2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 /*****************************\
25 Reset functions and helpers
26 \*****************************/
28 #include <linux/pci.h> /* To determine if a card is pci-e */
29 #include <linux/log2.h>
36 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
38 * @ah: the &struct ath5k_hw
39 * @channel: the currently set channel upon reset
41 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
42 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
44 * Since delta slope is floating point we split it on its exponent and
45 * mantissa and provide these values on hw.
47 * For more infos i think this patent is related
48 * http://www.freepatentsonline.com/7184495.html
50 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw
*ah
,
51 struct ieee80211_channel
*channel
)
53 /* Get exponent and mantissa and set it */
54 u32 coef_scaled
, coef_exp
, coef_man
,
55 ds_coef_exp
, ds_coef_man
, clock
;
57 BUG_ON(!(ah
->ah_version
== AR5K_AR5212
) ||
58 !(channel
->hw_value
& CHANNEL_OFDM
));
61 * ALGO: coef = (5 * clock * carrier_freq) / 2)
62 * we scale coef by shifting clock value by 24 for
63 * better precision since we use integers */
64 /* TODO: Half/quarter rate */
65 clock
= ath5k_hw_htoclock(1, channel
->hw_value
& CHANNEL_TURBO
);
67 coef_scaled
= ((5 * (clock
<< 24)) / 2) / channel
->center_freq
;
70 * ALGO: coef_exp = 14 - highest set bit position */
71 coef_exp
= ilog2(coef_scaled
);
73 /* Doesn't make sense if it's zero*/
74 if (!coef_scaled
|| !coef_exp
)
77 /* Note: we've shifted coef_scaled by 24 */
78 coef_exp
= 14 - (coef_exp
- 24);
81 /* Get mantissa (significant digits)
82 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
83 coef_man
= coef_scaled
+
84 (1 << (24 - coef_exp
- 1));
86 /* Calculate delta slope coefficient exponent
87 * and mantissa (remove scaling) and set them on hw */
88 ds_coef_man
= coef_man
>> (24 - coef_exp
);
89 ds_coef_exp
= coef_exp
- 16;
91 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
92 AR5K_PHY_TIMING_3_DSC_MAN
, ds_coef_man
);
93 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
94 AR5K_PHY_TIMING_3_DSC_EXP
, ds_coef_exp
);
101 * index into rates for control rates, we can set it up like this because
102 * this is only used for AR5212 and we know it supports G mode
104 static const unsigned int control_rates
[] =
105 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
108 * ath5k_hw_write_rate_duration - fill rate code to duration table
110 * @ah: the &struct ath5k_hw
111 * @mode: one of enum ath5k_driver_mode
113 * Write the rate code to duration table upon hw reset. This is a helper for
114 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
115 * the hardware, based on current mode, for each rate. The rates which are
116 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
117 * different rate code so we write their value twice (one for long preample
118 * and one for short).
120 * Note: Band doesn't matter here, if we set the values for OFDM it works
121 * on both a and g modes. So all we have to do is set values for all g rates
122 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
123 * quarter rate mode, we need to use another set of bitrates (that's why we
124 * need the mode parameter) but we don't handle these proprietary modes yet.
126 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw
*ah
,
129 struct ath5k_softc
*sc
= ah
->ah_sc
;
130 struct ieee80211_rate
*rate
;
133 /* Write rate duration table */
134 for (i
= 0; i
< sc
->sbands
[IEEE80211_BAND_2GHZ
].n_bitrates
; i
++) {
138 rate
= &sc
->sbands
[IEEE80211_BAND_2GHZ
].bitrates
[control_rates
[i
]];
140 /* Set ACK timeout */
141 reg
= AR5K_RATE_DUR(rate
->hw_value
);
143 /* An ACK frame consists of 10 bytes. If you add the FCS,
144 * which ieee80211_generic_frame_duration() adds,
145 * its 14 bytes. Note we use the control rate and not the
146 * actual rate for this rate. See mac80211 tx.c
147 * ieee80211_duration() for a brief description of
148 * what rate we should choose to TX ACKs. */
149 tx_time
= le16_to_cpu(ieee80211_generic_frame_duration(sc
->hw
,
152 ath5k_hw_reg_write(ah
, tx_time
, reg
);
154 if (!(rate
->flags
& IEEE80211_RATE_SHORT_PREAMBLE
))
158 * We're not distinguishing short preamble here,
159 * This is true, all we'll get is a longer value here
160 * which is not necessarilly bad. We could use
161 * export ieee80211_frame_duration() but that needs to be
162 * fixed first to be properly used by mac802111 drivers:
164 * - remove erp stuff and let the routine figure ofdm
166 * - remove passing argument ieee80211_local as
