x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / main.c
blob52bed89063d4e6a0941541683dc116e034ac22fb
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
20 static char *dev_info = "ath9k";
22 MODULE_AUTHOR("Atheros Communications");
23 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
24 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
25 MODULE_LICENSE("Dual BSD/GPL");
27 static int modparam_nohwcrypt;
28 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
29 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
31 /* We use the hw_value as an index into our private channel structure */
33 #define CHAN2G(_freq, _idx) { \
34 .center_freq = (_freq), \
35 .hw_value = (_idx), \
36 .max_power = 20, \
39 #define CHAN5G(_freq, _idx) { \
40 .band = IEEE80211_BAND_5GHZ, \
41 .center_freq = (_freq), \
42 .hw_value = (_idx), \
43 .max_power = 20, \
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47 * on 5 MHz steps, we support the channels which we know
48 * we have calibration data for all cards though to make
49 * this static */
50 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
51 CHAN2G(2412, 0), /* Channel 1 */
52 CHAN2G(2417, 1), /* Channel 2 */
53 CHAN2G(2422, 2), /* Channel 3 */
54 CHAN2G(2427, 3), /* Channel 4 */
55 CHAN2G(2432, 4), /* Channel 5 */
56 CHAN2G(2437, 5), /* Channel 6 */
57 CHAN2G(2442, 6), /* Channel 7 */
58 CHAN2G(2447, 7), /* Channel 8 */
59 CHAN2G(2452, 8), /* Channel 9 */
60 CHAN2G(2457, 9), /* Channel 10 */
61 CHAN2G(2462, 10), /* Channel 11 */
62 CHAN2G(2467, 11), /* Channel 12 */
63 CHAN2G(2472, 12), /* Channel 13 */
64 CHAN2G(2484, 13), /* Channel 14 */
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68 * on 5 MHz steps, we support the channels which we know
69 * we have calibration data for all cards though to make
70 * this static */
71 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
72 /* _We_ call this UNII 1 */
73 CHAN5G(5180, 14), /* Channel 36 */
74 CHAN5G(5200, 15), /* Channel 40 */
75 CHAN5G(5220, 16), /* Channel 44 */
76 CHAN5G(5240, 17), /* Channel 48 */
77 /* _We_ call this UNII 2 */
78 CHAN5G(5260, 18), /* Channel 52 */
79 CHAN5G(5280, 19), /* Channel 56 */
80 CHAN5G(5300, 20), /* Channel 60 */
81 CHAN5G(5320, 21), /* Channel 64 */
82 /* _We_ call this "Middle band" */
83 CHAN5G(5500, 22), /* Channel 100 */
84 CHAN5G(5520, 23), /* Channel 104 */
85 CHAN5G(5540, 24), /* Channel 108 */
86 CHAN5G(5560, 25), /* Channel 112 */
87 CHAN5G(5580, 26), /* Channel 116 */
88 CHAN5G(5600, 27), /* Channel 120 */
89 CHAN5G(5620, 28), /* Channel 124 */
90 CHAN5G(5640, 29), /* Channel 128 */
91 CHAN5G(5660, 30), /* Channel 132 */
92 CHAN5G(5680, 31), /* Channel 136 */
93 CHAN5G(5700, 32), /* Channel 140 */
94 /* _We_ call this UNII 3 */
95 CHAN5G(5745, 33), /* Channel 149 */
96 CHAN5G(5765, 34), /* Channel 153 */
97 CHAN5G(5785, 35), /* Channel 157 */
98 CHAN5G(5805, 36), /* Channel 161 */
99 CHAN5G(5825, 37), /* Channel 165 */
102 static void ath_cache_conf_rate(struct ath_softc *sc,
103 struct ieee80211_conf *conf)
105 switch (conf->channel->band) {
106 case IEEE80211_BAND_2GHZ:
107 if (conf_is_ht20(conf))
108 sc->cur_rate_table =
109 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
110 else if (conf_is_ht40_minus(conf))
111 sc->cur_rate_table =
112 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
113 else if (conf_is_ht40_plus(conf))
114 sc->cur_rate_table =
115 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
116 else
117 sc->cur_rate_table =
118 sc->hw_rate_table[ATH9K_MODE_11G];
119 break;
120 case IEEE80211_BAND_5GHZ:
121 if (conf_is_ht20(conf))
122 sc->cur_rate_table =
123 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
124 else if (conf_is_ht40_minus(conf))
125 sc->cur_rate_table =
126 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
127 else if (conf_is_ht40_plus(conf))
128 sc->cur_rate_table =
129 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
130 else
131 sc->cur_rate_table =
132 sc->hw_rate_table[ATH9K_MODE_11A];
133 break;
134 default:
135 BUG_ON(1);
136 break;
140 static void ath_update_txpow(struct ath_softc *sc)
142 struct ath_hw *ah = sc->sc_ah;
143 u32 txpow;
145 if (sc->curtxpow != sc->config.txpowlimit) {
146 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
147 /* read back in case value is clamped */
148 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
149 sc->curtxpow = txpow;
153 static u8 parse_mpdudensity(u8 mpdudensity)
156 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157 * 0 for no restriction
158 * 1 for 1/4 us
159 * 2 for 1/2 us
160 * 3 for 1 us
161 * 4 for 2 us
162 * 5 for 4 us
163 * 6 for 8 us
164 * 7 for 16 us
166 switch (mpdudensity) {
167 case 0:
168 return 0;
169 case 1:
170 case 2:
171 case 3:
172 /* Our lower layer calculations limit our precision to
173 1 microsecond */
174 return 1;
175 case 4:
176 return 2;
177 case 5:
178 return 4;
179 case 6:
180 return 8;
181 case 7:
182 return 16;
183 default:
184 return 0;
188 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
190 const struct ath_rate_table *rate_table = NULL;
191 struct ieee80211_supported_band *sband;
192 struct ieee80211_rate *rate;
193 int i, maxrates;
195 switch (band) {
196 case IEEE80211_BAND_2GHZ:
197 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
198 break;
199 case IEEE80211_BAND_5GHZ:
200 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
201 break;
202 default:
203 break;
206 if (rate_table == NULL)
207 return;
209 sband = &sc->sbands[band];
210 rate = sc->rates[band];
212 if (rate_table->rate_cnt > ATH_RATE_MAX)
213 maxrates = ATH_RATE_MAX;
214 else
215 maxrates = rate_table->rate_cnt;
217 for (i = 0; i < maxrates; i++) {
218 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
219 rate[i].hw_value = rate_table->info[i].ratecode;
220 if (rate_table->info[i].short_preamble) {
221 rate[i].hw_value_short = rate_table->info[i].ratecode |
222 rate_table->info[i].short_preamble;
223 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
225 sband->n_bitrates++;
227 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
228 rate[i].bitrate / 10, rate[i].hw_value);
232 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
233 struct ieee80211_hw *hw)
235 struct ieee80211_channel *curchan = hw->conf.channel;
236 struct ath9k_channel *channel;
237 u8 chan_idx;
239 chan_idx = curchan->hw_value;
240 channel = &sc->sc_ah->channels[chan_idx];
241 ath9k_update_ichannel(sc, hw, channel);
242 return channel;
246 * Set/change channels. If the channel is really being changed, it's done
247 * by reseting the chip. To accomplish this we must first cleanup any pending
248 * DMA, then restart stuff.
