240 "reconfigured timers based on HW TSF\n");
2241 else if (bc_tsf
== 0)
2242 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2243 "reset HW TSF and timers\n");
2245 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2246 "updated timers based on beacon TSF\n");
2248 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2249 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2250 (unsigned long long) bc_tsf
,
2251 (unsigned long long) hw_tsf
, bc_tu
, hw_tu
, nexttbtt
);
2252 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
, "intval %u %s %s\n",
2253 intval
& AR5K_BEACON_PERIOD
,
2254 intval
& AR5K_BEACON_ENA
? "AR5K_BEACON_ENA" : "",
2255 intval
& AR5K_BEACON_RESET_TSF
? "AR5K_BEACON_RESET_TSF" : "");
2260 * ath5k_beacon_config - Configure the beacon queues and interrupts
2262 * @sc: struct ath5k_softc pointer we are operating on
2264 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2265 * interrupts to detect TSF updates only.
2268 ath5k_beacon_config(struct ath5k_softc
*sc
)
2270 struct ath5k_hw
*ah
= sc
->ah
;
2271 unsigned long flags
;
2273 spin_lock_irqsave(&sc
->block
, flags
);
2275 sc
->imask
&= ~(AR5K_INT_BMISS
| AR5K_INT_SWBA
);
2277 if (sc
->enable_beacon
) {
2279 * In IBSS mode we use a self-linked tx descriptor and let the
2280 * hardware send the beacons automatically. We have to load it
2282 * We use the SWBA interrupt only to keep track of the beacon
2283 * timers in order to detect automatic TSF updates.
2285 ath5k_beaconq_config(sc
);
2287 sc
->imask
|= AR5K_INT_SWBA
;
2289 if (sc
->opmode
== NL80211_IFTYPE_ADHOC
) {
2290 if (ath5k_hw_hasveol(ah
))
2291 ath5k_beacon_send(sc
);
2293 ath5k_beacon_update_timers(sc
, -1);
2295 ath5k_hw_stop_tx_dma(sc
->ah
, sc
->bhalq
);
2298 ath5k_hw_set_imr(ah
, sc
->imask
);
2300 spin_unlock_irqrestore(&sc
->block
, flags
);
2303 static void ath5k_tasklet_beacon(unsigned long data
)
2305 struct ath5k_softc
*sc
= (struct ath5k_softc
*) data
;
2308 * Software beacon alert--time to send a beacon.
2310 * In IBSS mode we use this interrupt just to
2311 * keep track of the next TBTT (target beacon
2312 * transmission time) in order to detect wether
2313 * automatic TSF updates happened.
2315 if (sc
->opmode
== NL80211_IFTYPE_ADHOC
) {
2316 /* XXX: only if VEOL suppported */
2317 u64 tsf
= ath5k_hw_get_tsf64(sc
->ah
);
2318 sc
->nexttbtt
+= sc
->bintval
;
2319 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2320 "SWBA nexttbtt: %x hw_tu: %x "
2324 (unsigned long long) tsf
);
2326 spin_lock(&sc
->block
);
2327 ath5k_beacon_send(sc
);
2328 spin_unlock(&sc
->block
);
2333 /********************\
2334 * Interrupt handling *
2335 \********************/
2338 ath5k_init(struct ath5k_softc
*sc
)
2340 struct ath5k_hw
*ah
= sc
->ah
;
2343 mutex_lock(&sc
->lock
);
2345 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "mode %d\n", sc
->opmode
);
2348 * Stop anything previously setup. This is safe
2349 * no matter this is the first time through or not.
2351 ath5k_stop_locked(sc
);
2354 * The basic interface to setting the hardware in a good
2355 * state is ``reset''. On return the hardware is known to
2356 * be powered up and with interrupts disabled. This must
2357 * be followed by initialization of the appropriate bits
2358 * and then setup of the interrupt mask.