167 * drivers don't have access to it
168 * - move drivers using ieee80211_generic_frame_duration()
171 ath5k_hw_reg_write(ah
, tx_time
,
172 reg
+ (AR5K_SET_SHORT_PREAMBLE
<< 2));
179 static int ath5k_hw_nic_reset(struct ath5k_hw
*ah
, u32 val
)
182 u32 mask
= val
? val
: ~0U;
184 ATH5K_TRACE(ah
->ah_sc
);
186 /* Read-and-clear RX Descriptor Pointer*/
187 ath5k_hw_reg_read(ah
, AR5K_RXDP
);
190 * Reset the device and wait until success
192 ath5k_hw_reg_write(ah
, val
, AR5K_RESET_CTL
);
194 /* Wait at least 128 PCI clocks */
197 if (ah
->ah_version
== AR5K_AR5210
) {
198 val
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_DMA
199 | AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_PHY
;
200 mask
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_DMA
201 | AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_PHY
;
203 val
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_BASEBAND
;
204 mask
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_BASEBAND
;
207 ret
= ath5k_hw_register_timeout(ah
, AR5K_RESET_CTL
, mask
, val
, false);
210 * Reset configuration register (for hw byte-swap). Note that this
211 * is only set for big endian. We do the necessary magic in
214 if ((val
& AR5K_RESET_CTL_PCU
) == 0)
215 ath5k_hw_reg_write(ah
, AR5K_INIT_CFG
, AR5K_CFG
);
223 int ath5k_hw_set_power(struct ath5k_hw
*ah
, enum ath5k_power_mode mode
,
224 bool set_chip
, u16 sleep_duration
)
229 ATH5K_TRACE(ah
->ah_sc
);
230 staid
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
);
234 staid
&= ~AR5K_STA_ID1_DEFAULT_ANTENNA
;
236 case AR5K_PM_NETWORK_SLEEP
:
238 ath5k_hw_reg_write(ah
,
239 AR5K_SLEEP_CTL_SLE_ALLOW
|
243 staid
|= AR5K_STA_ID1_PWR_SV
;
246 case AR5K_PM_FULL_SLEEP
:
248 ath5k_hw_reg_write(ah
, AR5K_SLEEP_CTL_SLE_SLP
,
251 staid
|= AR5K_STA_ID1_PWR_SV
;
256 staid
&= ~AR5K_STA_ID1_PWR_SV
;
261 data
= ath5k_hw_reg_read(ah
, AR5K_SLEEP_CTL
);
263 /* If card is down we 'll get 0xffff... so we
264 * need to clean this up before we write the register
266 if (data
& 0xffc00000)
269 /* Preserve sleep duration etc */
270 data
= data
& ~AR5K_SLEEP_CTL_SLE
;
272 ath5k_hw_reg_write(ah
, data
| AR5K_SLEEP_CTL_SLE_WAKE
,
276 for (i
= 200; i
> 0; i
--) {
277 /* Check if the chip did wake up */
278 if ((ath5k_hw_reg_read(ah
, AR5K_PCICFG
) &
279 AR5K_PCICFG_SPWR_DN
) == 0)
282 /* Wait a bit and retry */
284 ath5k_hw_reg_write(ah
, data
| AR5K_SLEEP_CTL_SLE_WAKE
,
288 /* Fail if the chip didn't wake up */
299 ath5k_hw_reg_write(ah
, staid
, AR5K_STA_ID1
);
307 * Put MAC and Baseband on warm reset and
308 * keep that state (don't clean sleep control
309 * register). After this MAC and Baseband are
310 * disabled and a full reset is needed to come
311 * back. This way we save as much power as possible
312 * without puting the card on full sleep.
314 int ath5k_hw_on_hold(struct ath5k_hw
*ah
)
316 struct pci_dev
*pdev
= ah
->ah_sc
->pdev
;
320 /* Make sure device is awake */
321 ret
= ath5k_hw_set_power(ah
, AR5K_PM_AWAKE
, true, 0);
323 ATH5K_ERR(ah
->ah_sc
, "failed to wakeup the MAC Chip\n");
328 * Put chipset on warm reset...
330 * Note: puting PCI core on warm reset on PCI-E cards
331 * results card to hang and always return 0xffff... so
332 * we ingore that flag for PCI-E cards. On PCI cards
333 * this flag gets cleared after 64 PCI clocks.
335 bus_flags
= (pdev
->is_pcie
) ? 0 : AR5K_RESET_CTL_PCI
;
337 if (ah
->ah_version
== AR5K_AR5210
) {
338 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
339 AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_DMA
|
340 AR5K_RESET_CTL_PHY
| AR5K_RESET_CTL_PCI
);
343 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
344 AR5K_RESET_CTL_BASEBAND
| bus_flags
);
348 ATH5K_ERR(ah
->ah_sc
, "failed to put device on warm reset\n");
352 /* ...wakeup again!*/
353 ret
= ath5k_hw_set_power(ah
, AR5K_PM_AWAKE
, true, 0);
355 ATH5K_ERR(ah
->ah_sc
, "failed to put device on hold\n");
363 * Bring up MAC + PHY Chips and program PLL
364 * TODO: Half/Quarter rate support
366 int ath5k_hw_nic_wakeup(struct ath5k_hw
*ah
, int flags
, bool initial
)
368 struct pci_dev
*pdev
= ah
->ah_sc
->pdev
;
369 u32 turbo
, mode
, clock
, bus_flags
;
376 ATH5K_TRACE(ah
->ah_sc
);
378 /* Wakeup the device */
379 ret
= ath5k_hw_set_power(ah
, AR5K_PM_AWAKE
, true, 0);
381 ATH5K_ERR(ah
->ah_sc
, "failed to wakeup the MAC Chip\n");
386 * Put chipset on warm reset...
388 * Note: puting PCI core on warm reset on PCI-E cards
389 * results card to hang and always return 0xffff... so
390 * we ingore that flag for PCI-E cards. On PCI cards
391 * this flag gets cleared after 64 PCI clocks.