250 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
251 struct ath9k_channel *hchan)
253 struct ath_hw *ah = sc->sc_ah;
254 bool fastcc = true, stopped;
255 struct ieee80211_channel *channel = hw->conf.channel;
256 int r;
258 if (sc->sc_flags & SC_OP_INVALID)
259 return -EIO;
261 ath9k_ps_wakeup(sc);
264 * This is only performed if the channel settings have
265 * actually changed.
267 * To switch channels clear any pending DMA operations;
268 * wait long enough for the RX fifo to drain, reset the
269 * hardware at the new frequency, and then re-enable
270 * the relevant bits of the h/w.
272 ath9k_hw_set_interrupts(ah, 0);
273 ath_drain_all_txq(sc, false);
274 stopped = ath_stoprecv(sc);
276 /* XXX: do not flush receive queue here. We don't want
277 * to flush data frames already in queue because of
278 * changing channel. */
280 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
281 fastcc = false;
283 DPRINTF(sc, ATH_DBG_CONFIG,
284 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
285 sc->sc_ah->curchan->channel,
286 channel->center_freq, sc->tx_chan_width);
288 spin_lock_bh(&sc->sc_resetlock);
290 r = ath9k_hw_reset(ah, hchan, fastcc);
291 if (r) {
292 DPRINTF(sc, ATH_DBG_FATAL,
293 "Unable to reset channel (%u Mhz) "
294 "reset status %d\n",
295 channel->center_freq, r);
296 spin_unlock_bh(&sc->sc_resetlock);
297 goto ps_restore;
299 spin_unlock_bh(&sc->sc_resetlock);
301 sc->sc_flags &= ~SC_OP_FULL_RESET;
303 if (ath_startrecv(sc) != 0) {
304 DPRINTF(sc, ATH_DBG_FATAL,
305 "Unable to restart recv logic\n");
306 r = -EIO;
307 goto ps_restore;
310 ath_cache_conf_rate(sc, &hw->conf);
311 ath_update_txpow(sc);
312 ath9k_hw_set_interrupts(ah, sc->imask);
314 ps_restore:
315 ath9k_ps_restore(sc);
316 return r;
320 * This routine performs the periodic noise floor calibration function
321 * that is used to adjust and optimize the chip performance. This
322 * takes environmental changes (location, temperature) into account.
323 * When the task is complete, it reschedules itself depending on the
324 * appropriate interval that was calculated.
326 static void ath_ani_calibrate(unsigned long data)
328 struct ath_softc *sc = (struct ath_softc *)data;
329 struct ath_hw *ah = sc->sc_ah;
330 bool longcal = false;
331 bool shortcal = false;
332 bool aniflag = false;
333 unsigned int timestamp = jiffies_to_msecs(jiffies);
334 u32 cal_interval, short_cal_interval;
336 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
337 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
340 * don't calibrate when we're scanning.
341 * we are most likely not on our home channel.
343 spin_lock(&sc->ani_lock);
344 if (sc->sc_flags & SC_OP_SCANNING)
345 goto set_timer;
347 /* Only calibrate if awake */
348 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
349 goto set_timer;
351 ath9k_ps_wakeup(sc);
353 /* Long calibration runs independently of short calibration. */
354 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
355 longcal = true;
356 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357 sc->ani.longcal_timer = timestamp;
360 /* Short calibration applies only while caldone is false */
361 if (!sc->ani.caldone) {
362 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
363 shortcal = true;
364 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
365 sc->ani.shortcal_timer = timestamp;
366 sc->ani.resetcal_timer = timestamp;
368 } else {
369 if ((timestamp - sc->ani.resetcal_timer) >=
370 ATH_RESTART_CALINTERVAL) {
371 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
372 if (sc->ani.caldone)
373 sc->ani.resetcal_timer = timestamp;
377 /* Verify whether we must check ANI */
378 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
379 aniflag = true;
380 sc->ani.checkani_timer = timestamp;
383 /* Skip all processing if there's nothing to do. */
384 if (longcal || shortcal || aniflag) {
385 /* Call ANI routine if necessary */
386 if (aniflag)
387 ath9k_hw_ani_monitor(ah, ah->curchan);
389 /* Perform calibration if necessary */
390 if (longcal || shortcal) {
391 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
392 sc->rx_chainmask, longcal);
394 if (longcal)
395 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
396 ah->curchan);
398 DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
399 ah->curchan->channel, ah->curchan->channelFlags,
400 sc->ani.noise_floor);
404 ath9k_ps_restore(sc);
406 set_timer:
407 spin_unlock(&sc->ani_lock);
409 * Set timer interval based on previous results.
410 * The interval must be the shortest necessary to satisfy ANI,
411 * short calibration and long calibration.
413 cal_interval = ATH_LONG_CALINTERVAL;
414 if (sc->sc_ah->config.enable_ani)
415 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
416 if (!sc->ani.caldone)
417 cal_interval = min(cal_interval, (u32)short_cal_interval);
419 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
422 static void ath_start_ani(struct ath_softc *sc)
424 unsigned long timestamp = jiffies_to_msecs(jiffies);
426 sc->ani.longcal_timer = timestamp;
427 sc->ani.shortcal_timer = timestamp;
428 sc->ani.checkani_timer = timestamp;
430 mod_timer(&sc->ani.timer,
431 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
435 * Update tx/rx chainmask. For legacy association,
436 * hard code chainmask to 1x1, for 11n association, use
437 * the chainmask configuration, for bt coexistence, use
438 * the chainmask configuration even in legacy mode.
