2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <asm/unaligned.h>
19 #include <linux/pci.h>
24 #define ATH9K_CLOCK_RATE_CCK 22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
29 static void ath9k_hw_set_regs(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
30 enum ath9k_ht_macmode macmode
);
31 static u32
ath9k_hw_ini_fixup(struct ath_hw
*ah
,
32 struct ar5416_eeprom_def
*pEepData
,
34 static void ath9k_hw_9280_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
);
35 static void ath9k_hw_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
);
37 /********************/
38 /* Helper Functions */
39 /********************/
41 static u32
ath9k_hw_mac_usec(struct ath_hw
*ah
, u32 clks
)
43 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
45 if (!ah
->curchan
) /* should really check for CCK instead */
46 return clks
/ ATH9K_CLOCK_RATE_CCK
;
47 if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
48 return clks
/ ATH9K_CLOCK_RATE_2GHZ_OFDM
;
50 return clks
/ ATH9K_CLOCK_RATE_5GHZ_OFDM
;
53 static u32
ath9k_hw_mac_to_usec(struct ath_hw
*ah
, u32 clks
)
55 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
57 if (conf_is_ht40(conf
))
58 return ath9k_hw_mac_usec(ah
, clks
) / 2;
60 return ath9k_hw_mac_usec(ah
, clks
);
63 static u32
ath9k_hw_mac_clks(struct ath_hw
*ah
, u32 usecs
)
65 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
67 if (!ah
->curchan
) /* should really check for CCK instead */
68 return usecs
*ATH9K_CLOCK_RATE_CCK
;
69 if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
70 return usecs
*ATH9K_CLOCK_RATE_2GHZ_OFDM
;
71 return usecs
*ATH9K_CLOCK_RATE_5GHZ_OFDM
;
74 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
76 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
78 if (conf_is_ht40(conf
))
79 return ath9k_hw_mac_clks(ah
, usecs
) * 2;
81 return ath9k_hw_mac_clks(ah
, usecs
);
85 * Read and write, they both share the same lock. We do this to serialize
86 * reads and writes on Atheros 802.11n PCI devices only. This is required
87 * as the FIFO on these devices can only accept sanely 2 requests. After
88 * that the device goes bananas. Serializing the reads/writes prevents this
92 void ath9k_iowrite32(struct ath_hw
*ah
, u32 reg_offset
, u32 val
)
94 if (ah
->config
.serialize_regmode
== SER_REG_MODE_ON
) {
96 spin_lock_irqsave(&ah
->ah_sc
->sc_serial_rw
, flags
);
97 iowrite32(val
, ah
->ah_sc
->mem
+ reg_offset
);
98 spin_unlock_irqrestore(&ah
->ah_sc
->sc_serial_rw
, flags
);
100 iowrite32(val
, ah
->ah_sc
->mem
+ reg_offset
);
103 unsigned int ath9k_ioread32(struct ath_hw
*ah
, u32 reg_offset
)
106 if (ah
->config
.serialize_regmode
== SER_REG_MODE_ON
) {
108 spin_lock_irqsave(&ah
->ah_sc
->sc_serial_rw
, flags
);
109 val
= ioread32(ah
->ah_sc
->mem
+ reg_offset
);
110 spin_unlock_irqrestore(&ah
->ah_sc
->sc_serial_rw
, flags
);
112 val
= ioread32(ah
->ah_sc
->mem
+ reg_offset
);
116 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
120 BUG_ON(timeout
< AH_TIME_QUANTUM
);
122 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
123 if ((REG_READ(ah
, reg
) & mask
) == val
)
126 udelay(AH_TIME_QUANTUM
);
129 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
130 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
136 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
141 for (i
= 0, retval
= 0; i
< n
; i
++) {
142 retval
= (retval
<< 1) | (val
& 1);
148 bool ath9k_get_channel_edges(struct ath_hw
*ah
,
152 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
154 if (flags
& CHANNEL_5GHZ
) {
155 *low
= pCap
->low_5ghz_chan
;
156 *high
= pCap
->high_5ghz_chan
;
159 if ((flags
& CHANNEL_2GHZ
)) {
160 *low
= pCap
->low_2ghz_chan
;
161 *high
= pCap
->high_2ghz_chan
;
167 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
168 const struct ath_rate_table
*rates
,
169 u32 frameLen
, u16 rateix
,
172 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
175 kbps
= rates
->info
[rateix
].ratekbps
;
180 switch (rates
->info
[rateix
].phy
) {
181 case WLAN_RC_PHY_CCK
:
182 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
183 if (shortPreamble
&& rates
->info
[rateix
].short_preamble
)
185 numBits
= frameLen
<< 3;
186 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
188 case WLAN_RC_PHY_OFDM
:
189 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
190 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
191 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
192 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
193 txTime
= OFDM_SIFS_TIME_QUARTER
194 + OFDM_PREAMBLE_TIME_QUARTER
195 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
196 } else if (ah
->curchan
&&
197 IS_CHAN_HALF_RATE(ah
->curchan
)) {
198 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
199 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
200 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
201 txTime
= OFDM_SIFS_TIME_HALF
+
202 OFDM_PREAMBLE_TIME_HALF
203 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
205 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
206 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
207 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
208 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
209 + (numSymbols
* OFDM_SYMBOL_TIME
);
213 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
214 "Unknown phy %u (rate ix %u)\n",
215 rates
->info
[rateix
].phy
, rateix
);
223 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
224 struct ath9k_channel
*chan
,
225 struct chan_centers
*centers
)
229 if (!IS_CHAN_HT40(chan
)) {
230 centers
->ctl_center
= centers
->ext_center
=
231 centers
->synth_center
= chan
->channel
;
235 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
236 (chan
->chanmode
== CHANNEL_G_HT40PLUS
)) {
237 centers
->synth_center
=
238 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
241 centers
->synth_center
=
242 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
246 centers
->ctl_center
=
247 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
248 centers
->ext_center
=
249 centers
->synth_center
+ (extoff
*
250 ((ah
->extprotspacing
== ATH9K_HT_EXTPROTSPACING_20
) ?
251 HT40_CHANNEL_CENTER_SHIFT
: 15));
258 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
262 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
265 val
= REG_READ(ah
, AR_SREV
);
266 ah
->hw_version
.macVersion
=
267 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
268 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
269 ah
->is_pciexpress
= (val
& AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
271 if (!AR_SREV_9100(ah
))
272 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
274 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
276 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
277 ah
->is_pciexpress
= true;
281 static int ath9k_hw_get_radiorev(struct ath_hw
*ah
)
286 REG_WRITE(ah
, AR_PHY(0x36), 0x00007058);
288 for (i
= 0; i
< 8; i
++)
289 REG_WRITE(ah
, AR_PHY(0x20), 0x00010000);
290 val
= (REG_READ(ah
, AR_PHY(256)) >> 24) & 0xff;
291 val
= ((val
& 0xf0) >> 4) | ((val
& 0x0f) << 4);
293 return ath9k_hw_reverse_bits(val
, 8);
296 /************************************/
297 /* HW Attach, Detach, Init Routines */
298 /************************************/
300 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
302 if (AR_SREV_9100(ah
))
305 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
306 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
307 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
308 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
309 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
310 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
311 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
312 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
313 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
315 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
318 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
320 u32 regAddr
[2] = { AR_STA_ID0
, AR_PHY_BASE
+ (8 << 2) };
322 u32 patternData
[4] = { 0x55555555,
328 for (i
= 0; i
< 2; i
++) {
329 u32 addr
= regAddr
[i
];
332 regHold
[i
] = REG_READ(ah
, addr
);
333 for (j
= 0; j
< 0x100; j
++) {
334 wrData
= (j
<< 16) | j
;
335 REG_WRITE(ah
, addr
, wrData
);
336 rdData
= REG_READ(ah
, addr
);
337 if (rdData
!= wrData
) {
338 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
339 "address test failed "
340 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
341 addr
, wrData
, rdData
);
345 for (j
= 0; j
< 4; j
++) {
346 wrData
= patternData
[j
];
347 REG_WRITE(ah
, addr
, wrData
);
348 rdData
= REG_READ(ah
, addr
);
349 if (wrData
!= rdData
) {
350 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
351 "address test failed "
352 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
353 addr
, wrData
, rdData
);
357 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
364 static const char *ath9k_hw_devname(u16 devid
)
367 case AR5416_DEVID_PCI
:
368 return "Atheros 5416";
369 case AR5416_DEVID_PCIE
:
370 return "Atheros 5418";
371 case AR9160_DEVID_PCI
:
372 return "Atheros 9160";
373 case AR5416_AR9100_DEVID
:
374 return "Atheros 9100";
375 case AR9280_DEVID_PCI
:
376 case AR9280_DEVID_PCIE
:
377 return "Atheros 9280";
378 case AR9285_DEVID_PCIE
:
379 return "Atheros 9285";
380 case AR5416_DEVID_AR9287_PCI
:
381 case AR5416_DEVID_AR9287_PCIE
:
382 return "Atheros 9287";
388 static void ath9k_hw_init_config(struct ath_hw
*ah
)
392 ah
->config
.dma_beacon_response_time
= 2;
393 ah
->config
.sw_beacon_response_time
= 10;
394 ah
->config
.additional_swba_backoff
= 0;
395 ah
->config
.ack_6mb
= 0x0;
396 ah
->config
.cwm_ignore_extcca
= 0;
397 ah
->config
.pcie_powersave_enable
= 0;
398 ah
->config
.pcie_clock_req
= 0;
399 ah
->config
.pcie_waen
= 0;
400 ah
->config
.analog_shiftreg
= 1;
401 ah
->config
.ht_enable
= 1;
402 ah
->config
.ofdm_trig_low
= 200;
403 ah
->config
.ofdm_trig_high
= 500;
404 ah
->config
.cck_trig_high
= 200;
405 ah
->config
.cck_trig_low
= 100;
406 ah
->config
.enable_ani
= 1;
407 ah
->config
.diversity_control
= ATH9K_ANT_VARIABLE
;
408 ah
->config
.antenna_switch_swap
= 0;
410 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
411 ah
->config
.spurchans
[i
][0] = AR_NO_SPUR
;
412 ah
->config
.spurchans
[i
][1] = AR_NO_SPUR
;
415 ah
->config
.intr_mitigation
= true;
418 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420 * This means we use it for all AR5416 devices, and the few
421 * minor PCI AR9280 devices out there.
423 * Serialization is required because these devices do not handle
424 * well the case of two concurrent reads/writes due to the latency
425 * involved. During one read/write another read/write can be issued
426 * on another CPU while the previous read/write may still be working
427 * on our hardware, if we hit this case the hardware poops in a loop.
428 * We prevent this by serializing reads and writes.
430 * This issue is not present on PCI-Express devices or pre-AR5416
431 * devices (legacy, 802.11abg).
433 if (num_possible_cpus() > 1)
434 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
437 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
439 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
441 regulatory
->country_code
= CTRY_DEFAULT
;
442 regulatory
->power_limit
= MAX_RATE_POWER
;
443 regulatory
->tp_scale
= ATH9K_TP_SCALE_MAX
;
445 ah
->hw_version
.magic
= AR5416_MAGIC
;
446 ah
->hw_version
.subvendorid
= 0;
449 if (ah
->hw_version
.devid
== AR5416_AR9100_DEVID
)
450 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
451 if (!AR_SREV_9100(ah
))
452 ah
->ah_flags
= AH_USE_EEPROM
;
455 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
;
456 ah
->beacon_interval
= 100;
457 ah
->enable_32kHz_clock
= DONT_USE_32KHZ
;
458 ah
->slottime
= (u32
) -1;
459 ah
->acktimeout
= (u32
) -1;
460 ah
->ctstimeout
= (u32
) -1;
461 ah
->globaltxtimeout
= (u32
) -1;
463 ah
->gbeacon_rate
= 0;
465 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
468 static int ath9k_hw_rfattach(struct ath_hw
*ah
)
470 bool rfStatus
= false;
473 rfStatus
= ath9k_hw_init_rf(ah
, &ecode
);
475 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
476 "RF setup failed, status: %u\n", ecode
);
483 static int ath9k_hw_rf_claim(struct ath_hw
*ah
)
487 REG_WRITE(ah
, AR_PHY(0), 0x00000007);
489 val
= ath9k_hw_get_radiorev(ah
);
490 switch (val
& AR_RADIO_SREV_MAJOR
) {
492 val
= AR_RAD5133_SREV_MAJOR
;
494 case AR_RAD5133_SREV_MAJOR
:
495 case AR_RAD5122_SREV_MAJOR
:
496 case AR_RAD2133_SREV_MAJOR
:
497 case AR_RAD2122_SREV_MAJOR
:
500 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
501 "Radio Chip Rev 0x%02X not supported\n",
502 val
& AR_RADIO_SREV_MAJOR
);
506 ah
->hw_version
.analog5GhzRev
= val
;
511 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
518 for (i
= 0; i
< 3; i
++) {
519 eeval
= ah
->eep_ops
->get_eeprom(ah
, AR_EEPROM_MAC(i
));
521 ah
->macaddr
[2 * i
] = eeval
>> 8;
522 ah
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
524 if (sum
== 0 || sum
== 0xffff * 3)
525 return -EADDRNOTAVAIL
;
530 static void ath9k_hw_init_rxgain_ini(struct ath_hw
*ah
)
534 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) >= AR5416_EEP_MINOR_VER_17
) {
535 rxgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_RXGAIN_TYPE
);
537 if (rxgain_type
== AR5416_EEP_RXGAIN_13DB_BACKOFF
)
538 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
539 ar9280Modes_backoff_13db_rxgain_9280_2
,
540 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2
), 6);
541 else if (rxgain_type
== AR5416_EEP_RXGAIN_23DB_BACKOFF
)
542 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
543 ar9280Modes_backoff_23db_rxgain_9280_2
,
544 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2
), 6);
546 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
547 ar9280Modes_original_rxgain_9280_2
,
548 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2
), 6);
550 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
551 ar9280Modes_original_rxgain_9280_2
,
552 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2
), 6);
556 static void ath9k_hw_init_txgain_ini(struct ath_hw
*ah
)
560 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) >= AR5416_EEP_MINOR_VER_19
) {
561 txgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_TXGAIN_TYPE
);
563 if (txgain_type
== AR5416_EEP_TXGAIN_HIGH_POWER
)
564 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
565 ar9280Modes_high_power_tx_gain_9280_2
,
566 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2
), 6);
568 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
569 ar9280Modes_original_tx_gain_9280_2
,
570 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2
), 6);
572 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
573 ar9280Modes_original_tx_gain_9280_2
,
574 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2
), 6);
578 static int ath9k_hw_post_init(struct ath_hw
*ah
)
582 if (!ath9k_hw_chip_test(ah
))
585 ecode
= ath9k_hw_rf_claim(ah
);
589 ecode
= ath9k_hw_eeprom_init(ah
);
593 DPRINTF(ah
->ah_sc
, ATH_DBG_CONFIG
, "Eeprom VER: %d, REV: %d\n",
594 ah
->eep_ops
->get_eeprom_ver(ah
), ah
->eep_ops
->get_eeprom_rev(ah
));
596 ecode
= ath9k_hw_rfattach(ah
);
600 if (!AR_SREV_9100(ah
)) {
601 ath9k_hw_ani_setup(ah
);
602 ath9k_hw_ani_init(ah
);
608 static bool ath9k_hw_devid_supported(u16 devid
)
611 case AR5416_DEVID_PCI
:
612 case AR5416_DEVID_PCIE
:
613 case AR5416_AR9100_DEVID
:
614 case AR9160_DEVID_PCI
:
615 case AR9280_DEVID_PCI
:
616 case AR9280_DEVID_PCIE
:
617 case AR9285_DEVID_PCIE
:
618 case AR5416_DEVID_AR9287_PCI
:
619 case AR5416_DEVID_AR9287_PCIE
:
627 static bool ath9k_hw_macversion_supported(u32 macversion
)
629 switch (macversion
) {
630 case AR_SREV_VERSION_5416_PCI
:
631 case AR_SREV_VERSION_5416_PCIE
:
632 case AR_SREV_VERSION_9160
:
633 case AR_SREV_VERSION_9100
:
634 case AR_SREV_VERSION_9280
:
635 case AR_SREV_VERSION_9285
:
636 case AR_SREV_VERSION_9287
:
639 case AR_SREV_VERSION_9271
:
646 static void ath9k_hw_init_cal_settings(struct ath_hw
*ah
)
648 if (AR_SREV_9160_10_OR_LATER(ah
)) {
649 if (AR_SREV_9280_10_OR_LATER(ah
)) {
650 ah
->iq_caldata
.calData
= &iq_cal_single_sample
;
651 ah
->adcgain_caldata
.calData
=
652 &adc_gain_cal_single_sample
;
653 ah
->adcdc_caldata
.calData
=
654 &adc_dc_cal_single_sample
;
655 ah
->adcdc_calinitdata
.calData
=
658 ah
->iq_caldata
.calData
= &iq_cal_multi_sample
;
659 ah
->adcgain_caldata
.calData
=
660 &adc_gain_cal_multi_sample
;
661 ah
->adcdc_caldata
.calData
=
662 &adc_dc_cal_multi_sample
;
663 ah
->adcdc_calinitdata
.calData
=
666 ah
->supp_cals
= ADC_GAIN_CAL
| ADC_DC_CAL
| IQ_MISMATCH_CAL
;
670 static void ath9k_hw_init_mode_regs(struct ath_hw
*ah
)
672 if (AR_SREV_9271(ah
)) {
673 INIT_INI_ARRAY(&ah
->iniModes
, ar9271Modes_9271_1_0
,
674 ARRAY_SIZE(ar9271Modes_9271_1_0
), 6);
675 INIT_INI_ARRAY(&ah
->iniCommon
, ar9271Common_9271_1_0
,
676 ARRAY_SIZE(ar9271Common_9271_1_0
), 2);
680 if (AR_SREV_9287_11_OR_LATER(ah
)) {
681 INIT_INI_ARRAY(&ah
->iniModes
, ar9287Modes_9287_1_1
,
682 ARRAY_SIZE(ar9287Modes_9287_1_1
), 6);
683 INIT_INI_ARRAY(&ah
->iniCommon
, ar9287Common_9287_1_1
,
684 ARRAY_SIZE(ar9287Common_9287_1_1
), 2);
