x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath5k / phy.c
blob1a039f2bd7327d86c50cb04847db94f07a380c17
1 /*
2 * PHY functions
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 #define _ATH5K_PHY
25 #include <linux/delay.h>
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "base.h"
30 #include "rfbuffer.h"
31 #include "rfgain.h"
34 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
36 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37 const struct ath5k_rf_reg *rf_regs,
38 u32 val, u8 reg_id, bool set)
40 const struct ath5k_rf_reg *rfreg = NULL;
41 u8 offset, bank, num_bits, col, position;
42 u16 entry;
43 u32 mask, data, last_bit, bits_shifted, first_bit;
44 u32 *rfb;
45 s32 bits_left;
46 int i;
48 data = 0;
49 rfb = ah->ah_rf_banks;
51 for (i = 0; i < ah->ah_rf_regs_count; i++) {
52 if (rf_regs[i].index == reg_id) {
53 rfreg = &rf_regs[i];
54 break;
58 if (rfb == NULL || rfreg == NULL) {
59 ATH5K_PRINTF("Rf register not found!\n");
60 /* should not happen */
61 return 0;
64 bank = rfreg->bank;
65 num_bits = rfreg->field.len;
66 first_bit = rfreg->field.pos;
67 col = rfreg->field.col;
69 /* first_bit is an offset from bank's
70 * start. Since we have all banks on
71 * the same array, we use this offset
72 * to mark each bank's start */
73 offset = ah->ah_offset[bank];
75 /* Boundary check */
76 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77 ATH5K_PRINTF("invalid values at offset %u\n", offset);
78 return 0;
81 entry = ((first_bit - 1) / 8) + offset;
82 position = (first_bit - 1) % 8;
84 if (set)
85 data = ath5k_hw_bitswap(val, num_bits);
87 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88 position = 0, entry++) {
90 last_bit = (position + bits_left > 8) ? 8 :
91 position + bits_left;
93 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
94 (col * 8);
96 if (set) {
97 rfb[entry] &= ~mask;
98 rfb[entry] |= ((data << position) << (col * 8)) & mask;
99 data >>= (8 - position);
100 } else {
101 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
102 << bits_shifted;
103 bits_shifted += last_bit - position;
106 bits_left -= 8 - position;
109 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
111 return data;
114 /**********************\
115 * RF Gain optimization *
116 \**********************/
119 * This code is used to optimize rf gain on different environments
120 * (temprature mostly) based on feedback from a power detector.
122 * It's only used on RF5111 and RF5112, later RF chips seem to have
123 * auto adjustment on hw -notice they have a much smaller BANK 7 and
124 * no gain optimization ladder-.
126 * For more infos check out this patent doc
127 * http://www.freepatentsonline.com/7400691.html
129 * This paper describes power drops as seen on the receiver due to
130 * probe packets
131 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132 * %20of%20Power%20Control.pdf
134 * And this is the MadWiFi bug entry related to the above
135 * http://madwifi-project.org/ticket/1659
136 * with various measurements and diagrams
138 * TODO: Deal with power drops due to probes by setting an apropriate
139 * tx power on the probe packets ! Make this part of the calibration process.
142 /* Initialize ah_gain durring attach */
143 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
145 /* Initialize the gain optimization values */
146 switch (ah->ah_radio) {
147 case AR5K_RF5111:
148 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149 ah->ah_gain.g_low = 20;
150 ah->ah_gain.g_high = 35;
151 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
152 break;
153 case AR5K_RF5112:
154 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155 ah->ah_gain.g_low = 20;
156 ah->ah_gain.g_high = 85;
157 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
158 break;
159 default:
160 return -EINVAL;
163 return 0;
166 /* Schedule a gain probe check on the next transmited packet.
167 * That means our next packet is going to be sent with lower
168 * tx power and a Peak to Average Power Detector (PAPD) will try
169 * to measure the gain.
171 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
172 * just after we enable the probe so that we don't mess with
173 * standard traffic ? Maybe it's time to use sw interrupts and
174 * a probe tasklet !!!
176 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
179 /* Skip if gain calibration is inactive or
180 * we already handle a probe request */
181 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
182 return;
184 /* Send the packet with 2dB below max power as
185 * patent doc suggest */
186 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
187 AR5K_PHY_PAPD_PROBE_TXPOWER) |
188 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
190 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
194 /* Calculate gain_F measurement correction
195 * based on the current step for RF5112 rev. 2 */
196 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
198 u32 mix, step;
199 u32 *rf;
200 const struct ath5k_gain_opt *go;
201 const struct ath5k_gain_opt_step *g_step;
202 const struct ath5k_rf_reg *rf_regs;
204 /* Only RF5112 Rev. 2 supports it */
205 if ((ah->ah_radio != AR5K_RF5112) ||
206 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
207 return 0;
209 go = &rfgain_opt_5112;
210 rf_regs = rf_regs_5112a;
211 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
213 g_step = &go->go_step[ah->ah_gain.g_step_idx];
215 if (ah->ah_rf_banks == NULL)
216 return 0;
218 rf = ah->ah_rf_banks;
219 ah->ah_gain.g_f_corr = 0;
221 /* No VGA (Variable Gain Amplifier) override, skip */
222 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
223 return 0;
225 /* Mix gain stepping */
226 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
228 /* Mix gain override */
229 mix = g_step->gos_param[0];
231 switch (mix) {
232 case 3:
233 ah->ah_gain.g_f_corr = step * 2;
234 break;
235 case 2:
236 ah->ah_gain.g_f_corr = (step - 5) * 2;
237 break;
238 case 1:
239 ah->ah_gain.g_f_corr = step;
240 break;
241 default:
242 ah->ah_gain.g_f_corr = 0;
243 break;
246 return ah->ah_gain.g_f_corr;
249 /* Check if current gain_F measurement is in the range of our
250 * power detector windows. If we get a measurement outside range
251 * we know it's not accurate (detectors can't measure anything outside
252 * their detection window) so we must ignore it */
253 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
255 const struct ath5k_rf_reg *rf_regs;
256 u32 step, mix_ovr, level[4];
257 u32 *rf;
259 if (ah->ah_rf_banks == NULL)
260 return false;
262 rf = ah->ah_rf_banks;
264 if (ah->ah_radio == AR5K_RF5111) {
266 rf_regs = rf_regs_5111;
267 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
269 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
270 false);
272 level[0] = 0;
273 level[1] = (step == 63) ? 50 : step + 4;
274 level[2] = (step != 63) ? 64 : level[0];
275 level[3] = level[2] + 50 ;
277 ah->ah_gain.g_high = level[3] -
278 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
279 ah->ah_gain.g_low = level[0] +
280 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
281 } else {
283 rf_regs = rf_regs_5112;
284 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
286 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
287 false);
289 level[0] = level[2] = 0;
291 if (mix_ovr == 1) {
292 level[1] = level[3] = 83;
293 } else {
294 level[1] = level[3] = 107;
295 ah->ah_gain.g_high = 55;
299 return (ah->ah_gain.g_current >= level[0] &&
300 ah->ah_gain.g_current <= level[1]) ||
301 (ah->ah_gain.g_current >= level[2] &&
302 ah->ah_gain.g_current <= level[3]);
305 /* Perform gain_F adjustment by choosing the right set
306 * of parameters from rf gain optimization ladder */
307 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
309 const struct ath5k_gain_opt *go;
310 const struct ath5k_gain_opt_step *g_step;
311 int ret = 0;
313 switch (ah->ah_radio) {
314 case AR5K_RF5111:
315 go = &rfgain_opt_5111;
316 break;
317 case AR5K_RF5112:
318 go = &rfgain_opt_5112;
319 break;
320 default:
321 return 0;
324 g_step = &go->go_step[ah->ah_gain.g_step_idx];
326 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
328 /* Reached maximum */
329 if (ah->ah_gain.g_step_idx == 0)
330 return -1;
332 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
333 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
334 ah->ah_gain.g_step_idx > 0;
335 g_step = &go->go_step[ah->ah_gain.g_step_idx])
336 ah->ah_gain.g_target -= 2 *
337 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
338 g_step->gos_gain);
340 ret = 1;
341 goto done;
344 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
346 /* Reached minimum */
347 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
348 return -2;
350 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
352 ah->ah_gain.g_step_idx < go->go_steps_count-1;
353 g_step = &go->go_step[ah->ah_gain.g_step_idx])
354 ah->ah_gain.g_target -= 2 *
355 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
356 g_step->gos_gain);
358 ret = 2;
359 goto done;
362 done:
363 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
364 "ret %d, gain step %u, current gain %u, target gain %u\n",
365 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
366 ah->ah_gain.g_target);
368 return ret;
371 /* Main callback for thermal rf gain calibration engine
372 * Check for a new gain reading and schedule an adjustment
373 * if needed.