440 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
442 if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
443 (sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE)) {
444 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
445 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
446 } else {
447 sc->tx_chainmask = 1;
448 sc->rx_chainmask = 1;
451 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
452 sc->tx_chainmask, sc->rx_chainmask);
455 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
457 struct ath_node *an;
459 an = (struct ath_node *)sta->drv_priv;
461 if (sc->sc_flags & SC_OP_TXAGGR) {
462 ath_tx_node_init(sc, an);
463 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
464 sta->ht_cap.ampdu_factor);
465 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
470 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
472 struct ath_node *an = (struct ath_node *)sta->drv_priv;
474 if (sc->sc_flags & SC_OP_TXAGGR)
475 ath_tx_node_cleanup(sc, an);
478 static void ath9k_tasklet(unsigned long data)
480 struct ath_softc *sc = (struct ath_softc *)data;
481 u32 status = sc->intrstatus;
483 ath9k_ps_wakeup(sc);
485 if (status & ATH9K_INT_FATAL) {
486 ath_reset(sc, false);
487 ath9k_ps_restore(sc);
488 return;
491 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
492 spin_lock_bh(&sc->rx.rxflushlock);
493 ath_rx_tasklet(sc, 0);
494 spin_unlock_bh(&sc->rx.rxflushlock);
497 if (status & ATH9K_INT_TX)
498 ath_tx_tasklet(sc);
500 if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
502 * TSF sync does not look correct; remain awake to sync with
503 * the next Beacon.
505 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
506 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
509 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
510 if (status & ATH9K_INT_GENTIMER)
511 ath_gen_timer_isr(sc->sc_ah);
513 /* re-enable hardware interrupt */
514 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
515 ath9k_ps_restore(sc);
518 irqreturn_t ath_isr(int irq, void *dev)
520 #define SCHED_INTR ( \
521 ATH9K_INT_FATAL | \
522 ATH9K_INT_RXORN | \
523 ATH9K_INT_RXEOL | \
524 ATH9K_INT_RX | \
525 ATH9K_INT_TX | \
526 ATH9K_INT_BMISS | \
527 ATH9K_INT_CST | \
528 ATH9K_INT_TSFOOR | \
529 ATH9K_INT_GENTIMER)
531 struct ath_softc *sc = dev;
532 struct ath_hw *ah = sc->sc_ah;
533 enum ath9k_int status;
534 bool sched = false;
537 * The hardware is not ready/present, don't
538 * touch anything. Note this can happen early
539 * on if the IRQ is shared.
541 if (sc->sc_flags & SC_OP_INVALID)
542 return IRQ_NONE;
545 /* shared irq, not for us */
547 if (!ath9k_hw_intrpend(ah))
548 return IRQ_NONE;
551 * Figure out the reason(s) for the interrupt. Note
552 * that the hal returns a pseudo-ISR that may include
553 * bits we haven't explicitly enabled so we mask the
554 * value to insure we only process bits we requested.
556 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
557 status &= sc->imask; /* discard unasked-for bits */
560 * If there are no status bits set, then this interrupt was not
561 * for me (should have been caught above).
563 if (!status)
564 return IRQ_NONE;
566 /* Cache the status */
567 sc->intrstatus = status;
569 if (status & SCHED_INTR)
570 sched = true;
573 * If a FATAL or RXORN interrupt is received, we have to reset the
574 * chip immediately.
576 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
577 goto chip_reset;
579 if (status & ATH9K_INT_SWBA)
580 tasklet_schedule(&sc->bcon_tasklet);
582 if (status & ATH9K_INT_TXURN)
583 ath9k_hw_updatetxtriglevel(ah, true);
585 if (status & ATH9K_INT_MIB) {
587 * Disable interrupts until we service the MIB
588 * interrupt; otherwise it will continue to
589 * fire.
591 ath9k_hw_set_interrupts(ah, 0);
593 * Let the hal handle the event. We assume
594 * it will clear whatever condition caused
595 * the interrupt.
597 ath9k_hw_procmibevent(ah);
598 ath9k_hw_set_interrupts(ah, sc->imask);
601 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
602 if (status & ATH9K_INT_TIM_TIMER) {
603 /* Clear RxAbort bit so that we can
604 * receive frames */
605 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
606 ath9k_hw_setrxabort(sc->sc_ah, 0);
607 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
610 chip_reset:
612 ath_debug_stat_interrupt(sc, status);
614 if (sched) {
615 /* turn off every interrupt except SWBA */
616 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
617 tasklet_schedule(&sc->intr_tq);
620 return IRQ_HANDLED;
622 #undef SCHED_INTR
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626 struct ieee80211_channel *chan,
627 enum nl80211_channel_type channel_type)
629 u32 chanmode = 0;
631 switch (chan->band) {
632 case IEEE80211_BAND_2GHZ:
633 switch(channel_type) {
634 case NL80211_CHAN_NO_HT:
635 case NL80211_CHAN_HT20:
636 chanmode = CHANNEL_G_HT20;
637 break;
638 case NL80211_CHAN_HT40PLUS:
639 chanmode = CHANNEL_G_HT40PLUS;
640 break;
641 case NL80211_CHAN_HT40MINUS:
642 chanmode = CHANNEL_G_HT40MINUS;
643 break;
645 break;
646 case IEEE80211_BAND_5GHZ:
647 switch(channel_type) {
648 case NL80211_CHAN_NO_HT:
649 case NL80211_CHAN_HT20:
650 chanmode = CHANNEL_A_HT20;
651 break;
652 case NL80211_CHAN_HT40PLUS:
653 chanmode = CHANNEL_A_HT40PLUS;
654 break;
655 case NL80211_CHAN_HT40MINUS:
656 chanmode = CHANNEL_A_HT40MINUS;
657 break;
659 break;
660 default:
661 break;
664 return chanmode;
667 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
668 struct ath9k_keyval *hk, const u8 *addr,
669 bool authenticator)
671 const u8 *key_rxmic;
672 const u8 *key_txmic;
674 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
675 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
677 if (addr == NULL) {
679 * Group key installation - only two key cache entries are used
680 * regardless of splitmic capability since group key is only
681 * used either for TX or RX.
