x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / hw.c
blobca7694caf36425bf278d786af0bdd95c3713b99e
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19 #include <linux/pci.h>
21 #include "ath9k.h"
22 #include "initvals.h"
24 #define ATH9K_CLOCK_RATE_CCK 22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
30 enum ath9k_ht_macmode macmode);
31 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
32 struct ar5416_eeprom_def *pEepData,
33 u32 reg, u32 value);
34 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
35 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
37 /********************/
38 /* Helper Functions */
39 /********************/
41 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
43 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
45 if (!ah->curchan) /* should really check for CCK instead */
46 return clks / ATH9K_CLOCK_RATE_CCK;
47 if (conf->channel->band == IEEE80211_BAND_2GHZ)
48 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
50 return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
53 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
55 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
57 if (conf_is_ht40(conf))
58 return ath9k_hw_mac_usec(ah, clks) / 2;
59 else
60 return ath9k_hw_mac_usec(ah, clks);
63 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
65 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
67 if (!ah->curchan) /* should really check for CCK instead */
68 return usecs *ATH9K_CLOCK_RATE_CCK;
69 if (conf->channel->band == IEEE80211_BAND_2GHZ)
70 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
71 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
74 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
76 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
78 if (conf_is_ht40(conf))
79 return ath9k_hw_mac_clks(ah, usecs) * 2;
80 else
81 return ath9k_hw_mac_clks(ah, usecs);
85 * Read and write, they both share the same lock. We do this to serialize
86 * reads and writes on Atheros 802.11n PCI devices only. This is required
87 * as the FIFO on these devices can only accept sanely 2 requests. After
88 * that the device goes bananas. Serializing the reads/writes prevents this
89 * from happening.
92 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
94 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
95 unsigned long flags;
96 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
97 iowrite32(val, ah->ah_sc->mem + reg_offset);
98 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
99 } else
100 iowrite32(val, ah->ah_sc->mem + reg_offset);
103 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
105 u32 val;
106 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
107 unsigned long flags;
108 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
109 val = ioread32(ah->ah_sc->mem + reg_offset);
110 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
111 } else
112 val = ioread32(ah->ah_sc->mem + reg_offset);
113 return val;
116 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
118 int i;
120 BUG_ON(timeout < AH_TIME_QUANTUM);
122 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123 if ((REG_READ(ah, reg) & mask) == val)
124 return true;
126 udelay(AH_TIME_QUANTUM);
129 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
130 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131 timeout, reg, REG_READ(ah, reg), mask, val);
133 return false;
136 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
138 u32 retval;
139 int i;
141 for (i = 0, retval = 0; i < n; i++) {
142 retval = (retval << 1) | (val & 1);
143 val >>= 1;
145 return retval;
148 bool ath9k_get_channel_edges(struct ath_hw *ah,
149 u16 flags, u16 *low,
150 u16 *high)
152 struct ath9k_hw_capabilities *pCap = &ah->caps;
154 if (flags & CHANNEL_5GHZ) {
155 *low = pCap->low_5ghz_chan;
156 *high = pCap->high_5ghz_chan;
157 return true;
159 if ((flags & CHANNEL_2GHZ)) {
160 *low = pCap->low_2ghz_chan;
161 *high = pCap->high_2ghz_chan;
162 return true;
164 return false;
167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 const struct ath_rate_table *rates,
169 u32 frameLen, u16 rateix,
170 bool shortPreamble)
172 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173 u32 kbps;
175 kbps = rates->info[rateix].ratekbps;
177 if (kbps == 0)
178 return 0;
180 switch (rates->info[rateix].phy) {
181 case WLAN_RC_PHY_CCK:
182 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
183 if (shortPreamble && rates->info[rateix].short_preamble)
184 phyTime >>= 1;
185 numBits = frameLen << 3;
186 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
187 break;
188 case WLAN_RC_PHY_OFDM:
189 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
190 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
191 numBits = OFDM_PLCP_BITS + (frameLen << 3);
192 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193 txTime = OFDM_SIFS_TIME_QUARTER
194 + OFDM_PREAMBLE_TIME_QUARTER
195 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
196 } else if (ah->curchan &&
197 IS_CHAN_HALF_RATE(ah->curchan)) {
198 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
199 numBits = OFDM_PLCP_BITS + (frameLen << 3);
200 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
201 txTime = OFDM_SIFS_TIME_HALF +
202 OFDM_PREAMBLE_TIME_HALF
203 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
204 } else {
205 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
206 numBits = OFDM_PLCP_BITS + (frameLen << 3);
207 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
208 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
209 + (numSymbols * OFDM_SYMBOL_TIME);
211 break;
212 default:
213 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
214 "Unknown phy %u (rate ix %u)\n",
215 rates->info[rateix].phy, rateix);
216 txTime = 0;
217 break;
220 return txTime;
223 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
224 struct ath9k_channel *chan,
225 struct chan_centers *centers)
227 int8_t extoff;
229 if (!IS_CHAN_HT40(chan)) {
230 centers->ctl_center = centers->ext_center =
231 centers->synth_center = chan->channel;
232 return;
235 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
236 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
237 centers->synth_center =
238 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
239 extoff = 1;
240 } else {
241 centers->synth_center =
242 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
243 extoff = -1;
246 centers->ctl_center =
247 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
248 centers->ext_center =
249 centers->synth_center + (extoff *
250 ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
251 HT40_CHANNEL_CENTER_SHIFT : 15));
254 /******************/
255 /* Chip Revisions */
256 /******************/
258 static void ath9k_hw_read_revisions(struct ath_hw *ah)
260 u32 val;
262 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
264 if (val == 0xFF) {
265 val = REG_READ(ah, AR_SREV);
266 ah->hw_version.macVersion =
267 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
268 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
270 } else {
271 if (!AR_SREV_9100(ah))
272 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
274 ah->hw_version.macRev = val & AR_SREV_REVISION;
276 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
277 ah->is_pciexpress = true;
281 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
283 u32 val;
284 int i;
286 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
288 for (i = 0; i < 8; i++)
289 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
290 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
291 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
293 return ath9k_hw_reverse_bits(val, 8);
296 /************************************/
297 /* HW Attach, Detach, Init Routines */
298 /************************************/
300 static void ath9k_hw_disablepcie(struct ath_hw *ah)
302 if (AR_SREV_9100(ah))
303 return;
305 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
306 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
307 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
308 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
309 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
310 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
311 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
312 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
313 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
315 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
318 static bool ath9k_hw_chip_test(struct ath_hw *ah)
320 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
321 u32 regHold[2];
322 u32 patternData[4] = { 0x55555555,
323 0xaaaaaaaa,
324 0x66666666,
325 0x99999999 };
326 int i, j;
328 for (i = 0; i < 2; i++) {
329 u32 addr = regAddr[i];
330 u32 wrData, rdData;
332 regHold[i] = REG_READ(ah, addr);
333 for (j = 0; j < 0x100; j++) {
334 wrData = (j << 16) | j;
335 REG_WRITE(ah, addr, wrData);
336 rdData = REG_READ(ah, addr);
337 if (rdData != wrData) {
338 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
339 "address test failed "
340 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
341 addr, wrData, rdData);
342 return false;
345 for (j = 0; j < 4; j++) {
346 wrData = patternData[j];
347 REG_WRITE(ah, addr, wrData);
348 rdData = REG_READ(ah, addr);
349 if (wrData != rdData) {
350 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
351 "address test failed "
352 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
353 addr, wrData, rdData);
354 return false;
357 REG_WRITE(ah, regAddr[i], regHold[i]);
359 udelay(100);
361 return true;
364 static const char *ath9k_hw_devname(u16 devid)
366 switch (devid) {
367 case AR5416_DEVID_PCI:
368 return "Atheros 5416";
369 case AR5416_DEVID_PCIE:
370 return "Atheros 5418";
371 case AR9160_DEVID_PCI:
372 return "Atheros 9160";
373 case AR5416_AR9100_DEVID:
374 return "Atheros 9100";
375 case AR9280_DEVID_PCI:
376 case AR9280_DEVID_PCIE:
377 return "Atheros 9280";
378 case AR9285_DEVID_PCIE:
379 return "Atheros 9285";
380 case AR5416_DEVID_AR9287_PCI:
381 case AR5416_DEVID_AR9287_PCIE:
382 return "Atheros 9287";
385 return NULL;
388 static void ath9k_hw_init_config(struct ath_hw *ah)
390 int i;
392 ah->config.dma_beacon_response_time = 2;
393 ah->config.sw_beacon_response_time = 10;
394 ah->config.additional_swba_backoff = 0;
395 ah->config.ack_6mb = 0x0;
396 ah->config.cwm_ignore_extcca = 0;
397 ah->config.pcie_powersave_enable = 0;
398 ah->config.pcie_clock_req = 0;
399 ah->config.pcie_waen = 0;
400 ah->config.analog_shiftreg = 1;
401 ah->config.ht_enable = 1;
402 ah->config.ofdm_trig_low = 200;
403 ah->config.ofdm_trig_high = 500;
404 ah->config.cck_trig_high = 200;
405 ah->config.cck_trig_low = 100;
406 ah->config.enable_ani = 1;
407 ah->config.diversity_control = ATH9K_ANT_VARIABLE;
408 ah->config.antenna_switch_swap = 0;
410 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
411 ah->config.spurchans[i][0] = AR_NO_SPUR;
412 ah->config.spurchans[i][1] = AR_NO_SPUR;
415 ah->config.intr_mitigation = true;
418 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420 * This means we use it for all AR5416 devices, and the few
421 * minor PCI AR9280 devices out there.
423 * Serialization is required because these devices do not handle
424 * well the case of two concurrent reads/writes due to the latency
425 * involved. During one read/write another read/write can be issued
426 * on another CPU while the previous read/write may still be working
427 * on our hardware, if we hit this case the hardware poops in a loop.
428 * We prevent this by serializing reads and writes.
430 * This issue is not present on PCI-Express devices or pre-AR5416
431 * devices (legacy, 802.11abg).
