x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath5k / reset.c
blob34e13c7008497c5a270832874b096fe118988ad7
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 #define _ATH5K_RESET
24 /*****************************\
25 Reset functions and helpers
26 \*****************************/
28 #include <linux/pci.h> /* To determine if a card is pci-e */
29 #include <linux/log2.h>
30 #include "ath5k.h"
31 #include "reg.h"
32 #include "base.h"
33 #include "debug.h"
35 /**
36 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
38 * @ah: the &struct ath5k_hw
39 * @channel: the currently set channel upon reset
41 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
42 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
44 * Since delta slope is floating point we split it on its exponent and
45 * mantissa and provide these values on hw.
47 * For more infos i think this patent is related
48 * http://www.freepatentsonline.com/7184495.html
50 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
51 struct ieee80211_channel *channel)
53 /* Get exponent and mantissa and set it */
54 u32 coef_scaled, coef_exp, coef_man,
55 ds_coef_exp, ds_coef_man, clock;
57 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
58 !(channel->hw_value & CHANNEL_OFDM));
60 /* Get coefficient
61 * ALGO: coef = (5 * clock * carrier_freq) / 2)
62 * we scale coef by shifting clock value by 24 for
63 * better precision since we use integers */
64 /* TODO: Half/quarter rate */
65 clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
67 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
69 /* Get exponent
70 * ALGO: coef_exp = 14 - highest set bit position */
71 coef_exp = ilog2(coef_scaled);
73 /* Doesn't make sense if it's zero*/
74 if (!coef_scaled || !coef_exp)
75 return -EINVAL;
77 /* Note: we've shifted coef_scaled by 24 */
78 coef_exp = 14 - (coef_exp - 24);
81 /* Get mantissa (significant digits)
82 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
83 coef_man = coef_scaled +
84 (1 << (24 - coef_exp - 1));
86 /* Calculate delta slope coefficient exponent
87 * and mantissa (remove scaling) and set them on hw */
88 ds_coef_man = coef_man >> (24 - coef_exp);
89 ds_coef_exp = coef_exp - 16;
91 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
92 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
93 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
94 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
96 return 0;
101 * index into rates for control rates, we can set it up like this because
102 * this is only used for AR5212 and we know it supports G mode
104 static const unsigned int control_rates[] =
105 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
108 * ath5k_hw_write_rate_duration - fill rate code to duration table
110 * @ah: the &struct ath5k_hw
111 * @mode: one of enum ath5k_driver_mode
113 * Write the rate code to duration table upon hw reset. This is a helper for
114 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
115 * the hardware, based on current mode, for each rate. The rates which are
116 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
117 * different rate code so we write their value twice (one for long preample
118 * and one for short).
120 * Note: Band doesn't matter here, if we set the values for OFDM it works
121 * on both a and g modes. So all we have to do is set values for all g rates
122 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
123 * quarter rate mode, we need to use another set of bitrates (that's why we
124 * need the mode parameter) but we don't handle these proprietary modes yet.
126 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
127 unsigned int mode)
129 struct ath5k_softc *sc = ah->ah_sc;
130 struct ieee80211_rate *rate;
131 unsigned int i;
133 /* Write rate duration table */
134 for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
135 u32 reg;
136 u16 tx_time;
138 rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
140 /* Set ACK timeout */
141 reg = AR5K_RATE_DUR(rate->hw_value);
143 /* An ACK frame consists of 10 bytes. If you add the FCS,
144 * which ieee80211_generic_frame_duration() adds,
145 * its 14 bytes. Note we use the control rate and not the
146 * actual rate for this rate. See mac80211 tx.c
147 * ieee80211_duration() for a brief description of
148 * what rate we should choose to TX ACKs. */
149 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
150 sc->vif, 10, rate));
152 ath5k_hw_reg_write(ah, tx_time, reg);
154 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
155 continue;
158 * We're not distinguishing short preamble here,
159 * This is true, all we'll get is a longer value here
160 * which is not necessarilly bad. We could use
161 * export ieee80211_frame_duration() but that needs to be
162 * fixed first to be properly used by mac802111 drivers:
164 * - remove erp stuff and let the routine figure ofdm
165 * erp rates
166 * - remove passing argument ieee80211_local as
167 * drivers don't have access to it
168 * - move drivers using ieee80211_generic_frame_duration()
169 * to this
171 ath5k_hw_reg_write(ah, tx_time,
172 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
177 * Reset chipset
179 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
181 int ret;
182 u32 mask = val ? val : ~0U;
184 ATH5K_TRACE(ah->ah_sc);
186 /* Read-and-clear RX Descriptor Pointer*/
187 ath5k_hw_reg_read(ah, AR5K_RXDP);
190 * Reset the device and wait until success
192 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
194 /* Wait at least 128 PCI clocks */
195 udelay(15);
197 if (ah->ah_version == AR5K_AR5210) {
198 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
199 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
200 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
201 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
202 } else {
203 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
204 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
207 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
210 * Reset configuration register (for hw byte-swap). Note that this
211 * is only set for big endian. We do the necessary magic in
212 * AR5K_INIT_CFG.