375 * TODO: Use sw interrupt to schedule reset if gain_F needs
376 * adjustment */
377 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
379 u32 data, type;
380 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
382 ATH5K_TRACE(ah->ah_sc);
384 if (ah->ah_rf_banks == NULL ||
385 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
386 return AR5K_RFGAIN_INACTIVE;
388 /* No check requested, either engine is inactive
389 * or an adjustment is already requested */
390 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
391 goto done;
393 /* Read the PAPD (Peak to Average Power Detector)
394 * register */
395 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
397 /* No probe is scheduled, read gain_F measurement */
398 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
399 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
400 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
402 /* If tx packet is CCK correct the gain_F measurement
403 * by cck ofdm gain delta */
404 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
405 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
406 ah->ah_gain.g_current +=
407 ee->ee_cck_ofdm_gain_delta;
408 else
409 ah->ah_gain.g_current +=
410 AR5K_GAIN_CCK_PROBE_CORR;
413 /* Further correct gain_F measurement for
414 * RF5112A radios */
415 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
416 ath5k_hw_rf_gainf_corr(ah);
417 ah->ah_gain.g_current =
418 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
419 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
423 /* Check if measurement is ok and if we need
424 * to adjust gain, schedule a gain adjustment,
425 * else switch back to the acive state */
426 if (ath5k_hw_rf_check_gainf_readback(ah) &&
427 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
428 ath5k_hw_rf_gainf_adjust(ah)) {
429 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
430 } else {
431 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435 done:
436 return ah->ah_gain.g_state;
439 /* Write initial rf gain table to set the RF sensitivity
440 * this one works on all RF chips and has nothing to do
441 * with gain_F calibration */
442 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
444 const struct ath5k_ini_rfgain *ath5k_rfg;
445 unsigned int i, size;
447 switch (ah->ah_radio) {
448 case AR5K_RF5111:
449 ath5k_rfg = rfgain_5111;
450 size = ARRAY_SIZE(rfgain_5111);
451 break;
452 case AR5K_RF5112:
453 ath5k_rfg = rfgain_5112;
454 size = ARRAY_SIZE(rfgain_5112);
455 break;
456 case AR5K_RF2413:
457 ath5k_rfg = rfgain_2413;
458 size = ARRAY_SIZE(rfgain_2413);
459 break;
460 case AR5K_RF2316:
461 ath5k_rfg = rfgain_2316;
462 size = ARRAY_SIZE(rfgain_2316);
463 break;
464 case AR5K_RF5413:
465 ath5k_rfg = rfgain_5413;
466 size = ARRAY_SIZE(rfgain_5413);
467 break;
468 case AR5K_RF2317:
469 case AR5K_RF2425:
470 ath5k_rfg = rfgain_2425;
471 size = ARRAY_SIZE(rfgain_2425);
472 break;
473 default:
474 return -EINVAL;
477 switch (freq) {
478 case AR5K_INI_RFGAIN_2GHZ:
479 case AR5K_INI_RFGAIN_5GHZ:
480 break;
481 default:
482 return -EINVAL;
485 for (i = 0; i < size; i++) {
486 AR5K_REG_WAIT(i);
487 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
488 (u32)ath5k_rfg[i].rfg_register);
491 return 0;
496 /********************\
497 * RF Registers setup *
498 \********************/
502 * Setup RF registers by writing rf buffer on hw
504 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
505 unsigned int mode)
507 const struct ath5k_rf_reg *rf_regs;
508 const struct ath5k_ini_rfbuffer *ini_rfb;
509 const struct ath5k_gain_opt *go = NULL;
510 const struct ath5k_gain_opt_step *g_step;
511 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
512 u8 ee_mode = 0;
513 u32 *rfb;
514 int i, obdb = -1, bank = -1;
516 switch (ah->ah_radio) {
517 case AR5K_RF5111:
518 rf_regs = rf_regs_5111;
519 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
520 ini_rfb = rfb_5111;
521 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
522 go = &rfgain_opt_5111;
523 break;
524 case AR5K_RF5112:
525 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
526 rf_regs = rf_regs_5112a;
527 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
528 ini_rfb = rfb_5112a;
529 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
530 } else {
531 rf_regs = rf_regs_5112;
532 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
533 ini_rfb = rfb_5112;
534 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
536 go = &rfgain_opt_5112;
537 break;
538 case AR5K_RF2413:
539 rf_regs = rf_regs_2413;
540 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
541 ini_rfb = rfb_2413;
542 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
543 break;
544 case AR5K_RF2316:
545 rf_regs = rf_regs_2316;
546 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
547 ini_rfb = rfb_2316;
548 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
549 break;
550 case AR5K_RF5413:
551 rf_regs = rf_regs_5413;
552 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
553 ini_rfb = rfb_5413;
554 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
555 break;
556 case AR5K_RF2317:
557 rf_regs = rf_regs_2425;
558 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
559 ini_rfb = rfb_2317;
560 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
561 break;
562 case AR5K_RF2425:
563 rf_regs = rf_regs_2425;
564 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
565 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
566 ini_rfb = rfb_2425;
567 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
568 } else {
569 ini_rfb = rfb_2417;
570 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
572 break;
573 default:
574 return -EINVAL;
577 /* If it's the first time we set rf buffer, allocate
578 * ah->ah_rf_banks based on ah->ah_rf_banks_size
579 * we set above */
580 if (ah->ah_rf_banks == NULL) {
581 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
582 GFP_KERNEL);
583 if (ah->ah_rf_banks == NULL) {
584 ATH5K_ERR(ah->ah_sc, "out of memory\n");
585 return -ENOMEM;
589 /* Copy values to modify them */
590 rfb = ah->ah_rf_banks;
592 for (i = 0; i < ah->ah_rf_banks_size; i++) {
593 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
594 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
595 return -EINVAL;
598 /* Bank changed, write down the offset */
599 if (bank != ini_rfb[i].rfb_bank) {
600 bank = ini_rfb[i].rfb_bank;
601 ah->ah_offset[bank] = i;
604 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
607 /* Set Output and Driver bias current (OB/DB) */
608 if (channel->hw_value & CHANNEL_2GHZ) {
610 if (channel->hw_value & CHANNEL_CCK)
611 ee_mode = AR5K_EEPROM_MODE_11B;
612 else
613 ee_mode = AR5K_EEPROM_MODE_11G;
615 /* For RF511X/RF211X combination we
616 * use b_OB and b_DB parameters stored
617 * in eeprom on ee->ee_ob[ee_mode][0]
619 * For all other chips we use OB/DB for 2Ghz
620 * stored in the b/g modal section just like
621 * 802.11a on ee->ee_ob[ee_mode][1] */
622 if ((ah->ah_radio == AR5K_RF5111) ||
623 (ah->ah_radio == AR5K_RF5112))
624 obdb = 0;
625 else
626 obdb = 1;
628 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
629 AR5K_RF_OB_2GHZ, true);
631 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
632 AR5K_RF_DB_2GHZ, true);
634 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
635 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
636 (ah->ah_radio == AR5K_RF5111)) {
638 /* For 11a, Turbo and XR we need to choose
639 * OB/DB based on frequency range */
640 ee_mode = AR5K_EEPROM_MODE_11A;
641 obdb = channel->center_freq >= 5725 ? 3 :
642 (channel->center_freq >= 5500 ? 2 :
643 (channel->center_freq >= 5260 ? 1 :
644 (channel->center_freq > 4000 ? 0 : -1)));
646 if (obdb < 0)
647 return -EINVAL;
649 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
650 AR5K_RF_OB_5GHZ, true);
652 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
653 AR5K_RF_DB_5GHZ, true);
656 g_step = &go->go_step[ah->ah_gain.g_step_idx];
658 /* Bank Modifications (chip-specific) */
659 if (ah->ah_radio == AR5K_RF5111) {
661 /* Set gain_F settings according to current step */
662 if (channel->hw_value & CHANNEL_OFDM) {
664 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
665 AR5K_PHY_FRAME_CTL_TX_CLIP,
666 g_step->gos_param[0]);
668 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
669 AR5K_RF_PWD_90, true);
671 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
672 AR5K_RF_PWD_84, true);
674 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
675 AR5K_RF_RFGAIN_SEL, true);
677 /* We programmed gain_F parameters, switch back
678 * to active state */
679 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
683 /* Bank 6/7 setup */
685 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
686 AR5K_RF_PWD_XPD, true);
688 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
689 AR5K_RF_XPD_GAIN, true);
691 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
692 AR5K_RF_GAIN_I, true);
694 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
695 AR5K_RF_PLO_SEL, true);
697 /* TODO: Half/quarter channel support */
700 if (ah->ah_radio == AR5K_RF5112) {
702 /* Set gain_F settings according to current step */
703 if (channel->hw_value & CHANNEL_OFDM) {
705 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
706 AR5K_RF_MIXGAIN_OVR, true);
708 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
709 AR5K_RF_PWD_138, true);
711 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
712 AR5K_RF_PWD_137, true);
714 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
715 AR5K_RF_PWD_136, true);
717 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
718 AR5K_RF_PWD_132, true);
720 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
721 AR5K_RF_PWD_131, true);
723 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
724 AR5K_RF_PWD_130, true);
726 /* We programmed gain_F parameters, switch back
727 * to active state */
728 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
731 /* Bank 6/7 setup */
733 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
734 AR5K_RF_XPD_SEL, true);
736 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
737 /* Rev. 1 supports only one xpd */
738 ath5k_hw_rfb_op(ah, rf_regs,
739 ee->ee_x_gain[ee_mode],
740 AR5K_RF_XPD_GAIN, true);
742 } else {
743 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
744 if (ee->ee_pd_gains[ee_mode] > 1) {
745 ath5k_hw_rfb_op(ah, rf_regs,
746 pdg_curve_to_idx[0],
747 AR5K_RF_PD_GAIN_LO, true);
748 ath5k_hw_rfb_op(ah, rf_regs,
749 pdg_curve_to_idx[1],
750 AR5K_RF_PD_GAIN_HI, true);
751 } else {
752 ath5k_hw_rfb_op(ah, rf_regs,
753 pdg_curve_to_idx[0],
754 AR5K_RF_PD_GAIN_LO, true);
755 ath5k_hw_rfb_op(ah, rf_regs,
756 pdg_curve_to_idx[0],
757 AR5K_RF_PD_GAIN_HI, true);
760 /* Lower synth voltage on Rev 2 */
761 ath5k_hw_rfb_op(ah, rf_regs, 2,
762 AR5K_RF_HIGH_VC_CP, true);
764 ath5k_hw_rfb_op(ah, rf_regs, 2,
765 AR5K_RF_MID_VC_CP, true);
767 ath5k_hw_rfb_op(ah, rf_regs, 2,
768 AR5K_RF_LOW_VC_CP, true);
770 ath5k_hw_rfb_op(ah, rf_regs, 2,
771 AR5K_RF_PUSH_UP, true);
773 /* Decrease power consumption on 5213+ BaseBand */
774 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
775 ath5k_hw_rfb_op(ah, rf_regs, 1,
776 AR5K_RF_PAD2GND, true);
778 ath5k_hw_rfb_op(ah, rf_regs, 1,
779 AR5K_RF_XB2_LVL, true);
781 ath5k_hw_rfb_op(ah, rf_regs, 1,
782 AR5K_RF_XB5_LVL, true);
784 ath5k_hw_rfb_op(ah, rf_regs, 1,
785 AR5K_RF_PWD_167, true);
787 ath5k_hw_rfb_op(ah, rf_regs, 1,
788 AR5K_RF_PWD_166, true);
792 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
793 AR5K_RF_GAIN_I, true);
795 /* TODO: Half/quarter channel support */
799 if (ah->ah_radio == AR5K_RF5413 &&
800 channel->hw_value & CHANNEL_2GHZ) {
802 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
803 true);
805 /* Set optimum value for early revisions (on pci-e chips) */
806 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
807 ah->ah_mac_srev < AR5K_SREV_AR5413)
808 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
809 AR5K_RF_PWD_ICLOBUF_2G, true);
813 /* Write RF banks on hw */
814 for (i = 0; i < ah->ah_rf_banks_size; i++) {
815 AR5K_REG_WAIT(i);
816 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
819 return 0;
823 /**************************\
824 PHY/RF channel functions
825 \**************************/
828 * Check if a channel is supported
830 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
832 /* Check if the channel is in our supported range */
833 if (flags & CHANNEL_2GHZ) {
834 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
835 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
836 return true;
837 } else if (flags & CHANNEL_5GHZ)
838 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
839 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
840 return true;
842 return false;
846 * Convertion needed for RF5110
848 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
850 u32 athchan;
853 * Convert IEEE channel/MHz to an internal channel value used
854 * by the AR5210 chipset. This has not been verified with
855 * newer chipsets like the AR5212A who have a completely
856 * different RF/PHY part.