393 bus_flags
= (pdev
->is_pcie
) ? 0 : AR5K_RESET_CTL_PCI
;
395 if (ah
->ah_version
== AR5K_AR5210
) {
396 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
397 AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_DMA
|
398 AR5K_RESET_CTL_PHY
| AR5K_RESET_CTL_PCI
);
401 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
402 AR5K_RESET_CTL_BASEBAND
| bus_flags
);
406 ATH5K_ERR(ah
->ah_sc
, "failed to reset the MAC Chip\n");
410 /* ...wakeup again!...*/
411 ret
= ath5k_hw_set_power(ah
, AR5K_PM_AWAKE
, true, 0);
413 ATH5K_ERR(ah
->ah_sc
, "failed to resume the MAC Chip\n");
417 /* ...clear reset control register and pull device out of
419 if (ath5k_hw_nic_reset(ah
, 0)) {
420 ATH5K_ERR(ah
->ah_sc
, "failed to warm reset the MAC Chip\n");
424 /* On initialization skip PLL programming since we don't have
425 * a channel / mode set yet */
429 if (ah
->ah_version
!= AR5K_AR5210
) {
431 * Get channel mode flags
434 if (ah
->ah_radio
>= AR5K_RF5112
) {
435 mode
= AR5K_PHY_MODE_RAD_RF5112
;
436 clock
= AR5K_PHY_PLL_RF5112
;
438 mode
= AR5K_PHY_MODE_RAD_RF5111
; /*Zero*/
439 clock
= AR5K_PHY_PLL_RF5111
; /*Zero*/
442 if (flags
& CHANNEL_2GHZ
) {
443 mode
|= AR5K_PHY_MODE_FREQ_2GHZ
;
444 clock
|= AR5K_PHY_PLL_44MHZ
;
446 if (flags
& CHANNEL_CCK
) {
447 mode
|= AR5K_PHY_MODE_MOD_CCK
;
448 } else if (flags
& CHANNEL_OFDM
) {
449 /* XXX Dynamic OFDM/CCK is not supported by the
450 * AR5211 so we set MOD_OFDM for plain g (no
451 * CCK headers) operation. We need to test
452 * this, 5211 might support ofdm-only g after
453 * all, there are also initial register values
454 * in the code for g mode (see initvals.c). */
455 if (ah
->ah_version
== AR5K_AR5211
)
456 mode
|= AR5K_PHY_MODE_MOD_OFDM
;
458 mode
|= AR5K_PHY_MODE_MOD_DYN
;
461 "invalid radio modulation mode\n");
464 } else if (flags
& CHANNEL_5GHZ
) {
465 mode
|= AR5K_PHY_MODE_FREQ_5GHZ
;
467 if (ah
->ah_radio
== AR5K_RF5413
)
468 clock
= AR5K_PHY_PLL_40MHZ_5413
;
470 clock
|= AR5K_PHY_PLL_40MHZ
;
472 if (flags
& CHANNEL_OFDM
)
473 mode
|= AR5K_PHY_MODE_MOD_OFDM
;
476 "invalid radio modulation mode\n");
480 ATH5K_ERR(ah
->ah_sc
, "invalid radio frequency mode\n");
484 if (flags
& CHANNEL_TURBO
)
485 turbo
= AR5K_PHY_TURBO_MODE
| AR5K_PHY_TURBO_SHORT
;
486 } else { /* Reset the device */
488 /* ...enable Atheros turbo mode if requested */
489 if (flags
& CHANNEL_TURBO
)
490 ath5k_hw_reg_write(ah
, AR5K_PHY_TURBO_MODE
,
494 if (ah
->ah_version
!= AR5K_AR5210
) {
496 /* ...update PLL if needed */
497 if (ath5k_hw_reg_read(ah
, AR5K_PHY_PLL
) != clock
) {
498 ath5k_hw_reg_write(ah
, clock
, AR5K_PHY_PLL
);
502 /* ...set the PHY operating mode */
503 ath5k_hw_reg_write(ah
, mode
, AR5K_PHY_MODE
);
504 ath5k_hw_reg_write(ah
, turbo
, AR5K_PHY_TURBO
);
511 * If there is an external 32KHz crystal available, use it
512 * as ref. clock instead of 32/40MHz clock and baseband clocks
513 * to save power during sleep or restore normal 32/40MHz
516 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
517 * 123 - 127) require delay on access.
519 static void ath5k_hw_set_sleep_clock(struct ath5k_hw
*ah
, bool enable
)
521 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
522 u32 scal
, spending
, usec32
;
524 /* Only set 32KHz settings if we have an external
525 * 32KHz crystal present */
526 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee
->ee_misc1
) ||
527 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee
->ee_misc1
)) &&
531 AR5K_REG_WRITE_BITS(ah
, AR5K_USEC_5211
, AR5K_USEC_32
, 1);
532 /* Set up tsf increment on each cycle */
533 AR5K_REG_WRITE_BITS(ah
, AR5K_TSF_PARM
, AR5K_TSF_PARM_INC
, 61);
535 /* Set baseband sleep control registers
536 * and sleep control rate */
537 ath5k_hw_reg_write(ah
, 0x1f, AR5K_PHY_SCR
);
539 if ((ah
->ah_radio
== AR5K_RF5112
) ||
540 (ah
->ah_radio
== AR5K_RF5413
) ||
541 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
545 ath5k_hw_reg_write(ah
, spending
, AR5K_PHY_SPENDING
);
547 if ((ah
->ah_radio
== AR5K_RF5112
) ||
548 (ah
->ah_radio
== AR5K_RF5413
) ||
549 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))) {
550 ath5k_hw_reg_write(ah
, 0x26, AR5K_PHY_SLMT
);
551 ath5k_hw_reg_write(ah
, 0x0d, AR5K_PHY_SCAL
);
552 ath5k_hw_reg_write(ah
, 0x07, AR5K_PHY_SCLOCK
);
553 ath5k_hw_reg_write(ah
, 0x3f, AR5K_PHY_SDELAY
);
554 AR5K_REG_WRITE_BITS(ah
, AR5K_PCICFG
,
555 AR5K_PCICFG_SLEEP_CLOCK_RATE
, 0x02);
557 ath5k_hw_reg_write(ah
, 0x0a, AR5K_PHY_SLMT
);
558 ath5k_hw_reg_write(ah
, 0x0c, AR5K_PHY_SCAL
);
559 ath5k_hw_reg_write(ah
, 0x03, AR5K_PHY_SCLOCK
);
560 ath5k_hw_reg_write(ah
, 0x20, AR5K_PHY_SDELAY
);
561 AR5K_REG_WRITE_BITS(ah
, AR5K_PCICFG
,
562 AR5K_PCICFG_SLEEP_CLOCK_RATE
, 0x03);
565 /* Enable sleep clock operation */
566 AR5K_REG_ENABLE_BITS(ah
, AR5K_PCICFG
,
567 AR5K_PCICFG_SLEEP_CLOCK_EN
);
571 /* Disable sleep clock operation and
572 * restore default parameters */
573 AR5K_REG_DISABLE_BITS(ah