214 if ((val & AR5K_RESET_CTL_PCU) == 0)
215 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
217 return ret;
221 * Sleep control
223 int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
224 bool set_chip, u16 sleep_duration)
226 unsigned int i;
227 u32 staid, data;
229 ATH5K_TRACE(ah->ah_sc);
230 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
232 switch (mode) {
233 case AR5K_PM_AUTO:
234 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
235 /* fallthrough */
236 case AR5K_PM_NETWORK_SLEEP:
237 if (set_chip)
238 ath5k_hw_reg_write(ah,
239 AR5K_SLEEP_CTL_SLE_ALLOW |
240 sleep_duration,
241 AR5K_SLEEP_CTL);
243 staid |= AR5K_STA_ID1_PWR_SV;
244 break;
246 case AR5K_PM_FULL_SLEEP:
247 if (set_chip)
248 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
249 AR5K_SLEEP_CTL);
251 staid |= AR5K_STA_ID1_PWR_SV;
252 break;
254 case AR5K_PM_AWAKE:
256 staid &= ~AR5K_STA_ID1_PWR_SV;
258 if (!set_chip)
259 goto commit;
261 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
263 /* If card is down we 'll get 0xffff... so we
264 * need to clean this up before we write the register
266 if (data & 0xffc00000)
267 data = 0;
268 else
269 /* Preserve sleep duration etc */
270 data = data & ~AR5K_SLEEP_CTL_SLE;
272 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
273 AR5K_SLEEP_CTL);
274 udelay(15);
276 for (i = 200; i > 0; i--) {
277 /* Check if the chip did wake up */
278 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
279 AR5K_PCICFG_SPWR_DN) == 0)
280 break;
282 /* Wait a bit and retry */
283 udelay(50);
284 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
285 AR5K_SLEEP_CTL);
288 /* Fail if the chip didn't wake up */
289 if (i == 0)
290 return -EIO;
292 break;
294 default:
295 return -EINVAL;
298 commit:
299 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
301 return 0;
305 * Put device on hold
307 * Put MAC and Baseband on warm reset and
308 * keep that state (don't clean sleep control
309 * register). After this MAC and Baseband are
310 * disabled and a full reset is needed to come
311 * back. This way we save as much power as possible
312 * without puting the card on full sleep.
314 int ath5k_hw_on_hold(struct ath5k_hw *ah)
316 struct pci_dev *pdev = ah->ah_sc->pdev;
317 u32 bus_flags;
318 int ret;
320 /* Make sure device is awake */
321 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
322 if (ret) {
323 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
324 return ret;
328 * Put chipset on warm reset...
330 * Note: puting PCI core on warm reset on PCI-E cards
331 * results card to hang and always return 0xffff... so
332 * we ingore that flag for PCI-E cards. On PCI cards
333 * this flag gets cleared after 64 PCI clocks.
335 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
337 if (ah->ah_version == AR5K_AR5210) {
338 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
339 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
340 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
341 mdelay(2);
342 } else {
343 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
344 AR5K_RESET_CTL_BASEBAND | bus_flags);
347 if (ret) {
348 ATH5K_ERR(ah->ah_sc, "failed to put device on warm reset\n");
349 return -EIO;
352 /* ...wakeup again!*/
353 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
354 if (ret) {
355 ATH5K_ERR(ah->ah_sc, "failed to put device on hold\n");
356 return ret;
359 return ret;
363 * Bring up MAC + PHY Chips and program PLL
364 * TODO: Half/Quarter rate support
366 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
368 struct pci_dev *pdev = ah->ah_sc->pdev;
369 u32 turbo, mode, clock, bus_flags;
370 int ret;
372 turbo = 0;
373 mode = 0;
374 clock = 0;
376 ATH5K_TRACE(ah->ah_sc);
378 /* Wakeup the device */
379 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
380 if (ret) {
381 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
382 return ret;
386 * Put chipset on warm reset...
388 * Note: puting PCI core on warm reset on PCI-E cards
389 * results card to hang and always return 0xffff... so
390 * we ingore that flag for PCI-E cards. On PCI cards
391 * this flag gets cleared after 64 PCI clocks.