2360 sc
->curchan
= sc
->hw
->conf
.channel
;
2361 sc
->curband
= &sc
->sbands
[sc
->curchan
->band
];
2362 sc
->imask
= AR5K_INT_RXOK
| AR5K_INT_RXERR
| AR5K_INT_RXEOL
|
2363 AR5K_INT_RXORN
| AR5K_INT_TXDESC
| AR5K_INT_TXEOL
|
2364 AR5K_INT_FATAL
| AR5K_INT_GLOBAL
| AR5K_INT_SWI
;
2365 ret
= ath5k_reset(sc
, NULL
);
2369 ath5k_rfkill_hw_start(ah
);
2372 * Reset the key cache since some parts do not reset the
2373 * contents on initial power up or resume from suspend.
2375 for (i
= 0; i
< AR5K_KEYTABLE_SIZE
; i
++)
2376 ath5k_hw_reset_key(ah
, i
);
2378 /* Set ack to be sent at low bit-rates */
2379 ath5k_hw_set_ack_bitrate_high(ah
, false);
2381 /* Set PHY calibration inteval */
2382 ah
->ah_cal_intval
= ath5k_calinterval
;
2387 mutex_unlock(&sc
->lock
);
2392 ath5k_stop_locked(struct ath5k_softc
*sc
)
2394 struct ath5k_hw
*ah
= sc
->ah
;
2396 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "invalid %u\n",
2397 test_bit(ATH_STAT_INVALID
, sc
->status
));
2400 * Shutdown the hardware and driver:
2401 * stop output from above
2402 * disable interrupts
2404 * turn off the radio
2405 * clear transmit machinery
2406 * clear receive machinery
2407 * drain and release tx queues
2408 * reclaim beacon resources
2409 * power down hardware
2411 * Note that some of this work is not possible if the
2412 * hardware is gone (invalid).
2414 ieee80211_stop_queues(sc
->hw
);
2416 if (!test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2418 ath5k_hw_set_imr(ah
, 0);
2419 synchronize_irq(sc
->pdev
->irq
);
2421 ath5k_txq_cleanup(sc
);
2422 if (!test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2424 ath5k_hw_phy_disable(ah
);
2432 * Stop the device, grabbing the top-level lock to protect
2433 * against concurrent entry through ath5k_init (which can happen
2434 * if another thread does a system call and the thread doing the
2435 * stop is preempted).
2438 ath5k_stop_hw(struct ath5k_softc
*sc
)
2442 mutex_lock(&sc
->lock
);
2443 ret
= ath5k_stop_locked(sc
);
2444 if (ret
== 0 && !test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2446 * Don't set the card in full sleep mode!
2448 * a) When the device is in this state it must be carefully
2449 * woken up or references to registers in the PCI clock
2450 * domain may freeze the bus (and system). This varies
2451 * by chip and is mostly an issue with newer parts
2452 * (madwifi sources mentioned srev >= 0x78) that go to
2453 * sleep more quickly.
2455 * b) On older chips full sleep results a weird behaviour
2456 * during wakeup. I tested various cards with srev < 0x78
2457 * and they don't wake up after module reload, a second
2458 * module reload is needed to bring the card up again.
2460 * Until we figure out what's going on don't enable
2461 * full chip reset on any chip (this is what Legacy HAL
2462 * and Sam's HAL do anyway). Instead Perform a full reset
2463 * on the device (same as initial state after attach) and
2464 * leave it idle (keep MAC/BB on warm reset) */
2465 ret
= ath5k_hw_on_hold(sc
->ah
);
2467 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
,
2468 "putting device to sleep\n");
2470 ath5k_txbuf_free(sc
, sc
->bbuf
);
2473 mutex_unlock(&sc
->lock
);
2475 tasklet_kill(&sc
->rxtq
);
2476 tasklet_kill(&sc
->txtq
);
2477 tasklet_kill(&sc
->restq
);
2478 tasklet_kill(&sc
->calib
);
2479 tasklet_kill(&sc
->beacontq
);
2481 ath5k_rfkill_hw_stop(sc
->ah
);
2487 ath5k_intr(int irq
, void *dev_id
)
2489 struct ath5k_softc
*sc
= dev_id
;
2490 struct ath5k_hw
*ah
= sc
->ah
;
2491 enum ath5k_int status
;
2492 unsigned int counter
= 1000;
2494 if (unlikely(test_bit(ATH_STAT_INVALID
, sc
->status
) ||
2495 !ath5k_hw_is_intr_pending(ah
)))
2499 ath5k_hw_get_isr(ah
, &status
); /* NB: clears IRQ too */
2500 ATH5K_DBG(sc
, ATH5K_DEBUG_INTR
, "status 0x%x/0x%x\n",
2502 if (unlikely(status
& AR5K_INT_FATAL
)) {
2504 * Fatal errors are unrecoverable.