, AR5K_PCICFG
,
574 AR5K_PCICFG_SLEEP_CLOCK_EN
);
576 AR5K_REG_WRITE_BITS(ah
, AR5K_PCICFG
,
577 AR5K_PCICFG_SLEEP_CLOCK_RATE
, 0);
579 ath5k_hw_reg_write(ah
, 0x1f, AR5K_PHY_SCR
);
580 ath5k_hw_reg_write(ah
, AR5K_PHY_SLMT_32MHZ
, AR5K_PHY_SLMT
);
582 if (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))
583 scal
= AR5K_PHY_SCAL_32MHZ_2417
;
584 else if (ee
->ee_is_hb63
)
585 scal
= AR5K_PHY_SCAL_32MHZ_HB63
;
587 scal
= AR5K_PHY_SCAL_32MHZ
;
588 ath5k_hw_reg_write(ah
, scal
, AR5K_PHY_SCAL
);
590 ath5k_hw_reg_write(ah
, AR5K_PHY_SCLOCK_32MHZ
, AR5K_PHY_SCLOCK
);
591 ath5k_hw_reg_write(ah
, AR5K_PHY_SDELAY_32MHZ
, AR5K_PHY_SDELAY
);
593 if ((ah
->ah_radio
== AR5K_RF5112
) ||
594 (ah
->ah_radio
== AR5K_RF5413
) ||
595 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
599 ath5k_hw_reg_write(ah
, spending
, AR5K_PHY_SPENDING
);
601 if ((ah
->ah_radio
== AR5K_RF5112
) ||
602 (ah
->ah_radio
== AR5K_RF5413
))
606 AR5K_REG_WRITE_BITS(ah
, AR5K_USEC_5211
, AR5K_USEC_32
, usec32
);
608 AR5K_REG_WRITE_BITS(ah
, AR5K_TSF_PARM
, AR5K_TSF_PARM_INC
, 1);
613 /* TODO: Half/Quarter rate */
614 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw
*ah
,
615 struct ieee80211_channel
*channel
)
617 if (ah
->ah_version
== AR5K_AR5212
&&
618 ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
620 /* Setup ADC control */
621 ath5k_hw_reg_write(ah
,
623 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF
) |
625 AR5K_PHY_ADC_CTL_INBUFGAIN_ON
) |
626 AR5K_PHY_ADC_CTL_PWD_DAC_OFF
|
627 AR5K_PHY_ADC_CTL_PWD_ADC_OFF
),
632 /* Disable barker RSSI threshold */
633 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_DAG_CCK_CTL
,
634 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR
);
636 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DAG_CCK_CTL
,
637 AR5K_PHY_DAG_CCK_CTL_RSSI_THR
, 2);
639 /* Set the mute mask */
640 ath5k_hw_reg_write(ah
, 0x0000000f, AR5K_SEQ_MASK
);
643 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
644 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212B
)
645 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BLUETOOTH
);
647 /* Enable DCU double buffering */
648 if (ah
->ah_phy_revision
> AR5K_SREV_PHY_5212B
)
649 AR5K_REG_DISABLE_BITS(ah
, AR5K_TXCFG
,
650 AR5K_TXCFG_DCU_DBL_BUF_DIS
);
652 /* Set DAC/ADC delays */
653 if (ah
->ah_version
== AR5K_AR5212
) {
655 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
656 if (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))
657 scal
= AR5K_PHY_SCAL_32MHZ_2417
;
658 else if (ee
->ee_is_hb63
)
659 scal
= AR5K_PHY_SCAL_32MHZ_HB63
;
661 scal
= AR5K_PHY_SCAL_32MHZ
;
662 ath5k_hw_reg_write(ah
, scal
, AR5K_PHY_SCAL
);
666 if ((ah
->ah_radio
== AR5K_RF5413
) ||
667 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))) {
670 if (channel
->center_freq
== 2462 ||
671 channel
->center_freq
== 2467)
674 /* Only update if needed */
675 if (ath5k_hw_reg_read(ah
, AR5K_PHY_FAST_ADC
) != fast_adc
)
676 ath5k_hw_reg_write(ah
, fast_adc
,
680 /* Fix for first revision of the RF5112 RF chipset */
681 if (ah
->ah_radio
== AR5K_RF5112
&&
682 ah
->ah_radio_5ghz_revision
<
683 AR5K_SREV_RAD_5112A
) {
685 ath5k_hw_reg_write(ah
, AR5K_PHY_CCKTXCTL_WORLD
,
687 if (channel
->hw_value
& CHANNEL_5GHZ
)
691 ath5k_hw_reg_write(ah
, data
, AR5K_PHY_FRAME_CTL
);
694 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
696 /* 5311 has different tx/rx latency masks
697 * from 5211, since we deal 5311 the same
698 * as 5211 when setting initvals, shift
699 * values here to their proper locations */
700 usec_reg
= ath5k_hw_reg_read(ah
, AR5K_USEC_5211
);
701 ath5k_hw_reg_write(ah
, usec_reg
& (AR5K_USEC_1
|
703 AR5K_USEC_TX_LATENCY_5211
|
705 AR5K_USEC_RX_LATENCY_5210
)),
707 /* Clear QCU/DCU clock gating register */
708 ath5k_hw_reg_write(ah
, 0, AR5K_QCUDCU_CLKGT
);
709 /* Set DAC/ADC delays */
710 ath5k_hw_reg_write(ah
, 0x08, AR5K_PHY_SCAL
);
711 /* Enable PCU FIFO corruption ECO */
712 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW_5211
,
713 AR5K_DIAG_SW_ECO_ENABLE
);
717 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw
*ah
,
718 struct ieee80211_channel
*channel
, u8
*ant
, u8 ee_mode
)
720 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
721 s16 cck_ofdm_pwr_delta
;
723 /* Adjust power delta for channel 14 */
724 if (channel
->center_freq
== 2484)
726 ((ee
->ee_cck_ofdm_power_delta
-
727 ee
->ee_scaled_cck_delta
) * 2) / 10;
730 (ee
->ee_cck_ofdm_power_delta
* 2) / 10;
732 /* Set CCK to OFDM power delta on tx power
733 * adjustment register */
734 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
735 if (channel
->hw_value
== CHANNEL_G
)
736 ath5k_hw_reg_write(ah
,
737 AR5K_REG_SM((ee
->ee_cck_ofdm_gain_delta
* -1),
738 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA
) |
739 AR5K_REG_SM((cck_ofdm_pwr_delta
* -1),
740 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX
),
741 AR5K_PHY_TX_PWR_ADJ
);