393 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
395 if (ah->ah_version == AR5K_AR5210) {
396 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
397 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
398 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
399 mdelay(2);
400 } else {
401 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
402 AR5K_RESET_CTL_BASEBAND | bus_flags);
405 if (ret) {
406 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
407 return -EIO;
410 /* ...wakeup again!...*/
411 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
412 if (ret) {
413 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
414 return ret;
417 /* ...clear reset control register and pull device out of
418 * warm reset */
419 if (ath5k_hw_nic_reset(ah, 0)) {
420 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
421 return -EIO;
424 /* On initialization skip PLL programming since we don't have
425 * a channel / mode set yet */
426 if (initial)
427 return 0;
429 if (ah->ah_version != AR5K_AR5210) {
431 * Get channel mode flags
434 if (ah->ah_radio >= AR5K_RF5112) {
435 mode = AR5K_PHY_MODE_RAD_RF5112;
436 clock = AR5K_PHY_PLL_RF5112;
437 } else {
438 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
439 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
442 if (flags & CHANNEL_2GHZ) {
443 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
444 clock |= AR5K_PHY_PLL_44MHZ;
446 if (flags & CHANNEL_CCK) {
447 mode |= AR5K_PHY_MODE_MOD_CCK;
448 } else if (flags & CHANNEL_OFDM) {
449 /* XXX Dynamic OFDM/CCK is not supported by the
450 * AR5211 so we set MOD_OFDM for plain g (no
451 * CCK headers) operation. We need to test
452 * this, 5211 might support ofdm-only g after
453 * all, there are also initial register values
454 * in the code for g mode (see initvals.c). */
455 if (ah->ah_version == AR5K_AR5211)
456 mode |= AR5K_PHY_MODE_MOD_OFDM;
457 else
458 mode |= AR5K_PHY_MODE_MOD_DYN;
459 } else {
460 ATH5K_ERR(ah->ah_sc,
461 "invalid radio modulation mode\n");
462 return -EINVAL;
464 } else if (flags & CHANNEL_5GHZ) {
465 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
467 if (ah->ah_radio == AR5K_RF5413)
468 clock = AR5K_PHY_PLL_40MHZ_5413;
469 else
470 clock |= AR5K_PHY_PLL_40MHZ;
472 if (flags & CHANNEL_OFDM)
473 mode |= AR5K_PHY_MODE_MOD_OFDM;
474 else {
475 ATH5K_ERR(ah->ah_sc,
476 "invalid radio modulation mode\n");
477 return -EINVAL;
479 } else {
480 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
481 return -EINVAL;
484 if (flags & CHANNEL_TURBO)
485 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
486 } else { /* Reset the device */
488 /* ...enable Atheros turbo mode if requested */
489 if (flags & CHANNEL_TURBO)
490 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
491 AR5K_PHY_TURBO);
494 if (ah->ah_version != AR5K_AR5210) {
496 /* ...update PLL if needed */
497 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
498 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
499 udelay(300);
502 /* ...set the PHY operating mode */
503 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
504 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
507 return 0;
511 * If there is an external 32KHz crystal available, use it
512 * as ref. clock instead of 32/40MHz clock and baseband clocks
513 * to save power during sleep or restore normal 32/40MHz
514 * operation.
516 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
517 * 123 - 127) require delay on access.