685 if (ah
->config
.pcie_clock_req
)
686 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
687 ar9287PciePhy_clkreq_off_L1_9287_1_1
,
688 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1
), 2);
690 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
691 ar9287PciePhy_clkreq_always_on_L1_9287_1_1
,
692 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1
),
694 } else if (AR_SREV_9287_10_OR_LATER(ah
)) {
695 INIT_INI_ARRAY(&ah
->iniModes
, ar9287Modes_9287_1_0
,
696 ARRAY_SIZE(ar9287Modes_9287_1_0
), 6);
697 INIT_INI_ARRAY(&ah
->iniCommon
, ar9287Common_9287_1_0
,
698 ARRAY_SIZE(ar9287Common_9287_1_0
), 2);
700 if (ah
->config
.pcie_clock_req
)
701 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
702 ar9287PciePhy_clkreq_off_L1_9287_1_0
,
703 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0
), 2);
705 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
706 ar9287PciePhy_clkreq_always_on_L1_9287_1_0
,
707 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0
),
709 } else if (AR_SREV_9285_12_OR_LATER(ah
)) {
712 INIT_INI_ARRAY(&ah
->iniModes
, ar9285Modes_9285_1_2
,
713 ARRAY_SIZE(ar9285Modes_9285_1_2
), 6);
714 INIT_INI_ARRAY(&ah
->iniCommon
, ar9285Common_9285_1_2
,
715 ARRAY_SIZE(ar9285Common_9285_1_2
), 2);
717 if (ah
->config
.pcie_clock_req
) {
718 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
719 ar9285PciePhy_clkreq_off_L1_9285_1_2
,
720 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2
), 2);
722 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
723 ar9285PciePhy_clkreq_always_on_L1_9285_1_2
,
724 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2
),
727 } else if (AR_SREV_9285_10_OR_LATER(ah
)) {
728 INIT_INI_ARRAY(&ah
->iniModes
, ar9285Modes_9285
,
729 ARRAY_SIZE(ar9285Modes_9285
), 6);
730 INIT_INI_ARRAY(&ah
->iniCommon
, ar9285Common_9285
,
731 ARRAY_SIZE(ar9285Common_9285
), 2);
733 if (ah
->config
.pcie_clock_req
) {
734 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
735 ar9285PciePhy_clkreq_off_L1_9285
,
736 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285
), 2);
738 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
739 ar9285PciePhy_clkreq_always_on_L1_9285
,
740 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285
), 2);
742 } else if (AR_SREV_9280_20_OR_LATER(ah
)) {
743 INIT_INI_ARRAY(&ah
->iniModes
, ar9280Modes_9280_2
,
744 ARRAY_SIZE(ar9280Modes_9280_2
), 6);
745 INIT_INI_ARRAY(&ah
->iniCommon
, ar9280Common_9280_2
,
746 ARRAY_SIZE(ar9280Common_9280_2
), 2);
748 if (ah
->config
.pcie_clock_req
) {
749 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
750 ar9280PciePhy_clkreq_off_L1_9280
,
751 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280
),2);
753 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
754 ar9280PciePhy_clkreq_always_on_L1_9280
,
755 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280
), 2);
757 INIT_INI_ARRAY(&ah
->iniModesAdditional
,
758 ar9280Modes_fast_clock_9280_2
,
759 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2
), 3);
760 } else if (AR_SREV_9280_10_OR_LATER(ah
)) {
761 INIT_INI_ARRAY(&ah
->iniModes
, ar9280Modes_9280
,
762 ARRAY_SIZE(ar9280Modes_9280
), 6);
763 INIT_INI_ARRAY(&ah
->iniCommon
, ar9280Common_9280
,
764 ARRAY_SIZE(ar9280Common_9280
), 2);
765 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
766 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes_9160
,
767 ARRAY_SIZE(ar5416Modes_9160
), 6);
768 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common_9160
,
769 ARRAY_SIZE(ar5416Common_9160
), 2);
770 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0_9160
,
771 ARRAY_SIZE(ar5416Bank0_9160
), 2);
772 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain_9160
,
773 ARRAY_SIZE(ar5416BB_RfGain_9160
), 3);
774 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1_9160
,
775 ARRAY_SIZE(ar5416Bank1_9160
), 2);
776 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2_9160
,
777 ARRAY_SIZE(ar5416Bank2_9160
), 2);
778 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3_9160
,
779 ARRAY_SIZE(ar5416Bank3_9160
), 3);
780 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6_9160
,
781 ARRAY_SIZE(ar5416Bank6_9160
), 3);
782 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC_9160
,
783 ARRAY_SIZE(ar5416Bank6TPC_9160
), 3);
784 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7_9160
,
785 ARRAY_SIZE(ar5416Bank7_9160
), 2);
786 if (AR_SREV_9160_11(ah
)) {
787 INIT_INI_ARRAY(&ah
->iniAddac
,
789 ARRAY_SIZE(ar5416Addac_91601_1
), 2);
791 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac_9160
,
792 ARRAY_SIZE(ar5416Addac_9160
), 2);
794 } else if (AR_SREV_9100_OR_LATER(ah
)) {
795 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes_9100
,
796 ARRAY_SIZE(ar5416Modes_9100
), 6);
797 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common_9100
,
798 ARRAY_SIZE(ar5416Common_9100
), 2);
799 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0_9100
,
800 ARRAY_SIZE(ar5416Bank0_9100
), 2);
801 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain_9100
,
802 ARRAY_SIZE(ar5416BB_RfGain_9100
), 3);
803 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1_9100
,
804 ARRAY_SIZE(ar5416Bank1_9100
), 2);
805 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2_9100
,
806 ARRAY_SIZE(ar5416Bank2_9100
), 2);
807 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3_9100
,
808 ARRAY_SIZE(ar5416Bank3_9100
), 3);
809 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6_9100
,
810 ARRAY_SIZE(ar5416Bank6_9100
), 3);
811 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC_9100
,
812 ARRAY_SIZE(ar5416Bank6TPC_9100
), 3);
813 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7_9100
,
814 ARRAY_SIZE(ar5416Bank7_9100
), 2);
815 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac_9100
,
816 ARRAY_SIZE(ar5416Addac_9100
), 2);
818 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes
,
819 ARRAY_SIZE(ar5416Modes
), 6);
820 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common
,
821 ARRAY_SIZE(ar5416Common
), 2);
822 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0
,
823 ARRAY_SIZE(ar5416Bank0
), 2);
824 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain
,
825 ARRAY_SIZE(ar5416BB_RfGain
), 3);
826 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1
,
827 ARRAY_SIZE(ar5416Bank1
), 2);
828 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2
,
829 ARRAY_SIZE(ar5416Bank2
), 2);
830 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3
,
831 ARRAY_SIZE(ar5416Bank3
), 3);
832 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6
,
833 ARRAY_SIZE(ar5416Bank6
), 3);
834 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC
,
835 ARRAY_SIZE(ar5416Bank6TPC
), 3);
836 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7
,
837 ARRAY_SIZE(ar5416Bank7
), 2);
838 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac
,
839 ARRAY_SIZE(ar5416Addac
), 2);
843 static void ath9k_hw_init_mode_gain_regs(struct ath_hw
*ah
)
845 if (AR_SREV_9287_11_OR_LATER(ah
))
846 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
847 ar9287Modes_rx_gain_9287_1_1
,
848 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1
), 6);
849 else if (AR_SREV_9287_10(ah
))
850 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
851 ar9287Modes_rx_gain_9287_1_0
,
852 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0
), 6);
853 else if (AR_SREV_9280_20(ah
))
854 ath9k_hw_init_rxgain_ini(ah
);
856 if (AR_SREV_9287_11_OR_LATER(ah
)) {
857 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
858 ar9287Modes_tx_gain_9287_1_1
,
859 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1
), 6);
860 } else if (AR_SREV_9287_10(ah
)) {
861 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
862 ar9287Modes_tx_gain_9287_1_0
,
863 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0
), 6);
864 } else if (AR_SREV_9280_20(ah
)) {
865 ath9k_hw_init_txgain_ini(ah
);
866 } else if (AR_SREV_9285_12_OR_LATER(ah
)) {
867 u32 txgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_TXGAIN_TYPE
);
870 if (txgain_type
== AR5416_EEP_TXGAIN_HIGH_POWER
) {
871 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
872 ar9285Modes_high_power_tx_gain_9285_1_2
,
873 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2
), 6);
875 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
876 ar9285Modes_original_tx_gain_9285_1_2
,
877 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2
), 6);
883 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw
*ah
)
887 if ((ah
->hw_version
.devid
== AR9280_DEVID_PCI
) &&
888 test_bit(ATH9K_MODE_11A
, ah
->caps
.wireless_modes
)) {
891 for (i
= 0; i
< ah
->iniModes
.ia_rows
; i
++) {
892 u32 reg
= INI_RA(&ah
->iniModes
, i
, 0);
894 for (j
= 1; j
< ah
->iniModes
.ia_columns
; j
++) {
895 u32 val
= INI_RA(&ah
->iniModes
, i
, j
);
897 INI_RA(&ah
->iniModes
, i
, j
) =
898 ath9k_hw_ini_fixup(ah
,
906 int ath9k_hw_init(struct ath_hw
*ah
)
910 if (!ath9k_hw_devid_supported(ah
->hw_version
.devid
))
913 ath9k_hw_init_defaults(ah
);
914 ath9k_hw_init_config(ah
);
916 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
917 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
, "Couldn't reset chip\n");
921 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
922 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
, "Couldn't wakeup chip\n");
926 if (ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
927 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
928 (AR_SREV_9280(ah
) && !ah
->is_pciexpress
)) {
929 ah
->config
.serialize_regmode
=
932 ah
->config
.serialize_regmode
=
937 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "serialize_regmode is %d\n",
938 ah
->config
.serialize_regmode
);
940 if (!ath9k_hw_macversion_supported(ah
->hw_version
.macVersion
)) {
941 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
942 "Mac Chip Rev 0x%02x.%x is not supported by "
943 "this driver\n", ah
->hw_version
.macVersion
,
944 ah
->hw_version
.macRev
);
948 if (AR_SREV_9100(ah
)) {
949 ah
->iq_caldata
.calData
= &iq_cal_multi_sample
;
950 ah
->supp_cals
= IQ_MISMATCH_CAL
;
951 ah
->is_pciexpress
= false;
954 if (AR_SREV_9271(ah
))
955 ah
->is_pciexpress
= false;
957 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
959 ath9k_hw_init_cal_settings(ah
);
961 ah
->ani_function
= ATH9K_ANI_ALL
;
962 if (AR_SREV_9280_10_OR_LATER(ah
))
963 ah
->ani_function
&= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL
;
965 ath9k_hw_init_mode_regs(ah
);
967 if (ah
->is_pciexpress
)
968 ath9k_hw_configpcipowersave(ah
, 0, 0);
970 ath9k_hw_disablepcie(ah
);
972 r
= ath9k_hw_post_init(ah
);
976 ath9k_hw_init_mode_gain_regs(ah
);
977 ath9k_hw_fill_cap_info(ah
);
978 ath9k_hw_init_11a_eeprom_fix(ah
);
980 r
= ath9k_hw_init_macaddr(ah
);
982 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
983 "Failed to initialize MAC address\n");
987 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
988 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
990 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
992 ath9k_init_nfcal_hist_buffer(ah
);
997 static void ath9k_hw_init_bb(struct ath_hw
*ah
,
998 struct ath9k_channel
*chan
)
1002 synthDelay
= REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_DELAY
;
1003 if (IS_CHAN_B(chan
))
1004 synthDelay
= (4 * synthDelay
) / 22;
1008 REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_EN
);
1010 udelay(synthDelay
+ BASE_ACTIVATE_DELAY
);
1013 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
1015 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
1016 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
1018 REG_WRITE(ah
, AR_QOS_NO_ACK
,
1019 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
1020 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
1021 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
1023 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
1024 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
1025 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
1026 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
1027 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
1030 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
1031 struct ath9k_channel
*chan
)
1035 if (AR_SREV_9100(ah
)) {
1036 if (chan
&& IS_CHAN_5GHZ(chan
))
1041 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1042 pll
= SM(0x5, AR_RTC_9160_PLL_REFDIV
);
1044 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1045 pll
|= SM(0x1, AR_RTC_9160_PLL_CLKSEL
);
1046 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1047 pll
|= SM(0x2, AR_RTC_9160_PLL_CLKSEL
);
1049 if (chan
&& IS_CHAN_5GHZ(chan
)) {
1050 pll
|= SM(0x28, AR_RTC_9160_PLL_DIV
);
1053 if (AR_SREV_9280_20(ah
)) {
1054 if (((chan
->channel
% 20) == 0)
1055 || ((chan
->channel
% 10) == 0))
1061 pll
|= SM(0x2c, AR_RTC_9160_PLL_DIV
);
1064 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1066 pll
= SM(0x5, AR_RTC_9160_PLL_REFDIV
);
1068 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1069 pll
|= SM(0x1, AR_RTC_9160_PLL_CLKSEL
);
1070 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1071 pll
|= SM(0x2, AR_RTC_9160_PLL_CLKSEL
);
1073 if (chan
&& IS_CHAN_5GHZ(chan
))
1074 pll
|= SM(0x50, AR_RTC_9160_PLL_DIV
);
1076 pll
|= SM(0x58, AR_RTC_9160_PLL_DIV
);
1078 pll
= AR_RTC_PLL_REFDIV_5
| AR_RTC_PLL_DIV2
;
1080 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1081 pll
|= SM(0x1, AR_RTC_PLL_CLKSEL
);
1082 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1083 pll
|= SM(0x2, AR_RTC_PLL_CLKSEL
);
1085 if (chan
&& IS_CHAN_5GHZ(chan
))
1086 pll
|= SM(0xa, AR_RTC_PLL_DIV
);
1088 pll
|= SM(0xb, AR_RTC_PLL_DIV
);
1091 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
1093 udelay(RTC_PLL_SETTLE_DELAY
);
1095 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
1098 static void ath9k_hw_init_chain_masks(struct ath_hw
*ah
)
1100 int rx_chainmask
, tx_chainmask
;
1102 rx_chainmask
= ah
->rxchainmask
;
1103 tx_chainmask
= ah
->txchainmask
;
1105 switch (rx_chainmask
) {
1107 REG_SET_BIT(ah
, AR_PHY_ANALOG_SWAP
,
1108 AR_PHY_SWAP_ALT_CHAIN
);
1110 if (((ah
)->hw_version
.macVersion
<= AR_SREV_VERSION_9160
)) {
1111 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, 0x7);
1112 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, 0x7);
1118 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, rx_chainmask
);
1119 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, rx_chainmask
);
1125 REG_WRITE(ah
, AR_SELFGEN_MASK
, tx_chainmask
);
1126 if (tx_chainmask
== 0x5) {
1127 REG_SET_BIT(ah
, AR_PHY_ANALOG_SWAP
,
1128 AR_PHY_SWAP_ALT_CHAIN
);
1130 if (AR_SREV_9100(ah
))
1131 REG_WRITE(ah
, AR_PHY_ANALOG_SWAP
,
1132 REG_READ(ah
, AR_PHY_ANALOG_SWAP
) | 0x00000001);
1135 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
1136 enum nl80211_iftype opmode
)
1138 ah
->mask_reg
= AR_IMR_TXERR
|
1144 if (ah
->config
.intr_mitigation
)
1145 ah
->mask_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
1147 ah
->mask_reg
|= AR_IMR_RXOK
;
1149 ah
->mask_reg
|= AR_IMR_TXOK
;
1151 if (opmode
== NL80211_IFTYPE_AP
)
1152 ah
->mask_reg
|= AR_IMR_MIB
;
1154 REG_WRITE(ah
, AR_IMR
, ah
->mask_reg
);
1155 REG_WRITE(ah
, AR_IMR_S2
, REG_READ(ah
, AR_IMR_S2
) | AR_IMR_S2_GTT
);
1157 if (!AR_SREV_9100(ah
)) {
1158 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
1159 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, AR_INTR_SYNC_DEFAULT
);
1160 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
1164 static bool ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
1166 if (us
> ath9k_hw_mac_to_usec(ah
, MS(0xffffffff, AR_TIME_OUT_ACK
))) {
1167 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "bad ack timeout %u\n", us
);
1168 ah
->acktimeout
= (u32
) -1;
1171 REG_RMW_FIELD(ah
, AR_TIME_OUT
,
1172 AR_TIME_OUT_ACK
, ath9k_hw_mac_to_clks(ah
, us
));
1173 ah
->acktimeout
= us
;
1178 static bool ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
1180 if (us
> ath9k_hw_mac_to_usec(ah
, MS(0xffffffff, AR_TIME_OUT_CTS
))) {
1181 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "bad cts timeout %u\n", us
);
1182 ah
->ctstimeout
= (u32
) -1;
1185 REG_RMW_FIELD(ah
, AR_TIME_OUT
,
1186 AR_TIME_OUT_CTS
, ath9k_hw_mac_to_clks(ah
, us
));
1187 ah
->ctstimeout
= us
;
1192 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
1195 DPRINTF(ah
->ah_sc
, ATH_DBG_XMIT
,
1196 "bad global tx timeout %u\n", tu
);
1197 ah
->globaltxtimeout
= (u32
) -1;
1200 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
1201 ah
->globaltxtimeout
= tu
;
1206 static void ath9k_hw_init_user_settings(struct ath_hw
*ah
)
1208 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "ah->misc_mode 0x%x\n",
1211 if (ah
->misc_mode
!= 0)
1212 REG_WRITE(ah
, AR_PCU_MISC
,
1213 REG_READ(ah
, AR_PCU_MISC
) | ah
->misc_mode
);
1214 if (ah
->slottime
!= (u32
) -1)
1215 ath9k_hw_setslottime(ah
, ah
->slottime
);
1216 if (ah
->acktimeout
!= (u32
) -1)
1217 ath9k_hw_set_ack_timeout(ah
, ah
->acktimeout
);
1218 if (ah
->ctstimeout
!= (u32
) -1)
1219 ath9k_hw_set_cts_timeout(ah
, ah
->ctstimeout
);
1220 if (ah
->globaltxtimeout
!= (u32
) -1)
1221 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1224 const char *ath9k_hw_probe(u16 vendorid
, u16 devid
)
1226 return vendorid
== ATHEROS_VENDOR_ID
?