2505 * Typically these are caused by DMA errors.
2507 tasklet_schedule(&sc
->restq
);
2508 } else if (unlikely(status
& AR5K_INT_RXORN
)) {
2509 tasklet_schedule(&sc
->restq
);
2511 if (status
& AR5K_INT_SWBA
) {
2512 tasklet_hi_schedule(&sc
->beacontq
);
2514 if (status
& AR5K_INT_RXEOL
) {
2516 * NB: the hardware should re-read the link when
2517 * RXE bit is written, but it doesn't work at
2518 * least on older hardware revs.
2522 if (status
& AR5K_INT_TXURN
) {
2523 /* bump tx trigger level */
2524 ath5k_hw_update_tx_triglevel(ah
, true);
2526 if (status
& (AR5K_INT_RXOK
| AR5K_INT_RXERR
))
2527 tasklet_schedule(&sc
->rxtq
);
2528 if (status
& (AR5K_INT_TXOK
| AR5K_INT_TXDESC
2529 | AR5K_INT_TXERR
| AR5K_INT_TXEOL
))
2530 tasklet_schedule(&sc
->txtq
);
2531 if (status
& AR5K_INT_BMISS
) {
2534 if (status
& AR5K_INT_SWI
) {
2535 tasklet_schedule(&sc
->calib
);
2537 if (status
& AR5K_INT_MIB
) {
2539 * These stats are also used for ANI i think
2540 * so how about updating them more often ?
2542 ath5k_hw_update_mib_counters(ah
, &sc
->ll_stats
);
2544 if (status
& AR5K_INT_GPIO
)
2545 tasklet_schedule(&sc
->rf_kill
.toggleq
);
2548 } while (ath5k_hw_is_intr_pending(ah
) && --counter
> 0);
2550 if (unlikely(!counter
))
2551 ATH5K_WARN(sc
, "too many interrupts, giving up for now\n");
2553 ath5k_hw_calibration_poll(ah
);
2559 ath5k_tasklet_reset(unsigned long data
)
2561 struct ath5k_softc
*sc
= (void *)data
;
2563 ath5k_reset_wake(sc
);
2567 * Periodically recalibrate the PHY to account
2568 * for temperature/environment changes.
2571 ath5k_tasklet_calibrate(unsigned long data
)
2573 struct ath5k_softc
*sc
= (void *)data
;
2574 struct ath5k_hw
*ah
= sc
->ah
;
2576 /* Only full calibration for now */
2577 if (ah
->ah_swi_mask
!= AR5K_SWI_FULL_CALIBRATION
)
2580 /* Stop queues so that calibration
2581 * doesn't interfere with tx */
2582 ieee80211_stop_queues(sc
->hw
);
2584 ATH5K_DBG(sc
, ATH5K_DEBUG_CALIBRATE
, "channel %u/%x\n",
2585 ieee80211_frequency_to_channel(sc
->curchan
->center_freq
),
2586 sc
->curchan
->hw_value
);
2588 if (ath5k_hw_gainf_calibrate(ah
) == AR5K_RFGAIN_NEED_CHANGE
) {
2590 * Rfgain is out of bounds, reset the chip
2591 * to load new gain values.