519 static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
521 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
522 u32 scal, spending, usec32;
524 /* Only set 32KHz settings if we have an external
525 * 32KHz crystal present */
526 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
527 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
528 enable) {
530 /* 1 usec/cycle */
531 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
532 /* Set up tsf increment on each cycle */
533 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
535 /* Set baseband sleep control registers
536 * and sleep control rate */
537 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
539 if ((ah->ah_radio == AR5K_RF5112) ||
540 (ah->ah_radio == AR5K_RF5413) ||
541 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
542 spending = 0x14;
543 else
544 spending = 0x18;
545 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
547 if ((ah->ah_radio == AR5K_RF5112) ||
548 (ah->ah_radio == AR5K_RF5413) ||
549 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
550 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
551 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
552 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
553 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
554 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
555 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
556 } else {
557 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
558 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
559 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
560 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
561 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
562 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
565 /* Enable sleep clock operation */
566 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
567 AR5K_PCICFG_SLEEP_CLOCK_EN);
569 } else {
571 /* Disable sleep clock operation and
572 * restore default parameters */
573 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
574 AR5K_PCICFG_SLEEP_CLOCK_EN);
576 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
577 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
579 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
580 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
582 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
583 scal = AR5K_PHY_SCAL_32MHZ_2417;
584 else if (ee->ee_is_hb63)
585 scal = AR5K_PHY_SCAL_32MHZ_HB63;
586 else
587 scal = AR5K_PHY_SCAL_32MHZ;
588 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
590 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
591 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
593 if ((ah->ah_radio == AR5K_RF5112) ||
594 (ah->ah_radio == AR5K_RF5413) ||
595 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
596 spending = 0x14;
597 else
598 spending = 0x18;
599 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
601 if ((ah->ah_radio == AR5K_RF5112) ||
602 (ah->ah_radio == AR5K_RF5413))
603 usec32 = 39;
604 else
605 usec32 = 31;
606 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
608 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
610 return;
613 /* TODO: Half/Quarter rate */
614 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
615 struct ieee80211_channel *channel)
617 if (ah->ah_version == AR5K_AR5212 &&
618 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
620 /* Setup ADC control */
621 ath5k_hw_reg_write(ah,
622 (AR5K_REG_SM(2,
623 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
624 AR5K_REG_SM(2,
625 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
626 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
627 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
628 AR5K_PHY_ADC_CTL);
632 /* Disable barker RSSI threshold */
633 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
634 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
636 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
637 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
639 /* Set the mute mask */
640 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
643 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
644 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
645 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
647 /* Enable DCU double buffering */
648 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
649 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
650 AR5K_TXCFG_DCU_DBL_BUF_DIS);
652 /* Set DAC/ADC delays */
653 if (ah->ah_version == AR5K_AR5212) {
654 u32 scal;
655 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
656 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
657 scal = AR5K_PHY_SCAL_32MHZ_2417;
658 else if (ee->ee_is_hb63)
659 scal = AR5K_PHY_SCAL_32MHZ_HB63;
660 else
661 scal = AR5K_PHY_SCAL_32MHZ;
662 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
665 /* Set fast ADC */
666 if ((ah->ah_radio == AR5K_RF5413) ||
667 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
668 u32 fast_adc = true;
670 if (channel->center_freq == 2462 ||
671 channel->center_freq == 2467)
672 fast_adc = 0;
674 /* Only update if needed */
675 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
676 ath5k_hw_reg_write(ah, fast_adc,
677 AR5K_PHY_FAST_ADC);
680 /* Fix for first revision of the RF5112 RF chipset */
681 if (ah->ah_radio == AR5K_RF5112 &&