858 athchan = (ath5k_hw_bitswap(
859 (ieee80211_frequency_to_channel(
860 channel->center_freq) - 24) / 2, 5)
861 << 1) | (1 << 6) | 0x1;
862 return athchan;
866 * Set channel on RF5110
868 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
869 struct ieee80211_channel *channel)
871 u32 data;
874 * Set the channel and wait
876 data = ath5k_hw_rf5110_chan2athchan(channel);
877 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
878 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
879 mdelay(1);
881 return 0;
885 * Convertion needed for 5111
887 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
888 struct ath5k_athchan_2ghz *athchan)
890 int channel;
892 /* Cast this value to catch negative channel numbers (>= -19) */
893 channel = (int)ieee;
896 * Map 2GHz IEEE channel to 5GHz Atheros channel
898 if (channel <= 13) {
899 athchan->a2_athchan = 115 + channel;
900 athchan->a2_flags = 0x46;
901 } else if (channel == 14) {
902 athchan->a2_athchan = 124;
903 athchan->a2_flags = 0x44;
904 } else if (channel >= 15 && channel <= 26) {
905 athchan->a2_athchan = ((channel - 14) * 4) + 132;
906 athchan->a2_flags = 0x46;
907 } else
908 return -EINVAL;
910 return 0;
914 * Set channel on 5111
916 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
917 struct ieee80211_channel *channel)
919 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
920 unsigned int ath5k_channel =
921 ieee80211_frequency_to_channel(channel->center_freq);
922 u32 data0, data1, clock;
923 int ret;
926 * Set the channel on the RF5111 radio
928 data0 = data1 = 0;
930 if (channel->hw_value & CHANNEL_2GHZ) {
931 /* Map 2GHz channel to 5GHz Atheros channel ID */
932 ret = ath5k_hw_rf5111_chan2athchan(
933 ieee80211_frequency_to_channel(channel->center_freq),
934 &ath5k_channel_2ghz);
935 if (ret)
936 return ret;
938 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
939 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
940 << 5) | (1 << 4);
943 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
944 clock = 1;
945 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
946 (clock << 1) | (1 << 10) | 1;
947 } else {
948 clock = 0;
949 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
950 << 2) | (clock << 1) | (1 << 10) | 1;
953 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
954 AR5K_RF_BUFFER);
955 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
956 AR5K_RF_BUFFER_CONTROL_3);
958 return 0;
962 * Set channel on 5112 and newer
964 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
965 struct ieee80211_channel *channel)
967 u32 data, data0, data1, data2;
968 u16 c;
970 data = data0 = data1 = data2 = 0;
971 c = channel->center_freq;
973 if (c < 4800) {
974 if (!((c - 2224) % 5)) {
975 data0 = ((2 * (c - 704)) - 3040) / 10;
976 data1 = 1;
977 } else if (!((c - 2192) % 5)) {
978 data0 = ((2 * (c - 672)) - 3040) / 10;
979 data1 = 0;
980 } else
981 return -EINVAL;
983 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
984 } else if ((c - (c % 5)) != 2 || c > 5435) {
985 if (!(c % 20) && c >= 5120) {
986 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
987 data2 = ath5k_hw_bitswap(3, 2);
988 } else if (!(c % 10)) {
989 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
990 data2 = ath5k_hw_bitswap(2, 2);
991 } else if (!(c % 5)) {
992 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
993 data2 = ath5k_hw_bitswap(1, 2);
994 } else
995 return -EINVAL;
996 } else {
997 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
998 data2 = ath5k_hw_bitswap(0, 2);
1001 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1003 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1004 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1006 return 0;
1010 * Set the channel on the RF2425
1012 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1013 struct ieee80211_channel *channel)
1015 u32 data, data0, data2;
1016 u16 c;
1018 data = data0 = data2 = 0;
1019 c = channel->center_freq;
1021 if (c < 4800) {
1022 data0 = ath5k_hw_bitswap((c - 2272), 8);
1023 data2 = 0;
1024 /* ? 5GHz ? */
1025 } else if ((c - (c % 5)) != 2 || c > 5435) {
1026 if (!(c % 20) && c < 5120)
1027 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1028 else if (!(c % 10))
1029 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1030 else if (!(c % 5))
1031 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1032 else
1033 return -EINVAL;
1034 data2 = ath5k_hw_bitswap(1, 2);
1035 } else {
1036 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1037 data2 = ath5k_hw_bitswap(0, 2);
1040 data = (data0 << 4) | data2 << 2 | 0x1001;
1042 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1043 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1045 return 0;
1049 * Set a channel on the radio chip
1051 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1053 int ret;
1055 * Check bounds supported by the PHY (we don't care about regultory
1056 * restrictions at this point). Note: hw_value already has the band
1057 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1058 * of the band by that */
1059 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1060 ATH5K_ERR(ah->ah_sc,
1061 "channel frequency (%u MHz) out of supported "
1062 "band range\n",
1063 channel->center_freq);
1064 return -EINVAL;
1068 * Set the channel and wait
1070 switch (ah->ah_radio) {
1071 case AR5K_RF5110:
1072 ret = ath5k_hw_rf5110_channel(ah, channel);
1073 break;
1074 case AR5K_RF5111:
1075 ret = ath5k_hw_rf5111_channel(ah, channel);
1076 break;
1077 case AR5K_RF2425:
1078 ret = ath5k_hw_rf2425_channel(ah, channel);
1079 break;
1080 default:
1081 ret = ath5k_hw_rf5112_channel(ah, channel);
1082 break;
1085 if (ret)
1086 return ret;
1088 /* Set JAPAN setting for channel 14 */
1089 if (channel->center_freq == 2484) {
1090 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091 AR5K_PHY_CCKTXCTL_JAPAN);
1092 } else {
1093 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1094 AR5K_PHY_CCKTXCTL_WORLD);
1097 ah->ah_current_channel = channel;
1098 ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1100 return 0;
1103 /*****************\
1104 PHY calibration
1105 \*****************/
1107 void
1108 ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1110 /* Calibration interval in jiffies */
1111 unsigned long cal_intval;
1113 cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1115 /* Initialize timestamp if needed */
1116 if (!ah->ah_cal_tstamp)
1117 ah->ah_cal_tstamp = jiffies;
1119 /* For now we always do full calibration
1120 * Mark software interrupt mask and fire software
1121 * interrupt (bit gets auto-cleared) */
1122 if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1123 ah->ah_cal_tstamp = jiffies;
1124 ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1125 AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1131 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1133 * @ah: struct ath5k_hw pointer we are operating on
1134 * @freq: the channel frequency, just used for error logging
1136 * This function performs a noise floor calibration of the PHY and waits for
1137 * it to complete. Then the noise floor value is compared to some maximum
1138 * noise floor we consider valid.
1140 * Note that this is different from what the madwifi HAL does: it reads the
1141 * noise floor and afterwards initiates the calibration. Since the noise floor
1142 * calibration can take some time to finish, depending on the current channel
1143 * use, that avoids the occasional timeout warnings we are seeing now.
1145 * See the following link for an Atheros patent on noise floor calibration:
1146 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1147 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1149 * XXX: Since during noise floor calibration antennas are detached according to
1150 * the patent, we should stop tx queues here.