683 if (authenticator) {
684 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
685 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
686 } else {
687 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
688 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
690 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
692 if (!sc->splitmic) {
693 /* TX and RX keys share the same key cache entry. */
694 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
695 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
696 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
699 /* Separate key cache entries for TX and RX */
701 /* TX key goes at first index, RX key at +32. */
702 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
703 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
704 /* TX MIC entry failed. No need to proceed further */
705 DPRINTF(sc, ATH_DBG_FATAL,
706 "Setting TX MIC Key Failed\n");
707 return 0;
710 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
711 /* XXX delete tx key on failure? */
712 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
715 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
717 int i;
719 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
720 if (test_bit(i, sc->keymap) ||
721 test_bit(i + 64, sc->keymap))
722 continue; /* At least one part of TKIP key allocated */
723 if (sc->splitmic &&
724 (test_bit(i + 32, sc->keymap) ||
725 test_bit(i + 64 + 32, sc->keymap)))
726 continue; /* At least one part of TKIP key allocated */
728 /* Found a free slot for a TKIP key */
729 return i;
731 return -1;
734 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
736 int i;
738 /* First, try to find slots that would not be available for TKIP. */
739 if (sc->splitmic) {
740 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
741 if (!test_bit(i, sc->keymap) &&
742 (test_bit(i + 32, sc->keymap) ||
743 test_bit(i + 64, sc->keymap) ||
744 test_bit(i + 64 + 32, sc->keymap)))
745 return i;
746 if (!test_bit(i + 32, sc->keymap) &&
747 (test_bit(i, sc->keymap) ||
748 test_bit(i + 64, sc->keymap) ||
749 test_bit(i + 64 + 32, sc->keymap)))
750 return i + 32;
751 if (!test_bit(i + 64, sc->keymap) &&
752 (test_bit(i , sc->keymap) ||
753 test_bit(i + 32, sc->keymap) ||
754 test_bit(i + 64 + 32, sc->keymap)))
755 return i + 64;
756 if (!test_bit(i + 64 + 32, sc->keymap) &&
757 (test_bit(i, sc->keymap) ||
758 test_bit(i + 32, sc->keymap) ||
759 test_bit(i + 64, sc->keymap)))
760 return i + 64 + 32;
762 } else {
763 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
764 if (!test_bit(i, sc->keymap) &&
765 test_bit(i + 64, sc->keymap))
766 return i;
767 if (test_bit(i, sc->keymap) &&
768 !test_bit(i + 64, sc->keymap))
769 return i + 64;
773 /* No partially used TKIP slots, pick any available slot */
774 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
775 /* Do not allow slots that could be needed for TKIP group keys
776 * to be used. This limitation could be removed if we know that
777 * TKIP will not be used. */
778 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
779 continue;
780 if (sc->splitmic) {
781 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
782 continue;
783 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
784 continue;
787 if (!test_bit(i, sc->keymap))
788 return i; /* Found a free slot for a key */
791 /* No free slot found */
792 return -1;
795 static int ath_key_config(struct ath_softc *sc,
796 struct ieee80211_vif *vif,
797 struct ieee80211_sta *sta,
798 struct ieee80211_key_conf *key)
800 struct ath9k_keyval hk;
801 const u8 *mac = NULL;
802 int ret = 0;
803 int idx;
805 memset(&hk, 0, sizeof(hk));
807 switch (key->alg) {
808 case ALG_WEP:
809 hk.kv_type = ATH9K_CIPHER_WEP;
810 break;
811 case ALG_TKIP:
812 hk.kv_type = ATH9K_CIPHER_TKIP;
813 break;
814 case ALG_CCMP:
815 hk.kv_type = ATH9K_CIPHER_AES_CCM;
816 break;
817 default:
818 return -EOPNOTSUPP;
821 hk.kv_len = key->keylen;
822 memcpy(hk.kv_val, key->key, key->keylen);
824 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
825 /* For now, use the default keys for broadcast keys. This may
826 * need to change with virtual interfaces. */
827 idx = key->keyidx;
828 } else if (key->keyidx) {
829 if (WARN_ON(!sta))
830 return -EOPNOTSUPP;
831 mac = sta->addr;
833 if (vif->type != NL80211_IFTYPE_AP) {
834 /* Only keyidx 0 should be used with unicast key, but
835 * allow this for client mode for now. */
836 idx = key->keyidx;
837 } else
838 return -EIO;
839 } else {
840 if (WARN_ON(!sta))
841 return -EOPNOTSUPP;
842 mac = sta->addr;
844 if (key->alg == ALG_TKIP)
845 idx = ath_reserve_key_cache_slot_tkip(sc);
846 else
847 idx = ath_reserve_key_cache_slot(sc);
848 if (idx < 0)
849 return -ENOSPC; /* no free key cache entries */
852 if (key->alg == ALG_TKIP)
853 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
854 vif->type == NL80211_IFTYPE_AP);
855 else
856 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
858 if (!ret)
859 return -EIO;
861 set_bit(idx, sc->keymap);
862 if (key->alg == ALG_TKIP) {
863 set_bit(idx + 64, sc->keymap);
864 if (sc->splitmic) {
865 set_bit(idx + 32, sc->keymap);
866 set_bit(idx + 64 + 32, sc->keymap);
870 return idx;
873 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
875 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
876 if (key->hw_key_idx < IEEE80211_WEP_NKID)
877 return;
879 clear_bit(key->hw_key_idx, sc->keymap);
880 if (key->alg != ALG_TKIP)
881 return;
883 clear_bit(key->hw_key_idx + 64, sc->keymap);
884 if (sc->splitmic) {
885 clear_bit(key->hw_key_idx + 32, sc->keymap);
886 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
890 static void setup_ht_cap(struct ath_softc *sc,
891 struct ieee80211_sta_ht_cap *ht_info)
893 u8 tx_streams, rx_streams;
895 ht_info->ht_supported = true;
896 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
897 IEEE80211_HT_CAP_SM_PS |
898 IEEE80211_HT_CAP_SGI_40 |
899 IEEE80211_HT_CAP_DSSSCCK40;
901 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
902 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
904 /* set up supported mcs set */
905 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
906 tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
907 rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
909 if (tx_streams != rx_streams) {
910 DPRINTF(sc, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
911 tx_streams, rx_streams);
912 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
913 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
914 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
917 ht_info->mcs.rx_mask[0] = 0xff;
918 if (rx_streams >= 2)
919 ht_info->mcs.rx_mask[1] = 0xff;
921 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
924 static void ath9k_bss_assoc_info(struct ath_softc *sc,
925 struct ieee80211_vif *vif,
926 struct ieee80211_bss_conf *bss_conf)
929 if (bss_conf->assoc) {
930 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
931 bss_conf->aid, sc->curbssid);
933 /* New association, store aid */
934 sc->curaid = bss_conf->aid;
935 ath9k_hw_write_associd(sc);
938 * Request a re-configuration of Beacon related timers
939 * on the receipt of the first Beacon frame (i.e.,
940 * after time sync with the AP).