743 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TX_PWR_ADJ
);
745 /* For older revs we scale power on sw during tx power
747 ah
->ah_txpower
.txp_cck_ofdm_pwr_delta
= cck_ofdm_pwr_delta
;
748 ah
->ah_txpower
.txp_cck_ofdm_gainf_delta
=
749 ee
->ee_cck_ofdm_gain_delta
;
752 /* Set antenna idle switch table */
753 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_ANT_CTL
,
754 AR5K_PHY_ANT_CTL_SWTABLE_IDLE
,
755 (ah
->ah_ant_ctl
[ee_mode
][0] |
756 AR5K_PHY_ANT_CTL_TXRX_EN
));
758 /* Set antenna switch tables */
759 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant
[0]],
760 AR5K_PHY_ANT_SWITCH_TABLE_0
);
761 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant
[1]],
762 AR5K_PHY_ANT_SWITCH_TABLE_1
);
764 /* Noise floor threshold */
765 ath5k_hw_reg_write(ah
,
766 AR5K_PHY_NF_SVAL(ee
->ee_noise_floor_thr
[ee_mode
]),
769 if ((channel
->hw_value
& CHANNEL_TURBO
) &&
770 (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_5_0
)) {
771 /* Switch settling time (Turbo) */
772 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_SETTLING
,
773 AR5K_PHY_SETTLING_SWITCH
,
774 ee
->ee_switch_settling_turbo
[ee_mode
]);
776 /* Tx/Rx attenuation (Turbo) */
777 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN
,
778 AR5K_PHY_GAIN_TXRX_ATTEN
,
779 ee
->ee_atn_tx_rx_turbo
[ee_mode
]);
781 /* ADC/PGA desired size (Turbo) */
782 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
783 AR5K_PHY_DESIRED_SIZE_ADC
,
784 ee
->ee_adc_desired_size_turbo
[ee_mode
]);
786 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
787 AR5K_PHY_DESIRED_SIZE_PGA
,
788 ee
->ee_pga_desired_size_turbo
[ee_mode
]);
790 /* Tx/Rx margin (Turbo) */
791 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN_2GHZ
,
792 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX
,
793 ee
->ee_margin_tx_rx_turbo
[ee_mode
]);
796 /* Switch settling time */
797 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_SETTLING
,
798 AR5K_PHY_SETTLING_SWITCH
,
799 ee
->ee_switch_settling
[ee_mode
]);
801 /* Tx/Rx attenuation */
802 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN
,
803 AR5K_PHY_GAIN_TXRX_ATTEN
,
804 ee
->ee_atn_tx_rx
[ee_mode
]);
806 /* ADC/PGA desired size */
807 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
808 AR5K_PHY_DESIRED_SIZE_ADC
,
809 ee
->ee_adc_desired_size
[ee_mode
]);
811 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
812 AR5K_PHY_DESIRED_SIZE_PGA
,
813 ee
->ee_pga_desired_size
[ee_mode
]);
816 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_1
)
817 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN_2GHZ
,
818 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX
,
819 ee
->ee_margin_tx_rx
[ee_mode
]);
823 ath5k_hw_reg_write(ah
,
824 (ee
->ee_tx_end2xpa_disable
[ee_mode
] << 24) |
825 (ee
->ee_tx_end2xpa_disable
[ee_mode
] << 16) |
826 (ee
->ee_tx_frm2xpa_enable
[ee_mode
] << 8) |
827 (ee
->ee_tx_frm2xpa_enable
[ee_mode
]), AR5K_PHY_RF_CTL4
);
830 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RF_CTL3
,
831 AR5K_PHY_RF_CTL3_TXE2XLNA_ON
,
832 ee
->ee_tx_end2xlna_enable
[ee_mode
]);
835 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_NF
,
836 AR5K_PHY_NF_THRESH62
,
837 ee
->ee_thr_62
[ee_mode
]);
840 /* False detect backoff for channels
841 * that have spur noise. Write the new
842 * cyclic power RSSI threshold. */
843 if (ath5k_hw_chan_has_spur_noise(ah
, channel
))
844 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_OFDM_SELFCORR
,
845 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1
,
846 AR5K_INIT_CYCRSSI_THR1
+
847 ee
->ee_false_detect
[ee_mode
]);
849 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_OFDM_SELFCORR
,
850 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1
,
851 AR5K_INIT_CYCRSSI_THR1
);
854 * TODO: Per channel i/q infos ? */
855 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
856 AR5K_PHY_IQ_CORR_ENABLE
|
857 (ee
->ee_i_cal
[ee_mode
] << AR5K_PHY_IQ_CORR_Q_I_COFF_S
) |
858 ee
->ee_q_cal
[ee_mode
]);
860 /* Heavy clipping -disable for now */
861 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_5_1
)
862 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_HEAVY_CLIP_ENABLE
);
868 * Main reset function
870 int ath5k_hw_reset(struct ath5k_hw
*ah
, enum nl80211_iftype op_mode
,
871 struct ieee80211_channel
*channel
, bool change_channel
)
873 u32 s_seq
[10], s_ant
, s_led
[3], staid1_flags
, tsf_up
, tsf_lo
;
875 u8 mode
, freq
, ee_mode
, ant
[2];
878 ATH5K_TRACE(ah
->ah_sc
);
889 * Save some registers before a reset
891 /*DCU/Antenna selection not available on 5210*/
892 if (ah
->ah_version
!= AR5K_AR5210
) {
894 switch (channel
->hw_value
& CHANNEL_MODES
) {
896 mode
= AR5K_MODE_11A
;
897 freq
= AR5K_INI_RFGAIN_5GHZ
;
898 ee_mode
= AR5K_EEPROM_MODE_11A
;
901 mode
= AR5K_MODE_11G
;
902 freq
= AR5K_INI_RFGAIN_2GHZ
;
903 ee_mode
= AR5K_EEPROM_MODE_11G
;
906 mode
= AR5K_MODE_11B
;
907 freq
= AR5K_INI_RFGAIN_2GHZ
;
908 ee_mode