2593 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "calibration, resetting\n");
2594 ath5k_reset_wake(sc
);
2596 if (ath5k_hw_phy_calibrate(ah
, sc
->curchan
))
2597 ATH5K_ERR(sc
, "calibration of channel %u failed\n",
2598 ieee80211_frequency_to_channel(
2599 sc
->curchan
->center_freq
));
2601 ah
->ah_swi_mask
= 0;
2604 ieee80211_wake_queues(sc
->hw
);
2609 /********************\
2610 * Mac80211 functions *
2611 \********************/
2614 ath5k_tx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
2616 struct ath5k_softc
*sc
= hw
->priv
;
2618 return ath5k_tx_queue(hw
, skb
, sc
->txq
);
2621 static int ath5k_tx_queue(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2622 struct ath5k_txq
*txq
)
2624 struct ath5k_softc
*sc
= hw
->priv
;
2625 struct ath5k_buf
*bf
;
2626 unsigned long flags
;
2630 ath5k_debug_dump_skb(sc
, skb
, "TX ", 1);
2632 if (sc
->opmode
== NL80211_IFTYPE_MONITOR
)
2633 ATH5K_DBG(sc
, ATH5K_DEBUG_XMIT
, "tx in monitor (scan?)\n");
2636 * the hardware expects the header padded to 4 byte boundaries
2637 * if this is not the case we add the padding after the header
2639 hdrlen
= ieee80211_get_hdrlen_from_skb(skb
);
2640 padsize
= ath5k_pad_size(hdrlen
);
2643 if (skb_headroom(skb
) < padsize
) {
2644 ATH5K_ERR(sc
, "tx hdrlen not %%4: %d not enough"
2645 " headroom to pad %d\n", hdrlen
, padsize
);
2648 skb_push(skb
, padsize
);
2649 memmove(skb
->data
, skb
->data
+padsize
, hdrlen
);
2652 spin_lock_irqsave(&sc
->txbuflock
, flags
);
2653 if (list_empty(&sc
->txbuf
)) {
2654 ATH5K_ERR(sc
, "no further txbuf available, dropping packet\n");
2655 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
2656 ieee80211_stop_queue(hw
, skb_get_queue_mapping(skb
));
2659 bf
= list_first_entry(&sc
->txbuf
, struct ath5k_buf
, list
);
2660 list_del(&bf
->list
);
2662 if (list_empty(&sc
->txbuf
))
2663 ieee80211_stop_queues(hw
);
2664 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
2668 if (ath5k_txbuf_setup(sc
, bf
, txq
)) {
2670 spin_lock_irqsave(&sc
->txbuflock
, flags
);
2671 list_add_tail(&bf
->list
, &sc
->txbuf
);
2673 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
2676 return NETDEV_TX_OK
;
2679 dev_kfree_skb_any(skb
);
2680 return NETDEV_TX_OK
;
2684 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2685 * and change to the given channel.
2688 ath5k_reset(struct ath5k_softc
*sc
, struct ieee80211_channel
*chan
)
2690 struct ath5k_hw
*ah
= sc
->ah
;
2693 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "resetting\n");
2696 ath5k_hw_set_imr(ah
, 0);
2697 ath5k_txq_cleanup(sc
);
2701 sc
->curband
= &sc
->sbands
[chan
->band
];
2703 ret
= ath5k_hw_reset(ah
, sc
->opmode
, sc
->curchan
, chan
!= NULL
);
2705 ATH5K_ERR(sc
, "can't reset hardware (%d)\n", ret
);
2709 ret
= ath5k_rx_start(sc
);
2711 ATH5K_ERR(sc
, "can't start recv logic\n");
2716 * Change channels and update the h/w rate map if we're switching;
2717 * e.g. 11a to 11b/g.
2719 * We may be doing a reset in response to an ioctl that changes the
2720 * channel so update any state that might change as a result.