942 sc->sc_flags |= SC_OP_BEACON_SYNC;
944 /* Configure the beacon */
945 ath_beacon_config(sc, vif);
947 /* Reset rssi stats */
948 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
950 ath_start_ani(sc);
951 } else {
952 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
953 sc->curaid = 0;
954 /* Stop ANI */
955 del_timer_sync(&sc->ani.timer);
959 /********************************/
960 /* LED functions */
961 /********************************/
963 static void ath_led_blink_work(struct work_struct *work)
965 struct ath_softc *sc = container_of(work, struct ath_softc,
966 ath_led_blink_work.work);
968 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
969 return;
971 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
972 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
973 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
974 else
975 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
976 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
978 ieee80211_queue_delayed_work(sc->hw,
979 &sc->ath_led_blink_work,
980 (sc->sc_flags & SC_OP_LED_ON) ?
981 msecs_to_jiffies(sc->led_off_duration) :
982 msecs_to_jiffies(sc->led_on_duration));
984 sc->led_on_duration = sc->led_on_cnt ?
985 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
986 ATH_LED_ON_DURATION_IDLE;
987 sc->led_off_duration = sc->led_off_cnt ?
988 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
989 ATH_LED_OFF_DURATION_IDLE;
990 sc->led_on_cnt = sc->led_off_cnt = 0;
991 if (sc->sc_flags & SC_OP_LED_ON)
992 sc->sc_flags &= ~SC_OP_LED_ON;
993 else
994 sc->sc_flags |= SC_OP_LED_ON;
997 static void ath_led_brightness(struct led_classdev *led_cdev,
998 enum led_brightness brightness)
1000 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1001 struct ath_softc *sc = led->sc;
1003 switch (brightness) {
1004 case LED_OFF:
1005 if (led->led_type == ATH_LED_ASSOC ||
1006 led->led_type == ATH_LED_RADIO) {
1007 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1008 (led->led_type == ATH_LED_RADIO));
1009 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1010 if (led->led_type == ATH_LED_RADIO)
1011 sc->sc_flags &= ~SC_OP_LED_ON;
1012 } else {
1013 sc->led_off_cnt++;
1015 break;
1016 case LED_FULL:
1017 if (led->led_type == ATH_LED_ASSOC) {
1018 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1019 ieee80211_queue_delayed_work(sc->hw,
1020 &sc->ath_led_blink_work, 0);
1021 } else if (led->led_type == ATH_LED_RADIO) {
1022 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1023 sc->sc_flags |= SC_OP_LED_ON;
1024 } else {
1025 sc->led_on_cnt++;
1027 break;
1028 default:
1029 break;
1033 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1034 char *trigger)
1036 int ret;
1038 led->sc = sc;
1039 led->led_cdev.name = led->name;
1040 led->led_cdev.default_trigger = trigger;
1041 led->led_cdev.brightness_set = ath_led_brightness;
1043 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1044 if (ret)
1045 DPRINTF(sc, ATH_DBG_FATAL,
1046 "Failed to register led:%s", led->name);
1047 else
1048 led->registered = 1;
1049 return ret;
1052 static void ath_unregister_led(struct ath_led *led)
1054 if (led->registered) {
1055 led_classdev_unregister(&led->led_cdev);
1056 led->registered = 0;
1060 static void ath_deinit_leds(struct ath_softc *sc)
1062 ath_unregister_led(&sc->assoc_led);
1063 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1064 ath_unregister_led(&sc->tx_led);
1065 ath_unregister_led(&sc->rx_led);
1066 ath_unregister_led(&sc->radio_led);
1067 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1070 static void ath_init_leds(struct ath_softc *sc)
1072 char *trigger;
1073 int ret;
1075 if (AR_SREV_9287(sc->sc_ah))
1076 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1077 else
1078 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1080 /* Configure gpio 1 for output */
1081 ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1082 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1083 /* LED off, active low */
1084 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1086 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1088 trigger = ieee80211_get_radio_led_name(sc->hw);
1089 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1090 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1091 ret = ath_register_led(sc, &sc->radio_led, trigger);
1092 sc->radio_led.led_type = ATH_LED_RADIO;
1093 if (ret)
1094 goto fail;
1096 trigger = ieee80211_get_assoc_led_name(sc->hw);
1097 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1098 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1099 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1100 sc->assoc_led.led_type = ATH_LED_ASSOC;
1101 if (ret)
1102 goto fail;
1104 trigger = ieee80211_get_tx_led_name(sc->hw);
1105 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1106 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1107 ret = ath_register_led(sc, &sc->tx_led, trigger);
1108 sc->tx_led.led_type = ATH_LED_TX;
1109 if (ret)
1110 goto fail;
1112 trigger = ieee80211_get_rx_led_name(sc->hw);
1113 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1114 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1115 ret = ath_register_led(sc, &sc->rx_led, trigger);
1116 sc->rx_led.led_type = ATH_LED_RX;
1117 if (ret)
1118 goto fail;
1120 return;
1122 fail:
1123 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1124 ath_deinit_leds(sc);
1127 void ath_radio_enable(struct ath_softc *sc)
1129 struct ath_hw *ah = sc->sc_ah;
1130 struct ieee80211_channel *channel = sc->hw->conf.channel;