1153 ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1155 int ret;
1156 unsigned int i;
1157 s32 noise_floor;
1160 * Enable noise floor calibration
1162 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1163 AR5K_PHY_AGCCTL_NF);
1165 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1166 AR5K_PHY_AGCCTL_NF, 0, false);
1167 if (ret) {
1168 ATH5K_ERR(ah->ah_sc,
1169 "noise floor calibration timeout (%uMHz)\n", freq);
1170 return -EAGAIN;
1173 /* Wait until the noise floor is calibrated and read the value */
1174 for (i = 20; i > 0; i--) {
1175 mdelay(1);
1176 noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1177 noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1178 if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1179 noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1181 if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1182 break;
1186 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1187 "noise floor %d\n", noise_floor);
1189 if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1190 ATH5K_ERR(ah->ah_sc,
1191 "noise floor calibration failed (%uMHz)\n", freq);
1192 return -EAGAIN;
1195 ah->ah_noise_floor = noise_floor;
1197 return 0;
1201 * Perform a PHY calibration on RF5110
1202 * -Fix BPSK/QAM Constellation (I/Q correction)
1203 * -Calculate Noise Floor
1205 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1206 struct ieee80211_channel *channel)
1208 u32 phy_sig, phy_agc, phy_sat, beacon;
1209 int ret;
1212 * Disable beacons and RX/TX queues, wait
1214 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1215 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1216 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1217 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1219 mdelay(2);
1222 * Set the channel (with AGC turned off)
1224 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1225 udelay(10);
1226 ret = ath5k_hw_channel(ah, channel);
1229 * Activate PHY and wait
1231 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1232 mdelay(1);
1234 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1236 if (ret)
1237 return ret;
1240 * Calibrate the radio chip
1243 /* Remember normal state */
1244 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1245 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1246 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1248 /* Update radio registers */
1249 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1250 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1252 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1253 AR5K_PHY_AGCCOARSE_LO)) |
1254 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1255 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1257 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1258 AR5K_PHY_ADCSAT_THR)) |
1259 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1260 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1262 udelay(20);
1264 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1265 udelay(10);
1266 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1267 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1269 mdelay(1);
1272 * Enable calibration and wait until completion
1274 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1276 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1277 AR5K_PHY_AGCCTL_CAL, 0, false);
1279 /* Reset to normal state */
1280 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1281 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1282 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1284 if (ret) {
1285 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1286 channel->center_freq);
1287 return ret;
1290 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1293 * Re-enable RX/TX and beacons
1295 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1296 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1297 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1299 return 0;
1303 * Perform a PHY calibration on RF5111/5112 and newer chips
1305 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1306 struct ieee80211_channel *channel)
1308 u32 i_pwr, q_pwr;
1309 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1310 int i;
1311 ATH5K_TRACE(ah->ah_sc);
1313 if (!ah->ah_calibration ||
1314 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1315 goto done;
1317 /* Calibration has finished, get the results and re-run */
1318 for (i = 0; i <= 10; i++) {
1319 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1320 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1321 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1324 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1325 q_coffd = q_pwr >> 7;
1327 /* No correction */
1328 if (i_coffd == 0 || q_coffd == 0)
1329 goto done;
1331 i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1333 /* Boundary check */
1334 if (i_coff > 31)
1335 i_coff = 31;
1336 if (i_coff < -32)
1337 i_coff = -32;
1339 q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1341 /* Boundary check */
1342 if (q_coff > 15)
1343 q_coff = 15;
1344 if (q_coff < -16)
1345 q_coff = -16;
1347 /* Commit new I/Q value */
1348 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1349 ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1351 /* Re-enable calibration -if we don't we'll commit
1352 * the same values again and again */
1353 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1354 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1355 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1357 done:
1359 /* TODO: Separate noise floor calibration from I/Q calibration
1360 * since noise floor calibration interrupts rx path while I/Q
1361 * calibration doesn't. We don't need to run noise floor calibration
1362 * as often as I/Q calibration.*/
1363 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1365 /* Initiate a gain_F calibration */
1366 ath5k_hw_request_rfgain_probe(ah);
1368 return 0;
1372 * Perform a PHY calibration
1374 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1375 struct ieee80211_channel *channel)
1377 int ret;
1379 if (ah->ah_radio == AR5K_RF5110)
1380 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1381 else
1382 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1384 return ret;
1387 /***************************\
1388 * Spur mitigation functions *
1389 \***************************/
1391 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1392 struct ieee80211_channel *channel)
1394 u8 refclk_freq;
1396 if ((ah->ah_radio == AR5K_RF5112) ||
1397 (ah->ah_radio == AR5K_RF5413) ||
1398 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1399 refclk_freq = 40;
1400 else
1401 refclk_freq = 32;
1403 if ((channel->center_freq % refclk_freq != 0) &&
1404 ((channel->center_freq % refclk_freq < 10) ||
1405 (channel->center_freq % refclk_freq > 22)))
1406 return true;
1407 else
1408 return false;
1411 void
1412 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1413 struct ieee80211_channel *channel)
1415 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1416 u32 mag_mask[4] = {0, 0, 0, 0};
1417 u32 pilot_mask[2] = {0, 0};
1418 /* Note: fbin values are scaled up by 2 */
1419 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1420 s32 spur_delta_phase, spur_freq_sigma_delta;
1421 s32 spur_offset, num_symbols_x16;
1422 u8 num_symbol_offsets, i, freq_band;
1424 /* Convert current frequency to fbin value (the same way channels
1425 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1426 * up by 2 so we can compare it later */
1427 if (channel->hw_value & CHANNEL_2GHZ) {
1428 chan_fbin = (channel->center_freq - 2300) * 10;
1429 freq_band = AR5K_EEPROM_BAND_2GHZ;
1430 } else {
1431 chan_fbin = (channel->center_freq - 4900) * 10;
1432 freq_band = AR5K_EEPROM_BAND_5GHZ;
1435 /* Check if any spur_chan_fbin from EEPROM is
1436 * within our current channel's spur detection range */
1437 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1438 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1439 /* XXX: Half/Quarter channels ?*/
1440 if (channel->hw_value & CHANNEL_TURBO)
1441 spur_detection_window *= 2;
1443 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1444 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1446 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1447 * so it's zero if we got nothing from EEPROM */
1448 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1449 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1450 break;
1453 if ((chan_fbin - spur_detection_window <=
1454 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1455 (chan_fbin + spur_detection_window >=
1456 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1457 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1458 break;
1462 /* We need to enable spur filter for this channel */
1463 if (spur_chan_fbin) {
1464 spur_offset = spur_chan_fbin - chan_fbin;
1466 * Calculate deltas:
1467 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1468 * spur_delta_phase -> spur_offset / chip_freq << 11
1469 * Note: Both values have 100KHz resolution
1471 /* XXX: Half/Quarter rate channels ? */
1472 switch (channel->hw_value) {
1473 case CHANNEL_A:
1474 /* Both sample_freq and chip_freq are 40MHz */
1475 spur_delta_phase = (spur_offset << 17) / 25;
1476 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1477 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1478 break;
1479 case CHANNEL_G:
1480 /* sample_freq -> 40MHz chip_freq -> 44MHz
1481 * (for b compatibility) */
1482 spur_freq_sigma_delta = (spur_offset << 8) / 55;
1483 spur_delta_phase = (spur_offset << 17) / 25;
1484 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1485 break;
1486 case CHANNEL_T:
1487 case CHANNEL_TG:
1488 /* Both sample_freq and chip_freq are 80MHz */
1489 spur_delta_phase = (spur_offset << 16) / 25;
1490 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1491 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1492 break;
1493 default:
1494 return;
1497 /* Calculate pilot and magnitude masks */
1499 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1500 * and divide by symbol_width to find how many symbols we have
1501 * Note: number of symbols is scaled up by 16 */
1502 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1504 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1505 if (!(num_symbols_x16 & 0xF))
1506 /* _X_ */
1507 num_symbol_offsets = 3;
1508 else
1509 /* _xx_ */
1510 num_symbol_offsets = 4;
1512 for (i = 0; i < num_symbol_offsets; i++) {
1514 /* Calculate pilot mask */
1515 s32 curr_sym_off =
1516 (num_symbols_x16 / 16) + i + 25;
1518 /* Pilot magnitude mask seems to be a way to
1519 * declare the boundaries for our detection
1520 * window or something, it's 2 for the middle
1521 * value(s) where the symbol is expected to be
1522 * and 1 on the boundary values */
1523 u8 plt_mag_map =
1524 (i == 0 || i == (num_symbol_offsets - 1))
1525 ? 1 : 2;
1527 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1528 if (curr_sym_off <= 25)
1529 pilot_mask[0] |= 1 << curr_sym_off;
1530 else if (curr_sym_off >= 27)
1531 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1532 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1533 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1535 /* Calculate magnitude mask (for viterbi decoder) */
1536 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1537 mag_mask[0] |=
1538 plt_mag_map << (curr_sym_off + 1) * 2;
1539 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1540 mag_mask[1] |=
1541 plt_mag_map << (curr_sym_off - 15) * 2;
1542 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1543 mag_mask[2] |=
1544 plt_mag_map << (curr_sym_off - 31) * 2;
1545 else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1546 mag_mask[3] |=
1547 plt_mag_map << (curr_sym_off - 47) * 2;
1551 /* Write settings on hw to enable spur filter */
1552 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1553 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1554 /* XXX: Self correlator also ? */
1555 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1556 AR5K_PHY_IQ_PILOT_MASK_EN |
1557 AR5K_PHY_IQ_CHAN_MASK_EN |
1558 AR5K_PHY_IQ_SPUR_FILT_EN);
1560 /* Set delta phase and freq sigma delta */
1561 ath5k_hw_reg_write(ah,
1562 AR5K_REG_SM(spur_delta_phase,
1563 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1564 AR5K_REG_SM(spur_freq_sigma_delta,
1565 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1566 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1567 AR5K_PHY_TIMING_11);