433 if (num_possible_cpus() > 1)
434 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
437 static void ath9k_hw_init_defaults(struct ath_hw *ah)
439 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
441 regulatory->country_code = CTRY_DEFAULT;
442 regulatory->power_limit = MAX_RATE_POWER;
443 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
445 ah->hw_version.magic = AR5416_MAGIC;
446 ah->hw_version.subvendorid = 0;
448 ah->ah_flags = 0;
449 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
450 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
451 if (!AR_SREV_9100(ah))
452 ah->ah_flags = AH_USE_EEPROM;
454 ah->atim_window = 0;
455 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
456 ah->beacon_interval = 100;
457 ah->enable_32kHz_clock = DONT_USE_32KHZ;
458 ah->slottime = (u32) -1;
459 ah->acktimeout = (u32) -1;
460 ah->ctstimeout = (u32) -1;
461 ah->globaltxtimeout = (u32) -1;
463 ah->gbeacon_rate = 0;
465 ah->power_mode = ATH9K_PM_UNDEFINED;
468 static int ath9k_hw_rfattach(struct ath_hw *ah)
470 bool rfStatus = false;
471 int ecode = 0;
473 rfStatus = ath9k_hw_init_rf(ah, &ecode);
474 if (!rfStatus) {
475 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
476 "RF setup failed, status: %u\n", ecode);
477 return ecode;
480 return 0;
483 static int ath9k_hw_rf_claim(struct ath_hw *ah)
485 u32 val;
487 REG_WRITE(ah, AR_PHY(0), 0x00000007);
489 val = ath9k_hw_get_radiorev(ah);
490 switch (val & AR_RADIO_SREV_MAJOR) {
491 case 0:
492 val = AR_RAD5133_SREV_MAJOR;
493 break;
494 case AR_RAD5133_SREV_MAJOR:
495 case AR_RAD5122_SREV_MAJOR:
496 case AR_RAD2133_SREV_MAJOR:
497 case AR_RAD2122_SREV_MAJOR:
498 break;
499 default:
500 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
501 "Radio Chip Rev 0x%02X not supported\n",
502 val & AR_RADIO_SREV_MAJOR);
503 return -EOPNOTSUPP;
506 ah->hw_version.analog5GhzRev = val;
508 return 0;
511 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
513 u32 sum;
514 int i;
515 u16 eeval;
517 sum = 0;
518 for (i = 0; i < 3; i++) {
519 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
520 sum += eeval;
521 ah->macaddr[2 * i] = eeval >> 8;
522 ah->macaddr[2 * i + 1] = eeval & 0xff;
524 if (sum == 0 || sum == 0xffff * 3)
525 return -EADDRNOTAVAIL;
527 return 0;
530 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
532 u32 rxgain_type;
534 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
535 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
537 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
538 INIT_INI_ARRAY(&ah->iniModesRxGain,
539 ar9280Modes_backoff_13db_rxgain_9280_2,
540 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
541 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
542 INIT_INI_ARRAY(&ah->iniModesRxGain,
543 ar9280Modes_backoff_23db_rxgain_9280_2,
544 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
545 else
546 INIT_INI_ARRAY(&ah->iniModesRxGain,
547 ar9280Modes_original_rxgain_9280_2,
548 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
549 } else {
550 INIT_INI_ARRAY(&ah->iniModesRxGain,
551 ar9280Modes_original_rxgain_9280_2,
552 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
556 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
558 u32 txgain_type;
560 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
561 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
563 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
564 INIT_INI_ARRAY(&ah->iniModesTxGain,
565 ar9280Modes_high_power_tx_gain_9280_2,
566 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
567 else
568 INIT_INI_ARRAY(&ah->iniModesTxGain,
569 ar9280Modes_original_tx_gain_9280_2,
570 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
571 } else {
572 INIT_INI_ARRAY(&ah->iniModesTxGain,
573 ar9280Modes_original_tx_gain_9280_2,
574 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
578 static int ath9k_hw_post_init(struct ath_hw *ah)
580 int ecode;
582 if (!ath9k_hw_chip_test(ah))
583 return -ENODEV;
585 ecode = ath9k_hw_rf_claim(ah);
586 if (ecode != 0)
587 return ecode;
589 ecode = ath9k_hw_eeprom_init(ah);
590 if (ecode != 0)
591 return ecode;
593 DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
594 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
596 ecode = ath9k_hw_rfattach(ah);
597 if (ecode != 0)
598 return ecode;
600 if (!AR_SREV_9100(ah)) {
601 ath9k_hw_ani_setup(ah);
602 ath9k_hw_ani_init(ah);
605 return 0;
608 static bool ath9k_hw_devid_supported(u16 devid)
610 switch (devid) {
611 case AR5416_DEVID_PCI:
612 case AR5416_DEVID_PCIE:
613 case AR5416_AR9100_DEVID:
614 case AR9160_DEVID_PCI:
615 case AR9280_DEVID_PCI:
616 case AR9280_DEVID_PCIE:
617 case AR9285_DEVID_PCIE:
618 case AR5416_DEVID_AR9287_PCI:
619 case AR5416_DEVID_AR9287_PCIE:
620 return true;
621 default:
622 break;
624 return false;
627 static bool ath9k_hw_macversion_supported(u32 macversion)
629 switch (macversion) {
630 case AR_SREV_VERSION_5416_PCI:
631 case AR_SREV_VERSION_5416_PCIE:
632 case AR_SREV_VERSION_9160:
633 case AR_SREV_VERSION_9100:
634 case AR_SREV_VERSION_9280:
635 case AR_SREV_VERSION_9285:
636 case AR_SREV_VERSION_9287:
637 return true;
638 /* Not yet */
639 case AR_SREV_VERSION_9271:
640 default:
641 break;
643 return false;
646 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
648 if (AR_SREV_9160_10_OR_LATER(ah)) {
649 if (AR_SREV_9280_10_OR_LATER(ah)) {
650 ah->iq_caldata.calData = &iq_cal_single_sample;
651 ah->adcgain_caldata.calData =
652 &adc_gain_cal_single_sample;
653 ah->adcdc_caldata.calData =
654 &adc_dc_cal_single_sample;
655 ah->adcdc_calinitdata.calData =
656 &adc_init_dc_cal;
657 } else {
658 ah->iq_caldata.calData = &iq_cal_multi_sample;
659 ah->adcgain_caldata.calData =
660 &adc_gain_cal_multi_sample;
661 ah->adcdc_caldata.calData =
662 &adc_dc_cal_multi_sample;
663 ah->adcdc_calinitdata.calData =
664 &adc_init_dc_cal;
666 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
670 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
672 if (AR_SREV_9271(ah)) {
673 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271_1_0,
674 ARRAY_SIZE(ar9271Modes_9271_1_0), 6);
675 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271_1_0,
676 ARRAY_SIZE(ar9271Common_9271_1_0), 2);
677 return;
680 if (AR_SREV_9287_11_OR_LATER(ah)) {
681 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
682 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
683 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
684 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
685 if (ah->config.pcie_clock_req)
686 INIT_INI_ARRAY(&ah->iniPcieSerdes,
687 ar9287PciePhy_clkreq_off_L1_9287_1_1,
688 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
689 else
690 INIT_INI_ARRAY(&ah->iniPcieSerdes,
691 ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
692 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
694 } else if (AR_SREV_9287_10_OR_LATER(ah)) {
695 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
696 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
697 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
698 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
700 if (ah->config.pcie_clock_req)
701 INIT_INI_ARRAY(&ah->iniPcieSerdes,
702 ar9287PciePhy_clkreq_off_L1_9287_1_0,
703 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
704 else
705 INIT_INI_ARRAY(&ah->iniPcieSerdes,
706 ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
707 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
709 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
712 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
713 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
714 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
715 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
717 if (ah->config.pcie_clock_req) {
718 INIT_INI_ARRAY(&ah->iniPcieSerdes,
719 ar9285PciePhy_clkreq_off_L1_9285_1_2,
720 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
721 } else {
722 INIT_INI_ARRAY(&ah->iniPcieSerdes,
723 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
724 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
727 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
728 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
729 ARRAY_SIZE(ar9285Modes_9285), 6);
730 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
731 ARRAY_SIZE(ar9285Common_9285), 2);
733 if (ah->config.pcie_clock_req) {
734 INIT_INI_ARRAY(&ah->iniPcieSerdes,
735 ar9285PciePhy_clkreq_off_L1_9285,
736 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
737 } else {
738 INIT_INI_ARRAY(&ah->iniPcieSerdes,
739 ar9285PciePhy_clkreq_always_on_L1_9285,
740 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
742 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
743 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
744 ARRAY_SIZE(ar9280Modes_9280_2), 6);
745 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
746 ARRAY_SIZE(ar9280Common_9280_2), 2);
748 if (ah->config.pcie_clock_req) {
749 INIT_INI_ARRAY(&ah->iniPcieSerdes,
750 ar9280PciePhy_clkreq_off_L1_9280,
751 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
752 } else {
753 INIT_INI_ARRAY(&ah->iniPcieSerdes,
754 ar9280PciePhy_clkreq_always_on_L1_9280,
755 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
757 INIT_INI_ARRAY(&ah->iniModesAdditional,
758 ar9280Modes_fast_clock_9280_2,
759 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
760 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
761 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
762 ARRAY_SIZE(ar9280Modes_9280), 6);
763 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
764 ARRAY_SIZE(ar9280Common_9280), 2);
765 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
766 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
767 ARRAY_SIZE(ar5416Modes_9160), 6);
768 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
769 ARRAY_SIZE(ar5416Common_9160), 2);
770 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
771 ARRAY_SIZE(ar5416Bank0_9160), 2);
772 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
773 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
774 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
775 ARRAY_SIZE(ar5416Bank1_9160), 2);
776 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
777 ARRAY_SIZE(ar5416Bank2_9160), 2);
778 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
779 ARRAY_SIZE(ar5416Bank3_9160), 3);
780 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
781 ARRAY_SIZE(ar5416Bank6_9160), 3);
782 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
783 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
784 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
785 ARRAY_SIZE(ar5416Bank7_9160), 2);
786 if (AR_SREV_9160_11(ah)) {
787 INIT_INI_ARRAY(&ah->iniAddac,
788 ar5416Addac_91601_1,
789 ARRAY_SIZE(ar5416Addac_91601_1), 2);
790 } else {
791 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
792 ARRAY_SIZE(ar5416Addac_9160), 2);
794 } else if (AR_SREV_9100_OR_LATER(ah)) {
795 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
796 ARRAY_SIZE(ar5416Modes_9100), 6);
797 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
798 ARRAY_SIZE(ar5416Common_9100), 2);
799 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
800 ARRAY_SIZE(ar5416Bank0_9100), 2);
801 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
802 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
803 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
804 ARRAY_SIZE(ar5416Bank1_9100), 2);
805 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
806 ARRAY_SIZE(ar5416Bank2_9100), 2);
807 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
808 ARRAY_SIZE(ar5416Bank3_9100), 3);
809 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
810 ARRAY_SIZE(ar5416Bank6_9100), 3);
811 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
812 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
813 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
814 ARRAY_SIZE(ar5416Bank7_9100), 2);
815 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
816 ARRAY_SIZE(ar5416Addac_9100), 2);
817 } else {
818 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
819 ARRAY_SIZE(ar5416Modes), 6);
820 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
821 ARRAY_SIZE(ar5416Common), 2);
822 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
823 ARRAY_SIZE(ar5416Bank0), 2);
824 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
825 ARRAY_SIZE(ar5416BB_RfGain), 3);
826 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
827 ARRAY_SIZE(ar5416Bank1), 2);
828 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
829 ARRAY_SIZE(ar5416Bank2), 2);
830 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
831 ARRAY_SIZE(ar5416Bank3), 3);
832 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
833 ARRAY_SIZE(ar5416Bank6), 3);
834 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
835 ARRAY_SIZE(ar5416Bank6TPC), 3);
836 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
837 ARRAY_SIZE(ar5416Bank7), 2);
838 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
839 ARRAY_SIZE(ar5416Addac), 2);
843 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
845 if (AR_SREV_9287_11_OR_LATER(ah))
846 INIT_INI_ARRAY(&ah->iniModesRxGain,
847 ar9287Modes_rx_gain_9287_1_1,
848 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
849 else if (AR_SREV_9287_10(ah))
850 INIT_INI_ARRAY(&ah->iniModesRxGain,
851 ar9287Modes_rx_gain_9287_1_0,
852 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
853 else if (AR_SREV_9280_20(ah))
854 ath9k_hw_init_rxgain_ini(ah);
856 if (AR_SREV_9287_11_OR_LATER(ah)) {
857 INIT_INI_ARRAY(&ah->iniModesTxGain,
858 ar9287Modes_tx_gain_9287_1_1,
859 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
860 } else if (AR_SREV_9287_10(ah)) {
861 INIT_INI_ARRAY(&ah->iniModesTxGain,
862 ar9287Modes_tx_gain_9287_1_0,
863 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
864 } else if (AR_SREV_9280_20(ah)) {
865 ath9k_hw_init_txgain_ini(ah);
866 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
867 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
869 /* txgain table */
870 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
871 INIT_INI_ARRAY(&ah->iniModesTxGain,
872 ar9285Modes_high_power_tx_gain_9285_1_2,
873 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
874 } else {
875 INIT_INI_ARRAY(&ah->iniModesTxGain,
876 ar9285Modes_original_tx_gain_9285_1_2,
877 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
883 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
885 u32 i, j;
887 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
888 test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
890 /* EEPROM Fixup */
891 for (i = 0; i < ah->iniModes.ia_rows; i++) {
892 u32 reg = INI_RA(&ah->iniModes, i, 0);
894 for (j = 1; j < ah->iniModes.ia_columns; j++) {
895 u32 val = INI_RA(&ah->iniModes, i, j);
897 INI_RA(&ah->iniModes, i, j) =
898 ath9k_hw_ini_fixup(ah,
899 &ah->eeprom.def,
900 reg, val);
906 int ath9k_hw_init(struct ath_hw *ah)
908 int r = 0;
910 if (!ath9k_hw_devid_supported(ah->hw_version.devid))
911 return -EOPNOTSUPP;
913 ath9k_hw_init_defaults(ah);
914 ath9k_hw_init_config(ah);
916 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
917 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
918 return -EIO;
921 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
922 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
923 return -EIO;
926 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
927 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
928 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
929 ah->config.serialize_regmode =
930 SER_REG_MODE_ON;
931 } else {
932 ah->config.serialize_regmode =
933 SER_REG_MODE_OFF;
937 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
938 ah->config.serialize_regmode);
940 if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
941 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
942 "Mac Chip Rev 0x%02x.%x is not supported by "
943 "this driver\n", ah->hw_version.macVersion,
944 ah->hw_version.macRev);
945 return -EOPNOTSUPP;
948 if (AR_SREV_9100(ah)) {
949 ah->iq_caldata.calData = &iq_cal_multi_sample;
950 ah->supp_cals = IQ_MISMATCH_CAL;
951 ah->is_pciexpress = false;
954 if (AR_SREV_9271(ah))
955 ah->is_pciexpress = false;
957 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
959 ath9k_hw_init_cal_settings(ah);
961 ah->ani_function = ATH9K_ANI_ALL;
962 if (AR_SREV_9280_10_OR_LATER(ah))
963 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
965 ath9k_hw_init_mode_regs(ah);
967 if (ah->is_pciexpress)
968 ath9k_hw_configpcipowersave(ah, 0, 0);
969 else
970 ath9k_hw_disablepcie(ah);
972 r = ath9k_hw_post_init(ah);
973 if (r)
974 return r;
976 ath9k_hw_init_mode_gain_regs(ah);
977 ath9k_hw_fill_cap_info(ah);
978 ath9k_hw_init_11a_eeprom_fix(ah);
980 r = ath9k_hw_init_macaddr(ah);
981 if (r) {
982 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
983 "Failed to initialize MAC address\n");
984 return r;
987 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
988 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
989 else
990 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
992 ath9k_init_nfcal_hist_buffer(ah);
994 return 0;
997 static void ath9k_hw_init_bb(struct ath_hw *ah,
998 struct ath9k_channel *chan)
1000 u32 synthDelay;
1002 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1003 if (IS_CHAN_B(chan))
1004 synthDelay = (4 * synthDelay) / 22;
1005 else
1006 synthDelay /= 10;
1008 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1010 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1013 static void ath9k_hw_init_qos(struct ath_hw *ah)
1015 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1016 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1018 REG_WRITE(ah, AR_QOS_NO_ACK,
1019 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1020 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1021 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1023 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1024 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1025 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1026 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1027 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1030 static void ath9k_hw_init_pll(struct ath_hw *ah,
1031 struct ath9k_channel *chan)
1033 u32 pll;
1035 if (AR_SREV_9100(ah)) {
1036 if (chan && IS_CHAN_5GHZ(chan))
1037 pll = 0x1450;
1038 else
1039 pll = 0x1458;
1040 } else {
1041 if (AR_SREV_9280_10_OR_LATER(ah)) {
1042 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1044 if (chan && IS_CHAN_HALF_RATE(chan))
1045 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1046 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1047 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1049 if (chan && IS_CHAN_5GHZ(chan)) {
1050 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1053 if (AR_SREV_9280_20(ah)) {
1054 if (((chan->channel % 20) == 0)
1055 || ((chan->channel % 10) == 0))
1056 pll = 0x2850;
1057 else
1058 pll = 0x142c;
1060 } else {
1061 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1064 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1066 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1068 if (chan && IS_CHAN_HALF_RATE(chan))
1069 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1070 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1071 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1073 if (chan && IS_CHAN_5GHZ(chan))
1074 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1075 else
1076 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1077 } else {
1078 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1080 if (chan && IS_CHAN_HALF_RATE(chan))
1081 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1082 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1083 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1085 if (chan && IS_CHAN_5GHZ(chan))
1086 pll |= SM(0xa, AR_RTC_PLL_DIV);
1087 else
1088 pll |= SM(0xb, AR_RTC_PLL_DIV);
1091 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1093 udelay(RTC_PLL_SETTLE_DELAY);
1095 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1098 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1100 int rx_chainmask, tx_chainmask;
1102 rx_chainmask = ah->rxchainmask;
1103 tx_chainmask = ah->txchainmask;
1105 switch (rx_chainmask) {
1106 case 0x5:
1107 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1108 AR_PHY_SWAP_ALT_CHAIN);
1109 case 0x3:
1110 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1111 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1112 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1113 break;
1115 case 0x1:
1116 case 0x2:
1117 case 0x7:
1118 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1119 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1120 break;
1121 default:
1122 break;
1125 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1126 if (tx_chainmask == 0x5) {
1127 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1128 AR_PHY_SWAP_ALT_CHAIN);
1130 if (AR_SREV_9100(ah))
1131 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1132 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1135 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1136 enum nl80211_iftype opmode)
1138 ah->mask_reg = AR_IMR_TXERR |
1139 AR_IMR_TXURN |
1140 AR_IMR_RXERR |
1141 AR_IMR_RXORN |
1142 AR_IMR_BCNMISC;
1144 if (ah->config.intr_mitigation)
1145 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1146 else
1147 ah->mask_reg |= AR_IMR_RXOK;
1149 ah->mask_reg |= AR_IMR_TXOK;
1151 if (opmode == NL80211_IFTYPE_AP)
1152 ah->mask_reg |= AR_IMR_MIB;
1154 REG_WRITE(ah, AR_IMR, ah->mask_reg);
1155 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1157 if (!AR_SREV_9100(ah)) {
1158 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1159 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1160 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1164 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1166 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1167 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1168 ah->acktimeout = (u32) -1;
1169 return false;
1170 } else {
1171 REG_RMW_FIELD(ah, AR_TIME_OUT,
1172 AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1173 ah->acktimeout = us;
1174 return true;
1178 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1180 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1181 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1182 ah->ctstimeout = (u32) -1;
1183 return false;
1184 } else {
1185 REG_RMW_FIELD(ah, AR_TIME_OUT,
1186 AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1187 ah->ctstimeout = us;
1188 return true;
1192 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1194 if (tu > 0xFFFF) {
1195 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1196 "bad global tx timeout %u\n", tu);
1197 ah->globaltxtimeout = (u32) -1;
1198 return false;
1199 } else {
1200 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1201 ah->globaltxtimeout = tu;
1202 return true;
1206 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1208 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1209 ah->misc_mode);
1211 if (ah->misc_mode != 0)
1212 REG_WRITE(ah, AR_PCU_MISC,
1213 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1214 if (ah->slottime != (u32) -1)
1215 ath9k_hw_setslottime(ah, ah->slottime);
1216 if (ah->acktimeout != (u32) -1)
1217 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1218 if (ah->ctstimeout != (u32) -1)
1219 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1220 if (ah->globaltxtimeout != (u32) -1)
1221 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1224 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1226 return vendorid == ATHEROS_VENDOR_ID ?