682 ah->ah_radio_5ghz_revision <
683 AR5K_SREV_RAD_5112A) {
684 u32 data;
685 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
686 AR5K_PHY_CCKTXCTL);
687 if (channel->hw_value & CHANNEL_5GHZ)
688 data = 0xffb81020;
689 else
690 data = 0xffb80d20;
691 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
694 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
695 u32 usec_reg;
696 /* 5311 has different tx/rx latency masks
697 * from 5211, since we deal 5311 the same
698 * as 5211 when setting initvals, shift
699 * values here to their proper locations */
700 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
701 ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
702 AR5K_USEC_32 |
703 AR5K_USEC_TX_LATENCY_5211 |
704 AR5K_REG_SM(29,
705 AR5K_USEC_RX_LATENCY_5210)),
706 AR5K_USEC_5211);
707 /* Clear QCU/DCU clock gating register */
708 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
709 /* Set DAC/ADC delays */
710 ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
711 /* Enable PCU FIFO corruption ECO */
712 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
713 AR5K_DIAG_SW_ECO_ENABLE);
717 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
718 struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
720 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
721 s16 cck_ofdm_pwr_delta;
723 /* Adjust power delta for channel 14 */
724 if (channel->center_freq == 2484)
725 cck_ofdm_pwr_delta =
726 ((ee->ee_cck_ofdm_power_delta -
727 ee->ee_scaled_cck_delta) * 2) / 10;
728 else
729 cck_ofdm_pwr_delta =
730 (ee->ee_cck_ofdm_power_delta * 2) / 10;
732 /* Set CCK to OFDM power delta on tx power
733 * adjustment register */
734 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
735 if (channel->hw_value == CHANNEL_G)
736 ath5k_hw_reg_write(ah,
737 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
738 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
739 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
740 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
741 AR5K_PHY_TX_PWR_ADJ);
742 else
743 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
744 } else {
745 /* For older revs we scale power on sw during tx power
746 * setup */
747 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
748 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
749 ee->ee_cck_ofdm_gain_delta;
752 /* Set antenna idle switch table */
753 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
754 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
755 (ah->ah_ant_ctl[ee_mode][0] |
756 AR5K_PHY_ANT_CTL_TXRX_EN));
758 /* Set antenna switch tables */
759 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[0]],
760 AR5K_PHY_ANT_SWITCH_TABLE_0);
761 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[1]],
762 AR5K_PHY_ANT_SWITCH_TABLE_1);
764 /* Noise floor threshold */
765 ath5k_hw_reg_write(ah,
766 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
767 AR5K_PHY_NFTHRES);
769 if ((channel->hw_value & CHANNEL_TURBO) &&
770 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
771 /* Switch settling time (Turbo) */
772 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
773 AR5K_PHY_SETTLING_SWITCH,
774 ee->ee_switch_settling_turbo[ee_mode]);
776 /* Tx/Rx attenuation (Turbo) */
777 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
778 AR5K_PHY_GAIN_TXRX_ATTEN,
779 ee->ee_atn_tx_rx_turbo[ee_mode]);
781 /* ADC/PGA desired size (Turbo) */
782 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
783 AR5K_PHY_DESIRED_SIZE_ADC,
784 ee->ee_adc_desired_size_turbo[ee_mode]);
786 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
787 AR5K_PHY_DESIRED_SIZE_PGA,
788 ee->ee_pga_desired_size_turbo[ee_mode]);
790 /* Tx/Rx margin (Turbo) */
791 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
792 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
793 ee->ee_margin_tx_rx_turbo[ee_mode]);
795 } else {
796 /* Switch settling time */
797 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
798 AR5K_PHY_SETTLING_SWITCH,
799 ee->ee_switch_settling[ee_mode]);
801 /* Tx/Rx attenuation */
802 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
803 AR5K_PHY_GAIN_TXRX_ATTEN,
804 ee->ee_atn_tx_rx[ee_mode]);
806 /* ADC/PGA desired size */
807 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
808 AR5K_PHY_DESIRED_SIZE_ADC,
809 ee->ee_adc_desired_size[ee_mode]);
811 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
812 AR5K_PHY_DESIRED_SIZE_PGA,
813 ee->ee_pga_desired_size[ee_mode]);
815 /* Tx/Rx margin */
816 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
817 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
818 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
819 ee->ee_margin_tx_rx[ee_mode]);
822 /* XPA delays */
823 ath5k_hw_reg_write(ah,
824 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
825 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
826 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
827 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
829 /* XLNA delay */
830 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
831 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
832 ee->ee_tx_end2xlna_enable[ee_mode]);
834 /* Thresh64 (ANI) */
835 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
836 AR5K_PHY_NF_THRESH62,
837 ee->ee_thr_62[ee_mode]);
840 /* False detect backoff for channels