1569 /* Write pilot masks */
1570 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1571 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1572 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1573 pilot_mask[1]);
1575 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1576 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1577 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1578 pilot_mask[1]);
1580 /* Write magnitude masks */
1581 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1582 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1583 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1584 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1585 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1586 mag_mask[3]);
1588 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1589 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1590 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1591 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1592 AR5K_PHY_BIN_MASK2_4_MASK_4,
1593 mag_mask[3]);
1595 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1596 AR5K_PHY_IQ_SPUR_FILT_EN) {
1597 /* Clean up spur mitigation settings and disable fliter */
1598 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1599 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1600 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1601 AR5K_PHY_IQ_PILOT_MASK_EN |
1602 AR5K_PHY_IQ_CHAN_MASK_EN |
1603 AR5K_PHY_IQ_SPUR_FILT_EN);
1604 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1606 /* Clear pilot masks */
1607 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1608 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1609 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1612 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1613 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1614 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1617 /* Clear magnitude masks */
1618 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1619 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1620 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1621 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1622 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1625 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1626 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1627 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1628 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1629 AR5K_PHY_BIN_MASK2_4_MASK_4,
1634 /********************\
1635 Misc PHY functions
1636 \********************/
1638 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1640 ATH5K_TRACE(ah->ah_sc);
1641 /*Just a try M.F.*/
1642 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1644 return 0;
1648 * Get the PHY Chip revision
1650 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1652 unsigned int i;
1653 u32 srev;
1654 u16 ret;
1656 ATH5K_TRACE(ah->ah_sc);
1659 * Set the radio chip access register
1661 switch (chan) {
1662 case CHANNEL_2GHZ:
1663 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1664 break;
1665 case CHANNEL_5GHZ:
1666 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1667 break;
1668 default:
1669 return 0;
1672 mdelay(2);
1674 /* ...wait until PHY is ready and read the selected radio revision */
1675 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1677 for (i = 0; i < 8; i++)
1678 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1680 if (ah->ah_version == AR5K_AR5210) {
1681 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1682 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1683 } else {
1684 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1685 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1686 ((srev & 0x0f) << 4), 8);
1689 /* Reset to the 5GHz mode */
1690 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1692 return ret;
1695 /*****************\
1696 * Antenna control *
1697 \*****************/
1699 void /*TODO:Boundary check*/
1700 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1702 ATH5K_TRACE(ah->ah_sc);
1704 if (ah->ah_version != AR5K_AR5210)
1705 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1708 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1710 ATH5K_TRACE(ah->ah_sc);
1712 if (ah->ah_version != AR5K_AR5210)
1713 return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1715 return false; /*XXX: What do we return for 5210 ?*/
1719 * Enable/disable fast rx antenna diversity
1721 static void
1722 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1724 switch (ee_mode) {
1725 case AR5K_EEPROM_MODE_11G:
1726 /* XXX: This is set to
1727 * disabled on initvals !!! */
1728 case AR5K_EEPROM_MODE_11A:
1729 if (enable)
1730 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1731 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1732 else
1733 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1734 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1735 break;
1736 case AR5K_EEPROM_MODE_11B:
1737 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1738 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1739 break;
1740 default:
1741 return;
1744 if (enable) {
1745 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1746 AR5K_PHY_RESTART_DIV_GC, 0xc);
1748 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1749 AR5K_PHY_FAST_ANT_DIV_EN);
1750 } else {
1751 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1752 AR5K_PHY_RESTART_DIV_GC, 0x8);
1754 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1755 AR5K_PHY_FAST_ANT_DIV_EN);
1760 * Set antenna operating mode
1762 void
1763 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1765 struct ieee80211_channel *channel = ah->ah_current_channel;
1766 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1767 bool use_def_for_sg;
1768 u8 def_ant, tx_ant, ee_mode;
1769 u32 sta_id1 = 0;
1771 def_ant = ah->ah_def_ant;
1773 ATH5K_TRACE(ah->ah_sc);
1775 switch (channel->hw_value & CHANNEL_MODES) {
1776 case CHANNEL_A:
1777 case CHANNEL_T:
1778 case CHANNEL_XR:
1779 ee_mode = AR5K_EEPROM_MODE_11A;
1780 break;
1781 case CHANNEL_G:
1782 case CHANNEL_TG:
1783 ee_mode = AR5K_EEPROM_MODE_11G;
1784 break;
1785 case CHANNEL_B:
1786 ee_mode = AR5K_EEPROM_MODE_11B;
1787 break;
1788 default:
1789 ATH5K_ERR(ah->ah_sc,
1790 "invalid channel: %d\n", channel->center_freq);
1791 return;
1794 switch (ant_mode) {
1795 case AR5K_ANTMODE_DEFAULT:
1796 tx_ant = 0;
1797 use_def_for_tx = false;
1798 update_def_on_tx = false;
1799 use_def_for_rts = false;
1800 use_def_for_sg = false;
1801 fast_div = true;
1802 break;
1803 case AR5K_ANTMODE_FIXED_A:
1804 def_ant = 1;
1805 tx_ant = 0;
1806 use_def_for_tx = true;
1807 update_def_on_tx = false;
1808 use_def_for_rts = true;
1809 use_def_for_sg = true;
1810 fast_div = false;
1811 break;
1812 case AR5K_ANTMODE_FIXED_B:
1813 def_ant = 2;
1814 tx_ant = 0;
1815 use_def_for_tx = true;
1816 update_def_on_tx = false;
1817 use_def_for_rts = true;
1818 use_def_for_sg = true;
1819 fast_div = false;
1820 break;
1821 case AR5K_ANTMODE_SINGLE_AP:
1822 def_ant = 1; /* updated on tx */
1823 tx_ant = 0;
1824 use_def_for_tx = true;
1825 update_def_on_tx = true;
1826 use_def_for_rts = true;
1827 use_def_for_sg = true;
1828 fast_div = true;
1829 break;
1830 case AR5K_ANTMODE_SECTOR_AP:
1831 tx_ant = 1; /* variable */
1832 use_def_for_tx = false;
1833 update_def_on_tx = false;
1834 use_def_for_rts = true;
1835 use_def_for_sg = false;
1836 fast_div = false;
1837 break;
1838 case AR5K_ANTMODE_SECTOR_STA:
1839 tx_ant = 1; /* variable */
1840 use_def_for_tx = true;
1841 update_def_on_tx = false;
1842 use_def_for_rts = true;
1843 use_def_for_sg = false;
1844 fast_div = true;
1845 break;
1846 case AR5K_ANTMODE_DEBUG:
1847 def_ant = 1;
1848 tx_ant = 2;
1849 use_def_for_tx = false;
1850 update_def_on_tx = false;
1851 use_def_for_rts = false;
1852 use_def_for_sg = false;
1853 fast_div = false;
1854 break;
1855 default:
1856 return;
1859 ah->ah_tx_ant = tx_ant;
1860 ah->ah_ant_mode = ant_mode;
1862 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1863 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1864 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1865 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1867 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1869 if (sta_id1)
1870 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1872 /* Note: set diversity before default antenna
1873 * because it won't work correctly */
1874 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1875 ath5k_hw_set_def_antenna(ah, def_ant);
1879 /****************\
1880 * TX power setup *
1881 \****************/
1884 * Helper functions
1888 * Do linear interpolation between two given (x, y) points
1890 static s16
1891 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1892 s16 y_left, s16 y_right)
1894 s16 ratio, result;
1896 /* Avoid divide by zero and skip interpolation
1897 * if we have the same point */
1898 if ((x_left == x_right) || (y_left == y_right))
1899 return y_left;
1902 * Since we use ints and not fps, we need to scale up in
1903 * order to get a sane ratio value (or else we 'll eg. get
1904 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1905 * to have some accuracy both for 0.5 and 0.25 steps.
1907 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1909 /* Now scale down to be in range */
1910 result = y_left + (ratio * (target - x_left) / 100);
1912 return result;
1916 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1918 * Since we have the top of the curve and we draw the line below
1919 * until we reach 1 (1 pcdac step) we need to know which point
1920 * (x value) that is so that we don't go below y axis and have negative
1921 * pcdac values when creating the curve, or fill the table with zeroes.
1923 static s16
1924 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1925 const s16 *pwrL, const s16 *pwrR)
1927 s8 tmp;
1928 s16 min_pwrL, min_pwrR;
1929 s16 pwr_i;
1931 /* Some vendors write the same pcdac value twice !!! */
1932 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1933 return max(pwrL[0], pwrR[0]);
1935 if (pwrL[0] == pwrL[1])
1936 min_pwrL = pwrL[0];
1937 else {
1938 pwr_i = pwrL[0];
1939 do {
1940 pwr_i--;
1941 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1942 pwrL[0], pwrL[1],
1943 stepL[0], stepL[1]);
1944 } while (tmp > 1);
1946 min_pwrL = pwr_i;
1949 if (pwrR[0] == pwrR[1])
1950 min_pwrR = pwrR[0];
1951 else {
1952 pwr_i = pwrR[0];
1953 do {
1954 pwr_i--;
1955 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1956 pwrR[0], pwrR[1],
1957 stepR[0], stepR[1]);
1958 } while (tmp > 1);
1960 min_pwrR = pwr_i;
1963 /* Keep the right boundary so that it works for both curves */
1964 return max(min_pwrL, min_pwrR);
1968 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1969 * Power to PCDAC curve.
1971 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1972 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1973 * PCDAC/PDADC step for each curve is 64 but we can write more than
1974 * one curves on hw so we can go up to 128 (which is the max step we
1975 * can write on the final table).
1977 * We write y values (PCDAC/PDADC steps) on hw.
1979 static void
1980 ath5k_create_power_curve(s16 pmin, s16 pmax,
1981 const s16 *pwr, const u8 *vpd,
1982 u8 num_points,
1983 u8 *vpd_table, u8 type)
1985 u8 idx[2] = { 0, 1 };
1986 s16 pwr_i = 2*pmin;
1987 int i;
1989 if (num_points < 2)
1990 return;
1992 /* We want the whole line, so adjust boundaries
1993 * to cover the entire power range. Note that
1994 * power values are already 0.25dB so no need
1995 * to multiply pwr_i by 2 */
1996 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1997 pwr_i = pmin;
1998 pmin = 0;
1999 pmax = 63;
2002 /* Find surrounding turning points (TPs)
2003 * and interpolate between them */
2004 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2005 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2007 /* We passed the right TP, move to the next set of TPs
2008 * if we pass the last TP, extrapolate above using the last
2009 * two TPs for ratio */
2010 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2011 idx[0]++;
2012 idx[1]++;
2015 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2016 pwr[idx[0]], pwr[idx[1]],
2017 vpd[idx[0]], vpd[idx[1]]);
2019 /* Increase by 0.5dB
2020 * (0.25 dB units) */
2021 pwr_i += 2;
2026 * Get the surrounding per-channel power calibration piers
2027 * for a given frequency so that we can interpolate between
2028 * them and come up with an apropriate dataset for our current
2029 * channel.