1227 ath9k_hw_devname(devid) : NULL;
1230 void ath9k_hw_detach(struct ath_hw *ah)
1232 if (!AR_SREV_9100(ah))
1233 ath9k_hw_ani_disable(ah);
1235 ath9k_hw_rf_free(ah);
1236 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1237 kfree(ah);
1238 ah = NULL;
1241 /*******/
1242 /* INI */
1243 /*******/
1245 static void ath9k_hw_override_ini(struct ath_hw *ah,
1246 struct ath9k_channel *chan)
1248 u32 val;
1250 if (AR_SREV_9271(ah)) {
1252 * Enable spectral scan to solution for issues with stuck
1253 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1254 * AR9271 1.1
1256 if (AR_SREV_9271_10(ah)) {
1257 val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) | AR_PHY_SPECTRAL_SCAN_ENABLE;
1258 REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1260 else if (AR_SREV_9271_11(ah))
1262 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1263 * present on AR9271 1.1
1265 REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1266 return;
1270 * Set the RX_ABORT and RX_DIS and clear if off only after
1271 * RXE is set for MAC. This prevents frames with corrupted
1272 * descriptor status.
1274 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1276 if (AR_SREV_9280_10_OR_LATER(ah)) {
1277 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1278 (~AR_PCU_MISC_MODE2_HWWAR1);
1280 if (AR_SREV_9287_10_OR_LATER(ah))
1281 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1283 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1286 if (!AR_SREV_5416_20_OR_LATER(ah) ||
1287 AR_SREV_9280_10_OR_LATER(ah))
1288 return;
1290 * Disable BB clock gating
1291 * Necessary to avoid issues on AR5416 2.0
1293 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1296 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1297 struct ar5416_eeprom_def *pEepData,
1298 u32 reg, u32 value)
1300 struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1302 switch (ah->hw_version.devid) {
1303 case AR9280_DEVID_PCI:
1304 if (reg == 0x7894) {
1305 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1306 "ini VAL: %x EEPROM: %x\n", value,
1307 (pBase->version & 0xff));
1309 if ((pBase->version & 0xff) > 0x0a) {
1310 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1311 "PWDCLKIND: %d\n",
1312 pBase->pwdclkind);
1313 value &= ~AR_AN_TOP2_PWDCLKIND;
1314 value |= AR_AN_TOP2_PWDCLKIND &
1315 (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1316 } else {
1317 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1318 "PWDCLKIND Earlier Rev\n");
1321 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1322 "final ini VAL: %x\n", value);
1324 break;
1327 return value;
1330 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1331 struct ar5416_eeprom_def *pEepData,
1332 u32 reg, u32 value)
1334 if (ah->eep_map == EEP_MAP_4KBITS)
1335 return value;
1336 else
1337 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1340 static void ath9k_olc_init(struct ath_hw *ah)
1342 u32 i;
1344 if (OLC_FOR_AR9287_10_LATER) {
1345 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1346 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1347 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1348 AR9287_AN_TXPC0_TXPCMODE,
1349 AR9287_AN_TXPC0_TXPCMODE_S,
1350 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1351 udelay(100);
1352 } else {
1353 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1354 ah->originalGain[i] =
1355 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1356 AR_PHY_TX_GAIN);
1357 ah->PDADCdelta = 0;
1361 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1362 struct ath9k_channel *chan)
1364 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1366 if (IS_CHAN_B(chan))
1367 ctl |= CTL_11B;
1368 else if (IS_CHAN_G(chan))
1369 ctl |= CTL_11G;
1370 else
1371 ctl |= CTL_11A;
1373 return ctl;
1376 static int ath9k_hw_process_ini(struct ath_hw *ah,
1377 struct ath9k_channel *chan,
1378 enum ath9k_ht_macmode macmode)
1380 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1381 int i, regWrites = 0;
1382 struct ieee80211_channel *channel = chan->chan;
1383 u32 modesIndex, freqIndex;
1385 switch (chan->chanmode) {
1386 case CHANNEL_A:
1387 case CHANNEL_A_HT20:
1388 modesIndex = 1;
1389 freqIndex = 1;
1390 break;
1391 case CHANNEL_A_HT40PLUS:
1392 case CHANNEL_A_HT40MINUS:
1393 modesIndex = 2;
1394 freqIndex = 1;
1395 break;
1396 case CHANNEL_G:
1397 case CHANNEL_G_HT20:
1398 case CHANNEL_B:
1399 modesIndex = 4;
1400 freqIndex = 2;
1401 break;
1402 case CHANNEL_G_HT40PLUS:
1403 case CHANNEL_G_HT40MINUS:
1404 modesIndex = 3;
1405 freqIndex = 2;
1406 break;
1408 default:
1409 return -EINVAL;
1412 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1413 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1414 ah->eep_ops->set_addac(ah, chan);
1416 if (AR_SREV_5416_22_OR_LATER(ah)) {
1417 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1418 } else {
1419 struct ar5416IniArray temp;
1420 u32 addacSize =
1421 sizeof(u32) * ah->iniAddac.ia_rows *
1422 ah->iniAddac.ia_columns;
1424 memcpy(ah->addac5416_21,
1425 ah->iniAddac.ia_array, addacSize);
1427 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1429 temp.ia_array = ah->addac5416_21;
1430 temp.ia_columns = ah->iniAddac.ia_columns;
1431 temp.ia_rows = ah->iniAddac.ia_rows;
1432 REG_WRITE_ARRAY(&temp, 1, regWrites);
1435 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1437 for (i = 0; i < ah->iniModes.ia_rows; i++) {
1438 u32 reg = INI_RA(&ah->iniModes, i, 0);
1439 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1441 REG_WRITE(ah, reg, val);
1443 if (reg >= 0x7800 && reg < 0x78a0
1444 && ah->config.analog_shiftreg) {
1445 udelay(100);
1448 DO_DELAY(regWrites);
1451 if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1452 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1454 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1455 AR_SREV_9287_10_OR_LATER(ah))
1456 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1458 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1459 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1460 u32 val = INI_RA(&ah->iniCommon, i, 1);
1462 REG_WRITE(ah, reg, val);
1464 if (reg >= 0x7800 && reg < 0x78a0
1465 && ah->config.analog_shiftreg) {
1466 udelay(100);
1469 DO_DELAY(regWrites);
1472 ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1474 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1475 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1476 regWrites);
1479 ath9k_hw_override_ini(ah, chan);
1480 ath9k_hw_set_regs(ah, chan, macmode);
1481 ath9k_hw_init_chain_masks(ah);
1483 if (OLC_FOR_AR9280_20_LATER)
1484 ath9k_olc_init(ah);
1486 ah->eep_ops->set_txpower(ah, chan,
1487 ath9k_regd_get_ctl(regulatory, chan),
1488 channel->max_antenna_gain * 2,
1489 channel->max_power * 2,
1490 min((u32) MAX_RATE_POWER,
1491 (u32) regulatory->power_limit));
1493 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1494 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1495 "ar5416SetRfRegs failed\n");
1496 return -EIO;
1499 return 0;
1502 /****************************************/
1503 /* Reset and Channel Switching Routines */
1504 /****************************************/
1506 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1508 u32 rfMode = 0;
1510 if (chan == NULL)
1511 return;
1513 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1514 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1516 if (!AR_SREV_9280_10_OR_LATER(ah))
1517 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1518 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1520 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1521 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1523 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1526 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1528 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1531 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1533 u32 regval;
1536 * set AHB_MODE not to do cacheline prefetches
1538 regval = REG_READ(ah, AR_AHB_MODE);
1539 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1542 * let mac dma reads be in 128 byte chunks
1544 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1545 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1548 * Restore TX Trigger Level to its pre-reset value.
1549 * The initial value depends on whether aggregation is enabled, and is
1550 * adjusted whenever underruns are detected.
1552 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1555 * let mac dma writes be in 128 byte chunks
1557 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1558 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1561 * Setup receive FIFO threshold to hold off TX activities
1563 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1566 * reduce the number of usable entries in PCU TXBUF to avoid
1567 * wrap around issues.
1569 if (AR_SREV_9285(ah)) {
1570 /* For AR9285 the number of Fifos are reduced to half.