= AR5K_EEPROM_MODE_11B
;
911 mode
= AR5K_MODE_11A_TURBO
;
912 freq
= AR5K_INI_RFGAIN_5GHZ
;
913 ee_mode
= AR5K_EEPROM_MODE_11A
;
916 if (ah
->ah_version
== AR5K_AR5211
) {
918 "TurboG mode not available on 5211");
921 mode
= AR5K_MODE_11G_TURBO
;
922 freq
= AR5K_INI_RFGAIN_2GHZ
;
923 ee_mode
= AR5K_EEPROM_MODE_11G
;
926 if (ah
->ah_version
== AR5K_AR5211
) {
928 "XR mode not available on 5211");
932 freq
= AR5K_INI_RFGAIN_5GHZ
;
933 ee_mode
= AR5K_EEPROM_MODE_11A
;
937 "invalid channel: %d\n", channel
->center_freq
);
941 if (change_channel
) {
943 * Save frame sequence count
944 * For revs. after Oahu, only save
945 * seq num for DCU 0 (Global seq num)
947 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
949 for (i
= 0; i
< 10; i
++)
950 s_seq
[i
] = ath5k_hw_reg_read(ah
,
951 AR5K_QUEUE_DCU_SEQNUM(i
));
954 s_seq
[0] = ath5k_hw_reg_read(ah
,
955 AR5K_QUEUE_DCU_SEQNUM(0));
958 /* TSF accelerates on AR5211 durring reset
959 * As a workaround save it here and restore
960 * it later so that it's back in time after
961 * reset. This way it'll get re-synced on the
962 * next beacon without breaking ad-hoc.
964 * On AR5212 TSF is almost preserved across a
965 * reset so it stays back in time anyway and
966 * we don't have to save/restore it.
968 * XXX: Since this breaks power saving we have
969 * to disable power saving until we receive the
970 * next beacon, so we can resync beacon timers */
971 if (ah
->ah_version
== AR5K_AR5211
) {
972 tsf_up
= ath5k_hw_reg_read(ah
, AR5K_TSF_U32
);
973 tsf_lo
= ath5k_hw_reg_read(ah
, AR5K_TSF_L32
);
977 /* Save default antenna */
978 s_ant
= ath5k_hw_reg_read(ah
, AR5K_DEFAULT_ANTENNA
);
980 if (ah
->ah_version
== AR5K_AR5212
) {
981 /* Restore normal 32/40MHz clock operation
982 * to avoid register access delay on certain
984 ath5k_hw_set_sleep_clock(ah
, false);
986 /* Since we are going to write rf buffer
987 * check if we have any pending gain_F
988 * optimization settings */
989 if (change_channel
&& ah
->ah_rf_banks
!= NULL
)
990 ath5k_hw_gainf_calibrate(ah
);
995 s_led
[0] = ath5k_hw_reg_read(ah
, AR5K_PCICFG
) &
996 AR5K_PCICFG_LEDSTATE
;
997 s_led
[1] = ath5k_hw_reg_read(ah
, AR5K_GPIOCR
);
998 s_led
[2] = ath5k_hw_reg_read(ah
, AR5K_GPIODO
);
1000 /* AR5K_STA_ID1 flags, only preserve antenna
1001 * settings and ack/cts rate mode */
1002 staid1_flags
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
) &
1003 (AR5K_STA_ID1_DEFAULT_ANTENNA
|
1004 AR5K_STA_ID1_DESC_ANTENNA
|
1005 AR5K_STA_ID1_RTS_DEF_ANTENNA
|
1006 AR5K_STA_ID1_ACKCTS_6MB
|
1007 AR5K_STA_ID1_BASE_RATE_11B
|
1008 AR5K_STA_ID1_SELFGEN_DEF_ANT
);
1010 /* Wakeup the device */
1011 ret
= ath5k_hw_nic_wakeup(ah
, channel
->hw_value
, false);
1016 * Initialize operating mode
1018 ah
->ah_op_mode
= op_mode
;
1020 /* PHY access enable */
1021 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5211
)
1022 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
1024 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
| 0x40,
1027 /* Write initial settings */
1028 ret
= ath5k_hw_write_initvals(ah
, mode
, change_channel
);
1033 * 5211/5212 Specific
1035 if (ah
->ah_version
!= AR5K_AR5210
) {
1038 * Write initial RF gain settings
1039 * This should work for both 5111/5112
1041 ret
= ath5k_hw_rfgain_init(ah
, freq
);
1048 * Tweak initval settings for revised
1049 * chipsets and add some more config
1052 ath5k_hw_tweak_initval_settings(ah
, channel
);
1057 ret
= ath5k_hw_txpower(ah
, channel
, ee_mode
,
1058 ah
->ah_txpower
.txp_max_pwr
/ 2);
1062 /* Write rate duration table only on AR5212 and if
1063 * virtual interface has already been brought up
1064 * XXX: rethink this after new mode changes to
1065 * mac80211 are integrated */
1066 if (ah
->ah_version
== AR5K_AR5212
&&
1067 ah
->ah_sc
->vif
!= NULL
)
1068 ath5k_hw_write_rate_duration(ah
, mode
);
1073 ret
= ath5k_hw_rfregs_init(ah
, channel
, mode
);
1078 /* Write OFDM timings on 5212*/
1079 if (ah
->ah_version
== AR5K_AR5212
&&
1080 channel
->hw_value
& CHANNEL_OFDM
) {
1081 struct ath5k_eeprom_info
*ee
=
1082 &ah
->ah_capabilities
.cap_eeprom
;
1084 ret
= ath5k_hw_write_ofdm_timings(ah
, channel
);
1088 /* Note: According to docs we can have a newer
1089 * EEPROM on old hardware, so we need to verify
1090 * that our hardware is new enough to have spur
1091 * mitigation registers (delta phase etc) */
1092 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
||
1093 (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
&&
1094 ee
->ee_version
>= AR5K_EEPROM_VERSION_5_3
))
1095 ath5k_hw_set_spur_mitigation_filter(ah
,
1099 /*Enable/disable 802.11b mode on 5111
1100 (enable 2111 frequency converter + CCK)*/
1101 if (ah
->ah_radio
== AR5K_RF5111
) {
1102 if (mode
== AR5K_MODE_11B
)
1103 AR5K_REG_ENABLE_BITS(ah
, AR5K_TXCFG
,
1106 AR5K_REG_DISABLE_BITS(ah
, AR5K_TXCFG
,
1111 * In case a fixed antenna was set as default
1112 * use the same switch table twice.