1131 int r;
1133 ath9k_ps_wakeup(sc);
1134 ath9k_hw_configpcipowersave(ah, 0, 0);
1136 if (!ah->curchan)
1137 ah->curchan = ath_get_curchannel(sc, sc->hw);
1139 spin_lock_bh(&sc->sc_resetlock);
1140 r = ath9k_hw_reset(ah, ah->curchan, false);
1141 if (r) {
1142 DPRINTF(sc, ATH_DBG_FATAL,
1143 "Unable to reset channel %u (%uMhz) ",
1144 "reset status %d\n",
1145 channel->center_freq, r);
1147 spin_unlock_bh(&sc->sc_resetlock);
1149 ath_update_txpow(sc);
1150 if (ath_startrecv(sc) != 0) {
1151 DPRINTF(sc, ATH_DBG_FATAL,
1152 "Unable to restart recv logic\n");
1153 return;
1156 if (sc->sc_flags & SC_OP_BEACONS)
1157 ath_beacon_config(sc, NULL); /* restart beacons */
1159 /* Re-Enable interrupts */
1160 ath9k_hw_set_interrupts(ah, sc->imask);
1162 /* Enable LED */
1163 ath9k_hw_cfg_output(ah, ah->led_pin,
1164 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1165 ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1167 ieee80211_wake_queues(sc->hw);
1168 ath9k_ps_restore(sc);
1171 void ath_radio_disable(struct ath_softc *sc)
1173 struct ath_hw *ah = sc->sc_ah;
1174 struct ieee80211_channel *channel = sc->hw->conf.channel;
1175 int r;
1177 ath9k_ps_wakeup(sc);
1178 ieee80211_stop_queues(sc->hw);
1180 /* Disable LED */
1181 ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1182 ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1184 /* Disable interrupts */
1185 ath9k_hw_set_interrupts(ah, 0);
1187 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1188 ath_stoprecv(sc); /* turn off frame recv */
1189 ath_flushrecv(sc); /* flush recv queue */
1191 if (!ah->curchan)
1192 ah->curchan = ath_get_curchannel(sc, sc->hw);
1194 spin_lock_bh(&sc->sc_resetlock);
1195 r = ath9k_hw_reset(ah, ah->curchan, false);
1196 if (r) {
1197 DPRINTF(sc, ATH_DBG_FATAL,
1198 "Unable to reset channel %u (%uMhz) "
1199 "reset status %d\n",
1200 channel->center_freq, r);
1202 spin_unlock_bh(&sc->sc_resetlock);
1204 ath9k_hw_phy_disable(ah);
1205 ath9k_hw_configpcipowersave(ah, 1, 1);
1206 ath9k_ps_restore(sc);
1207 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1210 /*******************/
1211 /* Rfkill */
1212 /*******************/
1214 static bool ath_is_rfkill_set(struct ath_softc *sc)
1216 struct ath_hw *ah = sc->sc_ah;
1218 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1219 ah->rfkill_polarity;
1222 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1224 struct ath_wiphy *aphy = hw->priv;
1225 struct ath_softc *sc = aphy->sc;
1226 bool blocked = !!ath_is_rfkill_set(sc);
1228 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1231 static void ath_start_rfkill_poll(struct ath_softc *sc)
1233 struct ath_hw *ah = sc->sc_ah;
1235 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1236 wiphy_rfkill_start_polling(sc->hw->wiphy);
1239 void ath_cleanup(struct ath_softc *sc)
1241 ath_detach(sc);
1242 free_irq(sc->irq, sc);
1243 ath_bus_cleanup(sc);
1244 kfree(sc->sec_wiphy);
1245 ieee80211_free_hw(sc->hw);
1248 void ath_detach(struct ath_softc *sc)
1250 struct ieee80211_hw *hw = sc->hw;
1251 int i = 0;
1253 ath9k_ps_wakeup(sc);
1255 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1257 ath_deinit_leds(sc);
1258 wiphy_rfkill_stop_polling(sc->hw->wiphy);
1260 for (i = 0; i < sc->num_sec_wiphy; i++) {
1261 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1262 if (aphy == NULL)
1263 continue;
1264 sc->sec_wiphy[i] = NULL;
1265 ieee80211_unregister_hw(aphy->hw);
1266 ieee80211_free_hw(aphy->hw);
1268 ieee80211_unregister_hw(hw);
1269 ath_rx_cleanup(sc);
1270 ath_tx_cleanup(sc);
1272 tasklet_kill(&sc->intr_tq);
1273 tasklet_kill(&sc->bcon_tasklet);
1275 if (!(sc->sc_flags & SC_OP_INVALID))
1276 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1278 /* cleanup tx queues */
1279 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1280 if (ATH_TXQ_SETUP(sc, i))
1281 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1283 if ((sc->btcoex_info.no_stomp_timer) &&
1284 sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
1285 ath_gen_timer_free(sc->sc_ah, sc->btcoex_info.no_stomp_timer);
1287 ath9k_hw_detach(sc->sc_ah);
1288 sc->sc_ah = NULL;
1289 ath9k_exit_debug(sc);
1292 static int ath9k_reg_notifier(struct wiphy *wiphy,
1293 struct regulatory_request *request)
1295 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1296 struct ath_wiphy *aphy = hw->priv;
1297 struct ath_softc *sc = aphy->sc;
1298 struct ath_regulatory *reg = &sc->common.regulatory;
1300 return ath_reg_notifier_apply(wiphy, request, reg);
1304 * Initialize and fill ath_softc, ath_sofct is the
1305 * "Software Carrier" struct. Historically it has existed
1306 * to allow the separation between hardware specific
1307 * variables (now in ath_hw) and driver specific variables.
1309 static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid)
1311 struct ath_hw *ah = NULL;
1312 int r = 0, i;
1313 int csz = 0;
1315 /* XXX: hardware will not be ready until ath_open() being called */
1316 sc->sc_flags |= SC_OP_INVALID;
1318 if (ath9k_init_debug(sc) < 0)
1319 printk(KERN_ERR "Unable to create debugfs files\n");
1321 spin_lock_init(&sc->wiphy_lock);
1322 spin_lock_init(&sc->sc_resetlock);
1323 spin_lock_init(&sc->sc_serial_rw);
1324 spin_lock_init(&sc->ani_lock);
1325 spin_lock_init(&sc->sc_pm_lock);
1326 mutex_init(&sc->mutex);
1327 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1328 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1329 (unsigned long)sc);
1332 * Cache line size is used to size and align various
1333 * structures used to communicate with the hardware.