2031 static void
2032 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2033 struct ieee80211_channel *channel,
2034 struct ath5k_chan_pcal_info **pcinfo_l,
2035 struct ath5k_chan_pcal_info **pcinfo_r)
2037 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2038 struct ath5k_chan_pcal_info *pcinfo;
2039 u8 idx_l, idx_r;
2040 u8 mode, max, i;
2041 u32 target = channel->center_freq;
2043 idx_l = 0;
2044 idx_r = 0;
2046 if (!(channel->hw_value & CHANNEL_OFDM)) {
2047 pcinfo = ee->ee_pwr_cal_b;
2048 mode = AR5K_EEPROM_MODE_11B;
2049 } else if (channel->hw_value & CHANNEL_2GHZ) {
2050 pcinfo = ee->ee_pwr_cal_g;
2051 mode = AR5K_EEPROM_MODE_11G;
2052 } else {
2053 pcinfo = ee->ee_pwr_cal_a;
2054 mode = AR5K_EEPROM_MODE_11A;
2056 max = ee->ee_n_piers[mode] - 1;
2058 /* Frequency is below our calibrated
2059 * range. Use the lowest power curve
2060 * we have */
2061 if (target < pcinfo[0].freq) {
2062 idx_l = idx_r = 0;
2063 goto done;
2066 /* Frequency is above our calibrated
2067 * range. Use the highest power curve
2068 * we have */
2069 if (target > pcinfo[max].freq) {
2070 idx_l = idx_r = max;
2071 goto done;
2074 /* Frequency is inside our calibrated
2075 * channel range. Pick the surrounding
2076 * calibration piers so that we can
2077 * interpolate */
2078 for (i = 0; i <= max; i++) {
2080 /* Frequency matches one of our calibration
2081 * piers, no need to interpolate, just use
2082 * that calibration pier */
2083 if (pcinfo[i].freq == target) {
2084 idx_l = idx_r = i;
2085 goto done;
2088 /* We found a calibration pier that's above
2089 * frequency, use this pier and the previous
2090 * one to interpolate */
2091 if (target < pcinfo[i].freq) {
2092 idx_r = i;
2093 idx_l = idx_r - 1;
2094 goto done;
2098 done:
2099 *pcinfo_l = &pcinfo[idx_l];
2100 *pcinfo_r = &pcinfo[idx_r];
2102 return;
2106 * Get the surrounding per-rate power calibration data
2107 * for a given frequency and interpolate between power
2108 * values to set max target power supported by hw for
2109 * each rate.
2111 static void
2112 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2113 struct ieee80211_channel *channel,
2114 struct ath5k_rate_pcal_info *rates)
2116 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2117 struct ath5k_rate_pcal_info *rpinfo;
2118 u8 idx_l, idx_r;
2119 u8 mode, max, i;
2120 u32 target = channel->center_freq;
2122 idx_l = 0;
2123 idx_r = 0;
2125 if (!(channel->hw_value & CHANNEL_OFDM)) {
2126 rpinfo = ee->ee_rate_tpwr_b;
2127 mode = AR5K_EEPROM_MODE_11B;
2128 } else if (channel->hw_value & CHANNEL_2GHZ) {
2129 rpinfo = ee->ee_rate_tpwr_g;
2130 mode = AR5K_EEPROM_MODE_11G;
2131 } else {
2132 rpinfo = ee->ee_rate_tpwr_a;
2133 mode = AR5K_EEPROM_MODE_11A;
2135 max = ee->ee_rate_target_pwr_num[mode] - 1;
2137 /* Get the surrounding calibration
2138 * piers - same as above */
2139 if (target < rpinfo[0].freq) {
2140 idx_l = idx_r = 0;
2141 goto done;
2144 if (target > rpinfo[max].freq) {
2145 idx_l = idx_r = max;
2146 goto done;
2149 for (i = 0; i <= max; i++) {
2151 if (rpinfo[i].freq == target) {
2152 idx_l = idx_r = i;
2153 goto done;
2156 if (target < rpinfo[i].freq) {
2157 idx_r = i;
2158 idx_l = idx_r - 1;
2159 goto done;
2163 done:
2164 /* Now interpolate power value, based on the frequency */
2165 rates->freq = target;
2167 rates->target_power_6to24 =
2168 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2169 rpinfo[idx_r].freq,
2170 rpinfo[idx_l].target_power_6to24,
2171 rpinfo[idx_r].target_power_6to24);
2173 rates->target_power_36 =
2174 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2175 rpinfo[idx_r].freq,
2176 rpinfo[idx_l].target_power_36,
2177 rpinfo[idx_r].target_power_36);
2179 rates->target_power_48 =
2180 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2181 rpinfo[idx_r].freq,
2182 rpinfo[idx_l].target_power_48,
2183 rpinfo[idx_r].target_power_48);
2185 rates->target_power_54 =
2186 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2187 rpinfo[idx_r].freq,
2188 rpinfo[idx_l].target_power_54,
2189 rpinfo[idx_r].target_power_54);
2193 * Get the max edge power for this channel if
2194 * we have such data from EEPROM's Conformance Test
2195 * Limits (CTL), and limit max power if needed.
2197 static void
2198 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2199 struct ieee80211_channel *channel)
2201 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2202 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2203 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2204 u8 *ctl_val = ee->ee_ctl;
2205 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2206 s16 edge_pwr = 0;
2207 u8 rep_idx;
2208 u8 i, ctl_mode;
2209 u8 ctl_idx = 0xFF;
2210 u32 target = channel->center_freq;
2212 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2214 switch (channel->hw_value & CHANNEL_MODES) {
2215 case CHANNEL_A:
2216 ctl_mode |= AR5K_CTL_11A;
2217 break;
2218 case CHANNEL_G:
2219 ctl_mode |= AR5K_CTL_11G;
2220 break;
2221 case CHANNEL_B:
2222 ctl_mode |= AR5K_CTL_11B;
2223 break;
2224 case CHANNEL_T:
2225 ctl_mode |= AR5K_CTL_TURBO;
2226 break;
2227 case CHANNEL_TG:
2228 ctl_mode |= AR5K_CTL_TURBOG;
2229 break;
2230 case CHANNEL_XR:
2231 /* Fall through */
2232 default:
2233 return;
2236 for (i = 0; i < ee->ee_ctls; i++) {
2237 if (ctl_val[i] == ctl_mode) {
2238 ctl_idx = i;
2239 break;
2243 /* If we have a CTL dataset available grab it and find the
2244 * edge power for our frequency */
2245 if (ctl_idx == 0xFF)
2246 return;
2248 /* Edge powers are sorted by frequency from lower
2249 * to higher. Each CTL corresponds to 8 edge power
2250 * measurements. */
2251 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2253 /* Don't do boundaries check because we
2254 * might have more that one bands defined
2255 * for this mode */
2257 /* Get the edge power that's closer to our
2258 * frequency */
2259 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2260 rep_idx += i;
2261 if (target <= rep[rep_idx].freq)
2262 edge_pwr = (s16) rep[rep_idx].edge;
2265 if (edge_pwr)
2266 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2271 * Power to PCDAC table functions
2275 * Fill Power to PCDAC table on RF5111
2277 * No further processing is needed for RF5111, the only thing we have to
2278 * do is fill the values below and above calibration range since eeprom data
2279 * may not cover the entire PCDAC table.
2281 static void
2282 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2283 s16 *table_max)
2285 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2286 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2287 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2288 s16 min_pwr, max_pwr;
2290 /* Get table boundaries */
2291 min_pwr = table_min[0];
2292 pcdac_0 = pcdac_tmp[0];
2294 max_pwr = table_max[0];
2295 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2297 /* Extrapolate below minimum using pcdac_0 */
2298 pcdac_i = 0;
2299 for (i = 0; i < min_pwr; i++)
2300 pcdac_out[pcdac_i++] = pcdac_0;
2302 /* Copy values from pcdac_tmp */
2303 pwr_idx = min_pwr;
2304 for (i = 0 ; pwr_idx <= max_pwr &&
2305 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2306 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2307 pwr_idx++;
2310 /* Extrapolate above maximum */
2311 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2312 pcdac_out[pcdac_i++] = pcdac_n;
2317 * Combine available XPD Curves and fill Linear Power to PCDAC table
2318 * on RF5112
2320 * RFX112 can have up to 2 curves (one for low txpower range and one for
2321 * higher txpower range). We need to put them both on pcdac_out and place
2322 * them in the correct location. In case we only have one curve available
2323 * just fit it on pcdac_out (it's supposed to cover the entire range of
2324 * available pwr levels since it's always the higher power curve). Extrapolate
2325 * below and above final table if needed.
2327 static void
2328 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2329 s16 *table_max, u8 pdcurves)
2331 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2332 u8 *pcdac_low_pwr;
2333 u8 *pcdac_high_pwr;
2334 u8 *pcdac_tmp;
2335 u8 pwr;
2336 s16 max_pwr_idx;
2337 s16 min_pwr_idx;
2338 s16 mid_pwr_idx = 0;
2339 /* Edge flag turs on the 7nth bit on the PCDAC
2340 * to delcare the higher power curve (force values
2341 * to be greater than 64). If we only have one curve
2342 * we don't need to set this, if we have 2 curves and
2343 * fill the table backwards this can also be used to
2344 * switch from higher power curve to lower power curve */
2345 u8 edge_flag;
2346 int i;
2348 /* When we have only one curve available
2349 * that's the higher power curve. If we have
2350 * two curves the first is the high power curve
2351 * and the next is the low power curve. */
2352 if (pdcurves > 1) {
2353 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2354 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2355 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2356 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2358 /* If table size goes beyond 31.5dB, keep the
2359 * upper 31.5dB range when setting tx power.