841 * that have spur noise. Write the new
842 * cyclic power RSSI threshold. */
843 if (ath5k_hw_chan_has_spur_noise(ah, channel))
844 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
845 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
846 AR5K_INIT_CYCRSSI_THR1 +
847 ee->ee_false_detect[ee_mode]);
848 else
849 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
850 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
851 AR5K_INIT_CYCRSSI_THR1);
853 /* I/Q correction
854 * TODO: Per channel i/q infos ? */
855 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
856 AR5K_PHY_IQ_CORR_ENABLE |
857 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
858 ee->ee_q_cal[ee_mode]);
860 /* Heavy clipping -disable for now */
861 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
862 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
864 return;
868 * Main reset function
870 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
871 struct ieee80211_channel *channel, bool change_channel)
873 u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
874 u32 phy_tst1;
875 u8 mode, freq, ee_mode, ant[2];
876 int i, ret;
878 ATH5K_TRACE(ah->ah_sc);
880 s_ant = 0;
881 ee_mode = 0;
882 staid1_flags = 0;
883 tsf_up = 0;
884 tsf_lo = 0;
885 freq = 0;
886 mode = 0;
889 * Save some registers before a reset
891 /*DCU/Antenna selection not available on 5210*/
892 if (ah->ah_version != AR5K_AR5210) {
894 switch (channel->hw_value & CHANNEL_MODES) {
895 case CHANNEL_A:
896 mode = AR5K_MODE_11A;
897 freq = AR5K_INI_RFGAIN_5GHZ;
898 ee_mode = AR5K_EEPROM_MODE_11A;
899 break;
900 case CHANNEL_G:
901 mode = AR5K_MODE_11G;
902 freq = AR5K_INI_RFGAIN_2GHZ;
903 ee_mode = AR5K_EEPROM_MODE_11G;
904 break;
905 case CHANNEL_B:
906 mode = AR5K_MODE_11B;
907 freq = AR5K_INI_RFGAIN_2GHZ;
908 ee_mode = AR5K_EEPROM_MODE_11B;
909 break;
910 case CHANNEL_T:
911 mode = AR5K_MODE_11A_TURBO;
912 freq = AR5K_INI_RFGAIN_5GHZ;
913 ee_mode = AR5K_EEPROM_MODE_11A;
914 break;
915 case CHANNEL_TG:
916 if (ah->ah_version == AR5K_AR5211) {
917 ATH5K_ERR(ah->ah_sc,
918 "TurboG mode not available on 5211");
919 return -EINVAL;
921 mode = AR5K_MODE_11G_TURBO;
922 freq = AR5K_INI_RFGAIN_2GHZ;
923 ee_mode = AR5K_EEPROM_MODE_11G;
924 break;
925 case CHANNEL_XR:
926 if (ah->ah_version == AR5K_AR5211) {
927 ATH5K_ERR(ah->ah_sc,
928 "XR mode not available on 5211");
929 return -EINVAL;
931 mode = AR5K_MODE_XR;
932 freq = AR5K_INI_RFGAIN_5GHZ;
933 ee_mode = AR5K_EEPROM_MODE_11A;
934 break;
935 default:
936 ATH5K_ERR(ah->ah_sc,
937 "invalid channel: %d\n", channel->center_freq);
938 return -EINVAL;
941 if (change_channel) {
943 * Save frame sequence count
944 * For revs. after Oahu, only save
945 * seq num for DCU 0 (Global seq num)
947 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
949 for (i = 0; i < 10; i++)
950 s_seq[i] = ath5k_hw_reg_read(ah,
951 AR5K_QUEUE_DCU_SEQNUM(i));
953 } else {
954 s_seq[0] = ath5k_hw_reg_read(ah,
955 AR5K_QUEUE_DCU_SEQNUM(0));
958 /* TSF accelerates on AR5211 durring reset
959 * As a workaround save it here and restore
960 * it later so that it's back in time after
961 * reset. This way it'll get re-synced on the
962 * next beacon without breaking ad-hoc.
964 * On AR5212 TSF is almost preserved across a
965 * reset so it stays back in time anyway and
966 * we don't have to save/restore it.
968 * XXX: Since this breaks power saving we have
969 * to disable power saving until we receive the
970 * next beacon, so we can resync beacon timers */
971 if (ah->ah_version == AR5K_AR5211) {
972 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
973 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
977 /* Save default antenna */
978 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
980 if (ah->ah_version == AR5K_AR5212) {
981 /* Restore normal 32/40MHz clock operation
982 * to avoid register access delay on certain
983 * PHY registers */
984 ath5k_hw_set_sleep_clock(ah, false);
986 /* Since we are going to write rf buffer
987 * check if we have any pending gain_F
988 * optimization settings */
989 if (change_channel && ah->ah_rf_banks != NULL)
990 ath5k_hw_gainf_calibrate(ah);
994 /*GPIOs*/
995 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
996 AR5K_PCICFG_LEDSTATE;
997 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
998 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1000 /* AR5K_STA_ID1 flags, only preserve antenna
1001 * settings and ack/cts rate mode */
1002 staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
1003 (AR5K_STA_ID1_DEFAULT_ANTENNA |
1004 AR5K_STA_ID1_DESC_ANTENNA |
1005 AR5K_STA_ID1_RTS_DEF_ANTENNA |
1006 AR5K_STA_ID1_ACKCTS_6MB |
1007 AR5K_STA_ID1_BASE_RATE_11B |
1008 AR5K_STA_ID1_SELFGEN_DEF_ANT);
1010 /* Wakeup the device */
1011 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
1012 if (ret)
1013 return ret;
1016 * Initialize operating mode
1018 ah->ah_op_mode = op_mode;
1020 /* PHY access enable */
1021 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1022 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1023 else
1024 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1025 AR5K_PHY(0));
1027 /* Write initial settings */
1028 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
1029 if (ret)
1030 return ret;
1033 * 5211/5212 Specific
1035 if (ah->ah_version != AR5K_AR5210) {
1038 * Write initial RF gain settings