2724 /* ath5k_chan_change(sc, c); */
2726 ath5k_beacon_config(sc
);
2727 /* intrs are enabled by ath5k_beacon_config */
2735 ath5k_reset_wake(struct ath5k_softc
*sc
)
2739 ret
= ath5k_reset(sc
, sc
->curchan
);
2741 ieee80211_wake_queues(sc
->hw
);
2746 static int ath5k_start(struct ieee80211_hw
*hw
)
2748 return ath5k_init(hw
->priv
);
2751 static void ath5k_stop(struct ieee80211_hw
*hw
)
2753 ath5k_stop_hw(hw
->priv
);
2756 static int ath5k_add_interface(struct ieee80211_hw
*hw
,
2757 struct ieee80211_if_init_conf
*conf
)
2759 struct ath5k_softc
*sc
= hw
->priv
;
2762 mutex_lock(&sc
->lock
);
2768 sc
->vif
= conf
->vif
;
2770 switch (conf
->type
) {
2771 case NL80211_IFTYPE_AP
:
2772 case NL80211_IFTYPE_STATION
:
2773 case NL80211_IFTYPE_ADHOC
:
2774 case NL80211_IFTYPE_MESH_POINT
:
2775 case NL80211_IFTYPE_MONITOR
:
2776 sc
->opmode
= conf
->type
;
2783 ath5k_hw_set_lladdr(sc
->ah
, conf
->mac_addr
);
2784 ath5k_mode_setup(sc
);
2788 mutex_unlock(&sc
->lock
);
2793 ath5k_remove_interface(struct ieee80211_hw
*hw
,
2794 struct ieee80211_if_init_conf
*conf
)
2796 struct ath5k_softc
*sc
= hw
->priv
;
2797 u8 mac
[ETH_ALEN
] = {};
2799 mutex_lock(&sc
->lock
);
2800 if (sc
->vif
!= conf
->vif
)
2803 ath5k_hw_set_lladdr(sc
->ah
, mac
);
2806 mutex_unlock(&sc
->lock
);
2810 * TODO: Phy disable/diversity etc
2813 ath5k_config(struct ieee80211_hw
*hw
, u32 changed
)
2815 struct ath5k_softc
*sc
= hw
->priv
;
2816 struct ath5k_hw
*ah
= sc
->ah
;
2817 struct ieee80211_conf
*conf
= &hw
->conf
;
2820 mutex_lock(&sc
->lock
);
2822 if (changed
& IEEE80211_CONF_CHANGE_CHANNEL
) {
2823 ret
= ath5k_chan_set(sc
, conf
->channel
);
2828 if ((changed
& IEEE80211_CONF_CHANGE_POWER
) &&
2829 (sc
->power_level
!= conf
->power_level
)) {
2830 sc
->power_level
= conf
->power_level
;
2833 ath5k_hw_set_txpower_limit(ah
, (conf
->power_level
* 2));
2837 * 1) Move this on config_interface and handle each case
2838 * separately eg. when we have only one STA vif, use
2839 * AR5K_ANTMODE_SINGLE_AP
2841 * 2) Allow the user to change antenna mode eg. when only
2842 * one antenna is present
2844 * 3) Allow the user to set default/tx antenna when possible
2846 * 4) Default mode should handle 90% of the cases, together
2847 * with fixed a/b and single AP modes we should be able to
2848 * handle 99%. Sectored modes are extreme cases and i still
2849 * haven't found a usage for them. If we decide to support them,
2850 * then we must allow the user to set how many tx antennas we
2853 ath5k_hw_set_antenna_mode(ah
, AR5K_ANTMODE_DEFAULT
);
2856 mutex_unlock(&sc
->lock
);
2860 static u64
ath5k_prepare_multicast(struct ieee80211_hw
*hw
,
2861 int mc_count
, struct dev_addr_list
*mclist
)
2870 for (i
= 0; i
< mc_count
; i
++) {
2873 /* calculate XOR of eight 6-bit values */
2874 val
= get_unaligned_le32(mclist
->dmi_addr
+ 0);
2875 pos
= (val
>> 18) ^ (val
>> 12) ^ (val
>> 6) ^ val
;
2876 val
= get_unaligned_le32(mclist
->dmi_addr
+ 3);
2877 pos
^= (val
>> 18) ^ (val
>> 12) ^ (val
>> 6) ^ val
;
2879 mfilt
[pos
/ 32] |= (1 << (pos
% 32));
2880 /* XXX: we might be able to just do this instead,
2881 * but not sure, needs testing, if we do use this we'd
2882 * neet to inform below to not reset the mcast */
2883 /* ath5k_hw_set_mcast_filterindex(ah,
2884 * mclist->dmi_addr[5]); */
2885 mclist
= mclist
->next
;
2888 return ((u64
)(mfilt
[1]) << 32) | mfilt
[0];
2891 #define SUPPORTED_FIF_FLAGS \
2892 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2893 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2894 FIF_BCN_PRBRESP_PROMISC
2896 * o always accept unicast, broadcast, and multicast traffic
2897 * o multicast traffic for all BSSIDs will be enabled if mac80211
2899 * o maintain current state of phy ofdm or phy cck error reception.