2360 * Note: 126 = 31.5 dB in quarter dB steps */
2361 if (table_max[0] - table_min[1] > 126)
2362 min_pwr_idx = table_max[0] - 126;
2363 else
2364 min_pwr_idx = table_min[1];
2366 /* Since we fill table backwards
2367 * start from high power curve */
2368 pcdac_tmp = pcdac_high_pwr;
2370 edge_flag = 0x40;
2371 #if 0
2372 /* If both min and max power limits are in lower
2373 * power curve's range, only use the low power curve.
2374 * TODO: min/max levels are related to target
2375 * power values requested from driver/user
2376 * XXX: Is this really needed ? */
2377 if (min_pwr < table_max[1] &&
2378 max_pwr < table_max[1]) {
2379 edge_flag = 0;
2380 pcdac_tmp = pcdac_low_pwr;
2381 max_pwr_idx = (table_max[1] - table_min[1])/2;
2383 #endif
2384 } else {
2385 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2386 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2387 min_pwr_idx = table_min[0];
2388 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2389 pcdac_tmp = pcdac_high_pwr;
2390 edge_flag = 0;
2393 /* This is used when setting tx power*/
2394 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2396 /* Fill Power to PCDAC table backwards */
2397 pwr = max_pwr_idx;
2398 for (i = 63; i >= 0; i--) {
2399 /* Entering lower power range, reset
2400 * edge flag and set pcdac_tmp to lower
2401 * power curve.*/
2402 if (edge_flag == 0x40 &&
2403 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2404 edge_flag = 0x00;
2405 pcdac_tmp = pcdac_low_pwr;
2406 pwr = mid_pwr_idx/2;
2409 /* Don't go below 1, extrapolate below if we have
2410 * already swithced to the lower power curve -or
2411 * we only have one curve and edge_flag is zero
2412 * anyway */
2413 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2414 while (i >= 0) {
2415 pcdac_out[i] = pcdac_out[i + 1];
2416 i--;
2418 break;
2421 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2423 /* Extrapolate above if pcdac is greater than
2424 * 126 -this can happen because we OR pcdac_out
2425 * value with edge_flag on high power curve */
2426 if (pcdac_out[i] > 126)
2427 pcdac_out[i] = 126;
2429 /* Decrease by a 0.5dB step */
2430 pwr--;
2434 /* Write PCDAC values on hw */
2435 static void
2436 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2438 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2439 int i;
2442 * Write TX power values
2444 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2445 ath5k_hw_reg_write(ah,
2446 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2447 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2448 AR5K_PHY_PCDAC_TXPOWER(i));
2454 * Power to PDADC table functions
2458 * Set the gain boundaries and create final Power to PDADC table
2460 * We can have up to 4 pd curves, we need to do a simmilar process
2461 * as we do for RF5112. This time we don't have an edge_flag but we
2462 * set the gain boundaries on a separate register.
2464 static void
2465 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2466 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2468 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2469 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2470 u8 *pdadc_tmp;
2471 s16 pdadc_0;
2472 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2473 u8 pd_gain_overlap;
2475 /* Note: Register value is initialized on initvals
2476 * there is no feedback from hw.
2477 * XXX: What about pd_gain_overlap from EEPROM ? */
2478 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2479 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2481 /* Create final PDADC table */
2482 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2483 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2485 if (pdg == pdcurves - 1)
2486 /* 2 dB boundary stretch for last
2487 * (higher power) curve */
2488 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2489 else
2490 /* Set gain boundary in the middle
2491 * between this curve and the next one */
2492 gain_boundaries[pdg] =
2493 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2495 /* Sanity check in case our 2 db stretch got out of
2496 * range. */
2497 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2498 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2500 /* For the first curve (lower power)
2501 * start from 0 dB */
2502 if (pdg == 0)
2503 pdadc_0 = 0;
2504 else
2505 /* For the other curves use the gain overlap */
2506 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2507 pd_gain_overlap;
2509 /* Force each power step to be at least 0.5 dB */
2510 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2511 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2512 else
2513 pwr_step = 1;
2515 /* If pdadc_0 is negative, we need to extrapolate
2516 * below this pdgain by a number of pwr_steps */
2517 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2518 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2519 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2520 pdadc_0++;
2523 /* Set last pwr level, using gain boundaries */
2524 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2525 /* Limit it to be inside pwr range */
2526 table_size = pwr_max[pdg] - pwr_min[pdg];
2527 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2529 /* Fill pdadc_out table */
2530 while (pdadc_0 < max_idx)
2531 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2533 /* Need to extrapolate above this pdgain? */
2534 if (pdadc_n <= max_idx)
2535 continue;
2537 /* Force each power step to be at least 0.5 dB */
2538 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2539 pwr_step = pdadc_tmp[table_size - 1] -
2540 pdadc_tmp[table_size - 2];
2541 else
2542 pwr_step = 1;
2544 /* Extrapolate above */
2545 while ((pdadc_0 < (s16) pdadc_n) &&
2546 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2547 s16 tmp = pdadc_tmp[table_size - 1] +
2548 (pdadc_0 - max_idx) * pwr_step;
2549 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2550 pdadc_0++;
2554 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2555 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2556 pdg++;
2559 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2560 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2561 pdadc_i++;
2564 /* Set gain boundaries */
2565 ath5k_hw_reg_write(ah,
2566 AR5K_REG_SM(pd_gain_overlap,
2567 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2568 AR5K_REG_SM(gain_boundaries[0],
2569 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2570 AR5K_REG_SM(gain_boundaries[1],
2571 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2572 AR5K_REG_SM(gain_boundaries[2],
2573 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2574 AR5K_REG_SM(gain_boundaries[3],
2575 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2576 AR5K_PHY_TPC_RG5);
2578 /* Used for setting rate power table */
2579 ah->ah_txpower.txp_min_idx = pwr_min[0];
2583 /* Write PDADC values on hw */
2584 static void
2585 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2586 u8 pdcurves, u8 *pdg_to_idx)
2588 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2589 u32 reg;
2590 u8 i;
2592 /* Select the right pdgain curves */
2594 /* Clear current settings */
2595 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2596 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2597 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2598 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2599 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2602 * Use pd_gains curve from eeprom
2604 * This overrides the default setting from initvals
2605 * in case some vendors (e.g. Zcomax) don't use the default
2606 * curves. If we don't honor their settings we 'll get a
2607 * 5dB (1 * gain overlap ?) drop.
2609 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2611 switch (pdcurves) {
2612 case 3:
2613 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2614 /* Fall through */
2615 case 2:
2616 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2617 /* Fall through */
2618 case 1:
2619 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2620 break;
2622 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2625 * Write TX power values
2627 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2628 ath5k_hw_reg_write(ah,
2629 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2630 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2631 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2632 ((pdadc_out[4*i + 3] & 0xff) << 24),
2633 AR5K_PHY_PDADC_TXPOWER(i));
2639 * Common code for PCDAC/PDADC tables
2643 * This is the main function that uses all of the above
2644 * to set PCDAC/PDADC table on hw for the current channel.
2645 * This table is used for tx power calibration on the basband,
2646 * without it we get weird tx power levels and in some cases
2647 * distorted spectral mask
2649 static int
2650 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2651 struct ieee80211_channel *channel,
2652 u8 ee_mode, u8 type)
2654 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2655 struct ath5k_chan_pcal_info *pcinfo_L;
2656 struct ath5k_chan_pcal_info *pcinfo_R;
2657 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2658 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2659 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2660 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2661 u8 *tmpL;
2662 u8 *tmpR;
2663 u32 target = channel->center_freq;
2664 int pdg, i;
2666 /* Get surounding freq piers for this channel */
2667 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2668 &pcinfo_L,
2669 &pcinfo_R);
2671 /* Loop over pd gain curves on
2672 * surounding freq piers by index */
2673 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2675 /* Fill curves in reverse order
2676 * from lower power (max gain)
2677 * to higher power. Use curve -> idx
2678 * backmaping we did on eeprom init */
2679 u8 idx = pdg_curve_to_idx[pdg];
2681 /* Grab the needed curves by index */
2682 pdg_L = &pcinfo_L->pd_curves[idx];
2683 pdg_R = &pcinfo_R->pd_curves[idx];
2685 /* Initialize the temp tables */
2686 tmpL = ah->ah_txpower.tmpL[pdg];
2687 tmpR = ah->ah_txpower.tmpR[pdg];
2689 /* Set curve's x boundaries and create
2690 * curves so that they cover the same
2691 * range (if we don't do that one table
2692 * will have values on some range and the
2693 * other one won't have any so interpolation
2694 * will fail) */
2695 table_min[pdg] = min(pdg_L->pd_pwr[0],
2696 pdg_R->pd_pwr[0]) / 2;
2698 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2699 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2701 /* Now create the curves on surrounding channels
2702 * and interpolate if needed to get the final
2703 * curve for this gain on this channel */
2704 switch (type) {
2705 case AR5K_PWRTABLE_LINEAR_PCDAC:
2706 /* Override min/max so that we don't loose
2707 * accuracy (don't divide by 2) */
2708 table_min[pdg] = min(pdg_L->pd_pwr[0],
2709 pdg_R->pd_pwr[0]);
2711 table_max[pdg] =
2712 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2713 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2715 /* Override minimum so that we don't get
2716 * out of bounds while extrapolating
2717 * below. Don't do this when we have 2
2718 * curves and we are on the high power curve
2719 * because table_min is ok in this case */
2720 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2722 table_min[pdg] =
2723 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2724 pdg_R->pd_step,
2725 pdg_L->pd_pwr,
2726 pdg_R->pd_pwr);
2728 /* Don't go too low because we will
2729 * miss the upper part of the curve.