1039 * This should work for both 5111/5112
1041 ret = ath5k_hw_rfgain_init(ah, freq);
1042 if (ret)
1043 return ret;
1045 mdelay(1);
1048 * Tweak initval settings for revised
1049 * chipsets and add some more config
1050 * bits
1052 ath5k_hw_tweak_initval_settings(ah, channel);
1055 * Set TX power
1057 ret = ath5k_hw_txpower(ah, channel, ee_mode,
1058 ah->ah_txpower.txp_max_pwr / 2);
1059 if (ret)
1060 return ret;
1062 /* Write rate duration table only on AR5212 and if
1063 * virtual interface has already been brought up
1064 * XXX: rethink this after new mode changes to
1065 * mac80211 are integrated */
1066 if (ah->ah_version == AR5K_AR5212 &&
1067 ah->ah_sc->vif != NULL)
1068 ath5k_hw_write_rate_duration(ah, mode);
1071 * Write RF buffer
1073 ret = ath5k_hw_rfregs_init(ah, channel, mode);
1074 if (ret)
1075 return ret;
1078 /* Write OFDM timings on 5212*/
1079 if (ah->ah_version == AR5K_AR5212 &&
1080 channel->hw_value & CHANNEL_OFDM) {
1081 struct ath5k_eeprom_info *ee =
1082 &ah->ah_capabilities.cap_eeprom;
1084 ret = ath5k_hw_write_ofdm_timings(ah, channel);
1085 if (ret)
1086 return ret;
1088 /* Note: According to docs we can have a newer
1089 * EEPROM on old hardware, so we need to verify
1090 * that our hardware is new enough to have spur
1091 * mitigation registers (delta phase etc) */
1092 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 ||
1093 (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1094 ee->ee_version >= AR5K_EEPROM_VERSION_5_3))
1095 ath5k_hw_set_spur_mitigation_filter(ah,
1096 channel);
1099 /*Enable/disable 802.11b mode on 5111
1100 (enable 2111 frequency converter + CCK)*/
1101 if (ah->ah_radio == AR5K_RF5111) {
1102 if (mode == AR5K_MODE_11B)
1103 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
1104 AR5K_TXCFG_B_MODE);
1105 else
1106 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
1107 AR5K_TXCFG_B_MODE);
1111 * In case a fixed antenna was set as default
1112 * use the same switch table twice.
1114 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1115 ant[0] = ant[1] = AR5K_ANT_SWTABLE_A;
1116 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1117 ant[0] = ant[1] = AR5K_ANT_SWTABLE_B;
1118 else {
1119 ant[0] = AR5K_ANT_SWTABLE_A;
1120 ant[1] = AR5K_ANT_SWTABLE_B;
1123 /* Commit values from EEPROM */
1124 ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
1126 } else {
1128 * For 5210 we do all initialization using
1129 * initvals, so we don't have to modify
1130 * any settings (5210 also only supports
1131 * a/aturbo modes)
1133 mdelay(1);
1134 /* Disable phy and wait */
1135 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1136 mdelay(1);
1140 * Restore saved values
1143 /*DCU/Antenna selection not available on 5210*/
1144 if (ah->ah_version != AR5K_AR5210) {
1146 if (change_channel) {
1147 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1148 for (i = 0; i < 10; i++)
1149 ath5k_hw_reg_write(ah, s_seq[i],
1150 AR5K_QUEUE_DCU_SEQNUM(i));
1151 } else {
1152 ath5k_hw_reg_write(ah, s_seq[0],
1153 AR5K_QUEUE_DCU_SEQNUM(0));
1157 if (ah->ah_version == AR5K_AR5211) {
1158 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1159 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1163 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
1166 /* Ledstate */
1167 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1169 /* Gpio settings */
1170 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1171 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1173 /* Restore sta_id flags and preserve our mac address*/
1174 ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
1175 AR5K_STA_ID0);
1176 ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
1177 AR5K_STA_ID1);
1181 * Configure PCU
1184 /* Restore bssid and bssid mask */
1185 /* XXX: add ah->aid once mac80211 gives this to us */
1186 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
1188 /* Set PCU config */
1189 ath5k_hw_set_opmode(ah);
1191 /* Clear any pending interrupts
1192 * PISR/SISR Not available on 5210 */
1193 if (ah->ah_version != AR5K_AR5210)
1194 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
1196 /* Set RSSI/BRSSI thresholds
1198 * Note: If we decide to set this value
1199 * dynamicaly, have in mind that when AR5K_RSSI_THR
1200 * register is read it might return 0x40 if we haven't
1201 * wrote anything to it plus BMISS RSSI threshold is zeroed.
1202 * So doing a save/restore procedure here isn't the right
1203 * choice. Instead store it on ath5k_hw */
1204 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
1205 AR5K_TUNE_BMISS_THRES <<
1206 AR5K_RSSI_THR_BMISS_S),
1207 AR5K_RSSI_THR);
1209 /* MIC QoS support */
1210 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
1211 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
1212 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
1215 /* QoS NOACK Policy */
1216 if (ah->ah_version == AR5K_AR5212) {
1217 ath5k_hw_reg_write(ah,
1218 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
1219 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
1220 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
1221 AR5K_QOS_NOACK);
1226 * Configure PHY
1229 /* Set channel on PHY */
1230 ret = ath5k_hw_channel(ah, channel);
1231 if (ret)
1232 return ret;
1235 * Enable the PHY and wait until completion
1236 * This includes BaseBand and Synthesizer
1237 * activation.