1227 ath9k_hw_devname(devid
) : NULL
;
1230 void ath9k_hw_detach(struct ath_hw
*ah
)
1232 if (!AR_SREV_9100(ah
))
1233 ath9k_hw_ani_disable(ah
);
1235 ath9k_hw_rf_free(ah
);
1236 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1245 static void ath9k_hw_override_ini(struct ath_hw
*ah
,
1246 struct ath9k_channel
*chan
)
1250 if (AR_SREV_9271(ah
)) {
1252 * Enable spectral scan to solution for issues with stuck
1253 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1256 if (AR_SREV_9271_10(ah
)) {
1257 val
= REG_READ(ah
, AR_PHY_SPECTRAL_SCAN
) | AR_PHY_SPECTRAL_SCAN_ENABLE
;
1258 REG_WRITE(ah
, AR_PHY_SPECTRAL_SCAN
, val
);
1260 else if (AR_SREV_9271_11(ah
))
1262 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1263 * present on AR9271 1.1
1265 REG_WRITE(ah
, AR_PHY_RF_CTL3
, 0x3a020001);
1270 * Set the RX_ABORT and RX_DIS and clear if off only after
1271 * RXE is set for MAC. This prevents frames with corrupted
1272 * descriptor status.
1274 REG_SET_BIT(ah
, AR_DIAG_SW
, (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
1276 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1277 val
= REG_READ(ah
, AR_PCU_MISC_MODE2
) &
1278 (~AR_PCU_MISC_MODE2_HWWAR1
);
1280 if (AR_SREV_9287_10_OR_LATER(ah
))
1281 val
= val
& (~AR_PCU_MISC_MODE2_HWWAR2
);
1283 REG_WRITE(ah
, AR_PCU_MISC_MODE2
, val
);
1286 if (!AR_SREV_5416_20_OR_LATER(ah
) ||
1287 AR_SREV_9280_10_OR_LATER(ah
))
1290 * Disable BB clock gating
1291 * Necessary to avoid issues on AR5416 2.0
1293 REG_WRITE(ah
, 0x9800 + (651 << 2), 0x11);
1296 static u32
ath9k_hw_def_ini_fixup(struct ath_hw
*ah
,
1297 struct ar5416_eeprom_def
*pEepData
,
1300 struct base_eep_header
*pBase
= &(pEepData
->baseEepHeader
);
1302 switch (ah
->hw_version
.devid
) {
1303 case AR9280_DEVID_PCI
:
1304 if (reg
== 0x7894) {
1305 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1306 "ini VAL: %x EEPROM: %x\n", value
,
1307 (pBase
->version
& 0xff));
1309 if ((pBase
->version
& 0xff) > 0x0a) {
1310 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1313 value
&= ~AR_AN_TOP2_PWDCLKIND
;
1314 value
|= AR_AN_TOP2_PWDCLKIND
&
1315 (pBase
->pwdclkind
<< AR_AN_TOP2_PWDCLKIND_S
);
1317 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1318 "PWDCLKIND Earlier Rev\n");
1321 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1322 "final ini VAL: %x\n", value
);
1330 static u32
ath9k_hw_ini_fixup(struct ath_hw
*ah
,
1331 struct ar5416_eeprom_def
*pEepData
,
1334 if (ah
->eep_map
== EEP_MAP_4KBITS
)
1337 return ath9k_hw_def_ini_fixup(ah
, pEepData
, reg
, value
);
1340 static void ath9k_olc_init(struct ath_hw
*ah
)
1344 if (OLC_FOR_AR9287_10_LATER
) {
1345 REG_SET_BIT(ah
, AR_PHY_TX_PWRCTRL9
,
1346 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL
);
1347 ath9k_hw_analog_shift_rmw(ah
, AR9287_AN_TXPC0
,
1348 AR9287_AN_TXPC0_TXPCMODE
,
1349 AR9287_AN_TXPC0_TXPCMODE_S
,
1350 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE
);
1353 for (i
= 0; i
< AR9280_TX_GAIN_TABLE_SIZE
; i
++)
1354 ah
->originalGain
[i
] =
1355 MS(REG_READ(ah
, AR_PHY_TX_GAIN_TBL1
+ i
* 4),
1361 static u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
,
1362 struct ath9k_channel
*chan
)
1364 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1366 if (IS_CHAN_B(chan
))
1368 else if (IS_CHAN_G(chan
))
1376 static int ath9k_hw_process_ini(struct ath_hw
*ah
,
1377 struct ath9k_channel
*chan
,
1378 enum ath9k_ht_macmode macmode
)
1380 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1381 int i
, regWrites
= 0;
1382 struct ieee80211_channel
*channel
= chan
->chan
;
1383 u32 modesIndex
, freqIndex
;
1385 switch (chan
->chanmode
) {
1387 case CHANNEL_A_HT20
:
1391 case CHANNEL_A_HT40PLUS
:
1392 case CHANNEL_A_HT40MINUS
:
1397 case CHANNEL_G_HT20
:
1402 case CHANNEL_G_HT40PLUS
:
1403 case CHANNEL_G_HT40MINUS
:
1412 REG_WRITE(ah
, AR_PHY(0), 0x00000007);
1413 REG_WRITE(ah
, AR_PHY_ADC_SERIAL_CTL
, AR_PHY_SEL_EXTERNAL_RADIO
);
1414 ah
->eep_ops
->set_addac(ah
, chan
);
1416 if (AR_SREV_5416_22_OR_LATER(ah
)) {
1417 REG_WRITE_ARRAY(&ah
->iniAddac
, 1, regWrites
);
1419 struct ar5416IniArray temp
;
1421 sizeof(u32
) * ah
->iniAddac
.ia_rows
*
1422 ah
->iniAddac
.ia_columns
;
1424 memcpy(ah
->addac5416_21
,
1425 ah
->iniAddac
.ia_array
, addacSize
);
1427 (ah
->addac5416_21
)[31 * ah
->iniAddac
.ia_columns
+ 1] = 0;
1429 temp
.ia_array
= ah
->addac5416_21
;
1430 temp
.ia_columns
= ah
->iniAddac
.ia_columns
;
1431 temp
.ia_rows
= ah
->iniAddac
.ia_rows
;
1432 REG_WRITE_ARRAY(&temp
, 1, regWrites
);
1435 REG_WRITE(ah
, AR_PHY_ADC_SERIAL_CTL
, AR_PHY_SEL_INTERNAL_ADDAC
);
1437 for (i
= 0; i
< ah
->iniModes
.ia_rows
; i
++) {
1438 u32 reg
= INI_RA(&ah
->iniModes
, i
, 0);
1439 u32 val
= INI_RA(&ah
->iniModes
, i
, modesIndex
);
1441 REG_WRITE(ah
, reg
, val
);
1443 if (reg
>= 0x7800 && reg
< 0x78a0
1444 && ah
->config
.analog_shiftreg
) {
1448 DO_DELAY(regWrites
);
1451 if (AR_SREV_9280(ah
) || AR_SREV_9287_10_OR_LATER(ah
))
1452 REG_WRITE_ARRAY(&ah
->iniModesRxGain
, modesIndex
, regWrites
);
1454 if (AR_SREV_9280(ah
) || AR_SREV_9285_12_OR_LATER(ah
) ||
1455 AR_SREV_9287_10_OR_LATER(ah
))
1456 REG_WRITE_ARRAY(&ah
->iniModesTxGain
, modesIndex
, regWrites
);
1458 for (i
= 0; i
< ah
->iniCommon
.ia_rows
; i
++) {
1459 u32 reg
= INI_RA(&ah
->iniCommon
, i
, 0);
1460 u32 val
= INI_RA(&ah
->iniCommon
, i
, 1);
1462 REG_WRITE(ah
, reg
, val
);
1464 if (reg
>= 0x7800 && reg
< 0x78a0
1465 && ah
->config
.analog_shiftreg
) {
1469 DO_DELAY(regWrites
);
1472 ath9k_hw_write_regs(ah
, modesIndex
, freqIndex
, regWrites
);
1474 if (AR_SREV_9280_20(ah
) && IS_CHAN_A_5MHZ_SPACED(chan
)) {
1475 REG_WRITE_ARRAY(&ah
->iniModesAdditional
, modesIndex
,
1479 ath9k_hw_override_ini(ah
, chan
);
1480 ath9k_hw_set_regs(ah
, chan
, macmode
);
1481 ath9k_hw_init_chain_masks(ah
);
1483 if (OLC_FOR_AR9280_20_LATER
)
1486 ah
->eep_ops
->set_txpower(ah
, chan
,
1487 ath9k_regd_get_ctl(regulatory
, chan
),
1488 channel
->max_antenna_gain
* 2,
1489 channel
->max_power
* 2,
1490 min((u32
) MAX_RATE_POWER
,
1491 (u32
) regulatory
->power_limit
));
1493 if (!ath9k_hw_set_rf_regs(ah
, chan
, freqIndex
)) {
1494 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
1495 "ar5416SetRfRegs failed\n");
1502 /****************************************/
1503 /* Reset and Channel Switching Routines */
1504 /****************************************/
1506 static void ath9k_hw_set_rfmode(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1513 rfMode
|= (IS_CHAN_B(chan
) || IS_CHAN_G(chan
))
1514 ? AR_PHY_MODE_DYNAMIC
: AR_PHY_MODE_OFDM
;
1516 if (!AR_SREV_9280_10_OR_LATER(ah
))
1517 rfMode
|= (IS_CHAN_5GHZ(chan
)) ?
1518 AR_PHY_MODE_RF5GHZ
: AR_PHY_MODE_RF2GHZ
;
1520 if (AR_SREV_9280_20(ah
) && IS_CHAN_A_5MHZ_SPACED(chan
))
1521 rfMode
|= (AR_PHY_MODE_DYNAMIC
| AR_PHY_MODE_DYN_CCK_DISABLE
);
1523 REG_WRITE(ah
, AR_PHY_MODE
, rfMode
);
1526 static void ath9k_hw_mark_phy_inactive(struct ath_hw
*ah
)
1528 REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_DIS
);
1531 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1536 * set AHB_MODE not to do cacheline prefetches
1538 regval
= REG_READ(ah
, AR_AHB_MODE
);
1539 REG_WRITE(ah
, AR_AHB_MODE
, regval
| AR_AHB_PREFETCH_RD_EN
);
1542 * let mac dma reads be in 128 byte chunks
1544 regval
= REG_READ(ah
, AR_TXCFG
) & ~AR_TXCFG_DMASZ_MASK
;
1545 REG_WRITE(ah
, AR_TXCFG
, regval
| AR_TXCFG_DMASZ_128B
);
1548 * Restore TX Trigger Level to its pre-reset value.
1549 * The initial value depends on whether aggregation is enabled, and is
1550 * adjusted whenever underruns are detected.
1552 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1555 * let mac dma writes be in 128 byte chunks
1557 regval
= REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_DMASZ_MASK
;
1558 REG_WRITE(ah
, AR_RXCFG
, regval
| AR_RXCFG_DMASZ_128B
);
1561 * Setup receive FIFO threshold to hold off TX activities
1563 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1566 * reduce the number of usable entries in PCU TXBUF to avoid
1567 * wrap around issues.
1569 if (AR_SREV_9285(ah
)) {
1570 /* For AR9285 the number of Fifos are reduced to half.