1114 if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_A
)
1115 ant
[0] = ant
[1] = AR5K_ANT_SWTABLE_A
;
1116 else if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_B
)
1117 ant
[0] = ant
[1] = AR5K_ANT_SWTABLE_B
;
1119 ant
[0] = AR5K_ANT_SWTABLE_A
;
1120 ant
[1] = AR5K_ANT_SWTABLE_B
;
1123 /* Commit values from EEPROM */
1124 ath5k_hw_commit_eeprom_settings(ah
, channel
, ant
, ee_mode
);
1128 * For 5210 we do all initialization using
1129 * initvals, so we don't have to modify
1130 * any settings (5210 also only supports
1134 /* Disable phy and wait */
1135 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
1140 * Restore saved values
1143 /*DCU/Antenna selection not available on 5210*/
1144 if (ah
->ah_version
!= AR5K_AR5210
) {
1146 if (change_channel
) {
1147 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
1148 for (i
= 0; i
< 10; i
++)
1149 ath5k_hw_reg_write(ah
, s_seq
[i
],
1150 AR5K_QUEUE_DCU_SEQNUM(i
));
1152 ath5k_hw_reg_write(ah
, s_seq
[0],
1153 AR5K_QUEUE_DCU_SEQNUM(0));
1157 if (ah
->ah_version
== AR5K_AR5211
) {
1158 ath5k_hw_reg_write(ah
, tsf_up
, AR5K_TSF_U32
);
1159 ath5k_hw_reg_write(ah
, tsf_lo
, AR5K_TSF_L32
);
1163 ath5k_hw_reg_write(ah
, s_ant
, AR5K_DEFAULT_ANTENNA
);
1167 AR5K_REG_ENABLE_BITS(ah
, AR5K_PCICFG
, s_led
[0]);
1170 ath5k_hw_reg_write(ah
, s_led
[1], AR5K_GPIOCR
);
1171 ath5k_hw_reg_write(ah
, s_led
[2], AR5K_GPIODO
);
1173 /* Restore sta_id flags and preserve our mac address*/
1174 ath5k_hw_reg_write(ah
, AR5K_LOW_ID(ah
->ah_sta_id
),
1176 ath5k_hw_reg_write(ah
, staid1_flags
| AR5K_HIGH_ID(ah
->ah_sta_id
),
1184 /* Restore bssid and bssid mask */
1185 /* XXX: add ah->aid once mac80211 gives this to us */
1186 ath5k_hw_set_associd(ah
, ah
->ah_bssid
, 0);
1188 /* Set PCU config */
1189 ath5k_hw_set_opmode(ah
);
1191 /* Clear any pending interrupts
1192 * PISR/SISR Not available on 5210 */
1193 if (ah
->ah_version
!= AR5K_AR5210
)
1194 ath5k_hw_reg_write(ah
, 0xffffffff, AR5K_PISR
);
1196 /* Set RSSI/BRSSI thresholds
1198 * Note: If we decide to set this value
1199 * dynamicaly, have in mind that when AR5K_RSSI_THR
1200 * register is read it might return 0x40 if we haven't
1201 * wrote anything to it plus BMISS RSSI threshold is zeroed.
1202 * So doing a save/restore procedure here isn't the right
1203 * choice. Instead store it on ath5k_hw */
1204 ath5k_hw_reg_write(ah
, (AR5K_TUNE_RSSI_THRES
|
1205 AR5K_TUNE_BMISS_THRES
<<
1206 AR5K_RSSI_THR_BMISS_S
),
1209 /* MIC QoS support */
1210 if (ah
->ah_mac_srev
>= AR5K_SREV_AR2413
) {
1211 ath5k_hw_reg_write(ah
, 0x000100aa, AR5K_MIC_QOS_CTL
);
1212 ath5k_hw_reg_write(ah
, 0x00003210, AR5K_MIC_QOS_SEL
);
1215 /* QoS NOACK Policy */
1216 if (ah
->ah_version
== AR5K_AR5212
) {
1217 ath5k_hw_reg_write(ah
,
1218 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES
) |
1219 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET
) |
1220 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET
),
1229 /* Set channel on PHY */
1230 ret
= ath5k_hw_channel(ah
, channel
);
1235 * Enable the PHY and wait until completion
1236 * This includes BaseBand and Synthesizer
1239 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
1242 * On 5211+ read activation -> rx delay
1245 * TODO: Half/quarter rate support
1247 if (ah
->ah_version
!= AR5K_AR5210
) {
1249 delay
= ath5k_hw_reg_read(ah
, AR5K_PHY_RX_DELAY
) &
1250 AR5K_PHY_RX_DELAY_M
;
1251 delay
= (channel
->hw_value
& CHANNEL_CCK
) ?