1571 * So set the usable tx buf size also to half to
1572 * avoid data/delimiter underruns
1574 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1575 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1576 } else if (!AR_SREV_9271(ah)) {
1577 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1578 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1582 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1584 u32 val;
1586 val = REG_READ(ah, AR_STA_ID1);
1587 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1588 switch (opmode) {
1589 case NL80211_IFTYPE_AP:
1590 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1591 | AR_STA_ID1_KSRCH_MODE);
1592 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1593 break;
1594 case NL80211_IFTYPE_ADHOC:
1595 case NL80211_IFTYPE_MESH_POINT:
1596 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1597 | AR_STA_ID1_KSRCH_MODE);
1598 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1599 break;
1600 case NL80211_IFTYPE_STATION:
1601 case NL80211_IFTYPE_MONITOR:
1602 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1603 break;
1607 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1608 u32 coef_scaled,
1609 u32 *coef_mantissa,
1610 u32 *coef_exponent)
1612 u32 coef_exp, coef_man;
1614 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1615 if ((coef_scaled >> coef_exp) & 0x1)
1616 break;
1618 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1620 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1622 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1623 *coef_exponent = coef_exp - 16;
1626 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1627 struct ath9k_channel *chan)
1629 u32 coef_scaled, ds_coef_exp, ds_coef_man;
1630 u32 clockMhzScaled = 0x64000000;
1631 struct chan_centers centers;
1633 if (IS_CHAN_HALF_RATE(chan))
1634 clockMhzScaled = clockMhzScaled >> 1;
1635 else if (IS_CHAN_QUARTER_RATE(chan))
1636 clockMhzScaled = clockMhzScaled >> 2;
1638 ath9k_hw_get_channel_centers(ah, chan, &centers);
1639 coef_scaled = clockMhzScaled / centers.synth_center;
1641 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1642 &ds_coef_exp);
1644 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1645 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1646 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1647 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1649 coef_scaled = (9 * coef_scaled) / 10;
1651 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1652 &ds_coef_exp);
1654 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1655 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1656 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1657 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1660 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1662 u32 rst_flags;
1663 u32 tmpReg;
1665 if (AR_SREV_9100(ah)) {
1666 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1667 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1668 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1669 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1670 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1673 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1674 AR_RTC_FORCE_WAKE_ON_INT);
1676 if (AR_SREV_9100(ah)) {
1677 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1678 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1679 } else {
1680 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1681 if (tmpReg &
1682 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1683 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1684 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1685 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1686 } else {
1687 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1690 rst_flags = AR_RTC_RC_MAC_WARM;
1691 if (type == ATH9K_RESET_COLD)
1692 rst_flags |= AR_RTC_RC_MAC_COLD;
1695 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1696 udelay(50);
1698 REG_WRITE(ah, AR_RTC_RC, 0);
1699 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1700 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1701 "RTC stuck in MAC reset\n");
1702 return false;
1705 if (!AR_SREV_9100(ah))
1706 REG_WRITE(ah, AR_RC, 0);
1708 ath9k_hw_init_pll(ah, NULL);
1710 if (AR_SREV_9100(ah))
1711 udelay(50);
1713 return true;
1716 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1718 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1719 AR_RTC_FORCE_WAKE_ON_INT);
1721 if (!AR_SREV_9100(ah))
1722 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1724 REG_WRITE(ah, AR_RTC_RESET, 0);
1725 udelay(2);
1727 if (!AR_SREV_9100(ah))
1728 REG_WRITE(ah, AR_RC, 0);
1730 REG_WRITE(ah, AR_RTC_RESET, 1);
1732 if (!ath9k_hw_wait(ah,
1733 AR_RTC_STATUS,
1734 AR_RTC_STATUS_M,
1735 AR_RTC_STATUS_ON,
1736 AH_WAIT_TIMEOUT)) {
1737 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1738 return false;
1741 ath9k_hw_read_revisions(ah);
1743 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1746 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1748 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1749 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1751 switch (type) {
1752 case ATH9K_RESET_POWER_ON:
1753 return ath9k_hw_set_reset_power_on(ah);
1754 case ATH9K_RESET_WARM:
1755 case ATH9K_RESET_COLD:
1756 return ath9k_hw_set_reset(ah, type);
1757 default:
1758 return false;
1762 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1763 enum ath9k_ht_macmode macmode)
1765 u32 phymode;
1766 u32 enableDacFifo = 0;
1768 if (AR_SREV_9285_10_OR_LATER(ah))
1769 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1770 AR_PHY_FC_ENABLE_DAC_FIFO);
1772 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1773 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1775 if (IS_CHAN_HT40(chan)) {
1776 phymode |= AR_PHY_FC_DYN2040_EN;
1778 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1779 (chan->chanmode == CHANNEL_G_HT40PLUS))
1780 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1782 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1783 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1785 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1787 ath9k_hw_set11nmac2040(ah, macmode);
1789 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1790 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1793 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1794 struct ath9k_channel *chan)
1796 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1797 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1798 return false;
1799 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1800 return false;
1802 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1803 return false;
1805 ah->chip_fullsleep = false;
1806 ath9k_hw_init_pll(ah, chan);
1807 ath9k_hw_set_rfmode(ah, chan);
1809 return true;
1812 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1813 struct ath9k_channel *chan,
1814 enum ath9k_ht_macmode macmode)
1816 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1817 struct ieee80211_channel *channel = chan->chan;
1818 u32 synthDelay, qnum;
1820 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1821 if (ath9k_hw_numtxpending(ah, qnum)) {
1822 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1823 "Transmit frames pending on queue %d\n", qnum);
1824 return false;
1828 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1829 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1830 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1831 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1832 "Could not kill baseband RX\n");
1833 return false;
1836 ath9k_hw_set_regs(ah, chan, macmode);
1838 if (AR_SREV_9280_10_OR_LATER(ah)) {
1839 ath9k_hw_ar9280_set_channel(ah, chan);
1840 } else {
1841 if (!(ath9k_hw_set_channel(ah, chan))) {
1842 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1843 "Failed to set channel\n");
1844 return false;
1848 ah->eep_ops->set_txpower(ah, chan,
1849 ath9k_regd_get_ctl(regulatory, chan),
1850 channel->max_antenna_gain * 2,
1851 channel->max_power * 2,
1852 min((u32) MAX_RATE_POWER,
1853 (u32) regulatory->power_limit));
1855 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1856 if (IS_CHAN_B(chan))
1857 synthDelay = (4 * synthDelay) / 22;
1858 else
1859 synthDelay /= 10;
1861 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1863 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1865 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1866 ath9k_hw_set_delta_slope(ah, chan);
1868 if (AR_SREV_9280_10_OR_LATER(ah))
1869 ath9k_hw_9280_spur_mitigate(ah, chan);
1870 else
1871 ath9k_hw_spur_mitigate(ah, chan);
1873 if (!chan->oneTimeCalsDone)
1874 chan->oneTimeCalsDone = true;
1876 return true;
1879 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1881 int bb_spur = AR_NO_SPUR;
1882 int freq;
1883 int bin, cur_bin;
1884 int bb_spur_off, spur_subchannel_sd;
1885 int spur_freq_sd;
1886 int spur_delta_phase;
1887 int denominator;
1888 int upper, lower, cur_vit_mask;
1889 int tmp, newVal;
1890 int i;
1891 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1892 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1894 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1895 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1897 int inc[4] = { 0, 100, 0, 0 };
1898 struct chan_centers centers;
1900 int8_t mask_m[123];
1901 int8_t mask_p[123];
1902 int8_t mask_amt;
1903 int tmp_mask;
1904 int cur_bb_spur;
1905 bool is2GHz = IS_CHAN_2GHZ(chan);
1907 memset(&mask_m, 0, sizeof(int8_t) * 123);
1908 memset(&mask_p, 0, sizeof(int8_t) * 123);
1910 ath9k_hw_get_channel_centers(ah, chan, &centers);
1911 freq = centers.synth_center;
1913 ah->config.spurmode = SPUR_ENABLE_EEPROM;
1914 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1915 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1917 if (is2GHz)
1918 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1919 else
1920 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1922 if (AR_NO_SPUR == cur_bb_spur)
1923 break;
1924 cur_bb_spur = cur_bb_spur - freq;
1926 if (IS_CHAN_HT40(chan)) {
1927 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1928 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1929 bb_spur = cur_bb_spur;
1930 break;
1932 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1933 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1934 bb_spur = cur_bb_spur;
1935 break;
1939 if (AR_NO_SPUR == bb_spur) {
1940 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1941 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1942 return;
1943 } else {
1944 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1945 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1948 bin = bb_spur * 320;
1950 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1952 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1953 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1954 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1955 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1956 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1958 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1959 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1960 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1961 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1962 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1963 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1965 if (IS_CHAN_HT40(chan)) {
1966 if (bb_spur < 0) {
1967 spur_subchannel_sd = 1;
1968 bb_spur_off = bb_spur + 10;
1969 } else {
1970 spur_subchannel_sd = 0;
1971 bb_spur_off = bb_spur - 10;
1973 } else {
1974 spur_subchannel_sd = 0;
1975 bb_spur_off = bb_spur;
1978 if (IS_CHAN_HT40(chan))
1979 spur_delta_phase =
1980 ((bb_spur * 262144) /
1981 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1982 else
1983 spur_delta_phase =
1984 ((bb_spur * 524288) /
1985 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1987 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1988 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1990 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1991 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1992 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1993 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1995 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1996 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1998 cur_bin = -6000;
1999 upper = bin + 100;
2000 lower = bin - 100;
2002 for (i = 0; i < 4; i++) {
2003 int pilot_mask = 0;
2004 int chan_mask = 0;
2005 int bp = 0;
2006 for (bp = 0; bp < 30; bp++) {
2007 if ((cur_bin > lower) && (cur_bin < upper)) {
2008 pilot_mask = pilot_mask | 0x1 << bp;
2009 chan_mask = chan_mask | 0x1 << bp;
2011 cur_bin += 100;
2013 cur_bin += inc[i];
2014 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2015 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2018 cur_vit_mask = 6100;
2019 upper = bin + 120;
2020 lower = bin - 120;
2022 for (i = 0; i < 123; i++) {
2023 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2025 /* workaround for gcc bug #37014 */
2026 volatile int tmp_v = abs(cur_vit_mask - bin);
2028 if (tmp_v < 75)
2029 mask_amt = 1;
2030 else
2031 mask_amt = 0;
2032 if (cur_vit_mask < 0)
2033 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2034 else
2035 mask_p[cur_vit_mask / 100] = mask_amt;
2037 cur_vit_mask -= 100;
2040 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2041 | (mask_m[48] << 26) | (mask_m[49] << 24)
2042 | (mask_m[50] << 22) | (mask_m[51] << 20)
2043 | (mask_m[52] << 18) | (mask_m[53] << 16)
2044 | (mask_m[54] << 14) | (mask_m[55] << 12)
2045 | (mask_m[56] << 10) | (mask_m[57] << 8)
2046 | (mask_m[58] << 6) | (mask_m[59] << 4)
2047 | (mask_m[60] << 2) | (mask_m[61] << 0);
2048 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2049 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2051 tmp_mask = (mask_m[31] << 28)
2052 | (mask_m[32] << 26) | (mask_m[33] << 24)
2053 | (mask_m[34] << 22) | (mask_m[35] << 20)
2054 | (mask_m[36] << 18) | (mask_m[37] << 16)
2055 | (mask_m[48] << 14) | (mask_m[39] << 12)
2056 | (mask_m[40] << 10) | (mask_m[41] << 8)
2057 | (mask_m[42] << 6) | (mask_m[43] << 4)
2058 | (mask_m[44] << 2) | (mask_m[45] << 0);
2059 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2060 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2062 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2063 | (mask_m[18] << 26) | (mask_m[18] << 24)
2064 | (mask_m[20] << 22) | (mask_m[20] << 20)
2065 | (mask_m[22] << 18) | (mask_m[22] << 16)
2066 | (mask_m[24] << 14) | (mask_m[24] << 12)
2067 | (mask_m[25] << 10) | (mask_m[26] << 8)
2068 | (mask_m[27] << 6) | (mask_m[28] << 4)
2069 | (mask_m[29] << 2) | (mask_m[30] << 0);
2070 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2071 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2073 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2074 | (mask_m[2] << 26) | (mask_m[3] << 24)
2075 | (mask_m[4] << 22) | (mask_m[5] << 20)
2076 | (mask_m[6] << 18) | (mask_m[7] << 16)
2077 | (mask_m[8] << 14) | (mask_m[9] << 12)
2078 | (mask_m[10] << 10) | (mask_m[11] << 8)
2079 | (mask_m[12] << 6) | (mask_m[13] << 4)
2080 | (mask_m[14] << 2) | (mask_m[15] << 0);
2081 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2082 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2084 tmp_mask = (mask_p[15] << 28)
2085 | (mask_p[14] << 26) | (mask_p[13] << 24)
2086 | (mask_p[12] << 22) | (mask_p[11] << 20)
2087 | (mask_p[10] << 18) | (mask_p[9] << 16)
2088 | (mask_p[8] << 14) | (mask_p[7] << 12)
2089 | (mask_p[6] << 10) | (mask_p[5] << 8)
2090 | (mask_p[4] << 6) | (mask_p[3] << 4)
2091 | (mask_p[2] << 2) | (mask_p[1] << 0);
2092 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2093 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2095 tmp_mask = (mask_p[30] << 28)
2096 | (mask_p[29] << 26) | (mask_p[28] << 24)
2097 | (mask_p[27] << 22) | (mask_p[26] << 20)
2098 | (mask_p[25] << 18) | (mask_p[24] << 16)
2099 | (mask_p[23] << 14) | (mask_p[22] << 12)
2100 | (mask_p[21] << 10) | (mask_p[20] << 8)
2101 | (mask_p[19] << 6) | (mask_p[18] << 4)
2102 | (mask_p[17] << 2) | (mask_p[16] << 0);
2103 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2104 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2106 tmp_mask = (mask_p[45] << 28)
2107 | (mask_p[44] << 26) | (mask_p[43] << 24)
2108 | (mask_p[42] << 22) | (mask_p[41] << 20)
2109 | (mask_p[40] << 18) | (mask_p[39] << 16)
2110 | (mask_p[38] << 14) | (mask_p[37] << 12)
2111 | (mask_p[36] << 10) | (mask_p[35] << 8)
2112 | (mask_p[34] << 6) | (mask_p[33] << 4)
2113 | (mask_p[32] << 2) | (mask_p[31] << 0);
2114 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2115 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2117 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2118 | (mask_p[59] << 26) | (mask_p[58] << 24)
2119 | (mask_p[57] << 22) | (mask_p[56] << 20)
2120 | (mask_p[55] << 18) | (mask_p[54] << 16)
2121 | (mask_p[53] << 14) | (mask_p[52] << 12)
2122 | (mask_p[51] << 10) | (mask_p[50] << 8)
2123 | (mask_p[49] << 6) | (mask_p[48] << 4)
2124 | (mask_p[47] << 2) | (mask_p[46] << 0);
2125 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2126 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2129 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2131 int bb_spur = AR_NO_SPUR;
2132 int bin, cur_bin;
2133 int spur_freq_sd;
2134 int spur_delta_phase;
2135 int denominator;
2136 int upper, lower, cur_vit_mask;
2137 int tmp, new;
2138 int i;
2139 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2140 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2142 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2143 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2145 int inc[4] = { 0, 100, 0, 0 };
2147 int8_t mask_m[123];
2148 int8_t mask_p[123];
2149 int8_t mask_amt;
2150 int tmp_mask;
2151 int cur_bb_spur;
2152 bool is2GHz = IS_CHAN_2GHZ(chan);
2154 memset(&mask_m, 0, sizeof(int8_t) * 123);
2155 memset(&mask_p, 0, sizeof(int8_t) * 123);
2157 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2158 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2159 if (AR_NO_SPUR == cur_bb_spur)
2160 break;
2161 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2162 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2163 bb_spur = cur_bb_spur;