1571 * So set the usable tx buf size also to half to
1572 * avoid data/delimiter underruns
1574 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1575 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
);
1576 } else if (!AR_SREV_9271(ah
)) {
1577 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1578 AR_PCU_TXBUF_CTRL_USABLE_SIZE
);
1582 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1586 val
= REG_READ(ah
, AR_STA_ID1
);
1587 val
&= ~(AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
);
1589 case NL80211_IFTYPE_AP
:
1590 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_STA_AP
1591 | AR_STA_ID1_KSRCH_MODE
);
1592 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1594 case NL80211_IFTYPE_ADHOC
:
1595 case NL80211_IFTYPE_MESH_POINT
:
1596 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_ADHOC
1597 | AR_STA_ID1_KSRCH_MODE
);
1598 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1600 case NL80211_IFTYPE_STATION
:
1601 case NL80211_IFTYPE_MONITOR
:
1602 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_KSRCH_MODE
);
1607 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
,
1612 u32 coef_exp
, coef_man
;
1614 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1615 if ((coef_scaled
>> coef_exp
) & 0x1)
1618 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1620 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1622 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1623 *coef_exponent
= coef_exp
- 16;
1626 static void ath9k_hw_set_delta_slope(struct ath_hw
*ah
,
1627 struct ath9k_channel
*chan
)
1629 u32 coef_scaled
, ds_coef_exp
, ds_coef_man
;
1630 u32 clockMhzScaled
= 0x64000000;
1631 struct chan_centers centers
;
1633 if (IS_CHAN_HALF_RATE(chan
))
1634 clockMhzScaled
= clockMhzScaled
>> 1;
1635 else if (IS_CHAN_QUARTER_RATE(chan
))
1636 clockMhzScaled
= clockMhzScaled
>> 2;
1638 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
1639 coef_scaled
= clockMhzScaled
/ centers
.synth_center
;
1641 ath9k_hw_get_delta_slope_vals(ah
, coef_scaled
, &ds_coef_man
,
1644 REG_RMW_FIELD(ah
, AR_PHY_TIMING3
,
1645 AR_PHY_TIMING3_DSC_MAN
, ds_coef_man
);
1646 REG_RMW_FIELD(ah
, AR_PHY_TIMING3
,
1647 AR_PHY_TIMING3_DSC_EXP
, ds_coef_exp
);
1649 coef_scaled
= (9 * coef_scaled
) / 10;
1651 ath9k_hw_get_delta_slope_vals(ah
, coef_scaled
, &ds_coef_man
,
1654 REG_RMW_FIELD(ah
, AR_PHY_HALFGI
,
1655 AR_PHY_HALFGI_DSC_MAN
, ds_coef_man
);
1656 REG_RMW_FIELD(ah
, AR_PHY_HALFGI
,
1657 AR_PHY_HALFGI_DSC_EXP
, ds_coef_exp
);
1660 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1665 if (AR_SREV_9100(ah
)) {
1666 u32 val
= REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1667 val
&= ~AR_RTC_DERIVED_CLK_PERIOD
;
1668 val
|= SM(1, AR_RTC_DERIVED_CLK_PERIOD
);
1669 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, val
);
1670 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1673 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1674 AR_RTC_FORCE_WAKE_ON_INT
);
1676 if (AR_SREV_9100(ah
)) {
1677 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1678 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1680 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1682 (AR_INTR_SYNC_LOCAL_TIMEOUT
|
1683 AR_INTR_SYNC_RADM_CPL_TIMEOUT
)) {
1684 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1685 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1687 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1690 rst_flags
= AR_RTC_RC_MAC_WARM
;
1691 if (type
== ATH9K_RESET_COLD
)
1692 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1695 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1698 REG_WRITE(ah
, AR_RTC_RC
, 0);
1699 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1700 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
1701 "RTC stuck in MAC reset\n");
1705 if (!AR_SREV_9100(ah
))
1706 REG_WRITE(ah
, AR_RC
, 0);
1708 ath9k_hw_init_pll(ah
, NULL
);
1710 if (AR_SREV_9100(ah
))
1716 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1718 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1719 AR_RTC_FORCE_WAKE_ON_INT
);
1721 if (!AR_SREV_9100(ah
))
1722 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1724 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1727 if (!AR_SREV_9100(ah
))
1728 REG_WRITE(ah
, AR_RC
, 0);
1730 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1732 if (!ath9k_hw_wait(ah
,
1737 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "RTC not waking up\n");
1741 ath9k_hw_read_revisions(ah
);
1743 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1746 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1748 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1749 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1752 case ATH9K_RESET_POWER_ON
:
1753 return ath9k_hw_set_reset_power_on(ah
);
1754 case ATH9K_RESET_WARM
:
1755 case ATH9K_RESET_COLD
:
1756 return ath9k_hw_set_reset(ah
, type
);
1762 static void ath9k_hw_set_regs(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1763 enum ath9k_ht_macmode macmode
)
1766 u32 enableDacFifo
= 0;
1768 if (AR_SREV_9285_10_OR_LATER(ah
))
1769 enableDacFifo
= (REG_READ(ah
, AR_PHY_TURBO
) &
1770 AR_PHY_FC_ENABLE_DAC_FIFO
);
1772 phymode
= AR_PHY_FC_HT_EN
| AR_PHY_FC_SHORT_GI_40
1773 | AR_PHY_FC_SINGLE_HT_LTF1
| AR_PHY_FC_WALSH
| enableDacFifo
;
1775 if (IS_CHAN_HT40(chan
)) {
1776 phymode
|= AR_PHY_FC_DYN2040_EN
;
1778 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
1779 (chan
->chanmode
== CHANNEL_G_HT40PLUS
))
1780 phymode
|= AR_PHY_FC_DYN2040_PRI_CH
;
1782 if (ah
->extprotspacing
== ATH9K_HT_EXTPROTSPACING_25
)
1783 phymode
|= AR_PHY_FC_DYN2040_EXT_CH
;
1785 REG_WRITE(ah
, AR_PHY_TURBO
, phymode
);
1787 ath9k_hw_set11nmac2040(ah
, macmode
);
1789 REG_WRITE(ah
, AR_GTXTO
, 25 << AR_GTXTO_TIMEOUT_LIMIT_S
);
1790 REG_WRITE(ah
, AR_CST
, 0xF << AR_CST_TIMEOUT_LIMIT_S
);
1793 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1794 struct ath9k_channel
*chan
)
1796 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
1797 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
))
1799 } else if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
1802 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1805 ah
->chip_fullsleep
= false;
1806 ath9k_hw_init_pll(ah
, chan
);
1807 ath9k_hw_set_rfmode(ah
, chan
);
1812 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1813 struct ath9k_channel
*chan
,
1814 enum ath9k_ht_macmode macmode
)
1816 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1817 struct ieee80211_channel
*channel
= chan
->chan
;
1818 u32 synthDelay
, qnum
;
1820 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1821 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1822 DPRINTF(ah
->ah_sc
, ATH_DBG_QUEUE
,
1823 "Transmit frames pending on queue %d\n", qnum
);
1828 REG_WRITE(ah
, AR_PHY_RFBUS_REQ
, AR_PHY_RFBUS_REQ_EN
);
1829 if (!ath9k_hw_wait(ah
, AR_PHY_RFBUS_GRANT
, AR_PHY_RFBUS_GRANT_EN
,
1830 AR_PHY_RFBUS_GRANT_EN
, AH_WAIT_TIMEOUT
)) {
1831 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
1832 "Could not kill baseband RX\n");
1836 ath9k_hw_set_regs(ah
, chan
, macmode
);
1838 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1839 ath9k_hw_ar9280_set_channel(ah
, chan
);
1841 if (!(ath9k_hw_set_channel(ah
, chan
))) {
1842 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
1843 "Failed to set channel\n");
1848 ah
->eep_ops
->set_txpower(ah
, chan
,
1849 ath9k_regd_get_ctl(regulatory
, chan
),
1850 channel
->max_antenna_gain
* 2,
1851 channel
->max_power
* 2,
1852 min((u32
) MAX_RATE_POWER
,
1853 (u32
) regulatory
->power_limit
));
1855 synthDelay
= REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_DELAY
;
1856 if (IS_CHAN_B(chan
))
1857 synthDelay
= (4 * synthDelay
) / 22;
1861 udelay(synthDelay
+ BASE_ACTIVATE_DELAY
);
1863 REG_WRITE(ah
, AR_PHY_RFBUS_REQ
, 0);
1865 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1866 ath9k_hw_set_delta_slope(ah
, chan
);
1868 if (AR_SREV_9280_10_OR_LATER(ah
))
1869 ath9k_hw_9280_spur_mitigate(ah
, chan
);
1871 ath9k_hw_spur_mitigate(ah
, chan
);
1873 if (!chan
->oneTimeCalsDone
)
1874 chan
->oneTimeCalsDone
= true;
1879 static void ath9k_hw_9280_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1881 int bb_spur
= AR_NO_SPUR
;
1884 int bb_spur_off
, spur_subchannel_sd
;
1886 int spur_delta_phase
;
1888 int upper
, lower
, cur_vit_mask
;
1891 int pilot_mask_reg
[4] = { AR_PHY_TIMING7
, AR_PHY_TIMING8
,
1892 AR_PHY_PILOT_MASK_01_30
, AR_PHY_PILOT_MASK_31_60
1894 int chan_mask_reg
[4] = { AR_PHY_TIMING9
, AR_PHY_TIMING10
,
1895 AR_PHY_CHANNEL_MASK_01_30
, AR_PHY_CHANNEL_MASK_31_60
1897 int inc
[4] = { 0, 100, 0, 0 };
1898 struct chan_centers centers
;
1905 bool is2GHz
= IS_CHAN_2GHZ(chan
);
1907 memset(&mask_m
, 0, sizeof(int8_t) * 123);
1908 memset(&mask_p
, 0, sizeof(int8_t) * 123);
1910 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
1911 freq
= centers
.synth_center
;
1913 ah
->config
.spurmode
= SPUR_ENABLE_EEPROM
;
1914 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
1915 cur_bb_spur
= ah
->eep_ops
->get_spur_channel(ah
, i
, is2GHz
);
1918 cur_bb_spur
= (cur_bb_spur
/ 10) + AR_BASE_FREQ_2GHZ
;
1920 cur_bb_spur
= (cur_bb_spur
/ 10) + AR_BASE_FREQ_5GHZ
;
1922 if (AR_NO_SPUR
== cur_bb_spur
)
1924 cur_bb_spur
= cur_bb_spur
- freq
;
1926 if (IS_CHAN_HT40(chan
)) {
1927 if ((cur_bb_spur
> -AR_SPUR_FEEQ_BOUND_HT40
) &&
1928 (cur_bb_spur
< AR_SPUR_FEEQ_BOUND_HT40
)) {
1929 bb_spur
= cur_bb_spur
;
1932 } else if ((cur_bb_spur
> -AR_SPUR_FEEQ_BOUND_HT20
) &&
1933 (cur_bb_spur
< AR_SPUR_FEEQ_BOUND_HT20
)) {
1934 bb_spur
= cur_bb_spur
;
1939 if (AR_NO_SPUR
== bb_spur
) {
1940 REG_CLR_BIT(ah
, AR_PHY_FORCE_CLKEN_CCK
,
1941 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX
);
1944 REG_CLR_BIT(ah
, AR_PHY_FORCE_CLKEN_CCK
,
1945 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX
);
1948 bin
= bb_spur
* 320;
1950 tmp
= REG_READ(ah
, AR_PHY_TIMING_CTRL4(0));
1952 newVal
= tmp
| (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI
|
1953 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER
|
1954 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK
|
1955 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK
);
1956 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0), newVal
);
1958 newVal
= (AR_PHY_SPUR_REG_MASK_RATE_CNTL
|
1959 AR_PHY_SPUR_REG_ENABLE_MASK_PPM
|
1960 AR_PHY_SPUR_REG_MASK_RATE_SELECT
|
1961 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI
|
1962 SM(SPUR_RSSI_THRESH
, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH
));
1963 REG_WRITE(ah
, AR_PHY_SPUR_REG
, newVal
);
1965 if (IS_CHAN_HT40(chan
)) {
1967 spur_subchannel_sd
= 1;
1968 bb_spur_off
= bb_spur
+ 10;
1970 spur_subchannel_sd
= 0;
1971 bb_spur_off
= bb_spur
- 10;
1974 spur_subchannel_sd
= 0;
1975 bb_spur_off
= bb_spur
;
1978 if (IS_CHAN_HT40(chan
))
1980 ((bb_spur
* 262144) /
1981 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
1984 ((bb_spur
* 524288) /
1985 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
1987 denominator
= IS_CHAN_2GHZ(chan
) ? 44 : 40;
1988 spur_freq_sd
= ((bb_spur_off
* 2048) / denominator
) & 0x3ff;
1990 newVal
= (AR_PHY_TIMING11_USE_SPUR_IN_AGC
|
1991 SM(spur_freq_sd
, AR_PHY_TIMING11_SPUR_FREQ_SD
) |
1992 SM(spur_delta_phase
, AR_PHY_TIMING11_SPUR_DELTA_PHASE
));
1993 REG_WRITE(ah
, AR_PHY_TIMING11
, newVal
);
1995 newVal
= spur_subchannel_sd
<< AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S
;
1996 REG_WRITE(ah
, AR_PHY_SFCORR_EXT
, newVal
);
2002 for (i
= 0; i
< 4; i
++) {
2006 for (bp
= 0; bp
< 30; bp
++) {
2007 if ((cur_bin
> lower
) && (cur_bin
< upper
)) {
2008 pilot_mask
= pilot_mask
| 0x1 << bp
;
2009 chan_mask
= chan_mask
| 0x1 << bp
;
2014 REG_WRITE(ah
, pilot_mask_reg
[i
], pilot_mask
);
2015 REG_WRITE(ah
, chan_mask_reg
[i
], chan_mask
);
2018 cur_vit_mask
= 6100;
2022 for (i
= 0; i
< 123; i
++) {
2023 if ((cur_vit_mask
> lower
) && (cur_vit_mask
< upper
)) {
2025 /* workaround for gcc bug #37014 */
2026 volatile int tmp_v
= abs(cur_vit_mask
- bin
);
2032 if (cur_vit_mask
< 0)
2033 mask_m
[abs(cur_vit_mask
/ 100)] = mask_amt
;
2035 mask_p
[cur_vit_mask
/ 100] = mask_amt
;
2037 cur_vit_mask
-= 100;
2040 tmp_mask
= (mask_m
[46] << 30) | (mask_m
[47] << 28)
2041 | (mask_m
[48] << 26) | (mask_m
[49] << 24)
2042 | (mask_m
[50] << 22) | (mask_m
[51] << 20)
2043 | (mask_m
[52] << 18) | (mask_m
[53] << 16)
2044 | (mask_m
[54] << 14) | (mask_m
[55] << 12)
2045 | (mask_m
[56] << 10) | (mask_m
[57] << 8)
2046 | (mask_m
[58] << 6) | (mask_m
[59] << 4)
2047 | (mask_m
[60] << 2) | (mask_m
[61] << 0);
2048 REG_WRITE(ah
, AR_PHY_BIN_MASK_1
, tmp_mask
);
2049 REG_WRITE(ah
, AR_PHY_VIT_MASK2_M_46_61
, tmp_mask
);
2051 tmp_mask
= (mask_m
[31] << 28)
2052 | (mask_m
[32] << 26) | (mask_m
[33] << 24)
2053 | (mask_m
[34] << 22) | (mask_m
[35] << 20)
2054 | (mask_m
[36] << 18) | (mask_m
[37] << 16)
2055 | (mask_m
[48] << 14) | (mask_m
[39] << 12)
2056 | (mask_m
[40] << 10) | (mask_m
[41] << 8)
2057 | (mask_m
[42] << 6) | (mask_m
[43] << 4)
2058 | (mask_m
[44] << 2) | (mask_m
[45] << 0);
2059 REG_WRITE(ah
, AR_PHY_BIN_MASK_2
, tmp_mask
);
2060 REG_WRITE(ah
, AR_PHY_MASK2_M_31_45
, tmp_mask
);
2062 tmp_mask
= (mask_m
[16] << 30) | (mask_m
[16] << 28)
2063 | (mask_m
[18] << 26) | (mask_m
[18] << 24)
2064 | (mask_m
[20] << 22) | (mask_m
[20] << 20)
2065 | (mask_m
[22] << 18) | (mask_m
[22] << 16)
2066 | (mask_m
[24] << 14) | (mask_m
[24] << 12)
2067 | (mask_m
[25] << 10) | (mask_m
[26] << 8)
2068 | (mask_m
[27] << 6) | (mask_m
[28] << 4)
2069 | (mask_m
[29] << 2) | (mask_m
[30] << 0);
2070 REG_WRITE(ah
, AR_PHY_BIN_MASK_3
, tmp_mask
);
2071 REG_WRITE(ah
, AR_PHY_MASK2_M_16_30
, tmp_mask
);
2073 tmp_mask
= (mask_m
[0] << 30) | (mask_m
[1] << 28)
2074 | (mask_m
[2] << 26) | (mask_m
[3] << 24)
2075 | (mask_m
[4] << 22) | (mask_m
[5] << 20)
2076 | (mask_m
[6] << 18) | (mask_m
[7] << 16)
2077 | (mask_m
[8] << 14) | (mask_m
[9] << 12)
2078 | (mask_m
[10] << 10) | (mask_m
[11] << 8)
2079 | (mask_m
[12] << 6) | (mask_m
[13] << 4)
2080 | (mask_m
[14] << 2) | (mask_m
[15] << 0);
2081 REG_WRITE(ah
, AR_PHY_MASK_CTL
, tmp_mask
);
2082 REG_WRITE(ah
, AR_PHY_MASK2_M_00_15
, tmp_mask
);
2084 tmp_mask
= (mask_p
[15] << 28)
2085 | (mask_p
[14] << 26) | (mask_p
[13] << 24)
2086 | (mask_p
[12] << 22) | (mask_p
[11] << 20)
2087 | (mask_p
[10] << 18) | (mask_p
[9] << 16)
2088 | (mask_p
[8] << 14) | (mask_p
[7] << 12)
2089 | (mask_p
[6] << 10) | (mask_p
[5] << 8)
2090 | (mask_p
[4] << 6) | (mask_p
[3] << 4)
2091 | (mask_p
[2] << 2) | (mask_p
[1] << 0);
2092 REG_WRITE(ah
, AR_PHY_BIN_MASK2_1
, tmp_mask
);
2093 REG_WRITE(ah
, AR_PHY_MASK2_P_15_01
, tmp_mask
);
2095 tmp_mask
= (mask_p
[30] << 28)
2096 | (mask_p
[29] << 26) | (mask_p
[28] << 24)
2097 | (mask_p
[27] << 22) | (mask_p
[26] << 20)
2098 | (mask_p
[25] << 18) | (mask_p
[24] << 16)
2099 | (mask_p
[23] << 14) | (mask_p
[22] << 12)
2100 | (mask_p
[21] << 10) | (mask_p
[20] << 8)
2101 | (mask_p
[19] << 6) | (mask_p
[18] << 4)
2102 | (mask_p
[17] << 2) | (mask_p
[16] << 0);
2103 REG_WRITE(ah
, AR_PHY_BIN_MASK2_2
, tmp_mask
);
2104 REG_WRITE(ah
, AR_PHY_MASK2_P_30_16
, tmp_mask
);
2106 tmp_mask
= (mask_p
[45] << 28)
2107 | (mask_p
[44] << 26) | (mask_p
[43] << 24)
2108 | (mask_p
[42] << 22) | (mask_p
[41] << 20)
2109 | (mask_p
[40] << 18) | (mask_p
[39] << 16)
2110 | (mask_p
[38] << 14) | (mask_p
[37] << 12)
2111 | (mask_p
[36] << 10) | (mask_p
[35] << 8)
2112 | (mask_p
[34] << 6) | (mask_p
[33] << 4)
2113 | (mask_p
[32] << 2) | (mask_p
[31] << 0);
2114 REG_WRITE(ah
, AR_PHY_BIN_MASK2_3
, tmp_mask
);
2115 REG_WRITE(ah
, AR_PHY_MASK2_P_45_31
, tmp_mask
);
2117 tmp_mask
= (mask_p
[61] << 30) | (mask_p
[60] << 28)
2118 | (mask_p
[59] << 26) | (mask_p
[58] << 24)
2119 | (mask_p
[57] << 22) | (mask_p
[56] << 20)
2120 | (mask_p
[55] << 18) | (mask_p
[54] << 16)
2121 | (mask_p
[53] << 14) | (mask_p
[52] << 12)
2122 | (mask_p
[51] << 10) | (mask_p
[50] << 8)
2123 | (mask_p
[49] << 6) | (mask_p
[48] << 4)
2124 | (mask_p
[47] << 2) | (mask_p
[46] << 0);
2125 REG_WRITE(ah
, AR_PHY_BIN_MASK2_4
, tmp_mask
);
2126 REG_WRITE(ah
, AR_PHY_MASK2_P_61_45
, tmp_mask
);
2129 static void ath9k_hw_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2131 int bb_spur
= AR_NO_SPUR
;
2134 int spur_delta_phase
;
2136 int upper
, lower
, cur_vit_mask
;
2139 int pilot_mask_reg
[4] = { AR_PHY_TIMING7
, AR_PHY_TIMING8
,
2140 AR_PHY_PILOT_MASK_01_30
, AR_PHY_PILOT_MASK_31_60
2142 int chan_mask_reg
[4] = { AR_PHY_TIMING9
, AR_PHY_TIMING10
,
2143 AR_PHY_CHANNEL_MASK_01_30
, AR_PHY_CHANNEL_MASK_31_60
2145 int inc
[4] = { 0, 100, 0, 0 };
2152 bool is2GHz
= IS_CHAN_2GHZ(chan
);
2154 memset(&mask_m
, 0, sizeof(int8_t) * 123);
2155 memset(&mask_p
, 0, sizeof(int8_t) * 123);
2157 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
2158 cur_bb_spur
= ah
->eep_ops
->get_spur_channel(ah
, i
, is2GHz
);
2159 if (AR_NO_SPUR
== cur_bb_spur
)
2161 cur_bb_spur
= cur_bb_spur
- (chan
->channel
* 10);
2162 if ((cur_bb_spur
> -95) && (cur_bb_spur
< 95)) {
2163 bb_spur
= cur_bb_spur
;
2168 if (AR_NO_SPUR
== bb_spur
)
2173 tmp
= REG_READ(ah
, AR_PHY_TIMING_CTRL4(0));
2174 new = tmp
| (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI
|
2175 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER
|
2176 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK
|
2177 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK
);
2179 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0), new);
2181 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL
|
2182 AR_PHY_SPUR_REG_ENABLE_MASK_PPM
|
2183 AR_PHY_SPUR_REG_MASK_RATE_SELECT
|
2184 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI
|
2185 SM(SPUR_RSSI_THRESH
, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH
));
2186 REG_WRITE(ah
, AR_PHY_SPUR_REG
, new);
2188 spur_delta_phase
= ((bb_spur
* 524288) / 100) &
2189 AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
2191 denominator
= IS_CHAN_2GHZ(chan
) ? 440 : 400;
2192 spur_freq_sd
= ((bb_spur
* 2048) / denominator
) & 0x3ff;
2194 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC
|
2195 SM(spur_freq_sd
, AR_PHY_TIMING11_SPUR_FREQ_SD
) |
2196 SM(spur_delta_phase
, AR_PHY_TIMING11_SPUR_DELTA_PHASE
));
2197 REG_WRITE(ah
, AR_PHY_TIMING11
, new);
2203 for (i
= 0; i
< 4; i
++) {
2207 for (bp
= 0; bp
< 30; bp
++) {
2208 if ((cur_bin
> lower
) && (cur_bin
< upper
)) {
2209 pilot_mask
= pilot_mask
| 0x1 << bp
;
2210 chan_mask
= chan_mask
| 0x1 << bp
;
2215 REG_WRITE(ah
, pilot_mask_reg
[i
], pilot_mask
);
2216 REG_WRITE(ah
, chan_mask_reg
[i
], chan_mask
);
2219 cur_vit_mask
= 6100;
2223 for (i
= 0; i
< 123; i
++) {
2224 if ((cur_vit_mask
> lower
) && (cur_vit_mask
< upper
)) {
2226 /* workaround for gcc bug #37014 */
2227 volatile int tmp_v
= abs(cur_vit_mask
- bin
);
2233 if (cur_vit_mask
< 0)
2234 mask_m
[abs(cur_vit_mask
/ 100)] = mask_amt
;
2236 mask_p
[cur_vit_mask
/ 100] = mask_amt
;
2238 cur_vit_mask
-= 100;
2241 tmp_mask
= (mask_m
[46] << 30) | (mask_m
[47] << 28)
2242 | (mask_m
[48] << 26) | (mask_m
[49] << 24)
2243 | (mask_m
[50] << 22) | (mask_m
[51] << 20)
2244 | (mask_m
[52] << 18) | (mask_m
[53] << 16)
2245 | (mask_m
[54] << 14) | (mask_m
[55] << 12)
2246 | (mask_m
[56] << 10) | (mask_m
[57] << 8)
2247 | (mask_m
[58] << 6) | (mask_m
[59] << 4)
2248 | (mask_m
[60] << 2) | (mask_m
[61] << 0);
2249 REG_WRITE(ah
, AR_PHY_BIN_MASK_1
, tmp_mask
);
2250 REG_WRITE(ah
, AR_PHY_VIT_MASK2_M_46_61
, tmp_mask
);
2252 tmp_mask
= (mask_m
[31] << 28)
2253 | (mask_m
[32] << 26) | (mask_m
[33] << 24)
2254 | (mask_m
[34] << 22) | (mask_m
[35] << 20)
2255 | (mask_m
[36] << 18) | (mask_m
[37] << 16)
2256 | (mask_m
[48] << 14) | (mask_m
[39] << 12)
2257 | (mask_m
[40] << 10) | (mask_m
[41] << 8)
2258 | (mask_m
[42] << 6) | (mask_m
[43] << 4)
2259 | (mask_m
[44] << 2) | (mask_m
[45] << 0);
2260 REG_WRITE(ah
, AR_PHY_BIN_MASK_2
, tmp_mask
);
2261 REG_WRITE(ah
, AR_PHY_MASK2_M_31_45
, tmp_mask
);
2263 tmp_mask
= (mask_m
[16] << 30) | (mask_m
[16] << 28)
2264 | (mask_m
[18] << 26) | (mask_m
[18] << 24)
2265 | (mask_m
[20] << 22) | (mask_m
[20] << 20)
2266 | (mask_m
[22] << 18) | (mask_m
[22] << 16)
2267 | (mask_m
[24] << 14) | (mask_m
[24] << 12)
2268 | (mask_m
[25] << 10) | (mask_m
[26] << 8)
2269 | (mask_m
[27] << 6) | (mask_m
[28] << 4)
2270 | (mask_m
[29] << 2) | (mask_m
[30] << 0);
2271 REG_WRITE(ah
, AR_PHY_BIN_MASK_3
, tmp_mask
);
2272 REG_WRITE(ah
, AR_PHY_MASK2_M_16_30
, tmp_mask
);
2274 tmp_mask
= (mask_m
[0] << 30) | (mask_m
[1] << 28)
2275 | (mask_m
[2] << 26) | (mask_m
[3] << 24)
2276 | (mask_m
[4] << 22) | (mask_m
[5] << 20)
2277 | (mask_m
[6] << 18) | (mask_m
[7] << 16)
2278 | (mask_m
[8] << 14) | (mask_m
[9] << 12)
2279 | (mask_m
[10] << 10) | (mask_m
[11] << 8)
2280 | (mask_m
[12] << 6) | (mask_m
[13] << 4)
2281 | (mask_m
[14] << 2) | (mask_m
[15] << 0);
2282 REG_WRITE(ah
, AR_PHY_MASK_CTL
, tmp_mask
);
2283 REG_WRITE(ah
, AR_PHY_MASK2_M_00_15
, tmp_mask
);
2285 tmp_mask
= (mask_p
[15] << 28)
2286 | (mask_p
[14] << 26) | (mask_p
[13] << 24)
2287 | (mask_p
[12] << 22) | (mask_p
[11] << 20)
2288 | (mask_p
[10] << 18) | (mask_p
[9] << 16)
2289 | (mask_p
[8] << 14) | (mask_p
[7] << 12)
2290 | (mask_p
[6] << 10) | (mask_p
[5] << 8)
2291 | (mask_p
[4] << 6) | (mask_p
[3] << 4)
2292 | (mask_p
[2] << 2) | (mask_p
[1] << 0);
2293 REG_WRITE(ah
, AR_PHY_BIN_MASK2_1
, tmp_mask
);
2294 REG_WRITE(ah
, AR_PHY_MASK2_P_15_01
, tmp_mask
);
2296 tmp_mask
= (mask_p
[30] << 28)
2297 | (mask_p
[29] << 26) | (mask_p
[28] << 24)
2298 | (mask_p
[27] << 22) | (mask_p
[26] << 20)
2299 | (mask_p
[25] << 18) | (mask_p
[24] << 16)
2300 | (mask_p
[23] << 14) | (mask_p
[22] << 12)
2301 | (mask_p
[21] << 10) | (mask_p
[20] << 8)
2302 | (mask_p
[19] << 6) | (mask_p
[18] << 4)
2303 | (mask_p
[17] << 2) | (mask_p
[16] << 0);
2304 REG_WRITE(ah
, AR_PHY_BIN_MASK2_2
, tmp_mask
);
2305 REG_WRITE(ah
, AR_PHY_MASK2_P_30_16
, tmp_mask
);
2307 tmp_mask
= (mask_p
[45] << 28)
2308 | (mask_p
[44] << 26) | (mask_p
[43] << 24)
2309 | (mask_p
[42] << 22) | (mask_p
[41] << 20)
2310 | (mask_p
[40] << 18) | (mask_p
[39] << 16)
2311 | (mask_p
[38] << 14) | (mask_p
[37] << 12)
2312 | (mask_p
[36] << 10) | (mask_p
[35] << 8)
2313 | (mask_p
[34] << 6) | (mask_p
[33] << 4)
2314 | (mask_p
[32] << 2) | (mask_p
[31] << 0);
2315 REG_WRITE(ah
, AR_PHY_BIN_MASK2_3
, tmp_mask
);
2316 REG_WRITE(ah
, AR_PHY_MASK2_P_45_31
, tmp_mask
);
2318 tmp_mask
= (mask_p
[61] << 30) | (mask_p
[60] << 28)
2319 | (mask_p
[59] << 26) | (mask_p
[58] << 24)
2320 | (mask_p
[57] << 22) | (mask_p
[56] << 20)
2321 | (mask_p
[55] << 18) | (mask_p
[54] << 16)
2322 | (mask_p
[53] << 14) | (mask_p
[52] << 12)
2323 | (mask_p
[51] << 10) | (mask_p
[50] << 8)
2324 | (mask_p
[49] << 6) | (mask_p
[48] << 4)
2325 | (mask_p
[47] << 2) | (mask_p
[46] << 0);
2326 REG_WRITE(ah
, AR_PHY_BIN_MASK2_4
, tmp_mask
);
2327 REG_WRITE(ah
, AR_PHY_MASK2_P_61_45
, tmp_mask
);
2330 static void ath9k_enable_rfkill(struct ath_hw
*ah
)
2332 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
,
2333 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB
);
2335 REG_CLR_BIT(ah
, AR_GPIO_INPUT_MUX2
,
2336 AR_GPIO_INPUT_MUX2_RFSILENT
);
2338 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
2339 REG_SET_BIT(ah
, AR_PHY_TEST
, RFSILENT_BB
);
2342 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2343 bool bChannelChange
)
2346 struct ath_softc
*sc
= ah
->ah_sc
;
2347 struct ath9k_channel
*curchan
= ah
->curchan
;
2351 int i
, rx_chainmask
, r
;
2353 ah
->extprotspacing
= sc
->ht_extprotspacing
;
2354 ah
->txchainmask
= sc
->tx_chainmask
;
2355 ah
->rxchainmask
= sc
->rx_chainmask
;
2357 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2360 if (curchan
&& !ah
->chip_fullsleep
)
2361 ath9k_hw_getnf(ah
, curchan
);
2363 if (bChannelChange
&&
2364 (ah
->chip_fullsleep
!= true) &&
2365 (ah
->curchan
!= NULL
) &&
2366 (chan
->channel
!= ah
->curchan
->channel
) &&
2367 ((chan
->channelFlags
& CHANNEL_ALL
) ==
2368 (ah
->curchan
->channelFlags
& CHANNEL_ALL
)) &&
2369 !(AR_SREV_9280(ah
) || IS_CHAN_A_5MHZ_SPACED(chan
) ||
2370 IS_CHAN_A_5MHZ_SPACED(ah
->curchan
))) {
2372 if (ath9k_hw_channel_change(ah
, chan
, sc
->tx_chan_width
)) {
2373 ath9k_hw_loadnf(ah
, ah
->curchan
);
2374 ath9k_hw_start_nfcal(ah
);
2379 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
2380 if (saveDefAntenna
== 0)
2383 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
2385 /* For chips on which RTC reset is done, save TSF before it gets cleared */
2386 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
2387 tsf
= ath9k_hw_gettsf64(ah
);
2389 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
2390 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
2391 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
2393 ath9k_hw_mark_phy_inactive(ah
);
2395 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
2397 AR9271_RESET_POWER_DOWN_CONTROL
,
2398 AR9271_RADIO_RF_RST
);
2402 if (!ath9k_hw_chip_reset(ah
, chan
)) {
2403 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
, "Chip reset failed\n");
2407 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
2408 ah
->htc_reset_init
= false;
2410 AR9271_RESET_POWER_DOWN_CONTROL
,
2411 AR9271_GATE_MAC_CTL
);
2416 if (tsf
&& AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
2417 ath9k_hw_settsf64(ah
, tsf
);
2419 if (AR_SREV_9280_10_OR_LATER(ah
))
2420 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
2422 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2423 /* Enable ASYNC FIFO */
2424 REG_SET_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2425 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL
);
2426 REG_SET_BIT(ah
, AR_PHY_MODE
, AR_PHY_MODE_ASYNCFIFO
);
2427 REG_CLR_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2428 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET
);
2429 REG_SET_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2430 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET
);
2432 r
= ath9k_hw_process_ini(ah
, chan
, sc
->tx_chan_width
);
2436 /* Setup MFP options for CCMP */
2437 if (AR_SREV_9280_20_OR_LATER(ah
)) {
2438 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2439 * frames when constructing CCMP AAD. */
2440 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
2442 ah
->sw_mgmt_crypto
= false;
2443 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
2444 /* Disable hardware crypto for management frames */
2445 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
2446 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
2447 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2448 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
2449 ah
->sw_mgmt_crypto
= true;
2451 ah
->sw_mgmt_crypto
= true;
2453 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
2454 ath9k_hw_set_delta_slope(ah
, chan
);
2456 if (AR_SREV_9280_10_OR_LATER(ah
))
2457 ath9k_hw_9280_spur_mitigate(ah
, chan
);
2459 ath9k_hw_spur_mitigate(ah
, chan
);
2461 ah
->eep_ops
->set_board_values(ah
, chan
);
2463 ath9k_hw_decrease_chain_power(ah
, chan
);
2465 REG_WRITE(ah
, AR_STA_ID0
, get_unaligned_le32(ah
->macaddr
));
2466 REG_WRITE(ah
, AR_STA_ID1
, get_unaligned_le16(ah
->macaddr
+ 4)
2468 | AR_STA_ID1_RTS_USE_DEF
2470 ack_6mb
? AR_STA_ID1_ACKCTS_6MB
: 0)
2471 | ah
->sta_id1_defaults
);
2472 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2474 REG_WRITE(ah
, AR_BSSMSKL
, get_unaligned_le32(sc
->bssidmask
));
2475 REG_WRITE(ah
, AR_BSSMSKU
, get_unaligned_le16(sc
->bssidmask
+ 4));
2477 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
2479 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(sc
->curbssid
));
2480 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(sc
->curbssid
+ 4) |
2481 ((sc
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2483 REG_WRITE(ah
, AR_ISR
, ~0);
2485 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
2487 if (AR_SREV_9280_10_OR_LATER(ah
))
2488 ath9k_hw_ar9280_set_channel(ah
, chan
);
2490 if (!(ath9k_hw_set_channel(ah
, chan
)))
2493 for (i
= 0; i
< AR_NUM_DCU
; i
++)
2494 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
2497 for (i
= 0; i
< ah
->caps
.total_queues
; i
++)
2498 ath9k_hw_resettxqueue(ah
, i
);
2500 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
2501 ath9k_hw_init_qos(ah
);
2503 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
2504 ath9k_enable_rfkill(ah
);
2506 ath9k_hw_init_user_settings(ah
);
2508 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2509 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
,
2510 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR
);
2511 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
,
2512 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR
);
2513 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
,
2514 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR
);
2516 REG_WRITE(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR
);
2517 REG_WRITE(ah
, AR_USEC
, AR_USEC_ASYNC_FIFO_DUR
);
2519 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
2520 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
2521 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
2522 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
2524 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2525 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2526 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
2529 REG_WRITE(ah
, AR_STA_ID1
,
2530 REG_READ(ah
, AR_STA_ID1
) | AR_STA_ID1_PRESERVE_SEQNUM
);
2532 ath9k_hw_set_dma(ah
);
2534 REG_WRITE(ah
, AR_OBS
, 8);
2536 if (ah
->config
.intr_mitigation
) {
2537 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, 500);
2538 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, 2000);
2541 ath9k_hw_init_bb(ah
, chan
);
2543 if (!ath9k_hw_init_cal(ah
, chan
))
2546 rx_chainmask
= ah
->rxchainmask
;
2547 if ((rx_chainmask
== 0x5) || (rx_chainmask
== 0x3)) {
2548 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, rx_chainmask
);
2549 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, rx_chainmask
);
2552 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
2555 * For big endian systems turn on swapping for descriptors
2557 if (AR_SREV_9100(ah
)) {
2559 mask
= REG_READ(ah
, AR_CFG
);
2560 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
2561 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
2562 "CFG Byte Swap Set 0x%x\n", mask
);
2565 INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
2566 REG_WRITE(ah
, AR_CFG
, mask
);
2567 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
2568 "Setting CFG 0x%x\n", REG_READ(ah
, AR_CFG
));
2571 /* Configure AR9271 target WLAN */
2572 if (AR_SREV_9271(ah
))
2573 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
2576 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
2580 if (ah
->ah_sc
->sc_flags
& SC_OP_BTCOEX_ENABLED
)
2581 ath9k_hw_btcoex_enable(ah
);
2586 /************************/
2587 /* Key Cache Management */
2588 /************************/
2590 bool ath9k_hw_keyreset(struct ath_hw
*ah
, u16 entry
)
2594 if (entry
>= ah
->caps
.keycache_size
) {
2595 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2596 "keychache entry %u out of range\n", entry
);
2600 keyType
= REG_READ(ah
, AR_KEYTABLE_TYPE(entry
));
2602 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), 0);
2603 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), 0);
2604 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), 0);
2605 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), 0);
2606 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), 0);
2607 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), AR_KEYTABLE_TYPE_CLR
);
2608 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), 0);
2609 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), 0);
2611 if (keyType
== AR_KEYTABLE_TYPE_TKIP
&& ATH9K_IS_MIC_ENABLED(ah
)) {
2612 u16 micentry
= entry
+ 64;
2614 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), 0);
2615 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
2616 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), 0);
2617 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
2624 bool ath9k_hw_keysetmac(struct ath_hw
*ah
, u16 entry
, const u8
*mac
)
2628 if (entry
>= ah
->caps
.keycache_size
) {
2629 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2630 "keychache entry %u out of range\n", entry
);
2635 macHi
= (mac
[5] << 8) | mac
[4];
2636 macLo
= (mac
[3] << 24) |
2641 macLo
|= (macHi
& 1) << 31;
2646 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), macLo
);
2647 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), macHi
| AR_KEYTABLE_VALID
);
2652 bool ath9k_hw_set_keycache_entry(struct ath_hw
*ah
, u16 entry
,
2653 const struct ath9k_keyval
*k
,
2656 const struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2657 u32 key0
, key1
, key2
, key3
, key4
;
2660 if (entry
>= pCap
->keycache_size
) {
2661 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2662 "keycache entry %u out of range\n", entry
);
2666 switch (k
->kv_type
) {
2667 case ATH9K_CIPHER_AES_OCB
:
2668 keyType
= AR_KEYTABLE_TYPE_AES
;
2670 case ATH9K_CIPHER_AES_CCM
:
2671 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_CIPHER_AESCCM
)) {
2672 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
2673 "AES-CCM not supported by mac rev 0x%x\n",
2674 ah
->hw_version
.macRev
);
2677 keyType
= AR_KEYTABLE_TYPE_CCM
;
2679 case ATH9K_CIPHER_TKIP
:
2680 keyType
= AR_KEYTABLE_TYPE_TKIP
;
2681 if (ATH9K_IS_MIC_ENABLED(ah
)
2682 && entry
+ 64 >= pCap
->keycache_size
) {
2683 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
2684 "entry %u inappropriate for TKIP\n", entry
);
2688 case ATH9K_CIPHER_WEP
:
2689 if (k
->kv_len
< WLAN_KEY_LEN_WEP40
) {
2690 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
2691 "WEP key length %u too small\n", k
->kv_len
);
2694 if (k
->kv_len
<= WLAN_KEY_LEN_WEP40
)
2695 keyType
= AR_KEYTABLE_TYPE_40
;
2696 else if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
2697 keyType
= AR_KEYTABLE_TYPE_104
;
2699 keyType
= AR_KEYTABLE_TYPE_128
;
2701 case ATH9K_CIPHER_CLR
:
2702 keyType
= AR_KEYTABLE_TYPE_CLR
;
2705 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2706 "cipher %u not supported\n", k
->kv_type
);
2710 key0
= get_unaligned_le32(k
->kv_val
+ 0);
2711 key1
= get_unaligned_le16(k
->kv_val
+ 4);
2712 key2
= get_unaligned_le32(k
->kv_val
+ 6);
2713 key3
= get_unaligned_le16(k
->kv_val
+ 10);
2714 key4
= get_unaligned_le32(k
->kv_val
+ 12);
2715 if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
2719 * Note: Key cache registers access special memory area that requires
2720 * two 32-bit writes to actually update the values in the internal
2721 * memory. Consequently, the exact order and pairs used here must be
2725 if (keyType
== AR_KEYTABLE_TYPE_TKIP
&& ATH9K_IS_MIC_ENABLED(ah
)) {
2726 u16 micentry
= entry
+ 64;
2729 * Write inverted key[47:0] first to avoid Michael MIC errors
2730 * on frames that could be sent or received at the same time.