2730 * Note: 126 = 31.5dB (max power supported)
2731 * in 0.25dB units */
2732 if (table_max[pdg] - table_min[pdg] > 126)
2733 table_min[pdg] = table_max[pdg] - 126;
2736 /* Fall through */
2737 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2738 case AR5K_PWRTABLE_PWR_TO_PDADC:
2740 ath5k_create_power_curve(table_min[pdg],
2741 table_max[pdg],
2742 pdg_L->pd_pwr,
2743 pdg_L->pd_step,
2744 pdg_L->pd_points, tmpL, type);
2746 /* We are in a calibration
2747 * pier, no need to interpolate
2748 * between freq piers */
2749 if (pcinfo_L == pcinfo_R)
2750 continue;
2752 ath5k_create_power_curve(table_min[pdg],
2753 table_max[pdg],
2754 pdg_R->pd_pwr,
2755 pdg_R->pd_step,
2756 pdg_R->pd_points, tmpR, type);
2757 break;
2758 default:
2759 return -EINVAL;
2762 /* Interpolate between curves
2763 * of surounding freq piers to
2764 * get the final curve for this
2765 * pd gain. Re-use tmpL for interpolation
2766 * output */
2767 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2768 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2769 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2770 (s16) pcinfo_L->freq,
2771 (s16) pcinfo_R->freq,
2772 (s16) tmpL[i],
2773 (s16) tmpR[i]);
2777 /* Now we have a set of curves for this
2778 * channel on tmpL (x range is table_max - table_min
2779 * and y values are tmpL[pdg][]) sorted in the same
2780 * order as EEPROM (because we've used the backmaping).
2781 * So for RF5112 it's from higher power to lower power
2782 * and for RF2413 it's from lower power to higher power.
2783 * For RF5111 we only have one curve. */
2785 /* Fill min and max power levels for this
2786 * channel by interpolating the values on
2787 * surounding channels to complete the dataset */
2788 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2789 (s16) pcinfo_L->freq,
2790 (s16) pcinfo_R->freq,
2791 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2793 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2794 (s16) pcinfo_L->freq,
2795 (s16) pcinfo_R->freq,
2796 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2798 /* We are ready to go, fill PCDAC/PDADC
2799 * table and write settings on hardware */
2800 switch (type) {
2801 case AR5K_PWRTABLE_LINEAR_PCDAC:
2802 /* For RF5112 we can have one or two curves
2803 * and each curve covers a certain power lvl
2804 * range so we need to do some more processing */
2805 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2806 ee->ee_pd_gains[ee_mode]);
2808 /* Set txp.offset so that we can
2809 * match max power value with max
2810 * table index */
2811 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2813 /* Write settings on hw */
2814 ath5k_setup_pcdac_table(ah);
2815 break;
2816 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2817 /* We are done for RF5111 since it has only
2818 * one curve, just fit the curve on the table */
2819 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2821 /* No rate powertable adjustment for RF5111 */
2822 ah->ah_txpower.txp_min_idx = 0;
2823 ah->ah_txpower.txp_offset = 0;
2825 /* Write settings on hw */
2826 ath5k_setup_pcdac_table(ah);
2827 break;
2828 case AR5K_PWRTABLE_PWR_TO_PDADC:
2829 /* Set PDADC boundaries and fill
2830 * final PDADC table */
2831 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2832 ee->ee_pd_gains[ee_mode]);
2834 /* Write settings on hw */
2835 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2837 /* Set txp.offset, note that table_min
2838 * can be negative */
2839 ah->ah_txpower.txp_offset = table_min[0];
2840 break;
2841 default:
2842 return -EINVAL;
2845 return 0;
2850 * Per-rate tx power setting
2852 * This is the code that sets the desired tx power (below
2853 * maximum) on hw for each rate (we also have TPC that sets
2854 * power per packet). We do that by providing an index on the
2855 * PCDAC/PDADC table we set up.
2859 * Set rate power table
2861 * For now we only limit txpower based on maximum tx power
2862 * supported by hw (what's inside rate_info). We need to limit
2863 * this even more, based on regulatory domain etc.
2865 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2866 * and is indexed as follows:
2867 * rates[0] - rates[7] -> OFDM rates
2868 * rates[8] - rates[14] -> CCK rates
2869 * rates[15] -> XR rates (they all have the same power)
2871 static void
2872 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2873 struct ath5k_rate_pcal_info *rate_info,
2874 u8 ee_mode)
2876 unsigned int i;
2877 u16 *rates;
2879 /* max_pwr is power level we got from driver/user in 0.5dB
2880 * units, switch to 0.25dB units so we can compare */
2881 max_pwr *= 2;
2882 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2884 /* apply rate limits */
2885 rates = ah->ah_txpower.txp_rates_power_table;
2887 /* OFDM rates 6 to 24Mb/s */
2888 for (i = 0; i < 5; i++)
2889 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2891 /* Rest OFDM rates */
2892 rates[5] = min(rates[0], rate_info->target_power_36);
2893 rates[6] = min(rates[0], rate_info->target_power_48);
2894 rates[7] = min(rates[0], rate_info->target_power_54);
2896 /* CCK rates */
2897 /* 1L */
2898 rates[8] = min(rates[0], rate_info->target_power_6to24);
2899 /* 2L */
2900 rates[9] = min(rates[0], rate_info->target_power_36);
2901 /* 2S */
2902 rates[10] = min(rates[0], rate_info->target_power_36);
2903 /* 5L */
2904 rates[11] = min(rates[0], rate_info->target_power_48);
2905 /* 5S */
2906 rates[12] = min(rates[0], rate_info->target_power_48);
2907 /* 11L */
2908 rates[13] = min(rates[0], rate_info->target_power_54);
2909 /* 11S */
2910 rates[14] = min(rates[0], rate_info->target_power_54);
2912 /* XR rates */
2913 rates[15] = min(rates[0], rate_info->target_power_6to24);
2915 /* CCK rates have different peak to average ratio
2916 * so we have to tweak their power so that gainf
2917 * correction works ok. For this we use OFDM to
2918 * CCK delta from eeprom */
2919 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2920 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2921 for (i = 8; i <= 15; i++)
2922 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2924 /* Now that we have all rates setup use table offset to
2925 * match the power range set by user with the power indices
2926 * on PCDAC/PDADC table */
2927 for (i = 0; i < 16; i++) {
2928 rates[i] += ah->ah_txpower.txp_offset;
2929 /* Don't get out of bounds */
2930 if (rates[i] > 63)
2931 rates[i] = 63;
2934 /* Min/max in 0.25dB units */
2935 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2936 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2937 ah->ah_txpower.txp_ofdm = rates[7];
2942 * Set transmition power
2945 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2946 u8 ee_mode, u8 txpower)
2948 struct ath5k_rate_pcal_info rate_info;
2949 u8 type;
2950 int ret;
2952 ATH5K_TRACE(ah->ah_sc);
2953 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2954 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2955 return -EINVAL;
2957 if (txpower == 0)
2958 txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2960 /* Reset TX power values */
2961 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2962 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2963 ah->ah_txpower.txp_min_pwr = 0;
2964 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2966 /* Initialize TX power table */
2967 switch (ah->ah_radio) {
2968 case AR5K_RF5111:
2969 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2970 break;
2971 case AR5K_RF5112:
2972 type = AR5K_PWRTABLE_LINEAR_PCDAC;
2973 break;
2974 case AR5K_RF2413:
2975 case AR5K_RF5413:
2976 case AR5K_RF2316:
2977 case AR5K_RF2317:
2978 case AR5K_RF2425:
2979 type = AR5K_PWRTABLE_PWR_TO_PDADC;
2980 break;
2981 default:
2982 return -EINVAL;
2985 /* FIXME: Only on channel/mode change */
2986 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2987 if (ret)
2988 return ret;
2990 /* Limit max power if we have a CTL available */
2991 ath5k_get_max_ctl_power(ah, channel);
2993 /* FIXME: Tx power limit for this regdomain
2994 * XXX: Mac80211/CRDA will do that anyway ? */
2996 /* FIXME: Antenna reduction stuff */
2998 /* FIXME: Limit power on turbo modes */
3000 /* FIXME: TPC scale reduction */
3002 /* Get surounding channels for per-rate power table
3003 * calibration */
3004 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3006 /* Setup rate power table */
3007 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3009 /* Write rate power table on hw */
3010 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3011 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3012 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3014 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3015 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3016 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3018 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3019 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3020 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3022 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3023 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3024 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3026 /* FIXME: TPC support */
3027 if (ah->ah_txpower.txp_tpc) {
3028 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3029 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3031 ath5k_hw_reg_write(ah,
3032 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3033 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3034 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3035 AR5K_TPC);
3036 } else {
3037 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3038 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3041 return 0;
3044 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3046 /*Just a try M.F.*/
3047 struct ieee80211_channel *channel = ah->ah_current_channel;
3048 u8 ee_mode;
3050 ATH5K_TRACE(ah->ah_sc);
3052 switch (channel->hw_value & CHANNEL_MODES) {
3053 case CHANNEL_A:
3054 case CHANNEL_T:
3055 case CHANNEL_XR:
3056 ee_mode = AR5K_EEPROM_MODE_11A;
3057 break;
3058 case CHANNEL_G:
3059 case CHANNEL_TG:
3060 ee_mode = AR5K_EEPROM_MODE_11G;
3061 break;
3062 case CHANNEL_B:
3063 ee_mode = AR5K_EEPROM_MODE_11B;
3064 break;
3065 default:
3066 ATH5K_ERR(ah->ah_sc,
3067 "invalid channel: %d\n", channel->center_freq);
3068 return -EINVAL;
3071 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3072 "changing txpower to %d\n", txpower);
3074 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3077 #undef _ATH5K_PHY