2900 * If the hardware detects any of these type of errors then
2901 * ath5k_hw_get_rx_filter() will pass to us the respective
2902 * hardware filters to be able to receive these type of frames.
2903 * o probe request frames are accepted only when operating in
2904 * hostap, adhoc, or monitor modes
2905 * o enable promiscuous mode according to the interface state
2907 * - when operating in adhoc mode so the 802.11 layer creates
2908 * node table entries for peers,
2909 * - when operating in station mode for collecting rssi data when
2910 * the station is otherwise quiet, or
2913 static void ath5k_configure_filter(struct ieee80211_hw
*hw
,
2914 unsigned int changed_flags
,
2915 unsigned int *new_flags
,
2918 struct ath5k_softc
*sc
= hw
->priv
;
2919 struct ath5k_hw
*ah
= sc
->ah
;
2920 u32 mfilt
[2], rfilt
;
2922 mutex_lock(&sc
->lock
);
2924 mfilt
[0] = multicast
;
2925 mfilt
[1] = multicast
>> 32;
2927 /* Only deal with supported flags */
2928 changed_flags
&= SUPPORTED_FIF_FLAGS
;
2929 *new_flags
&= SUPPORTED_FIF_FLAGS
;
2931 /* If HW detects any phy or radar errors, leave those filters on.
2932 * Also, always enable Unicast, Broadcasts and Multicast
2933 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2934 rfilt
= (ath5k_hw_get_rx_filter(ah
) & (AR5K_RX_FILTER_PHYERR
)) |
2935 (AR5K_RX_FILTER_UCAST
| AR5K_RX_FILTER_BCAST
|
2936 AR5K_RX_FILTER_MCAST
);
2938 if (changed_flags
& (FIF_PROMISC_IN_BSS
| FIF_OTHER_BSS
)) {
2939 if (*new_flags
& FIF_PROMISC_IN_BSS
) {
2940 rfilt
|= AR5K_RX_FILTER_PROM
;
2941 __set_bit(ATH_STAT_PROMISC
, sc
->status
);
2943 __clear_bit(ATH_STAT_PROMISC
, sc
->status
);
2947 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2948 if (*new_flags
& FIF_ALLMULTI
) {
2953 /* This is the best we can do */
2954 if (*new_flags
& (FIF_FCSFAIL
| FIF_PLCPFAIL
))
2955 rfilt
|= AR5K_RX_FILTER_PHYERR
;
2957 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2958 * and probes for any BSSID, this needs testing */
2959 if (*new_flags
& FIF_BCN_PRBRESP_PROMISC
)
2960 rfilt
|= AR5K_RX_FILTER_BEACON
| AR5K_RX_FILTER_PROBEREQ
;
2962 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2963 * set we should only pass on control frames for this
2964 * station. This needs testing. I believe right now this
2965 * enables *all* control frames, which is OK.. but
2966 * but we should see if we can improve on granularity */
2967 if (*new_flags
& FIF_CONTROL
)
2968 rfilt
|= AR5K_RX_FILTER_CONTROL
;
2970 /* Additional settings per mode -- this is per ath5k */
2972 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2974 switch (sc
->opmode
) {
2975 case NL80211_IFTYPE_MESH_POINT
:
2976 case NL80211_IFTYPE_MONITOR
:
2977 rfilt
|= AR5K_RX_FILTER_CONTROL
|
2978 AR5K_RX_FILTER_BEACON
|
2979 AR5K_RX_FILTER_PROBEREQ
|
2980 AR5K_RX_FILTER_PROM
;
2982 case NL80211_IFTYPE_AP
:
2983 case NL80211_IFTYPE_ADHOC
:
2984 rfilt
|= AR5K_RX_FILTER_PROBEREQ
|
2985 AR5K_RX_FILTER_BEACON
;
2987 case NL80211_IFTYPE_STATION
:
2989 rfilt
|= AR5K_RX_FILTER_BEACON
;
2995 ath5k_hw_set_rx_filter(ah
, rfilt
);
2997 /* Set multicast bits */
2998 ath5k_hw_set_mcast_filter(ah
, mfilt
[0], mfilt
[1]);
2999 /* Set the cached hw filter flags, this will alter actually
3001 sc
->filter_flags
= rfilt
;
3003 mutex_unlock(&sc
->lock
);
3007 ath5k_set_key(struct ieee80211_hw
*hw
, enum set_key_cmd cmd
,
3008 struct ieee80211_vif
*vif
, struct ieee80211_sta
*sta
,
3009 struct ieee80211_key_conf
*key
)
3011 struct ath5k_softc
*sc
= hw
->priv
;
3014 if (modparam_nohwcrypt
)
3017 if (sc
->opmode
== NL80211_IFTYPE_AP
)
3025 if (sc
->ah
->ah_aes_support
)
3034 mutex_lock(&sc
->lock
);
3038 ret
= ath5k_hw_set_key(sc
->ah
, key
->keyidx
, key
,
3039 sta
? sta
->addr
: NULL
);
3041 ATH5K_ERR(sc
, "can't set the key\n");
3044 __set_bit(key
->keyidx
, sc
->keymap
);
3045 key
->hw_key_idx
= key
->keyidx
;
3046 key
->flags
|= (IEEE80211_KEY_FLAG_GENERATE_IV
|
3047 IEEE80211_KEY_FLAG_GENERATE_MMIC
);
3050 ath5k_hw_reset_key(sc
->ah
, key
->keyidx
);
3051 __clear_bit(key
->keyidx
, sc
->keymap
);
3060 mutex_unlock(&sc
->lock
);
3065 ath5k_get_stats(struct ieee80211_hw
*hw
,
3066 struct ieee80211_low_level_stats
*stats
)
3068 struct ath5k_softc
*sc
= hw
->priv
;
3069 struct ath5k_hw
*ah
= sc
->ah
;
3072 ath5k_hw_update_mib_counters(ah
, &sc
->ll_stats
);
3074 memcpy(stats
, &sc
->ll_stats
, sizeof(sc
->ll_stats
));
3080 ath5k_get_tx_stats(struct ieee80211_hw
*hw
,
3081 struct ieee80211_tx_queue_stats
*stats
)
3083 struct ath5k_softc
*sc
= hw
->priv
;
3085 memcpy(stats
, &sc
->tx_stats
, sizeof(sc
->tx_stats
));
3091 ath5k_get_tsf(struct ieee80211_hw
*hw
)
3093 struct ath5k_softc
*sc
= hw
->priv
;
3095 return ath5k_hw_get_tsf64(sc
->ah
);
3099 ath5k_set_tsf(struct ieee80211_hw
*hw
, u64 tsf
)
3101 struct ath5k_softc
*sc
= hw
->priv
;
3103 ath5k_hw_set_tsf64(sc
->ah
, tsf
);
3107 ath5k_reset_tsf(struct ieee80211_hw
*hw
)
3109 struct ath5k_softc
*sc
= hw
->priv
;
3112 * in IBSS mode we need to update the beacon timers too.
3113 * this will also reset the TSF if we call it with 0
3115 if (sc
->opmode
== NL80211_IFTYPE_ADHOC
)
3116 ath5k_beacon_update_timers(sc
, 0);
3118 ath5k_hw_reset_tsf(sc
->ah
);
3122 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
3123 * this is called only once at config_bss time, for AP we do it every
3124 * SWBA interrupt so that the TIM will reflect buffered frames.