2731 * The correct key will be written in the end once everything
2734 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), ~key0
);
2735 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), ~key1
);
2737 /* Write key[95:48] */
2738 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
2739 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
2741 /* Write key[127:96] and key type */
2742 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
2743 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
2745 /* Write MAC address for the entry */
2746 (void) ath9k_hw_keysetmac(ah
, entry
, mac
);
2748 if (ah
->misc_mode
& AR_PCU_MIC_NEW_LOC_ENA
) {
2750 * TKIP uses two key cache entries:
2751 * Michael MIC TX/RX keys in the same key cache entry
2752 * (idx = main index + 64):
2753 * key0 [31:0] = RX key [31:0]
2754 * key1 [15:0] = TX key [31:16]
2755 * key1 [31:16] = reserved
2756 * key2 [31:0] = RX key [63:32]
2757 * key3 [15:0] = TX key [15:0]
2758 * key3 [31:16] = reserved
2759 * key4 [31:0] = TX key [63:32]
2761 u32 mic0
, mic1
, mic2
, mic3
, mic4
;
2763 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
2764 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
2765 mic1
= get_unaligned_le16(k
->kv_txmic
+ 2) & 0xffff;
2766 mic3
= get_unaligned_le16(k
->kv_txmic
+ 0) & 0xffff;
2767 mic4
= get_unaligned_le32(k
->kv_txmic
+ 4);
2769 /* Write RX[31:0] and TX[31:16] */
2770 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
2771 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), mic1
);
2773 /* Write RX[63:32] and TX[15:0] */
2774 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
2775 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), mic3
);
2777 /* Write TX[63:32] and keyType(reserved) */
2778 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), mic4
);
2779 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
2780 AR_KEYTABLE_TYPE_CLR
);
2784 * TKIP uses four key cache entries (two for group
2786 * Michael MIC TX/RX keys are in different key cache
2787 * entries (idx = main index + 64 for TX and
2788 * main index + 32 + 96 for RX):
2789 * key0 [31:0] = TX/RX MIC key [31:0]
2790 * key1 [31:0] = reserved
2791 * key2 [31:0] = TX/RX MIC key [63:32]
2792 * key3 [31:0] = reserved
2793 * key4 [31:0] = reserved
2795 * Upper layer code will call this function separately
2796 * for TX and RX keys when these registers offsets are
2801 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
2802 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
2804 /* Write MIC key[31:0] */
2805 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
2806 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
2808 /* Write MIC key[63:32] */
2809 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
2810 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
2812 /* Write TX[63:32] and keyType(reserved) */
2813 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), 0);
2814 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
2815 AR_KEYTABLE_TYPE_CLR
);
2818 /* MAC address registers are reserved for the MIC entry */
2819 REG_WRITE(ah
, AR_KEYTABLE_MAC0(micentry
), 0);
2820 REG_WRITE(ah
, AR_KEYTABLE_MAC1(micentry
), 0);
2823 * Write the correct (un-inverted) key[47:0] last to enable
2824 * TKIP now that all other registers are set with correct
2827 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
2828 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
2830 /* Write key[47:0] */
2831 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
2832 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
2834 /* Write key[95:48] */
2835 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
2836 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
2838 /* Write key[127:96] and key type */
2839 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
2840 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
2842 /* Write MAC address for the entry */
2843 (void) ath9k_hw_keysetmac(ah
, entry
, mac
);
2849 bool ath9k_hw_keyisvalid(struct ath_hw
*ah
, u16 entry
)
2851 if (entry
< ah
->caps
.keycache_size
) {
2852 u32 val
= REG_READ(ah
, AR_KEYTABLE_MAC1(entry
));
2853 if (val
& AR_KEYTABLE_VALID
)
2859 /******************************/
2860 /* Power Management (Chipset) */
2861 /******************************/
2863 static void ath9k_set_power_sleep(struct ath_hw
*ah
, int setChip
)
2865 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2867 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
2868 AR_RTC_FORCE_WAKE_EN
);
2869 if (!AR_SREV_9100(ah
))
2870 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
2872 REG_CLR_BIT(ah
, (AR_RTC_RESET
),
2877 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
, int setChip
)
2879 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2881 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2883 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
2884 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
2885 AR_RTC_FORCE_WAKE_ON_INT
);
2887 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
2888 AR_RTC_FORCE_WAKE_EN
);
2893 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
, int setChip
)
2899 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2900 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2901 if (ath9k_hw_set_reset_reg(ah
,
2902 ATH9K_RESET_POWER_ON
) != true) {
2906 if (AR_SREV_9100(ah
))
2907 REG_SET_BIT(ah
, AR_RTC_RESET
,
2910 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2911 AR_RTC_FORCE_WAKE_EN
);
2914 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2915 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2916 if (val
== AR_RTC_STATUS_ON
)
2919 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2920 AR_RTC_FORCE_WAKE_EN
);
2923 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2924 "Failed to wakeup in %uus\n", POWER_UP_TIME
/ 20);
2929 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2934 static bool ath9k_hw_setpower_nolock(struct ath_hw
*ah
,
2935 enum ath9k_power_mode mode
)
2937 int status
= true, setChip
= true;
2938 static const char *modes
[] = {
2945 if (ah
->power_mode
== mode
)
2948 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "%s -> %s\n",
2949 modes
[ah
->power_mode
], modes
[mode
]);
2952 case ATH9K_PM_AWAKE
:
2953 status
= ath9k_hw_set_power_awake(ah
, setChip
);
2955 case ATH9K_PM_FULL_SLEEP
:
2956 ath9k_set_power_sleep(ah
, setChip
);
2957 ah
->chip_fullsleep
= true;
2959 case ATH9K_PM_NETWORK_SLEEP
:
2960 ath9k_set_power_network_sleep(ah
, setChip
);
2963 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2964 "Unknown power mode %u\n", mode
);
2967 ah
->power_mode
= mode
;
2972 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2974 unsigned long flags
;
2977 spin_lock_irqsave(&ah
->ah_sc
->sc_pm_lock
, flags
);
2978 ret
= ath9k_hw_setpower_nolock(ah
, mode
);
2979 spin_unlock_irqrestore(&ah
->ah_sc
->sc_pm_lock
, flags
);
2984 void ath9k_ps_wakeup(struct ath_softc
*sc
)
2986 unsigned long flags
;
2988 spin_lock_irqsave(&sc
->sc_pm_lock
, flags
);
2989 if (++sc
->ps_usecount
!= 1)
2992 ath9k_hw_setpower_nolock(sc
->sc_ah
, ATH9K_PM_AWAKE
);
2995 spin_unlock_irqrestore(&sc
->sc_pm_lock
, flags
);
2998 void ath9k_ps_restore(struct ath_softc
*sc
)
3000 unsigned long flags
;
3002 spin_lock_irqsave(&sc
->sc_pm_lock
, flags
);
3003 if (--sc
->ps_usecount
!= 0)
3006 if (sc
->ps_enabled
&&
3007 !(sc
->sc_flags
& (SC_OP_WAIT_FOR_BEACON
|
3008 SC_OP_WAIT_FOR_CAB
|
3009 SC_OP_WAIT_FOR_PSPOLL_DATA
|
3010 SC_OP_WAIT_FOR_TX_ACK
)))
3011 ath9k_hw_setpower_nolock(sc
->sc_ah
, ATH9K_PM_NETWORK_SLEEP
);
3014 spin_unlock_irqrestore(&sc
->sc_pm_lock
, flags
);
3018 * Helper for ASPM support.
3020 * Disable PLL when in L0s as well as receiver clock when in L1.
3021 * This power saving option must be enabled through the SerDes.
3023 * Programming the SerDes must go through the same 288 bit serial shift
3024 * register as the other analog registers. Hence the 9 writes.
3026 void ath9k_hw_configpcipowersave(struct ath_hw
*ah
, int restore
, int power_off
)
3031 if (ah
->is_pciexpress
!= true)
3034 /* Do not touch SerDes registers */
3035 if (ah
->config
.pcie_powersave_enable
== 2)
3038 /* Nothing to do on restore for 11N */
3040 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3042 * AR9280 2.0 or later chips use SerDes values from the
3043 * initvals.h initialized depending on chipset during
3046 for (i
= 0; i
< ah
->iniPcieSerdes
.ia_rows
; i
++) {
3047 REG_WRITE(ah
, INI_RA(&ah
->iniPcieSerdes
, i
, 0),
3048 INI_RA(&ah
->iniPcieSerdes
, i
, 1));
3050 } else if (AR_SREV_9280(ah
) &&
3051 (ah
->hw_version
.macRev
== AR_SREV_REVISION_9280_10
)) {
3052 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fd00);
3053 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
3055 /* RX shut off when elecidle is asserted */
3056 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xa8000019);
3057 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x13160820);
3058 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xe5980560);
3060 /* Shut off CLKREQ active in L1 */
3061 if (ah
->config
.pcie_clock_req
)
3062 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x401deffc);
3064 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x401deffd);
3066 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
3067 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
3068 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00043007);
3070 /* Load the new settings */
3071 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
3074 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
3075 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
3077 /* RX shut off when elecidle is asserted */
3078 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000039);
3079 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x53160824);
3080 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xe5980579);
3083 * Ignore ah->ah_config.pcie_clock_req setting for
3086 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x001defff);
3088 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
3089 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
3090 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e3007);
3092 /* Load the new settings */
3093 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
3098 /* set bit 19 to allow forcing of pcie core into L1 state */
3099 REG_SET_BIT(ah
, AR_PCIE_PM_CTRL
, AR_PCIE_PM_CTRL_ENA
);
3101 /* Several PCIe massages to ensure proper behaviour */
3102 if (ah
->config
.pcie_waen
) {
3103 val
= ah
->config
.pcie_waen
;
3105 val
&= (~AR_WA_D3_L1_DISABLE
);
3107 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
) ||
3109 val
= AR9285_WA_DEFAULT
;
3111 val
&= (~AR_WA_D3_L1_DISABLE
);
3112 } else if (AR_SREV_9280(ah
)) {
3114 * On AR9280 chips bit 22 of 0x4004 needs to be
3115 * set otherwise card may disappear.
3117 val
= AR9280_WA_DEFAULT
;
3119 val
&= (~AR_WA_D3_L1_DISABLE
);
3121 val
= AR_WA_DEFAULT
;
3124 REG_WRITE(ah
, AR_WA
, val
);
3129 * Set PCIe workaround bits
3130 * bit 14 in WA register (disable L1) should only
3131 * be set when device enters D3 and be cleared
3132 * when device comes back to D0.