1335 ath_read_cachesize(sc, &csz);
1336 /* XXX assert csz is non-zero */
1337 sc->common.cachelsz = csz << 2; /* convert to bytes */
1339 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1340 if (!ah) {
1341 r = -ENOMEM;
1342 goto bad_no_ah;
1345 ah->ah_sc = sc;
1346 ah->hw_version.devid = devid;
1347 ah->hw_version.subsysid = subsysid;
1348 sc->sc_ah = ah;
1350 r = ath9k_hw_init(ah);
1351 if (r) {
1352 DPRINTF(sc, ATH_DBG_FATAL,
1353 "Unable to initialize hardware; "
1354 "initialization status: %d\n", r);
1355 goto bad;
1358 /* Get the hardware key cache size. */
1359 sc->keymax = ah->caps.keycache_size;
1360 if (sc->keymax > ATH_KEYMAX) {
1361 DPRINTF(sc, ATH_DBG_ANY,
1362 "Warning, using only %u entries in %u key cache\n",
1363 ATH_KEYMAX, sc->keymax);
1364 sc->keymax = ATH_KEYMAX;
1368 * Reset the key cache since some parts do not
1369 * reset the contents on initial power up.
1371 for (i = 0; i < sc->keymax; i++)
1372 ath9k_hw_keyreset(ah, (u16) i);
1374 /* default to MONITOR mode */
1375 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1377 /* Setup rate tables */
1379 ath_rate_attach(sc);
1380 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1381 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1384 * Allocate hardware transmit queues: one queue for
1385 * beacon frames and one data queue for each QoS
1386 * priority. Note that the hal handles reseting
1387 * these queues at the needed time.
1389 sc->beacon.beaconq = ath_beaconq_setup(ah);
1390 if (sc->beacon.beaconq == -1) {
1391 DPRINTF(sc, ATH_DBG_FATAL,
1392 "Unable to setup a beacon xmit queue\n");
1393 r = -EIO;
1394 goto bad2;
1396 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1397 if (sc->beacon.cabq == NULL) {
1398 DPRINTF(sc, ATH_DBG_FATAL,
1399 "Unable to setup CAB xmit queue\n");
1400 r = -EIO;
1401 goto bad2;
1404 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1405 ath_cabq_update(sc);
1407 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1408 sc->tx.hwq_map[i] = -1;
1410 /* Setup data queues */
1411 /* NB: ensure BK queue is the lowest priority h/w queue */
1412 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1413 DPRINTF(sc, ATH_DBG_FATAL,
1414 "Unable to setup xmit queue for BK traffic\n");
1415 r = -EIO;
1416 goto bad2;
1419 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1420 DPRINTF(sc, ATH_DBG_FATAL,
1421 "Unable to setup xmit queue for BE traffic\n");
1422 r = -EIO;
1423 goto bad2;
1425 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1426 DPRINTF(sc, ATH_DBG_FATAL,
1427 "Unable to setup xmit queue for VI traffic\n");
1428 r = -EIO;
1429 goto bad2;
1431 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1432 DPRINTF(sc, ATH_DBG_FATAL,
1433 "Unable to setup xmit queue for VO traffic\n");
1434 r = -EIO;
1435 goto bad2;
1438 /* Initializes the noise floor to a reasonable default value.
1439 * Later on this will be updated during ANI processing. */
1441 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1442 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1444 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1445 ATH9K_CIPHER_TKIP, NULL)) {
1447 * Whether we should enable h/w TKIP MIC.
1448 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1449 * report WMM capable, so it's always safe to turn on
1450 * TKIP MIC in this case.
1452 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1453 0, 1, NULL);
1457 * Check whether the separate key cache entries
1458 * are required to handle both tx+rx MIC keys.
1459 * With split mic keys the number of stations is limited
1460 * to 27 otherwise 59.
1462 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1463 ATH9K_CIPHER_TKIP, NULL)
1464 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1465 ATH9K_CIPHER_MIC, NULL)
1466 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1467 0, NULL))
1468 sc->splitmic = 1;
1470 /* turn on mcast key search if possible */
1471 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1472 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1473 1, NULL);
1475 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1477 /* 11n Capabilities */
1478 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1479 sc->sc_flags |= SC_OP_TXAGGR;
1480 sc->sc_flags |= SC_OP_RXAGGR;
1483 sc->tx_chainmask = ah->caps.tx_chainmask;
1484 sc->rx_chainmask = ah->caps.rx_chainmask;
1486 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1487 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1489 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1490 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1492 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1494 /* initialize beacon slots */
1495 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1496 sc->beacon.bslot[i] = NULL;
1497 sc->beacon.bslot_aphy[i] = NULL;
1500 /* setup channels and rates */
1502 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1503 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1504 sc->rates[IEEE80211_BAND_2GHZ];
1505 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1506 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1507 ARRAY_SIZE(ath9k_2ghz_chantable);
1509 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1510 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1511 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1512 sc->rates[IEEE80211_BAND_5GHZ];
1513 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1514 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1515 ARRAY_SIZE(ath9k_5ghz_chantable);
1518 if (sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE) {
1519 r = ath9k_hw_btcoex_init(ah);
1520 if (r)
1521 goto bad2;
1524 return 0;
1525 bad2:
1526 /* cleanup tx queues */
1527 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1528 if (ATH_TXQ_SETUP(sc, i))
1529 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1530 bad:
1531 ath9k_hw_detach(ah);
1532 sc->sc_ah = NULL;
1533 bad_no_ah:
1534 ath9k_exit_debug(sc);
1536 return r;
1539 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1541 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1542 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1543 IEEE80211_HW_SIGNAL_DBM |
1544 IEEE80211_HW_AMPDU_AGGREGATION |
1545 IEEE80211_HW_SUPPORTS_PS |
1546 IEEE80211_HW_PS_NULLFUNC_STACK |
1547 IEEE80211_HW_SPECTRUM_MGMT;
1549 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1550 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1552 hw->wiphy->interface_modes =
1553 BIT(NL80211_IFTYPE_AP) |
1554 BIT(NL80211_IFTYPE_STATION) |
1555 BIT(NL80211_IFTYPE_ADHOC) |
1556 BIT(NL80211_IFTYPE_MESH_POINT);
1558 hw->queues = 4;
1559 hw->max_rates = 4;