1239 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1242 * On 5211+ read activation -> rx delay
1243 * and use it.
1245 * TODO: Half/quarter rate support
1247 if (ah->ah_version != AR5K_AR5210) {
1248 u32 delay;
1249 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1250 AR5K_PHY_RX_DELAY_M;
1251 delay = (channel->hw_value & CHANNEL_CCK) ?
1252 ((delay << 2) / 22) : (delay / 10);
1254 udelay(100 + (2 * delay));
1255 } else {
1256 mdelay(1);
1260 * Perform ADC test to see if baseband is ready
1261 * Set tx hold and check adc test register
1263 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1264 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1265 for (i = 0; i <= 20; i++) {
1266 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1267 break;
1268 udelay(200);
1270 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1273 * Start automatic gain control calibration
1275 * During AGC calibration RX path is re-routed to
1276 * a power detector so we don't receive anything.
1278 * This method is used to calibrate some static offsets
1279 * used together with on-the fly I/Q calibration (the
1280 * one performed via ath5k_hw_phy_calibrate), that doesn't
1281 * interrupt rx path.
1283 * While rx path is re-routed to the power detector we also
1284 * start a noise floor calibration, to measure the
1285 * card's noise floor (the noise we measure when we are not
1286 * transmiting or receiving anything).
1288 * If we are in a noisy environment AGC calibration may time
1289 * out and/or noise floor calibration might timeout.
1291 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1292 AR5K_PHY_AGCCTL_CAL);
1294 /* At the same time start I/Q calibration for QAM constellation
1295 * -no need for CCK- */
1296 ah->ah_calibration = false;
1297 if (!(mode == AR5K_MODE_11B)) {
1298 ah->ah_calibration = true;
1299 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1300 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1301 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1302 AR5K_PHY_IQ_RUN);
1305 /* Wait for gain calibration to finish (we check for I/Q calibration
1306 * during ath5k_phy_calibrate) */
1307 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1308 AR5K_PHY_AGCCTL_CAL, 0, false)) {
1309 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
1310 channel->center_freq);
1314 * If we run NF calibration before AGC, it always times out.
1315 * Binary HAL starts NF and AGC calibration at the same time
1316 * and only waits for AGC to finish. Also if AGC or NF cal.
1317 * times out, reset doesn't fail on binary HAL. I believe
1318 * that's wrong because since rx path is routed to a detector,
1319 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1320 * enables noise floor calibration after offset calibration and if noise
1321 * floor calibration fails, reset fails. I believe that's
1322 * a better approach, we just need to find a polling interval
1323 * that suits best, even if reset continues we need to make
1324 * sure that rx path is ready.
1326 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1328 /* Restore antenna mode */
1329 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
1332 * Configure QCUs/DCUs
1335 /* TODO: HW Compression support for data queues */
1336 /* TODO: Burst prefetch for data queues */
1339 * Reset queues and start beacon timers at the end of the reset routine
1340 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1341 * Note: If we want we can assign multiple qcus on one dcu.
1343 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
1344 ret = ath5k_hw_reset_tx_queue(ah, i);
1345 if (ret) {
1346 ATH5K_ERR(ah->ah_sc,
1347 "failed to reset TX queue #%d\n", i);
1348 return ret;
1354 * Configure DMA/Interrupts
1358 * Set Rx/Tx DMA Configuration
1360 * Set standard DMA size (128). Note that
1361 * a DMA size of 512 causes rx overruns and tx errors
1362 * on pci-e cards (tested on 5424 but since rx overruns
1363 * also occur on 5416/5418 with madwifi we set 128
1364 * for all PCI-E cards to be safe).
1366 * XXX: need to check 5210 for this
1367 * TODO: Check out tx triger level, it's always 64 on dumps but I
1368 * guess we can tweak it and see how it goes ;-)
1370 if (ah->ah_version != AR5K_AR5210) {
1371 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1372 AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1373 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1374 AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1377 /* Pre-enable interrupts on 5211/5212*/
1378 if (ah->ah_version != AR5K_AR5210)
1379 ath5k_hw_set_imr(ah, ah->ah_imr);
1381 /* Enable 32KHz clock function for AR5212+ chips
1382 * Set clocks to 32KHz operation and use an
1383 * external 32KHz crystal when sleeping if one
1384 * exists */
1385 if (ah->ah_version == AR5K_AR5212)
1386 ath5k_hw_set_sleep_clock(ah, true);
1389 * Disable beacons and reset the register
1391 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1392 AR5K_BEACON_RESET_TSF);
1394 return 0;
1397 #undef _ATH5K_RESET