2164 break;
2168 if (AR_NO_SPUR == bb_spur)
2169 return;
2171 bin = bb_spur * 32;
2173 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2174 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2175 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2176 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2177 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2179 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2181 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2182 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2183 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2184 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2185 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2186 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2188 spur_delta_phase = ((bb_spur * 524288) / 100) &
2189 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2191 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2192 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2194 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2195 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2196 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2197 REG_WRITE(ah, AR_PHY_TIMING11, new);
2199 cur_bin = -6000;
2200 upper = bin + 100;
2201 lower = bin - 100;
2203 for (i = 0; i < 4; i++) {
2204 int pilot_mask = 0;
2205 int chan_mask = 0;
2206 int bp = 0;
2207 for (bp = 0; bp < 30; bp++) {
2208 if ((cur_bin > lower) && (cur_bin < upper)) {
2209 pilot_mask = pilot_mask | 0x1 << bp;
2210 chan_mask = chan_mask | 0x1 << bp;
2212 cur_bin += 100;
2214 cur_bin += inc[i];
2215 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2216 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2219 cur_vit_mask = 6100;
2220 upper = bin + 120;
2221 lower = bin - 120;
2223 for (i = 0; i < 123; i++) {
2224 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2226 /* workaround for gcc bug #37014 */
2227 volatile int tmp_v = abs(cur_vit_mask - bin);
2229 if (tmp_v < 75)
2230 mask_amt = 1;
2231 else
2232 mask_amt = 0;
2233 if (cur_vit_mask < 0)
2234 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2235 else
2236 mask_p[cur_vit_mask / 100] = mask_amt;
2238 cur_vit_mask -= 100;
2241 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2242 | (mask_m[48] << 26) | (mask_m[49] << 24)
2243 | (mask_m[50] << 22) | (mask_m[51] << 20)
2244 | (mask_m[52] << 18) | (mask_m[53] << 16)
2245 | (mask_m[54] << 14) | (mask_m[55] << 12)
2246 | (mask_m[56] << 10) | (mask_m[57] << 8)
2247 | (mask_m[58] << 6) | (mask_m[59] << 4)
2248 | (mask_m[60] << 2) | (mask_m[61] << 0);
2249 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2250 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2252 tmp_mask = (mask_m[31] << 28)
2253 | (mask_m[32] << 26) | (mask_m[33] << 24)
2254 | (mask_m[34] << 22) | (mask_m[35] << 20)
2255 | (mask_m[36] << 18) | (mask_m[37] << 16)
2256 | (mask_m[48] << 14) | (mask_m[39] << 12)
2257 | (mask_m[40] << 10) | (mask_m[41] << 8)
2258 | (mask_m[42] << 6) | (mask_m[43] << 4)
2259 | (mask_m[44] << 2) | (mask_m[45] << 0);
2260 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2261 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2263 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2264 | (mask_m[18] << 26) | (mask_m[18] << 24)
2265 | (mask_m[20] << 22) | (mask_m[20] << 20)
2266 | (mask_m[22] << 18) | (mask_m[22] << 16)
2267 | (mask_m[24] << 14) | (mask_m[24] << 12)
2268 | (mask_m[25] << 10) | (mask_m[26] << 8)
2269 | (mask_m[27] << 6) | (mask_m[28] << 4)
2270 | (mask_m[29] << 2) | (mask_m[30] << 0);
2271 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2272 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2274 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2275 | (mask_m[2] << 26) | (mask_m[3] << 24)
2276 | (mask_m[4] << 22) | (mask_m[5] << 20)
2277 | (mask_m[6] << 18) | (mask_m[7] << 16)
2278 | (mask_m[8] << 14) | (mask_m[9] << 12)
2279 | (mask_m[10] << 10) | (mask_m[11] << 8)
2280 | (mask_m[12] << 6) | (mask_m[13] << 4)
2281 | (mask_m[14] << 2) | (mask_m[15] << 0);
2282 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2283 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2285 tmp_mask = (mask_p[15] << 28)
2286 | (mask_p[14] << 26) | (mask_p[13] << 24)
2287 | (mask_p[12] << 22) | (mask_p[11] << 20)
2288 | (mask_p[10] << 18) | (mask_p[9] << 16)
2289 | (mask_p[8] << 14) | (mask_p[7] << 12)
2290 | (mask_p[6] << 10) | (mask_p[5] << 8)
2291 | (mask_p[4] << 6) | (mask_p[3] << 4)
2292 | (mask_p[2] << 2) | (mask_p[1] << 0);
2293 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2294 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2296 tmp_mask = (mask_p[30] << 28)
2297 | (mask_p[29] << 26) | (mask_p[28] << 24)
2298 | (mask_p[27] << 22) | (mask_p[26] << 20)
2299 | (mask_p[25] << 18) | (mask_p[24] << 16)
2300 | (mask_p[23] << 14) | (mask_p[22] << 12)
2301 | (mask_p[21] << 10) | (mask_p[20] << 8)
2302 | (mask_p[19] << 6) | (mask_p[18] << 4)
2303 | (mask_p[17] << 2) | (mask_p[16] << 0);
2304 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2305 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2307 tmp_mask = (mask_p[45] << 28)
2308 | (mask_p[44] << 26) | (mask_p[43] << 24)
2309 | (mask_p[42] << 22) | (mask_p[41] << 20)
2310 | (mask_p[40] << 18) | (mask_p[39] << 16)
2311 | (mask_p[38] << 14) | (mask_p[37] << 12)
2312 | (mask_p[36] << 10) | (mask_p[35] << 8)
2313 | (mask_p[34] << 6) | (mask_p[33] << 4)
2314 | (mask_p[32] << 2) | (mask_p[31] << 0);
2315 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2316 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2318 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2319 | (mask_p[59] << 26) | (mask_p[58] << 24)
2320 | (mask_p[57] << 22) | (mask_p[56] << 20)
2321 | (mask_p[55] << 18) | (mask_p[54] << 16)
2322 | (mask_p[53] << 14) | (mask_p[52] << 12)
2323 | (mask_p[51] << 10) | (mask_p[50] << 8)
2324 | (mask_p[49] << 6) | (mask_p[48] << 4)
2325 | (mask_p[47] << 2) | (mask_p[46] << 0);
2326 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2327 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2330 static void ath9k_enable_rfkill(struct ath_hw *ah)
2332 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2333 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2335 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2336 AR_GPIO_INPUT_MUX2_RFSILENT);
2338 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2339 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2342 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2343 bool bChannelChange)
2345 u32 saveLedState;
2346 struct ath_softc *sc = ah->ah_sc;
2347 struct ath9k_channel *curchan = ah->curchan;
2348 u32 saveDefAntenna;
2349 u32 macStaId1;
2350 u64 tsf = 0;
2351 int i, rx_chainmask, r;
2353 ah->extprotspacing = sc->ht_extprotspacing;
2354 ah->txchainmask = sc->tx_chainmask;
2355 ah->rxchainmask = sc->rx_chainmask;
2357 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2358 return -EIO;
2360 if (curchan && !ah->chip_fullsleep)
2361 ath9k_hw_getnf(ah, curchan);
2363 if (bChannelChange &&
2364 (ah->chip_fullsleep != true) &&
2365 (ah->curchan != NULL) &&
2366 (chan->channel != ah->curchan->channel) &&
2367 ((chan->channelFlags & CHANNEL_ALL) ==
2368 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2369 !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
2370 IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
2372 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2373 ath9k_hw_loadnf(ah, ah->curchan);
2374 ath9k_hw_start_nfcal(ah);
2375 return 0;
2379 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2380 if (saveDefAntenna == 0)
2381 saveDefAntenna = 1;
2383 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2385 /* For chips on which RTC reset is done, save TSF before it gets cleared */
2386 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2387 tsf = ath9k_hw_gettsf64(ah);
2389 saveLedState = REG_READ(ah, AR_CFG_LED) &
2390 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2391 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2393 ath9k_hw_mark_phy_inactive(ah);
2395 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2396 REG_WRITE(ah,
2397 AR9271_RESET_POWER_DOWN_CONTROL,
2398 AR9271_RADIO_RF_RST);
2399 udelay(50);
2402 if (!ath9k_hw_chip_reset(ah, chan)) {
2403 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2404 return -EINVAL;
2407 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2408 ah->htc_reset_init = false;
2409 REG_WRITE(ah,
2410 AR9271_RESET_POWER_DOWN_CONTROL,
2411 AR9271_GATE_MAC_CTL);
2412 udelay(50);
2415 /* Restore TSF */
2416 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2417 ath9k_hw_settsf64(ah, tsf);
2419 if (AR_SREV_9280_10_OR_LATER(ah))
2420 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2422 if (AR_SREV_9287_12_OR_LATER(ah)) {
2423 /* Enable ASYNC FIFO */
2424 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2425 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2426 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2427 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2428 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2429 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2430 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2432 r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2433 if (r)
2434 return r;
2436 /* Setup MFP options for CCMP */
2437 if (AR_SREV_9280_20_OR_LATER(ah)) {
2438 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2439 * frames when constructing CCMP AAD. */
2440 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2441 0xc7ff);
2442 ah->sw_mgmt_crypto = false;
2443 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2444 /* Disable hardware crypto for management frames */
2445 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2446 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2447 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2448 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2449 ah->sw_mgmt_crypto = true;
2450 } else
2451 ah->sw_mgmt_crypto = true;
2453 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2454 ath9k_hw_set_delta_slope(ah, chan);
2456 if (AR_SREV_9280_10_OR_LATER(ah))
2457 ath9k_hw_9280_spur_mitigate(ah, chan);
2458 else
2459 ath9k_hw_spur_mitigate(ah, chan);
2461 ah->eep_ops->set_board_values(ah, chan);
2463 ath9k_hw_decrease_chain_power(ah, chan);
2465 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2466 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2467 | macStaId1
2468 | AR_STA_ID1_RTS_USE_DEF
2469 | (ah->config.
2470 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2471 | ah->sta_id1_defaults);
2472 ath9k_hw_set_operating_mode(ah, ah->opmode);
2474 REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2475 REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2477 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2479 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2480 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2481 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2483 REG_WRITE(ah, AR_ISR, ~0);
2485 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2487 if (AR_SREV_9280_10_OR_LATER(ah))
2488 ath9k_hw_ar9280_set_channel(ah, chan);
2489 else
2490 if (!(ath9k_hw_set_channel(ah, chan)))
2491 return -EIO;
2493 for (i = 0; i < AR_NUM_DCU; i++)
2494 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2496 ah->intr_txqs = 0;
2497 for (i = 0; i < ah->caps.total_queues; i++)
2498 ath9k_hw_resettxqueue(ah, i);
2500 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2501 ath9k_hw_init_qos(ah);
2503 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2504 ath9k_enable_rfkill(ah);
2506 ath9k_hw_init_user_settings(ah);
2508 if (AR_SREV_9287_12_OR_LATER(ah)) {
2509 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2510 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2511 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2512 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2513 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2514 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2516 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2517 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2519 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2520 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2521 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2522 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2524 if (AR_SREV_9287_12_OR_LATER(ah)) {
2525 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2526 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2529 REG_WRITE(ah, AR_STA_ID1,
2530 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2532 ath9k_hw_set_dma(ah);
2534 REG_WRITE(ah, AR_OBS, 8);
2536 if (ah->config.intr_mitigation) {
2537 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2538 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2541 ath9k_hw_init_bb(ah, chan);
2543 if (!ath9k_hw_init_cal(ah, chan))
2544 return -EIO;
2546 rx_chainmask = ah->rxchainmask;
2547 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2548 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2549 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2552 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2555 * For big endian systems turn on swapping for descriptors
2557 if (AR_SREV_9100(ah)) {
2558 u32 mask;
2559 mask = REG_READ(ah, AR_CFG);
2560 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2561 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2562 "CFG Byte Swap Set 0x%x\n", mask);
2563 } else {
2564 mask =
2565 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2566 REG_WRITE(ah, AR_CFG, mask);
2567 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2568 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2570 } else {
2571 /* Configure AR9271 target WLAN */
2572 if (AR_SREV_9271(ah))
2573 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2574 #ifdef __BIG_ENDIAN
2575 else
2576 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2577 #endif
2580 if (ah->ah_sc->sc_flags & SC_OP_BTCOEX_ENABLED)
2581 ath9k_hw_btcoex_enable(ah);
2583 return 0;
2586 /************************/
2587 /* Key Cache Management */
2588 /************************/
2590 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2592 u32 keyType;
2594 if (entry >= ah->caps.keycache_size) {
2595 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2596 "keychache entry %u out of range\n", entry);
2597 return false;
2600 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2602 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2603 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2604 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2605 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2606 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2607 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2608 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2609 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2611 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2612 u16 micentry = entry + 64;
2614 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2615 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2616 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2617 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2621 return true;
2624 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2626 u32 macHi, macLo;
2628 if (entry >= ah->caps.keycache_size) {
2629 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2630 "keychache entry %u out of range\n", entry);
2631 return false;
2634 if (mac != NULL) {
2635 macHi = (mac[5] << 8) | mac[4];
2636 macLo = (mac[3] << 24) |
2637 (mac[2] << 16) |
2638 (mac[1] << 8) |
2639 mac[0];
2640 macLo >>= 1;
2641 macLo |= (macHi & 1) << 31;
2642 macHi >>= 1;
2643 } else {
2644 macLo = macHi = 0;
2646 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2647 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2649 return true;
2652 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2653 const struct ath9k_keyval *k,
2654 const u8 *mac)
2656 const struct ath9k_hw_capabilities *pCap = &ah->caps;
2657 u32 key0, key1, key2, key3, key4;
2658 u32 keyType;
2660 if (entry >= pCap->keycache_size) {
2661 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2662 "keycache entry %u out of range\n", entry);
2663 return false;
2666 switch (k->kv_type) {
2667 case ATH9K_CIPHER_AES_OCB:
2668 keyType = AR_KEYTABLE_TYPE_AES;
2669 break;
2670 case ATH9K_CIPHER_AES_CCM:
2671 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2672 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2673 "AES-CCM not supported by mac rev 0x%x\n",
2674 ah->hw_version.macRev);
2675 return false;
2677 keyType = AR_KEYTABLE_TYPE_CCM;
2678 break;
2679 case ATH9K_CIPHER_TKIP:
2680 keyType = AR_KEYTABLE_TYPE_TKIP;
2681 if (ATH9K_IS_MIC_ENABLED(ah)
2682 && entry + 64 >= pCap->keycache_size) {
2683 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2684 "entry %u inappropriate for TKIP\n", entry);
2685 return false;
2687 break;
2688 case ATH9K_CIPHER_WEP:
2689 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2690 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2691 "WEP key length %u too small\n", k->kv_len);
2692 return false;
2694 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2695 keyType = AR_KEYTABLE_TYPE_40;
2696 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2697 keyType = AR_KEYTABLE_TYPE_104;
2698 else
2699 keyType = AR_KEYTABLE_TYPE_128;
2700 break;
2701 case ATH9K_CIPHER_CLR:
2702 keyType = AR_KEYTABLE_TYPE_CLR;
2703 break;
2704 default:
2705 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2706 "cipher %u not supported\n", k->kv_type);
2707 return false;
2710 key0 = get_unaligned_le32(k->kv_val + 0);
2711 key1 = get_unaligned_le16(k->kv_val + 4);
2712 key2 = get_unaligned_le32(k->kv_val + 6);
2713 key3 = get_unaligned_le16(k->kv_val + 10);
2714 key4 = get_unaligned_le32(k->kv_val + 12);
2715 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2716 key4 &= 0xff;
2719 * Note: Key cache registers access special memory area that requires
2720 * two 32-bit writes to actually update the values in the internal
2721 * memory. Consequently, the exact order and pairs used here must be
2722 * maintained.