3134 if (ah
->config
.pcie_waen
) {
3135 if (ah
->config
.pcie_waen
& AR_WA_D3_L1_DISABLE
)
3136 REG_SET_BIT(ah
, AR_WA
, AR_WA_D3_L1_DISABLE
);
3138 if (((AR_SREV_9285(ah
) || AR_SREV_9271(ah
) ||
3139 AR_SREV_9287(ah
)) &&
3140 (AR9285_WA_DEFAULT
& AR_WA_D3_L1_DISABLE
)) ||
3141 (AR_SREV_9280(ah
) &&
3142 (AR9280_WA_DEFAULT
& AR_WA_D3_L1_DISABLE
))) {
3143 REG_SET_BIT(ah
, AR_WA
, AR_WA_D3_L1_DISABLE
);
3149 /**********************/
3150 /* Interrupt Handling */
3151 /**********************/
3153 bool ath9k_hw_intrpend(struct ath_hw
*ah
)
3157 if (AR_SREV_9100(ah
))
3160 host_isr
= REG_READ(ah
, AR_INTR_ASYNC_CAUSE
);
3161 if ((host_isr
& AR_INTR_MAC_IRQ
) && (host_isr
!= AR_INTR_SPURIOUS
))
3164 host_isr
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
3165 if ((host_isr
& AR_INTR_SYNC_DEFAULT
)
3166 && (host_isr
!= AR_INTR_SPURIOUS
))
3172 bool ath9k_hw_getisr(struct ath_hw
*ah
, enum ath9k_int
*masked
)
3176 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3178 bool fatal_int
= false;
3180 if (!AR_SREV_9100(ah
)) {
3181 if (REG_READ(ah
, AR_INTR_ASYNC_CAUSE
) & AR_INTR_MAC_IRQ
) {
3182 if ((REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
)
3183 == AR_RTC_STATUS_ON
) {
3184 isr
= REG_READ(ah
, AR_ISR
);
3188 sync_cause
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
) &
3189 AR_INTR_SYNC_DEFAULT
;
3193 if (!isr
&& !sync_cause
)
3197 isr
= REG_READ(ah
, AR_ISR
);
3201 if (isr
& AR_ISR_BCNMISC
) {
3203 isr2
= REG_READ(ah
, AR_ISR_S2
);
3204 if (isr2
& AR_ISR_S2_TIM
)
3205 mask2
|= ATH9K_INT_TIM
;
3206 if (isr2
& AR_ISR_S2_DTIM
)
3207 mask2
|= ATH9K_INT_DTIM
;
3208 if (isr2
& AR_ISR_S2_DTIMSYNC
)
3209 mask2
|= ATH9K_INT_DTIMSYNC
;
3210 if (isr2
& (AR_ISR_S2_CABEND
))
3211 mask2
|= ATH9K_INT_CABEND
;
3212 if (isr2
& AR_ISR_S2_GTT
)
3213 mask2
|= ATH9K_INT_GTT
;
3214 if (isr2
& AR_ISR_S2_CST
)
3215 mask2
|= ATH9K_INT_CST
;
3216 if (isr2
& AR_ISR_S2_TSFOOR
)
3217 mask2
|= ATH9K_INT_TSFOOR
;
3220 isr
= REG_READ(ah
, AR_ISR_RAC
);
3221 if (isr
== 0xffffffff) {
3226 *masked
= isr
& ATH9K_INT_COMMON
;
3228 if (ah
->config
.intr_mitigation
) {
3229 if (isr
& (AR_ISR_RXMINTR
| AR_ISR_RXINTM
))
3230 *masked
|= ATH9K_INT_RX
;
3233 if (isr
& (AR_ISR_RXOK
| AR_ISR_RXERR
))
3234 *masked
|= ATH9K_INT_RX
;
3236 (AR_ISR_TXOK
| AR_ISR_TXDESC
| AR_ISR_TXERR
|
3240 *masked
|= ATH9K_INT_TX
;
3242 s0_s
= REG_READ(ah
, AR_ISR_S0_S
);
3243 ah
->intr_txqs
|= MS(s0_s
, AR_ISR_S0_QCU_TXOK
);
3244 ah
->intr_txqs
|= MS(s0_s
, AR_ISR_S0_QCU_TXDESC
);
3246 s1_s
= REG_READ(ah
, AR_ISR_S1_S
);
3247 ah
->intr_txqs
|= MS(s1_s
, AR_ISR_S1_QCU_TXERR
);
3248 ah
->intr_txqs
|= MS(s1_s
, AR_ISR_S1_QCU_TXEOL
);
3251 if (isr
& AR_ISR_RXORN
) {
3252 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
,
3253 "receive FIFO overrun interrupt\n");
3256 if (!AR_SREV_9100(ah
)) {
3257 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
3258 u32 isr5
= REG_READ(ah
, AR_ISR_S5_S
);
3259 if (isr5
& AR_ISR_S5_TIM_TIMER
)
3260 *masked
|= ATH9K_INT_TIM_TIMER
;
3267 if (AR_SREV_9100(ah
))
3270 if (isr
& AR_ISR_GENTMR
) {
3273 s5_s
= REG_READ(ah
, AR_ISR_S5_S
);
3274 if (isr
& AR_ISR_GENTMR
) {
3275 ah
->intr_gen_timer_trigger
=
3276 MS(s5_s
, AR_ISR_S5_GENTIMER_TRIG
);
3278 ah
->intr_gen_timer_thresh
=
3279 MS(s5_s
, AR_ISR_S5_GENTIMER_THRESH
);
3281 if (ah
->intr_gen_timer_trigger
)
3282 *masked
|= ATH9K_INT_GENTIMER
;
3290 (AR_INTR_SYNC_HOST1_FATAL
| AR_INTR_SYNC_HOST1_PERR
))
3294 if (sync_cause
& AR_INTR_SYNC_HOST1_FATAL
) {
3295 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
3296 "received PCI FATAL interrupt\n");
3298 if (sync_cause
& AR_INTR_SYNC_HOST1_PERR
) {
3299 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
3300 "received PCI PERR interrupt\n");
3302 *masked
|= ATH9K_INT_FATAL
;
3304 if (sync_cause
& AR_INTR_SYNC_RADM_CPL_TIMEOUT
) {
3305 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
,
3306 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3307 REG_WRITE(ah
, AR_RC
, AR_RC_HOSTIF
);
3308 REG_WRITE(ah
, AR_RC
, 0);
3309 *masked
|= ATH9K_INT_FATAL
;
3311 if (sync_cause
& AR_INTR_SYNC_LOCAL_TIMEOUT
) {
3312 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
,
3313 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3316 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE_CLR
, sync_cause
);
3317 (void) REG_READ(ah
, AR_INTR_SYNC_CAUSE_CLR
);
3323 enum ath9k_int
ath9k_hw_set_interrupts(struct ath_hw
*ah
, enum ath9k_int ints
)
3325 u32 omask
= ah
->mask_reg
;
3327 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3329 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "0x%x => 0x%x\n", omask
, ints
);
3331 if (omask
& ATH9K_INT_GLOBAL
) {
3332 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "disable IER\n");
3333 REG_WRITE(ah
, AR_IER
, AR_IER_DISABLE
);
3334 (void) REG_READ(ah
, AR_IER
);
3335 if (!AR_SREV_9100(ah
)) {
3336 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, 0);
3337 (void) REG_READ(ah
, AR_INTR_ASYNC_ENABLE
);
3339 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
3340 (void) REG_READ(ah
, AR_INTR_SYNC_ENABLE
);
3344 mask
= ints
& ATH9K_INT_COMMON
;
3347 if (ints
& ATH9K_INT_TX
) {
3348 if (ah
->txok_interrupt_mask
)
3349 mask
|= AR_IMR_TXOK
;
3350 if (ah
->txdesc_interrupt_mask
)
3351 mask
|= AR_IMR_TXDESC
;
3352 if (ah
->txerr_interrupt_mask
)
3353 mask
|= AR_IMR_TXERR
;
3354 if (ah
->txeol_interrupt_mask
)
3355 mask
|= AR_IMR_TXEOL
;
3357 if (ints
& ATH9K_INT_RX
) {
3358 mask
|= AR_IMR_RXERR
;
3359 if (ah
->config
.intr_mitigation
)
3360 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
3362 mask
|= AR_IMR_RXOK
| AR_IMR_RXDESC
;
3363 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
3364 mask
|= AR_IMR_GENTMR
;
3367 if (ints
& (ATH9K_INT_BMISC
)) {
3368 mask
|= AR_IMR_BCNMISC
;
3369 if (ints
& ATH9K_INT_TIM
)
3370 mask2
|= AR_IMR_S2_TIM
;
3371 if (ints
& ATH9K_INT_DTIM
)
3372 mask2
|= AR_IMR_S2_DTIM
;
3373 if (ints
& ATH9K_INT_DTIMSYNC
)
3374 mask2
|= AR_IMR_S2_DTIMSYNC
;
3375 if (ints
& ATH9K_INT_CABEND
)
3376 mask2
|= AR_IMR_S2_CABEND
;
3377 if (ints
& ATH9K_INT_TSFOOR
)
3378 mask2
|= AR_IMR_S2_TSFOOR
;
3381 if (ints
& (ATH9K_INT_GTT
| ATH9K_INT_CST
)) {
3382 mask
|= AR_IMR_BCNMISC
;
3383 if (ints
& ATH9K_INT_GTT
)
3384 mask2
|= AR_IMR_S2_GTT
;
3385 if (ints
& ATH9K_INT_CST
)
3386 mask2
|= AR_IMR_S2_CST
;
3389 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "new IMR 0x%x\n", mask
);
3390 REG_WRITE(ah
, AR_IMR
, mask
);
3391 mask
= REG_READ(ah
, AR_IMR_S2
) & ~(AR_IMR_S2_TIM
|
3393 AR_IMR_S2_DTIMSYNC
|
3397 AR_IMR_S2_GTT
| AR_IMR_S2_CST
);
3398 REG_WRITE(ah
, AR_IMR_S2
, mask
| mask2
);
3399 ah
->mask_reg
= ints
;
3401 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
3402 if (ints
& ATH9K_INT_TIM_TIMER
)
3403 REG_SET_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
3405 REG_CLR_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
3408 if (ints
& ATH9K_INT_GLOBAL
) {
3409 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "enable IER\n");
3410 REG_WRITE(ah
, AR_IER
, AR_IER_ENABLE
);
3411 if (!AR_SREV_9100(ah
)) {
3412 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
,
3414 REG_WRITE(ah
, AR_INTR_ASYNC_MASK
, AR_INTR_MAC_IRQ
);
3417 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
,
3418 AR_INTR_SYNC_DEFAULT
);
3419 REG_WRITE(ah
, AR_INTR_SYNC_MASK
,
3420 AR_INTR_SYNC_DEFAULT
);
3422 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "AR_IMR 0x%x IER 0x%x\n",
3423 REG_READ(ah
, AR_IMR
), REG_READ(ah
, AR_IER
));
3429 /*******************/
3430 /* Beacon Handling */
3431 /*******************/
3433 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
3437 ah
->beacon_interval
= beacon_period
;
3439 switch (ah
->opmode
) {
3440 case NL80211_IFTYPE_STATION
:
3441 case NL80211_IFTYPE_MONITOR
:
3442 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
3443 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, 0xffff);
3444 REG_WRITE(ah
, AR_NEXT_SWBA
, 0x7ffff);
3445 flags
|= AR_TBTT_TIMER_EN
;
3447 case NL80211_IFTYPE_ADHOC
:
3448 case NL80211_IFTYPE_MESH_POINT
:
3449 REG_SET_BIT(ah
, AR_TXCFG
,
3450 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
3451 REG_WRITE(ah
, AR_NEXT_NDP_TIMER
,
3452 TU_TO_USEC(next_beacon
+
3453 (ah
->atim_window
? ah
->
3455 flags
|= AR_NDP_TIMER_EN
;
3456 case NL80211_IFTYPE_AP
:
3457 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
3458 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
,
3459 TU_TO_USEC(next_beacon
-
3461 dma_beacon_response_time
));
3462 REG_WRITE(ah
, AR_NEXT_SWBA
,
3463 TU_TO_USEC(next_beacon
-
3465 sw_beacon_response_time
));
3467 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
3470 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
,
3471 "%s: unsupported opmode: %d\n",
3472 __func__
, ah
->opmode
);
3477 REG_WRITE(ah
, AR_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
3478 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
3479 REG_WRITE(ah
, AR_SWBA_PERIOD
, TU_TO_USEC(beacon_period
));
3480 REG_WRITE(ah
, AR_NDP_PERIOD
, TU_TO_USEC(beacon_period
));
3482 beacon_period
&= ~ATH9K_BEACON_ENA
;
3483 if (beacon_period
& ATH9K_BEACON_RESET_TSF
) {
3484 beacon_period
&= ~ATH9K_BEACON_RESET_TSF
;
3485 ath9k_hw_reset_tsf(ah
);
3488 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
3491 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
3492 const struct ath9k_beacon_state
*bs
)
3494 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
3495 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3497 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(bs
->bs_nexttbtt
));
3499 REG_WRITE(ah
, AR_BEACON_PERIOD
,
3500 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
3501 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
,
3502 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
3504 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
3505 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
3507 beaconintval
= bs
->bs_intval
& ATH9K_BEACON_PERIOD
;
3509 if (bs
->bs_sleepduration
> beaconintval
)
3510 beaconintval
= bs
->bs_sleepduration
;
3512 dtimperiod
= bs
->bs_dtimperiod
;
3513 if (bs
->bs_sleepduration
> dtimperiod
)
3514 dtimperiod
= bs
->bs_sleepduration
;
3516 if (beaconintval
== dtimperiod
)
3517 nextTbtt
= bs
->bs_nextdtim
;
3519 nextTbtt
= bs
->bs_nexttbtt
;
3521 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
3522 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "next beacon %d\n", nextTbtt
);
3523 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "beacon period %d\n", beaconintval
);
3524 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "DTIM period %d\n", dtimperiod
);
3526 REG_WRITE(ah
, AR_NEXT_DTIM
,
3527 TU_TO_USEC(bs
->bs_nextdtim
- SLEEP_SLOP
));
3528 REG_WRITE(ah
, AR_NEXT_TIM
, TU_TO_USEC(nextTbtt
- SLEEP_SLOP
));
3530 REG_WRITE(ah
, AR_SLEEP1
,
3531 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
3532 | AR_SLEEP1_ASSUME_DTIM
);
3534 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
3535 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
3537 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
3539 REG_WRITE(ah
, AR_SLEEP2
,
3540 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
3542 REG_WRITE(ah
, AR_TIM_PERIOD
, TU_TO_USEC(beaconintval
));
3543 REG_WRITE(ah
, AR_DTIM_PERIOD
, TU_TO_USEC(dtimperiod
));
3545 REG_SET_BIT(ah
, AR_TIMER_MODE
,
3546 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
3549 /* TSF Out of Range Threshold */
3550 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
3553 /*******************/
3554 /* HW Capabilities */
3555 /*******************/
3557 void ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
3559 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3560 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
3561 struct ath_btcoex_info
*btcoex_info
= &ah
->ah_sc
->btcoex_info
;
3563 u16 capField
= 0, eeval
;
3565 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
3566 regulatory
->current_rd
= eeval
;
3568 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_1
);
3569 if (AR_SREV_9285_10_OR_LATER(ah
))
3570 eeval
|= AR9285_RDEXT_DEFAULT
;
3571 regulatory
->current_rd_ext
= eeval
;
3573 capField
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_CAP
);
3575 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
3576 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
3577 if (regulatory
->current_rd
== 0x64 ||
3578 regulatory
->current_rd
== 0x65)
3579 regulatory
->current_rd
+= 5;
3580 else if (regulatory
->current_rd
== 0x41)
3581 regulatory
->current_rd
= 0x43;
3582 DPRINTF(ah
->ah_sc
, ATH_DBG_REGULATORY
,
3583 "regdomain mapped to 0x%x\n", regulatory
->current_rd
);
3586 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
3587 bitmap_zero(pCap
->wireless_modes
, ATH9K_MODE_MAX
);
3589 if (eeval
& AR5416_OPFLAGS_11A
) {
3590 set_bit(ATH9K_MODE_11A
, pCap
->wireless_modes
);
3591 if (ah
->config
.ht_enable
) {
3592 if (!(eeval
& AR5416_OPFLAGS_N_5G_HT20
))
3593 set_bit(ATH9K_MODE_11NA_HT20
,
3594 pCap
->wireless_modes
);
3595 if (!(eeval
& AR5416_OPFLAGS_N_5G_HT40
)) {
3596 set_bit(ATH9K_MODE_11NA_HT40PLUS
,
3597 pCap
->wireless_modes
);
3598 set_bit(ATH9K_MODE_11NA_HT40MINUS
,
3599 pCap
->wireless_modes
);
3604 if (eeval
& AR5416_OPFLAGS_11G
) {
3605 set_bit(ATH9K_MODE_11G
, pCap
->wireless_modes
);
3606 if (ah
->config
.ht_enable
) {
3607 if (!(eeval
& AR5416_OPFLAGS_N_2G_HT20
))
3608 set_bit(ATH9K_MODE_11NG_HT20
,
3609 pCap
->wireless_modes
);
3610 if (!(eeval
& AR5416_OPFLAGS_N_2G_HT40
)) {
3611 set_bit(ATH9K_MODE_11NG_HT40PLUS
,
3612 pCap
->wireless_modes
);
3613 set_bit(ATH9K_MODE_11NG_HT40MINUS
,
3614 pCap
->wireless_modes
);
3619 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
3621 * For AR9271 we will temporarilly uses the rx chainmax as read from
3624 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
3625 !(eeval
& AR5416_OPFLAGS_11A
) &&
3626 !(AR_SREV_9271(ah
)))
3627 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3628 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
3630 /* Use rx_chainmask from EEPROM. */
3631 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
3633 if (!(AR_SREV_9280(ah
) && (ah
->hw_version
.macRev
== 0)))
3634 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
3636 pCap
->low_2ghz_chan
= 2312;
3637 pCap
->high_2ghz_chan
= 2732;
3639 pCap
->low_5ghz_chan
= 4920;
3640 pCap
->high_5ghz_chan
= 6100;
3642 pCap
->hw_caps
&= ~ATH9K_HW_CAP_CIPHER_CKIP
;
3643 pCap
->hw_caps
|= ATH9K_HW_CAP_CIPHER_TKIP
;
3644 pCap
->hw_caps
|= ATH9K_HW_CAP_CIPHER_AESCCM
;
3646 pCap
->hw_caps
&= ~ATH9K_HW_CAP_MIC_CKIP
;
3647 pCap
->hw_caps
|= ATH9K_HW_CAP_MIC_TKIP
;
3648 pCap
->hw_caps
|= ATH9K_HW_CAP_MIC_AESCCM
;
3650 if (ah
->config
.ht_enable
)
3651 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
3653 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
3655 pCap
->hw_caps
|= ATH9K_HW_CAP_GTT
;
3656 pCap
->hw_caps
|= ATH9K_HW_CAP_VEOL
;
3657 pCap
->hw_caps
|= ATH9K_HW_CAP_BSSIDMASK
;
3658 pCap
->hw_caps
&= ~ATH9K_HW_CAP_MCAST_KEYSEARCH
;
3660 if (capField
& AR_EEPROM_EEPCAP_MAXQCU
)
3661 pCap
->total_queues
=
3662 MS(capField
, AR_EEPROM_EEPCAP_MAXQCU
);
3664 pCap
->total_queues
= ATH9K_NUM_TX_QUEUES
;
3666 if (capField
& AR_EEPROM_EEPCAP_KC_ENTRIES
)
3667 pCap
->keycache_size
=
3668 1 << MS(capField
, AR_EEPROM_EEPCAP_KC_ENTRIES
);
3670 pCap
->keycache_size
= AR_KEYTABLE_SIZE
;
3672 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCC
;
3673 pCap
->tx_triglevel_max
= MAX_TX_FIFO_THRESHOLD
;
3675 if (AR_SREV_9285_10_OR_LATER(ah
))
3676 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
3677 else if (AR_SREV_9280_10_OR_LATER(ah
))
3678 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
3680 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
3682 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
)) {
3683 pCap
->hw_caps
|= ATH9K_HW_CAP_CST
;
3684 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
3686 pCap
->rts_aggr_limit
= (8 * 1024);
3689 pCap
->hw_caps
|= ATH9K_HW_CAP_ENHANCEDPM
;
3691 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3692 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
3693 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
3695 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
3696 ah
->rfkill_polarity
=
3697 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
3699 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
3703 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
3705 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
3706 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
3708 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
3710 if (regulatory
->current_rd_ext
& (1 << REG_EXT_JAPAN_MIDBAND
)) {
3712 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
3713 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
|
3714 AR_EEPROM_EEREGCAP_EN_KK_U2
|
3715 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND
;
3718 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
3719 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
;
3722 pCap
->reg_cap
|= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND
;
3724 pCap
->num_antcfg_5ghz
=
3725 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_5GHZ
);
3726 pCap
->num_antcfg_2ghz
=
3727 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_2GHZ
);
3729 if (AR_SREV_9280_10_OR_LATER(ah
) &&
3730 ath_btcoex_supported(ah
->hw_version
.subsysid
)) {
3731 btcoex_info
->btactive_gpio
= ATH_BTACTIVE_GPIO
;
3732 btcoex_info
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO
;
3734 if (AR_SREV_9285(ah
)) {
3735 btcoex_info
->btcoex_scheme
= ATH_BTCOEX_CFG_3WIRE
;
3736 btcoex_info
->btpriority_gpio
= ATH_BTPRIORITY_GPIO
;
3738 btcoex_info
->btcoex_scheme
= ATH_BTCOEX_CFG_2WIRE
;
3741 btcoex_info
->btcoex_scheme
= ATH_BTCOEX_CFG_NONE
;
3745 bool ath9k_hw_getcapability(struct ath_hw
*ah
, enum ath9k_capability_type type
,
3746 u32 capability
, u32
*result
)
3748 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
3750 case ATH9K_CAP_CIPHER
:
3751 switch (capability
) {
3752 case ATH9K_CIPHER_AES_CCM
:
3753 case ATH9K_CIPHER_AES_OCB
:
3754 case ATH9K_CIPHER_TKIP
:
3755 case ATH9K_CIPHER_WEP
:
3756 case ATH9K_CIPHER_MIC
:
3757 case ATH9K_CIPHER_CLR
:
3762 case ATH9K_CAP_TKIP_MIC
:
3763 switch (capability
) {
3767 return (ah
->sta_id1_defaults
&
3768 AR_STA_ID1_CRPT_MIC_ENABLE
) ? true :
3771 case ATH9K_CAP_TKIP_SPLIT
:
3772 return (ah
->misc_mode
& AR_PCU_MIC_NEW_LOC_ENA
) ?