3126 * Called with the beacon lock.
3129 ath5k_beacon_update(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
3132 struct ath5k_softc
*sc
= hw
->priv
;
3133 struct sk_buff
*skb
;
3135 if (WARN_ON(!vif
)) {
3140 skb
= ieee80211_beacon_get(hw
, vif
);
3147 ath5k_debug_dump_skb(sc
, skb
, "BC ", 1);
3149 ath5k_txbuf_free(sc
, sc
->bbuf
);
3150 sc
->bbuf
->skb
= skb
;
3151 ret
= ath5k_beacon_setup(sc
, sc
->bbuf
);
3153 sc
->bbuf
->skb
= NULL
;
3159 set_beacon_filter(struct ieee80211_hw
*hw
, bool enable
)
3161 struct ath5k_softc
*sc
= hw
->priv
;
3162 struct ath5k_hw
*ah
= sc
->ah
;
3164 rfilt
= ath5k_hw_get_rx_filter(ah
);
3166 rfilt
|= AR5K_RX_FILTER_BEACON
;
3168 rfilt
&= ~AR5K_RX_FILTER_BEACON
;
3169 ath5k_hw_set_rx_filter(ah
, rfilt
);
3170 sc
->filter_flags
= rfilt
;
3173 static void ath5k_bss_info_changed(struct ieee80211_hw
*hw
,
3174 struct ieee80211_vif
*vif
,
3175 struct ieee80211_bss_conf
*bss_conf
,
3178 struct ath5k_softc
*sc
= hw
->priv
;
3179 struct ath5k_hw
*ah
= sc
->ah
;
3180 unsigned long flags
;
3182 mutex_lock(&sc
->lock
);
3183 if (WARN_ON(sc
->vif
!= vif
))
3186 if (changes
& BSS_CHANGED_BSSID
) {
3187 /* Cache for later use during resets */
3188 memcpy(ah
->ah_bssid
, bss_conf
->bssid
, ETH_ALEN
);
3189 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
3190 * a clean way of letting us retrieve this yet. */
3191 ath5k_hw_set_associd(ah
, ah
->ah_bssid
, 0);
3195 if (changes
& BSS_CHANGED_BEACON_INT
)
3196 sc
->bintval
= bss_conf
->beacon_int
;
3198 if (changes
& BSS_CHANGED_ASSOC
) {
3199 sc
->assoc
= bss_conf
->assoc
;
3200 if (sc
->opmode
== NL80211_IFTYPE_STATION
)
3201 set_beacon_filter(hw
, sc
->assoc
);
3202 ath5k_hw_set_ledstate(sc
->ah
, sc
->assoc
?
3203 AR5K_LED_ASSOC
: AR5K_LED_INIT
);
3206 if (changes
& BSS_CHANGED_BEACON
) {
3207 spin_lock_irqsave(&sc
->block
, flags
);
3208 ath5k_beacon_update(hw
, vif
);
3209 spin_unlock_irqrestore(&sc
->block
, flags
);
3212 if (changes
& BSS_CHANGED_BEACON_ENABLED
)
3213 sc
->enable_beacon
= bss_conf
->enable_beacon
;
3215 if (changes
& (BSS_CHANGED_BEACON
| BSS_CHANGED_BEACON_ENABLED
|
3216 BSS_CHANGED_BEACON_INT
))
3217 ath5k_beacon_config(sc
);
3220 mutex_unlock(&sc
->lock
);
3223 static void ath5k_sw_scan_start(struct ieee80211_hw
*hw
)
3225 struct ath5k_softc
*sc
= hw
->priv
;
3227 ath5k_hw_set_ledstate(sc
->ah
, AR5K_LED_SCAN
);
3230 static void ath5k_sw_scan_complete(struct ieee80211_hw
*hw
)
3232 struct ath5k_softc
*sc
= hw
->priv
;
3233 ath5k_hw_set_ledstate(sc
->ah
, sc
->assoc
?
3234 AR5K_LED_ASSOC
: AR5K_LED_INIT
);