2725 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2726 u16 micentry = entry + 64;
2729 * Write inverted key[47:0] first to avoid Michael MIC errors
2730 * on frames that could be sent or received at the same time.
2731 * The correct key will be written in the end once everything
2732 * else is ready.
2734 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2735 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2737 /* Write key[95:48] */
2738 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2739 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2741 /* Write key[127:96] and key type */
2742 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2743 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2745 /* Write MAC address for the entry */
2746 (void) ath9k_hw_keysetmac(ah, entry, mac);
2748 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2750 * TKIP uses two key cache entries:
2751 * Michael MIC TX/RX keys in the same key cache entry
2752 * (idx = main index + 64):
2753 * key0 [31:0] = RX key [31:0]
2754 * key1 [15:0] = TX key [31:16]
2755 * key1 [31:16] = reserved
2756 * key2 [31:0] = RX key [63:32]
2757 * key3 [15:0] = TX key [15:0]
2758 * key3 [31:16] = reserved
2759 * key4 [31:0] = TX key [63:32]
2761 u32 mic0, mic1, mic2, mic3, mic4;
2763 mic0 = get_unaligned_le32(k->kv_mic + 0);
2764 mic2 = get_unaligned_le32(k->kv_mic + 4);
2765 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2766 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2767 mic4 = get_unaligned_le32(k->kv_txmic + 4);
2769 /* Write RX[31:0] and TX[31:16] */
2770 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2771 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2773 /* Write RX[63:32] and TX[15:0] */
2774 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2775 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2777 /* Write TX[63:32] and keyType(reserved) */
2778 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2779 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2780 AR_KEYTABLE_TYPE_CLR);
2782 } else {
2784 * TKIP uses four key cache entries (two for group
2785 * keys):
2786 * Michael MIC TX/RX keys are in different key cache
2787 * entries (idx = main index + 64 for TX and
2788 * main index + 32 + 96 for RX):
2789 * key0 [31:0] = TX/RX MIC key [31:0]
2790 * key1 [31:0] = reserved
2791 * key2 [31:0] = TX/RX MIC key [63:32]
2792 * key3 [31:0] = reserved
2793 * key4 [31:0] = reserved
2795 * Upper layer code will call this function separately
2796 * for TX and RX keys when these registers offsets are
2797 * used.
2799 u32 mic0, mic2;
2801 mic0 = get_unaligned_le32(k->kv_mic + 0);
2802 mic2 = get_unaligned_le32(k->kv_mic + 4);
2804 /* Write MIC key[31:0] */
2805 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2806 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2808 /* Write MIC key[63:32] */
2809 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2810 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2812 /* Write TX[63:32] and keyType(reserved) */
2813 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2814 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2815 AR_KEYTABLE_TYPE_CLR);
2818 /* MAC address registers are reserved for the MIC entry */
2819 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2820 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2823 * Write the correct (un-inverted) key[47:0] last to enable
2824 * TKIP now that all other registers are set with correct
2825 * values.
2827 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2828 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2829 } else {
2830 /* Write key[47:0] */
2831 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2832 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2834 /* Write key[95:48] */
2835 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2836 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2838 /* Write key[127:96] and key type */
2839 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2840 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2842 /* Write MAC address for the entry */
2843 (void) ath9k_hw_keysetmac(ah, entry, mac);
2846 return true;
2849 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2851 if (entry < ah->caps.keycache_size) {
2852 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2853 if (val & AR_KEYTABLE_VALID)
2854 return true;
2856 return false;
2859 /******************************/
2860 /* Power Management (Chipset) */
2861 /******************************/
2863 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2865 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2866 if (setChip) {
2867 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2868 AR_RTC_FORCE_WAKE_EN);
2869 if (!AR_SREV_9100(ah))
2870 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2872 REG_CLR_BIT(ah, (AR_RTC_RESET),
2873 AR_RTC_RESET_EN);
2877 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2879 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2880 if (setChip) {
2881 struct ath9k_hw_capabilities *pCap = &ah->caps;
2883 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2884 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2885 AR_RTC_FORCE_WAKE_ON_INT);
2886 } else {
2887 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2888 AR_RTC_FORCE_WAKE_EN);
2893 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2895 u32 val;
2896 int i;
2898 if (setChip) {
2899 if ((REG_READ(ah, AR_RTC_STATUS) &
2900 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2901 if (ath9k_hw_set_reset_reg(ah,
2902 ATH9K_RESET_POWER_ON) != true) {
2903 return false;
2906 if (AR_SREV_9100(ah))
2907 REG_SET_BIT(ah, AR_RTC_RESET,
2908 AR_RTC_RESET_EN);
2910 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2911 AR_RTC_FORCE_WAKE_EN);
2912 udelay(50);
2914 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2915 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2916 if (val == AR_RTC_STATUS_ON)
2917 break;
2918 udelay(50);
2919 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2920 AR_RTC_FORCE_WAKE_EN);
2922 if (i == 0) {
2923 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2924 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2925 return false;
2929 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2931 return true;
2934 static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
2935 enum ath9k_power_mode mode)
2937 int status = true, setChip = true;
2938 static const char *modes[] = {
2939 "AWAKE",
2940 "FULL-SLEEP",
2941 "NETWORK SLEEP",
2942 "UNDEFINED"
2945 if (ah->power_mode == mode)
2946 return status;
2948 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2949 modes[ah->power_mode], modes[mode]);
2951 switch (mode) {
2952 case ATH9K_PM_AWAKE:
2953 status = ath9k_hw_set_power_awake(ah, setChip);
2954 break;
2955 case ATH9K_PM_FULL_SLEEP:
2956 ath9k_set_power_sleep(ah, setChip);
2957 ah->chip_fullsleep = true;
2958 break;
2959 case ATH9K_PM_NETWORK_SLEEP:
2960 ath9k_set_power_network_sleep(ah, setChip);
2961 break;
2962 default:
2963 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2964 "Unknown power mode %u\n", mode);
2965 return false;
2967 ah->power_mode = mode;
2969 return status;
2972 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2974 unsigned long flags;
2975 bool ret;
2977 spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
2978 ret = ath9k_hw_setpower_nolock(ah, mode);
2979 spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
2981 return ret;
2984 void ath9k_ps_wakeup(struct ath_softc *sc)
2986 unsigned long flags;
2988 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2989 if (++sc->ps_usecount != 1)
2990 goto unlock;
2992 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
2994 unlock:
2995 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2998 void ath9k_ps_restore(struct ath_softc *sc)
3000 unsigned long flags;
3002 spin_lock_irqsave(&sc->sc_pm_lock, flags);
3003 if (--sc->ps_usecount != 0)
3004 goto unlock;
3006 if (sc->ps_enabled &&
3007 !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
3008 SC_OP_WAIT_FOR_CAB |
3009 SC_OP_WAIT_FOR_PSPOLL_DATA |
3010 SC_OP_WAIT_FOR_TX_ACK)))
3011 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
3013 unlock:
3014 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
3018 * Helper for ASPM support.
3020 * Disable PLL when in L0s as well as receiver clock when in L1.
3021 * This power saving option must be enabled through the SerDes.
3023 * Programming the SerDes must go through the same 288 bit serial shift
3024 * register as the other analog registers. Hence the 9 writes.
3026 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
3028 u8 i;
3029 u32 val;
3031 if (ah->is_pciexpress != true)
3032 return;
3034 /* Do not touch SerDes registers */
3035 if (ah->config.pcie_powersave_enable == 2)
3036 return;
3038 /* Nothing to do on restore for 11N */
3039 if (!restore) {
3040 if (AR_SREV_9280_20_OR_LATER(ah)) {
3042 * AR9280 2.0 or later chips use SerDes values from the
3043 * initvals.h initialized depending on chipset during
3044 * ath9k_hw_init()
3046 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
3047 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
3048 INI_RA(&ah->iniPcieSerdes, i, 1));
3050 } else if (AR_SREV_9280(ah) &&
3051 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
3052 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
3053 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3055 /* RX shut off when elecidle is asserted */
3056 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
3057 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
3058 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
3060 /* Shut off CLKREQ active in L1 */
3061 if (ah->config.pcie_clock_req)
3062 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
3063 else
3064 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
3066 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3067 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3068 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
3070 /* Load the new settings */
3071 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3073 } else {
3074 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3075 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3077 /* RX shut off when elecidle is asserted */
3078 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3079 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3080 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3083 * Ignore ah->ah_config.pcie_clock_req setting for
3084 * pre-AR9280 11n
3086 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3088 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3089 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3090 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3092 /* Load the new settings */
3093 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3096 udelay(1000);
3098 /* set bit 19 to allow forcing of pcie core into L1 state */
3099 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3101 /* Several PCIe massages to ensure proper behaviour */
3102 if (ah->config.pcie_waen) {
3103 val = ah->config.pcie_waen;
3104 if (!power_off)
3105 val &= (~AR_WA_D3_L1_DISABLE);
3106 } else {
3107 if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3108 AR_SREV_9287(ah)) {
3109 val = AR9285_WA_DEFAULT;
3110 if (!power_off)
3111 val &= (~AR_WA_D3_L1_DISABLE);
3112 } else if (AR_SREV_9280(ah)) {
3114 * On AR9280 chips bit 22 of 0x4004 needs to be
3115 * set otherwise card may disappear.
3117 val = AR9280_WA_DEFAULT;
3118 if (!power_off)
3119 val &= (~AR_WA_D3_L1_DISABLE);
3120 } else
3121 val = AR_WA_DEFAULT;
3124 REG_WRITE(ah, AR_WA, val);
3127 if (power_off) {
3129 * Set PCIe workaround bits
3130 * bit 14 in WA register (disable L1) should only
3131 * be set when device enters D3 and be cleared
3132 * when device comes back to D0.