1252 ((delay
<< 2) / 22) : (delay
/ 10);
1254 udelay(100 + (2 * delay
));
1260 * Perform ADC test to see if baseband is ready
1261 * Set tx hold and check adc test register
1263 phy_tst1
= ath5k_hw_reg_read(ah
, AR5K_PHY_TST1
);
1264 ath5k_hw_reg_write(ah
, AR5K_PHY_TST1_TXHOLD
, AR5K_PHY_TST1
);
1265 for (i
= 0; i
<= 20; i
++) {
1266 if (!(ath5k_hw_reg_read(ah
, AR5K_PHY_ADC_TEST
) & 0x10))
1270 ath5k_hw_reg_write(ah
, phy_tst1
, AR5K_PHY_TST1
);
1273 * Start automatic gain control calibration
1275 * During AGC calibration RX path is re-routed to
1276 * a power detector so we don't receive anything.
1278 * This method is used to calibrate some static offsets
1279 * used together with on-the fly I/Q calibration (the
1280 * one performed via ath5k_hw_phy_calibrate), that doesn't
1281 * interrupt rx path.
1283 * While rx path is re-routed to the power detector we also
1284 * start a noise floor calibration, to measure the
1285 * card's noise floor (the noise we measure when we are not
1286 * transmiting or receiving anything).
1288 * If we are in a noisy environment AGC calibration may time
1289 * out and/or noise floor calibration might timeout.
1291 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1292 AR5K_PHY_AGCCTL_CAL
);
1294 /* At the same time start I/Q calibration for QAM constellation
1295 * -no need for CCK- */
1296 ah
->ah_calibration
= false;
1297 if (!(mode
== AR5K_MODE_11B
)) {
1298 ah
->ah_calibration
= true;
1299 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
1300 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
1301 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
1305 /* Wait for gain calibration to finish (we check for I/Q calibration
1306 * during ath5k_phy_calibrate) */
1307 if (ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
1308 AR5K_PHY_AGCCTL_CAL
, 0, false)) {
1309 ATH5K_ERR(ah
->ah_sc
, "gain calibration timeout (%uMHz)\n",
1310 channel
->center_freq
);
1314 * If we run NF calibration before AGC, it always times out.
1315 * Binary HAL starts NF and AGC calibration at the same time
1316 * and only waits for AGC to finish. Also if AGC or NF cal.
1317 * times out, reset doesn't fail on binary HAL. I believe
1318 * that's wrong because since rx path is routed to a detector,
1319 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1320 * enables noise floor calibration after offset calibration and if noise
1321 * floor calibration fails, reset fails. I believe that's
1322 * a better approach, we just need to find a polling interval
1323 * that suits best, even if reset continues we need to make
1324 * sure that rx path is ready.
1326 ath5k_hw_noise_floor_calibration(ah
, channel
->center_freq
);
1328 /* Restore antenna mode */
1329 ath5k_hw_set_antenna_mode(ah
, ah
->ah_ant_mode
);
1332 * Configure QCUs/DCUs
1335 /* TODO: HW Compression support for data queues */
1336 /* TODO: Burst prefetch for data queues */
1339 * Reset queues and start beacon timers at the end of the reset routine
1340 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1341 * Note: If we want we can assign multiple qcus on one dcu.
1343 for (i
= 0; i
< ah
->ah_capabilities
.cap_queues
.q_tx_num
; i
++) {
1344 ret
= ath5k_hw_reset_tx_queue(ah
, i
);
1346 ATH5K_ERR(ah
->ah_sc
,
1347 "failed to reset TX queue #%d\n", i
);
1354 * Configure DMA/Interrupts
1358 * Set Rx/Tx DMA Configuration
1360 * Set standard DMA size (128). Note that
1361 * a DMA size of 512 causes rx overruns and tx errors
1362 * on pci-e cards (tested on 5424 but since rx overruns
1363 * also occur on 5416/5418 with madwifi we set 128
1364 * for all PCI-E cards to be safe).
1366 * XXX: need to check 5210 for this
1367 * TODO: Check out tx triger level, it's always 64 on dumps but I
1368 * guess we can tweak it and see how it goes ;-)
1370 if (ah
->ah_version
!= AR5K_AR5210
) {
1371 AR5K_REG_WRITE_BITS(ah
, AR5K_TXCFG
,
1372 AR5K_TXCFG_SDMAMR
, AR5K_DMASIZE_128B
);
1373 AR5K_REG_WRITE_BITS(ah
, AR5K_RXCFG
,
1374 AR5K_RXCFG_SDMAMW
, AR5K_DMASIZE_128B
);
1377 /* Pre-enable interrupts on 5211/5212*/
1378 if (ah
->ah_version
!= AR5K_AR5210
)
1379 ath5k_hw_set_imr(ah
, ah
->ah_imr
);
1381 /* Enable 32KHz clock function for AR5212+ chips
1382 * Set clocks to 32KHz operation and use an
1383 * external 32KHz crystal when sleeping if one
1385 if (ah
->ah_version
== AR5K_AR5212
)
1386 ath5k_hw_set_sleep_clock(ah
, true);
1389 * Disable beacons and reset the register
1391 AR5K_REG_DISABLE_BITS(ah
, AR5K_BEACON
, AR5K_BEACON_ENABLE
|
1392 AR5K_BEACON_RESET_TSF
);