3774 case ATH9K_CAP_DIVERSITY
:
3775 return (REG_READ(ah
, AR_PHY_CCK_DETECT
) &
3776 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
) ?
3778 case ATH9K_CAP_MCAST_KEYSRCH
:
3779 switch (capability
) {
3783 if (REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_ADHOC
) {
3786 return (ah
->sta_id1_defaults
&
3787 AR_STA_ID1_MCAST_KSRCH
) ? true :
3792 case ATH9K_CAP_TXPOW
:
3793 switch (capability
) {
3797 *result
= regulatory
->power_limit
;
3800 *result
= regulatory
->max_power_level
;
3803 *result
= regulatory
->tp_scale
;
3808 return (AR_SREV_9280_20_OR_LATER(ah
) &&
3809 (ah
->eep_ops
->get_eeprom(ah
, EEP_RC_CHAIN_MASK
) == 1))
3816 bool ath9k_hw_setcapability(struct ath_hw
*ah
, enum ath9k_capability_type type
,
3817 u32 capability
, u32 setting
, int *status
)
3822 case ATH9K_CAP_TKIP_MIC
:
3824 ah
->sta_id1_defaults
|=
3825 AR_STA_ID1_CRPT_MIC_ENABLE
;
3827 ah
->sta_id1_defaults
&=
3828 ~AR_STA_ID1_CRPT_MIC_ENABLE
;
3830 case ATH9K_CAP_DIVERSITY
:
3831 v
= REG_READ(ah
, AR_PHY_CCK_DETECT
);
3833 v
|= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
;
3835 v
&= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
;
3836 REG_WRITE(ah
, AR_PHY_CCK_DETECT
, v
);
3838 case ATH9K_CAP_MCAST_KEYSRCH
:
3840 ah
->sta_id1_defaults
|= AR_STA_ID1_MCAST_KSRCH
;
3842 ah
->sta_id1_defaults
&= ~AR_STA_ID1_MCAST_KSRCH
;
3849 /****************************/
3850 /* GPIO / RFKILL / Antennae */
3851 /****************************/
3853 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
3857 u32 gpio_shift
, tmp
;
3860 addr
= AR_GPIO_OUTPUT_MUX3
;
3862 addr
= AR_GPIO_OUTPUT_MUX2
;
3864 addr
= AR_GPIO_OUTPUT_MUX1
;
3866 gpio_shift
= (gpio
% 6) * 5;
3868 if (AR_SREV_9280_20_OR_LATER(ah
)
3869 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
3870 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
3871 (0x1f << gpio_shift
));
3873 tmp
= REG_READ(ah
, addr
);
3874 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
3875 tmp
&= ~(0x1f << gpio_shift
);
3876 tmp
|= (type
<< gpio_shift
);
3877 REG_WRITE(ah
, addr
, tmp
);
3881 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
3885 ASSERT(gpio
< ah
->caps
.num_gpio_pins
);
3887 gpio_shift
= gpio
<< 1;
3891 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
3892 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
3895 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
3897 #define MS_REG_READ(x, y) \
3898 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3900 if (gpio
>= ah
->caps
.num_gpio_pins
)
3903 if (AR_SREV_9287_10_OR_LATER(ah
))
3904 return MS_REG_READ(AR9287
, gpio
) != 0;
3905 else if (AR_SREV_9285_10_OR_LATER(ah
))
3906 return MS_REG_READ(AR9285
, gpio
) != 0;
3907 else if (AR_SREV_9280_10_OR_LATER(ah
))
3908 return MS_REG_READ(AR928X
, gpio
) != 0;
3910 return MS_REG_READ(AR
, gpio
) != 0;
3913 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
3918 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
3920 gpio_shift
= 2 * gpio
;
3924 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
3925 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
3928 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
3930 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
3934 u32
ath9k_hw_getdefantenna(struct ath_hw
*ah
)
3936 return REG_READ(ah
, AR_DEF_ANTENNA
) & 0x7;
3939 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
3941 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
3944 bool ath9k_hw_setantennaswitch(struct ath_hw
*ah
,
3945 enum ath9k_ant_setting settings
,
3946 struct ath9k_channel
*chan
,
3951 static u8 tx_chainmask_cfg
, rx_chainmask_cfg
;
3953 if (AR_SREV_9280(ah
)) {
3954 if (!tx_chainmask_cfg
) {
3956 tx_chainmask_cfg
= *tx_chainmask
;
3957 rx_chainmask_cfg
= *rx_chainmask
;
3961 case ATH9K_ANT_FIXED_A
:
3962 *tx_chainmask
= ATH9K_ANTENNA0_CHAINMASK
;
3963 *rx_chainmask
= ATH9K_ANTENNA0_CHAINMASK
;
3964 *antenna_cfgd
= true;
3966 case ATH9K_ANT_FIXED_B
:
3967 if (ah
->caps
.tx_chainmask
>
3968 ATH9K_ANTENNA1_CHAINMASK
) {
3969 *tx_chainmask
= ATH9K_ANTENNA1_CHAINMASK
;
3971 *rx_chainmask
= ATH9K_ANTENNA1_CHAINMASK
;
3972 *antenna_cfgd
= true;
3974 case ATH9K_ANT_VARIABLE
:
3975 *tx_chainmask
= tx_chainmask_cfg
;
3976 *rx_chainmask
= rx_chainmask_cfg
;
3977 *antenna_cfgd
= true;
3983 ah
->config
.diversity_control
= settings
;
3989 /*********************/
3990 /* General Operation */
3991 /*********************/
3993 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
3995 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
3996 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
3998 if (phybits
& AR_PHY_ERR_RADAR
)
3999 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
4000 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
4001 bits
|= ATH9K_RX_FILTER_PHYERR
;
4006 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
4010 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
4013 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
4014 phybits
|= AR_PHY_ERR_RADAR
;
4015 if (bits
& ATH9K_RX_FILTER_PHYERR
)
4016 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
4017 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
4020 REG_WRITE(ah
, AR_RXCFG
,
4021 REG_READ(ah
, AR_RXCFG
) | AR_RXCFG_ZLFDMA
);
4023 REG_WRITE(ah
, AR_RXCFG
,
4024 REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_ZLFDMA
);
4027 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
4029 return ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
);
4032 bool ath9k_hw_disable(struct ath_hw
*ah
)
4034 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
4037 return ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
);
4040 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
)
4042 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
4043 struct ath9k_channel
*chan
= ah
->curchan
;
4044 struct ieee80211_channel
*channel
= chan
->chan
;
4046 regulatory
->power_limit
= min(limit
, (u32
) MAX_RATE_POWER
);
4048 ah
->eep_ops
->set_txpower(ah
, chan
,
4049 ath9k_regd_get_ctl(regulatory
, chan
),
4050 channel
->max_antenna_gain
* 2,
4051 channel
->max_power
* 2,
4052 min((u32
) MAX_RATE_POWER
,
4053 (u32
) regulatory
->power_limit
));
4056 void ath9k_hw_setmac(struct ath_hw
*ah
, const u8
*mac
)
4058 memcpy(ah
->macaddr
, mac
, ETH_ALEN
);
4061 void ath9k_hw_setopmode(struct ath_hw
*ah
)
4063 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
4066 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
4068 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
4069 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
4072 void ath9k_hw_setbssidmask(struct ath_softc
*sc
)
4074 REG_WRITE(sc
->sc_ah
, AR_BSSMSKL
, get_unaligned_le32(sc
->bssidmask
));
4075 REG_WRITE(sc
->sc_ah
, AR_BSSMSKU
, get_unaligned_le16(sc
->bssidmask
+ 4));
4078 void ath9k_hw_write_associd(struct ath_softc
*sc
)
4080 REG_WRITE(sc
->sc_ah
, AR_BSS_ID0
, get_unaligned_le32(sc
->curbssid
));
4081 REG_WRITE(sc
->sc_ah
, AR_BSS_ID1
, get_unaligned_le16(sc
->curbssid
+ 4) |
4082 ((sc
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
4085 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
4089 tsf
= REG_READ(ah
, AR_TSF_U32
);
4090 tsf
= (tsf
<< 32) | REG_READ(ah
, AR_TSF_L32
);
4095 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
4097 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
4098 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
4101 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
4103 ath9k_ps_wakeup(ah
->ah_sc
);
4104 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
4105 AH_TSF_WRITE_TIMEOUT
))
4106 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
4107 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4109 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
4110 ath9k_ps_restore(ah
->ah_sc
);
4113 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, u32 setting
)
4116 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
4118 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
4121 bool ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
4123 if (us
< ATH9K_SLOT_TIME_9
|| us
> ath9k_hw_mac_to_usec(ah
, 0xffff)) {
4124 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "bad slot time %u\n", us
);
4125 ah
->slottime
= (u32
) -1;
4128 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, ath9k_hw_mac_to_clks(ah
, us
));
4134 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
, enum ath9k_ht_macmode mode
)
4138 if (mode
== ATH9K_HT_MACMODE_2040
&&
4139 !ah
->config
.cwm_ignore_extcca
)
4140 macmode
= AR_2040_JOINED_RX_CLEAR
;
4144 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
4147 /* HW Generic timers configuration */
4149 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
4151 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4152 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4153 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4154 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4155 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4156 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4157 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4158 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4159 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
4160 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
4161 AR_NDP2_TIMER_MODE
, 0x0002},
4162 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
4163 AR_NDP2_TIMER_MODE
, 0x0004},
4164 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
4165 AR_NDP2_TIMER_MODE
, 0x0008},
4166 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
4167 AR_NDP2_TIMER_MODE
, 0x0010},
4168 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
4169 AR_NDP2_TIMER_MODE
, 0x0020},
4170 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
4171 AR_NDP2_TIMER_MODE
, 0x0040},
4172 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
4173 AR_NDP2_TIMER_MODE
, 0x0080}
4176 /* HW generic timer primitives */
4178 /* compute and clear index of rightmost 1 */
4179 static u32
rightmost_index(struct ath_gen_timer_table
*timer_table
, u32
*mask
)
4189 return timer_table
->gen_timer_index
[b
];
4192 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
4194 return REG_READ(ah
, AR_TSF_L32
);
4197 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
4198 void (*trigger
)(void *),
4199 void (*overflow
)(void *),
4203 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4204 struct ath_gen_timer
*timer
;
4206 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
4208 if (timer
== NULL
) {
4209 printk(KERN_DEBUG
"Failed to allocate memory"
4210 "for hw timer[%d]\n", timer_index
);
4214 /* allocate a hardware generic timer slot */
4215 timer_table
->timers
[timer_index
] = timer
;
4216 timer
->index
= timer_index
;
4217 timer
->trigger
= trigger
;
4218 timer
->overflow
= overflow
;
4224 void ath_gen_timer_start(struct ath_hw
*ah
,
4225 struct ath_gen_timer
*timer
,
4226 u32 timer_next
, u32 timer_period
)
4228 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4231 BUG_ON(!timer_period
);
4233 set_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
4235 tsf
= ath9k_hw_gettsf32(ah
);
4237 DPRINTF(ah
->ah_sc
, ATH_DBG_HWTIMER
, "curent tsf %x period %x"
4238 "timer_next %x\n", tsf
, timer_period
, timer_next
);
4241 * Pull timer_next forward if the current TSF already passed it
4242 * because of software latency
4244 if (timer_next
< tsf
)
4245 timer_next
= tsf
+ timer_period
;
4248 * Program generic timer registers
4250 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
4252 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
4254 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
4255 gen_tmr_configuration
[timer
->index
].mode_mask
);
4257 /* Enable both trigger and thresh interrupt masks */
4258 REG_SET_BIT(ah
, AR_IMR_S5
,
4259 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
4260 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
4262 if ((ah
->ah_sc
->imask
& ATH9K_INT_GENTIMER
) == 0) {
4263 ath9k_hw_set_interrupts(ah
, 0);
4264 ah
->ah_sc
->imask
|= ATH9K_INT_GENTIMER
;
4265 ath9k_hw_set_interrupts(ah
, ah
->ah_sc
->imask
);
4269 void ath_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
4271 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4273 if ((timer
->index
< AR_FIRST_NDP_TIMER
) ||
4274 (timer
->index
>= ATH_MAX_GEN_TIMER
)) {
4278 /* Clear generic timer enable bits. */
4279 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
4280 gen_tmr_configuration
[timer
->index
].mode_mask
);
4282 /* Disable both trigger and thresh interrupt masks */
4283 REG_CLR_BIT(ah
, AR_IMR_S5
,
4284 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
4285 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
4287 clear_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
4289 /* if no timer is enabled, turn off interrupt mask */
4290 if (timer_table
->timer_mask
.val
== 0) {
4291 ath9k_hw_set_interrupts(ah
, 0);
4292 ah
->ah_sc
->imask
&= ~ATH9K_INT_GENTIMER
;
4293 ath9k_hw_set_interrupts(ah
, ah
->ah_sc
->imask
);
4297 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
4299 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4301 /* free the hardware generic timer slot */
4302 timer_table
->timers
[timer
->index
] = NULL
;
4307 * Generic Timer Interrupts handling
4309 void ath_gen_timer_isr(struct ath_hw
*ah
)
4311 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4312 struct ath_gen_timer
*timer
;
4313 u32 trigger_mask
, thresh_mask
, index
;
4315 /* get hardware generic timer interrupt status */
4316 trigger_mask
= ah
->intr_gen_timer_trigger
;
4317 thresh_mask
= ah
->intr_gen_timer_thresh
;
4318 trigger_mask
&= timer_table
->timer_mask
.val
;
4319 thresh_mask
&= timer_table
->timer_mask
.val
;
4321 trigger_mask
&= ~thresh_mask
;
4323 while (thresh_mask
) {
4324 index
= rightmost_index(timer_table
, &thresh_mask
);
4325 timer
= timer_table
->timers
[index
];
4327 DPRINTF(ah
->ah_sc
, ATH_DBG_HWTIMER
,
4328 "TSF overflow for Gen timer %d\n", index
);
4329 timer
->overflow(timer
->arg
);
4332 while (trigger_mask
) {
4333 index
= rightmost_index(timer_table
, &trigger_mask
);
4334 timer
= timer_table
->timers
[index
];
4336 DPRINTF(ah
->ah_sc
, ATH_DBG_HWTIMER
,
4337 "Gen timer[%d] trigger\n", index
);
4338 timer
->trigger(timer
->arg
);
4343 * Primitive to disable ASPM
4345 void ath_pcie_aspm_disable(struct ath_softc
*sc
)
4347 struct pci_dev
*pdev
= to_pci_dev(sc
->dev
);
4350 pci_read_config_byte(pdev
, ATH_PCIE_CAP_LINK_CTRL
, &aspm
);
4351 aspm
&= ~(ATH_PCIE_CAP_LINK_L0S
| ATH_PCIE_CAP_LINK_L1
);
4352 pci_write_config_byte(pdev
, ATH_PCIE_CAP_LINK_CTRL
, aspm
);