3134 if (ah->config.pcie_waen) {
3135 if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
3136 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3137 } else {
3138 if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3139 AR_SREV_9287(ah)) &&
3140 (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
3141 (AR_SREV_9280(ah) &&
3142 (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
3143 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3149 /**********************/
3150 /* Interrupt Handling */
3151 /**********************/
3153 bool ath9k_hw_intrpend(struct ath_hw *ah)
3155 u32 host_isr;
3157 if (AR_SREV_9100(ah))
3158 return true;
3160 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3161 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3162 return true;
3164 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3165 if ((host_isr & AR_INTR_SYNC_DEFAULT)
3166 && (host_isr != AR_INTR_SPURIOUS))
3167 return true;
3169 return false;
3172 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3174 u32 isr = 0;
3175 u32 mask2 = 0;
3176 struct ath9k_hw_capabilities *pCap = &ah->caps;
3177 u32 sync_cause = 0;
3178 bool fatal_int = false;
3180 if (!AR_SREV_9100(ah)) {
3181 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3182 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3183 == AR_RTC_STATUS_ON) {
3184 isr = REG_READ(ah, AR_ISR);
3188 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3189 AR_INTR_SYNC_DEFAULT;
3191 *masked = 0;
3193 if (!isr && !sync_cause)
3194 return false;
3195 } else {
3196 *masked = 0;
3197 isr = REG_READ(ah, AR_ISR);
3200 if (isr) {
3201 if (isr & AR_ISR_BCNMISC) {
3202 u32 isr2;
3203 isr2 = REG_READ(ah, AR_ISR_S2);
3204 if (isr2 & AR_ISR_S2_TIM)
3205 mask2 |= ATH9K_INT_TIM;
3206 if (isr2 & AR_ISR_S2_DTIM)
3207 mask2 |= ATH9K_INT_DTIM;
3208 if (isr2 & AR_ISR_S2_DTIMSYNC)
3209 mask2 |= ATH9K_INT_DTIMSYNC;
3210 if (isr2 & (AR_ISR_S2_CABEND))
3211 mask2 |= ATH9K_INT_CABEND;
3212 if (isr2 & AR_ISR_S2_GTT)
3213 mask2 |= ATH9K_INT_GTT;
3214 if (isr2 & AR_ISR_S2_CST)
3215 mask2 |= ATH9K_INT_CST;
3216 if (isr2 & AR_ISR_S2_TSFOOR)
3217 mask2 |= ATH9K_INT_TSFOOR;
3220 isr = REG_READ(ah, AR_ISR_RAC);
3221 if (isr == 0xffffffff) {
3222 *masked = 0;
3223 return false;
3226 *masked = isr & ATH9K_INT_COMMON;
3228 if (ah->config.intr_mitigation) {
3229 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3230 *masked |= ATH9K_INT_RX;
3233 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3234 *masked |= ATH9K_INT_RX;
3235 if (isr &
3236 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3237 AR_ISR_TXEOL)) {
3238 u32 s0_s, s1_s;
3240 *masked |= ATH9K_INT_TX;
3242 s0_s = REG_READ(ah, AR_ISR_S0_S);
3243 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3244 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3246 s1_s = REG_READ(ah, AR_ISR_S1_S);
3247 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3248 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3251 if (isr & AR_ISR_RXORN) {
3252 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3253 "receive FIFO overrun interrupt\n");
3256 if (!AR_SREV_9100(ah)) {
3257 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3258 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3259 if (isr5 & AR_ISR_S5_TIM_TIMER)
3260 *masked |= ATH9K_INT_TIM_TIMER;
3264 *masked |= mask2;
3267 if (AR_SREV_9100(ah))
3268 return true;
3270 if (isr & AR_ISR_GENTMR) {
3271 u32 s5_s;
3273 s5_s = REG_READ(ah, AR_ISR_S5_S);
3274 if (isr & AR_ISR_GENTMR) {
3275 ah->intr_gen_timer_trigger =
3276 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
3278 ah->intr_gen_timer_thresh =
3279 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
3281 if (ah->intr_gen_timer_trigger)
3282 *masked |= ATH9K_INT_GENTIMER;
3287 if (sync_cause) {
3288 fatal_int =
3289 (sync_cause &
3290 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3291 ? true : false;
3293 if (fatal_int) {
3294 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3295 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3296 "received PCI FATAL interrupt\n");
3298 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3299 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3300 "received PCI PERR interrupt\n");
3302 *masked |= ATH9K_INT_FATAL;
3304 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3305 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3306 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3307 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3308 REG_WRITE(ah, AR_RC, 0);
3309 *masked |= ATH9K_INT_FATAL;
3311 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3312 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3313 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3316 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3317 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3320 return true;
3323 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3325 u32 omask = ah->mask_reg;
3326 u32 mask, mask2;
3327 struct ath9k_hw_capabilities *pCap = &ah->caps;
3329 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3331 if (omask & ATH9K_INT_GLOBAL) {
3332 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3333 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3334 (void) REG_READ(ah, AR_IER);
3335 if (!AR_SREV_9100(ah)) {
3336 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3337 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3339 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3340 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3344 mask = ints & ATH9K_INT_COMMON;
3345 mask2 = 0;
3347 if (ints & ATH9K_INT_TX) {
3348 if (ah->txok_interrupt_mask)
3349 mask |= AR_IMR_TXOK;
3350 if (ah->txdesc_interrupt_mask)
3351 mask |= AR_IMR_TXDESC;
3352 if (ah->txerr_interrupt_mask)
3353 mask |= AR_IMR_TXERR;
3354 if (ah->txeol_interrupt_mask)
3355 mask |= AR_IMR_TXEOL;
3357 if (ints & ATH9K_INT_RX) {
3358 mask |= AR_IMR_RXERR;
3359 if (ah->config.intr_mitigation)
3360 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3361 else
3362 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3363 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3364 mask |= AR_IMR_GENTMR;
3367 if (ints & (ATH9K_INT_BMISC)) {
3368 mask |= AR_IMR_BCNMISC;
3369 if (ints & ATH9K_INT_TIM)
3370 mask2 |= AR_IMR_S2_TIM;
3371 if (ints & ATH9K_INT_DTIM)
3372 mask2 |= AR_IMR_S2_DTIM;
3373 if (ints & ATH9K_INT_DTIMSYNC)
3374 mask2 |= AR_IMR_S2_DTIMSYNC;
3375 if (ints & ATH9K_INT_CABEND)
3376 mask2 |= AR_IMR_S2_CABEND;
3377 if (ints & ATH9K_INT_TSFOOR)
3378 mask2 |= AR_IMR_S2_TSFOOR;
3381 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3382 mask |= AR_IMR_BCNMISC;
3383 if (ints & ATH9K_INT_GTT)
3384 mask2 |= AR_IMR_S2_GTT;
3385 if (ints & ATH9K_INT_CST)
3386 mask2 |= AR_IMR_S2_CST;
3389 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3390 REG_WRITE(ah, AR_IMR, mask);
3391 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3392 AR_IMR_S2_DTIM |
3393 AR_IMR_S2_DTIMSYNC |
3394 AR_IMR_S2_CABEND |
3395 AR_IMR_S2_CABTO |
3396 AR_IMR_S2_TSFOOR |
3397 AR_IMR_S2_GTT | AR_IMR_S2_CST);
3398 REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3399 ah->mask_reg = ints;
3401 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3402 if (ints & ATH9K_INT_TIM_TIMER)
3403 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3404 else
3405 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3408 if (ints & ATH9K_INT_GLOBAL) {
3409 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3410 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3411 if (!AR_SREV_9100(ah)) {
3412 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3413 AR_INTR_MAC_IRQ);
3414 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3417 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3418 AR_INTR_SYNC_DEFAULT);
3419 REG_WRITE(ah, AR_INTR_SYNC_MASK,
3420 AR_INTR_SYNC_DEFAULT);
3422 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3423 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3426 return omask;
3429 /*******************/
3430 /* Beacon Handling */
3431 /*******************/
3433 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3435 int flags = 0;
3437 ah->beacon_interval = beacon_period;
3439 switch (ah->opmode) {
3440 case NL80211_IFTYPE_STATION:
3441 case NL80211_IFTYPE_MONITOR:
3442 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3443 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3444 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3445 flags |= AR_TBTT_TIMER_EN;
3446 break;
3447 case NL80211_IFTYPE_ADHOC:
3448 case NL80211_IFTYPE_MESH_POINT:
3449 REG_SET_BIT(ah, AR_TXCFG,
3450 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3451 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3452 TU_TO_USEC(next_beacon +
3453 (ah->atim_window ? ah->
3454 atim_window : 1)));
3455 flags |= AR_NDP_TIMER_EN;
3456 case NL80211_IFTYPE_AP:
3457 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3458 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3459 TU_TO_USEC(next_beacon -
3460 ah->config.
3461 dma_beacon_response_time));
3462 REG_WRITE(ah, AR_NEXT_SWBA,
3463 TU_TO_USEC(next_beacon -
3464 ah->config.
3465 sw_beacon_response_time));
3466 flags |=
3467 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3468 break;
3469 default:
3470 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3471 "%s: unsupported opmode: %d\n",
3472 __func__, ah->opmode);
3473 return;
3474 break;
3477 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3478 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3479 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3480 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3482 beacon_period &= ~ATH9K_BEACON_ENA;
3483 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3484 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3485 ath9k_hw_reset_tsf(ah);
3488 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3491 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3492 const struct ath9k_beacon_state *bs)
3494 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3495 struct ath9k_hw_capabilities *pCap = &ah->caps;
3497 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3499 REG_WRITE(ah, AR_BEACON_PERIOD,
3500 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3501 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3502 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3504 REG_RMW_FIELD(ah, AR_RSSI_THR,
3505 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3507 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3509 if (bs->bs_sleepduration > beaconintval)
3510 beaconintval = bs->bs_sleepduration;
3512 dtimperiod = bs->bs_dtimperiod;
3513 if (bs->bs_sleepduration > dtimperiod)
3514 dtimperiod = bs->bs_sleepduration;
3516 if (beaconintval == dtimperiod)
3517 nextTbtt = bs->bs_nextdtim;
3518 else
3519 nextTbtt = bs->bs_nexttbtt;
3521 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3522 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3523 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3524 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3526 REG_WRITE(ah, AR_NEXT_DTIM,
3527 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3528 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3530 REG_WRITE(ah, AR_SLEEP1,
3531 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3532 | AR_SLEEP1_ASSUME_DTIM);
3534 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3535 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3536 else
3537 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3539 REG_WRITE(ah, AR_SLEEP2,
3540 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3542 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3543 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3545 REG_SET_BIT(ah, AR_TIMER_MODE,
3546 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3547 AR_DTIM_TIMER_EN);
3549 /* TSF Out of Range Threshold */
3550 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3553 /*******************/
3554 /* HW Capabilities */
3555 /*******************/
3557 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3559 struct ath9k_hw_capabilities *pCap = &ah->caps;
3560 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3561 struct ath_btcoex_info *btcoex_info = &ah->ah_sc->btcoex_info;
3563 u16 capField = 0, eeval;
3565 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3566 regulatory->current_rd = eeval;
3568 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3569 if (AR_SREV_9285_10_OR_LATER(ah))
3570 eeval |= AR9285_RDEXT_DEFAULT;
3571 regulatory->current_rd_ext = eeval;
3573 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3575 if (ah->opmode != NL80211_IFTYPE_AP &&
3576 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3577 if (regulatory->current_rd == 0x64 ||
3578 regulatory->current_rd == 0x65)
3579 regulatory->current_rd += 5;
3580 else if (regulatory->current_rd == 0x41)
3581 regulatory->current_rd = 0x43;
3582 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3583 "regdomain mapped to 0x%x\n", regulatory->current_rd);
3586 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3587 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3589 if (eeval & AR5416_OPFLAGS_11A) {
3590 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3591 if (ah->config.ht_enable) {
3592 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3593 set_bit(ATH9K_MODE_11NA_HT20,
3594 pCap->wireless_modes);
3595 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3596 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3597 pCap->wireless_modes);
3598 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3599 pCap->wireless_modes);
3604 if (eeval & AR5416_OPFLAGS_11G) {
3605 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3606 if (ah->config.ht_enable) {
3607 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3608 set_bit(ATH9K_MODE_11NG_HT20,
3609 pCap->wireless_modes);
3610 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3611 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3612 pCap->wireless_modes);
3613 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3614 pCap->wireless_modes);
3619 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3621 * For AR9271 we will temporarilly uses the rx chainmax as read from
3622 * the EEPROM.
3624 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3625 !(eeval & AR5416_OPFLAGS_11A) &&
3626 !(AR_SREV_9271(ah)))
3627 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3628 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3629 else
3630 /* Use rx_chainmask from EEPROM. */
3631 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3633 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3634 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3636 pCap->low_2ghz_chan = 2312;
3637 pCap->high_2ghz_chan = 2732;
3639 pCap->low_5ghz_chan = 4920;
3640 pCap->high_5ghz_chan = 6100;
3642 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3643 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3644 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3646 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3647 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3648 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3650 if (ah->config.ht_enable)
3651 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3652 else
3653 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3655 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3656 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3657 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3658 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3660 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3661 pCap->total_queues =
3662 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3663 else
3664 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3666 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3667 pCap->keycache_size =
3668 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3669 else
3670 pCap->keycache_size = AR_KEYTABLE_SIZE;
3672 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3673 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3675 if (AR_SREV_9285_10_OR_LATER(ah))
3676 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3677 else if (AR_SREV_9280_10_OR_LATER(ah))
3678 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3679 else
3680 pCap->num_gpio_pins = AR_NUM_GPIO;
3682 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3683 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3684 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3685 } else {
3686 pCap->rts_aggr_limit = (8 * 1024);
3689 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3691 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3692 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3693 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3694 ah->rfkill_gpio =
3695 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3696 ah->rfkill_polarity =
3697 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3699 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3701 #endif
3703 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3705 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3706 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3707 else
3708 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3710 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3711 pCap->reg_cap =
3712 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3713 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3714 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3715 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3716 } else {
3717 pCap->reg_cap =
3718 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3719 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3722 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3724 pCap->num_antcfg_5ghz =
3725 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3726 pCap->num_antcfg_2ghz =
3727 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3729 if (AR_SREV_9280_10_OR_LATER(ah) &&
3730 ath_btcoex_supported(ah->hw_version.subsysid)) {
3731 btcoex_info->btactive_gpio = ATH_BTACTIVE_GPIO;
3732 btcoex_info->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3734 if (AR_SREV_9285(ah)) {
3735 btcoex_info->btcoex_scheme = ATH_BTCOEX_CFG_3WIRE;
3736 btcoex_info->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3737 } else {
3738 btcoex_info->btcoex_scheme = ATH_BTCOEX_CFG_2WIRE;
3740 } else {
3741 btcoex_info->btcoex_scheme = ATH_BTCOEX_CFG_NONE;
3745 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3746 u32 capability, u32 *result)
3748 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3749 switch (type) {
3750 case ATH9K_CAP_CIPHER:
3751 switch (capability) {
3752 case ATH9K_CIPHER_AES_CCM:
3753 case ATH9K_CIPHER_AES_OCB:
3754 case ATH9K_CIPHER_TKIP:
3755 case ATH9K_CIPHER_WEP:
3756 case ATH9K_CIPHER_MIC:
3757 case ATH9K_CIPHER_CLR:
3758 return true;
3759 default:
3760 return false;
3762 case ATH9K_CAP_TKIP_MIC:
3763 switch (capability) {
3764 case 0:
3765 return true;
3766 case 1:
3767 return (ah->sta_id1_defaults &
3768 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3769 false;
3771 case ATH9K_CAP_TKIP_SPLIT:
3772 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3773 false : true;
3774 case ATH9K_CAP_DIVERSITY:
3775 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3776 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3777 true : false;
3778 case ATH9K_CAP_MCAST_KEYSRCH:
3779 switch (capability) {
3780 case 0:
3781 return true;
3782 case 1:
3783 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3784 return false;
3785 } else {
3786 return (ah->sta_id1_defaults &
3787 AR_STA_ID1_MCAST_KSRCH) ? true :
3788 false;
3791 return false;
3792 case ATH9K_CAP_TXPOW:
3793 switch (capability) {
3794 case 0:
3795 return 0;
3796 case 1:
3797 *result = regulatory->power_limit;
3798 return 0;
3799 case 2:
3800 *result = regulatory->max_power_level;
3801 return 0;
3802 case 3:
3803 *result = regulatory->tp_scale;
3804 return 0;
3806 return false;
3807 case ATH9K_CAP_DS:
3808 return (AR_SREV_9280_20_OR_LATER(ah) &&
3809 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3810 ? false : true;
3811 default:
3812 return false;
3816 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3817 u32 capability, u32 setting, int *status)
3819 u32 v;
3821 switch (type) {
3822 case ATH9K_CAP_TKIP_MIC:
3823 if (setting)
3824 ah->sta_id1_defaults |=
3825 AR_STA_ID1_CRPT_MIC_ENABLE;
3826 else
3827 ah->sta_id1_defaults &=
3828 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3829 return true;
3830 case ATH9K_CAP_DIVERSITY:
3831 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3832 if (setting)
3833 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3834 else
3835 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3836 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3837 return true;
3838 case ATH9K_CAP_MCAST_KEYSRCH:
3839 if (setting)
3840 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3841 else
3842 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3843 return true;
3844 default:
3845 return false;
3849 /****************************/
3850 /* GPIO / RFKILL / Antennae */
3851 /****************************/
3853 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3854 u32 gpio, u32 type)
3856 int addr;
3857 u32 gpio_shift, tmp;
3859 if (gpio > 11)
3860 addr = AR_GPIO_OUTPUT_MUX3;
3861 else if (gpio > 5)
3862 addr = AR_GPIO_OUTPUT_MUX2;
3863 else
3864 addr = AR_GPIO_OUTPUT_MUX1;
3866 gpio_shift = (gpio % 6) * 5;
3868 if (AR_SREV_9280_20_OR_LATER(ah)
3869 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3870 REG_RMW(ah, addr, (type << gpio_shift),
3871 (0x1f << gpio_shift));
3872 } else {
3873 tmp = REG_READ(ah, addr);
3874 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3875 tmp &= ~(0x1f << gpio_shift);
3876 tmp |= (type << gpio_shift);
3877 REG_WRITE(ah, addr, tmp);
3881 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3883 u32 gpio_shift;
3885 ASSERT(gpio < ah->caps.num_gpio_pins);
3887 gpio_shift = gpio << 1;
3889 REG_RMW(ah,
3890 AR_GPIO_OE_OUT,
3891 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3892 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3895 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3897 #define MS_REG_READ(x, y) \
3898 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3900 if (gpio >= ah->caps.num_gpio_pins)
3901 return 0xffffffff;
3903 if (AR_SREV_9287_10_OR_LATER(ah))
3904 return MS_REG_READ(AR9287, gpio) != 0;
3905 else if (AR_SREV_9285_10_OR_LATER(ah))
3906 return MS_REG_READ(AR9285, gpio) != 0;
3907 else if (AR_SREV_9280_10_OR_LATER(ah))
3908 return MS_REG_READ(AR928X, gpio) != 0;
3909 else
3910 return MS_REG_READ(AR, gpio) != 0;
3913 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3914 u32 ah_signal_type)
3916 u32 gpio_shift;
3918 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3920 gpio_shift = 2 * gpio;
3922 REG_RMW(ah,
3923 AR_GPIO_OE_OUT,
3924 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3925 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3928 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3930 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3931 AR_GPIO_BIT(gpio));
3934 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3936 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3939 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3941 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3944 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3945 enum ath9k_ant_setting settings,
3946 struct ath9k_channel *chan,
3947 u8 *tx_chainmask,
3948 u8 *rx_chainmask,
3949 u8 *antenna_cfgd)
3951 static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3953 if (AR_SREV_9280(ah)) {
3954 if (!tx_chainmask_cfg) {
3956 tx_chainmask_cfg = *tx_chainmask;
3957 rx_chainmask_cfg = *rx_chainmask;
3960 switch (settings) {
3961 case ATH9K_ANT_FIXED_A:
3962 *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3963 *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3964 *antenna_cfgd = true;
3965 break;
3966 case ATH9K_ANT_FIXED_B:
3967 if (ah->caps.tx_chainmask >
3968 ATH9K_ANTENNA1_CHAINMASK) {
3969 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3971 *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3972 *antenna_cfgd = true;
3973 break;
3974 case ATH9K_ANT_VARIABLE:
3975 *tx_chainmask = tx_chainmask_cfg;
3976 *rx_chainmask = rx_chainmask_cfg;
3977 *antenna_cfgd = true;
3978 break;
3979 default:
3980 break;
3982 } else {
3983 ah->config.diversity_control = settings;
3986 return true;
3989 /*********************/
3990 /* General Operation */
3991 /*********************/
3993 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3995 u32 bits = REG_READ(ah, AR_RX_FILTER);
3996 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3998 if (phybits & AR_PHY_ERR_RADAR)
3999 bits |= ATH9K_RX_FILTER_PHYRADAR;
4000 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
4001 bits |= ATH9K_RX_FILTER_PHYERR;
4003 return bits;
4006 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
4008 u32 phybits;
4010 REG_WRITE(ah, AR_RX_FILTER, bits);
4012 phybits = 0;
4013 if (bits & ATH9K_RX_FILTER_PHYRADAR)
4014 phybits |= AR_PHY_ERR_RADAR;
4015 if (bits & ATH9K_RX_FILTER_PHYERR)
4016 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
4017 REG_WRITE(ah, AR_PHY_ERR, phybits);
4019 if (phybits)
4020 REG_WRITE(ah, AR_RXCFG,
4021 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
4022 else
4023 REG_WRITE(ah, AR_RXCFG,
4024 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
4027 bool ath9k_hw_phy_disable(struct ath_hw *ah)
4029 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
4032 bool ath9k_hw_disable(struct ath_hw *ah)
4034 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
4035 return false;
4037 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
4040 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
4042 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4043 struct ath9k_channel *chan = ah->curchan;
4044 struct ieee80211_channel *channel = chan->chan;
4046 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
4048 ah->eep_ops->set_txpower(ah, chan,
4049 ath9k_regd_get_ctl(regulatory, chan),
4050 channel->max_antenna_gain * 2,
4051 channel->max_power * 2,
4052 min((u32) MAX_RATE_POWER,
4053 (u32) regulatory->power_limit));
4056 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
4058 memcpy(ah->macaddr, mac, ETH_ALEN);
4061 void ath9k_hw_setopmode(struct ath_hw *ah)
4063 ath9k_hw_set_operating_mode(ah, ah->opmode);
4066 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
4068 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
4069 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
4072 void ath9k_hw_setbssidmask(struct ath_softc *sc)
4074 REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
4075 REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
4078 void ath9k_hw_write_associd(struct ath_softc *sc)
4080 REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
4081 REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
4082 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
4085 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
4087 u64 tsf;
4089 tsf = REG_READ(ah, AR_TSF_U32);
4090 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
4092 return tsf;
4095 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
4097 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
4098 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
4101 void ath9k_hw_reset_tsf(struct ath_hw *ah)
4103 ath9k_ps_wakeup(ah->ah_sc);
4104 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
4105 AH_TSF_WRITE_TIMEOUT))
4106 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
4107 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4109 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
4110 ath9k_ps_restore(ah->ah_sc);
4113 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
4115 if (setting)
4116 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
4117 else
4118 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
4121 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
4123 if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
4124 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
4125 ah->slottime = (u32) -1;
4126 return false;
4127 } else {
4128 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
4129 ah->slottime = us;
4130 return true;
4134 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
4136 u32 macmode;
4138 if (mode == ATH9K_HT_MACMODE_2040 &&
4139 !ah->config.cwm_ignore_extcca)
4140 macmode = AR_2040_JOINED_RX_CLEAR;
4141 else
4142 macmode = 0;
4144 REG_WRITE(ah, AR_2040_MODE, macmode);
4147 /* HW Generic timers configuration */
4149 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
4151 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4152 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4153 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4154 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4155 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4156 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4157 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4158 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4159 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
4160 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
4161 AR_NDP2_TIMER_MODE, 0x0002},
4162 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
4163 AR_NDP2_TIMER_MODE, 0x0004},
4164 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
4165 AR_NDP2_TIMER_MODE, 0x0008},
4166 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
4167 AR_NDP2_TIMER_MODE, 0x0010},
4168 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
4169 AR_NDP2_TIMER_MODE, 0x0020},
4170 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
4171 AR_NDP2_TIMER_MODE, 0x0040},
4172 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
4173 AR_NDP2_TIMER_MODE, 0x0080}
4176 /* HW generic timer primitives */
4178 /* compute and clear index of rightmost 1 */
4179 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
4181 u32 b;
4183 b = *mask;
4184 b &= (0-b);
4185 *mask &= ~b;
4186 b *= debruijn32;
4187 b >>= 27;
4189 return timer_table->gen_timer_index[b];
4192 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
4194 return REG_READ(ah, AR_TSF_L32);
4197 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
4198 void (*trigger)(void *),
4199 void (*overflow)(void *),
4200 void *arg,
4201 u8 timer_index)
4203 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4204 struct ath_gen_timer *timer;
4206 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
4208 if (timer == NULL) {
4209 printk(KERN_DEBUG "Failed to allocate memory"
4210 "for hw timer[%d]\n", timer_index);
4211 return NULL;
4214 /* allocate a hardware generic timer slot */
4215 timer_table->timers[timer_index] = timer;
4216 timer->index = timer_index;
4217 timer->trigger = trigger;
4218 timer->overflow = overflow;
4219 timer->arg = arg;
4221 return timer;
4224 void ath_gen_timer_start(struct ath_hw *ah,
4225 struct ath_gen_timer *timer,
4226 u32 timer_next, u32 timer_period)
4228 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4229 u32 tsf;
4231 BUG_ON(!timer_period);
4233 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
4235 tsf = ath9k_hw_gettsf32(ah);
4237 DPRINTF(ah->ah_sc, ATH_DBG_HWTIMER, "curent tsf %x period %x"
4238 "timer_next %x\n", tsf, timer_period, timer_next);
4241 * Pull timer_next forward if the current TSF already passed it
4242 * because of software latency
4244 if (timer_next < tsf)
4245 timer_next = tsf + timer_period;
4248 * Program generic timer registers
4250 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
4251 timer_next);
4252 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
4253 timer_period);
4254 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4255 gen_tmr_configuration[timer->index].mode_mask);
4257 /* Enable both trigger and thresh interrupt masks */
4258 REG_SET_BIT(ah, AR_IMR_S5,
4259 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4260 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4262 if ((ah->ah_sc->imask & ATH9K_INT_GENTIMER) == 0) {
4263 ath9k_hw_set_interrupts(ah, 0);
4264 ah->ah_sc->imask |= ATH9K_INT_GENTIMER;
4265 ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
4269 void ath_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
4271 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4273 if ((timer->index < AR_FIRST_NDP_TIMER) ||
4274 (timer->index >= ATH_MAX_GEN_TIMER)) {
4275 return;
4278 /* Clear generic timer enable bits. */
4279 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4280 gen_tmr_configuration[timer->index].mode_mask);
4282 /* Disable both trigger and thresh interrupt masks */
4283 REG_CLR_BIT(ah, AR_IMR_S5,
4284 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4285 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4287 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
4289 /* if no timer is enabled, turn off interrupt mask */
4290 if (timer_table->timer_mask.val == 0) {
4291 ath9k_hw_set_interrupts(ah, 0);
4292 ah->ah_sc->imask &= ~ATH9K_INT_GENTIMER;
4293 ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
4297 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
4299 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4301 /* free the hardware generic timer slot */
4302 timer_table->timers[timer->index] = NULL;
4303 kfree(timer);
4307 * Generic Timer Interrupts handling
4309 void ath_gen_timer_isr(struct ath_hw *ah)
4311 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4312 struct ath_gen_timer *timer;
4313 u32 trigger_mask, thresh_mask, index;
4315 /* get hardware generic timer interrupt status */
4316 trigger_mask = ah->intr_gen_timer_trigger;
4317 thresh_mask = ah->intr_gen_timer_thresh;
4318 trigger_mask &= timer_table->timer_mask.val;
4319 thresh_mask &= timer_table->timer_mask.val;
4321 trigger_mask &= ~thresh_mask;
4323 while (thresh_mask) {
4324 index = rightmost_index(timer_table, &thresh_mask);
4325 timer = timer_table->timers[index];
4326 BUG_ON(!timer);
4327 DPRINTF(ah->ah_sc, ATH_DBG_HWTIMER,
4328 "TSF overflow for Gen timer %d\n", index);
4329 timer->overflow(timer->arg);
4332 while (trigger_mask) {
4333 index = rightmost_index(timer_table, &trigger_mask);
4334 timer = timer_table->timers[index];
4335 BUG_ON(!timer);
4336 DPRINTF(ah->ah_sc, ATH_DBG_HWTIMER,
4337 "Gen timer[%d] trigger\n", index);
4338 timer->trigger(timer->arg);
4343 * Primitive to disable ASPM
4345 void ath_pcie_aspm_disable(struct ath_softc *sc)
4347 struct pci_dev *pdev = to_pci_dev(sc->dev);
4348 u8 aspm;
4350 pci_read_config_byte(pdev, ATH_PCIE_CAP_LINK_CTRL, &aspm);
4351 aspm &= ~(ATH_PCIE_CAP_LINK_L0S | ATH_PCIE_CAP_LINK_L1);
4352 pci_write_config_byte(pdev, ATH_PCIE_CAP_LINK_CTRL, aspm);