1560 hw->channel_change_time = 5000;
1561 hw->max_listen_interval = 10;
1562 /* Hardware supports 10 but we use 4 */
1563 hw->max_rate_tries = 4;
1564 hw->sta_data_size = sizeof(struct ath_node);
1565 hw->vif_data_size = sizeof(struct ath_vif);
1567 hw->rate_control_algorithm = "ath9k_rate_control";
1569 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1570 &sc->sbands[IEEE80211_BAND_2GHZ];
1571 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1572 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1573 &sc->sbands[IEEE80211_BAND_5GHZ];
1576 /* Device driver core initialization */
1577 int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid)
1579 struct ieee80211_hw *hw = sc->hw;
1580 int error = 0, i;
1581 struct ath_regulatory *reg;
1583 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1585 error = ath_init_softc(devid, sc, subsysid);
1586 if (error != 0)
1587 return error;
1589 /* get mac address from hardware and set in mac80211 */
1591 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1593 ath_set_hw_capab(sc, hw);
1595 error = ath_regd_init(&sc->common.regulatory, sc->hw->wiphy,
1596 ath9k_reg_notifier);
1597 if (error)
1598 return error;
1600 reg = &sc->common.regulatory;
1602 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1603 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1604 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1605 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1608 /* initialize tx/rx engine */
1609 error = ath_tx_init(sc, ATH_TXBUF);
1610 if (error != 0)
1611 goto error_attach;
1613 error = ath_rx_init(sc, ATH_RXBUF);
1614 if (error != 0)
1615 goto error_attach;
1617 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1618 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1619 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1621 error = ieee80211_register_hw(hw);
1623 if (!ath_is_world_regd(reg)) {
1624 error = regulatory_hint(hw->wiphy, reg->alpha2);
1625 if (error)
1626 goto error_attach;
1629 /* Initialize LED control */
1630 ath_init_leds(sc);
1632 ath_start_rfkill_poll(sc);
1634 return 0;
1636 error_attach:
1637 /* cleanup tx queues */
1638 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1639 if (ATH_TXQ_SETUP(sc, i))
1640 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1642 ath9k_hw_detach(sc->sc_ah);
1643 sc->sc_ah = NULL;
1644 ath9k_exit_debug(sc);
1646 return error;
1649 int ath_reset(struct ath_softc *sc, bool retry_tx)
1651 struct ath_hw *ah = sc->sc_ah;
1652 struct ieee80211_hw *hw = sc->hw;
1653 int r;
1655 ath9k_hw_set_interrupts(ah, 0);
1656 ath_drain_all_txq(sc, retry_tx);
1657 ath_stoprecv(sc);
1658 ath_flushrecv(sc);
1660 spin_lock_bh(&sc->sc_resetlock);
1661 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1662 if (r)
1663 DPRINTF(sc, ATH_DBG_FATAL,
1664 "Unable to reset hardware; reset status %d\n", r);
1665 spin_unlock_bh(&sc->sc_resetlock);
1667 if (ath_startrecv(sc) != 0)
1668 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1671 * We may be doing a reset in response to a request
1672 * that changes the channel so update any state that
1673 * might change as a result.
1675 ath_cache_conf_rate(sc, &hw->conf);
1677 ath_update_txpow(sc);
1679 if (sc->sc_flags & SC_OP_BEACONS)
1680 ath_beacon_config(sc, NULL); /* restart beacons */
1682 ath9k_hw_set_interrupts(ah, sc->imask);
1684 if (retry_tx) {
1685 int i;
1686 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1687 if (ATH_TXQ_SETUP(sc, i)) {
1688 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1689 ath_txq_schedule(sc, &sc->tx.txq[i]);
1690 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1695 return r;
1699 * This function will allocate both the DMA descriptor structure, and the
1700 * buffers it contains. These are used to contain the descriptors used
1701 * by the system.
1703 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1704 struct list_head *head, const char *name,
1705 int nbuf, int ndesc)
1707 #define DS2PHYS(_dd, _ds) \
1708 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1709 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1710 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1712 struct ath_desc *ds;
1713 struct ath_buf *bf;
1714 int i, bsize, error;
1716 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1717 name, nbuf, ndesc);
1719 INIT_LIST_HEAD(head);
1720 /* ath_desc must be a multiple of DWORDs */
1721 if ((sizeof(struct ath_desc) % 4) != 0) {
1722 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1723 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1724 error = -ENOMEM;
1725 goto fail;
1728 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1731 * Need additional DMA memory because we can't use
1732 * descriptors that cross the 4K page boundary. Assume
1733 * one skipped descriptor per 4K page.
1735 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1736 u32 ndesc_skipped =
1737 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1738 u32 dma_len;
1740 while (ndesc_skipped) {
1741 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1742 dd->dd_desc_len += dma_len;
1744 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1748 /* allocate descriptors */
1749 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1750 &dd->dd_desc_paddr, GFP_KERNEL);
1751 if (dd->dd_desc == NULL) {
1752 error = -ENOMEM;
1753 goto fail;
1755 ds = dd->dd_desc;
1756 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1757 name, ds, (u32) dd->dd_desc_len,
1758 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1760 /* allocate buffers */
1761 bsize = sizeof(struct ath_buf) * nbuf;
1762 bf = kzalloc(bsize, GFP_KERNEL);
1763 if (bf == NULL) {
1764 error = -ENOMEM;
1765 goto fail2;
1767 dd->dd_bufptr = bf;
1769 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1770 bf->bf_desc = ds;
1771 bf->bf_daddr = DS2PHYS(dd, ds);
1773 if (!(sc->sc_ah->caps.hw_caps &
1774 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1776 * Skip descriptor addresses which can cause 4KB
1777 * boundary crossing (addr + length) with a 32 dword
1778 * descriptor fetch.
1780 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1781 ASSERT((caddr_t) bf->bf_desc <
1782 ((caddr_t) dd->dd_desc +
1783 dd->dd_desc_len));
1785 ds += ndesc;
1786 bf->bf_desc = ds;
1787 bf->bf_daddr = DS2PHYS(dd, ds);
1790 list_add_tail(&bf->list, head);
1792 return 0;
1793 fail2:
1794 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1795 dd->dd_desc_paddr);
1796 fail:
1797 memset(dd, 0, sizeof(*dd));
1798 return error;
1799 #undef ATH_DESC_4KB_BOUND_CHECK
1800 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1801 #undef DS2PHYS
1804 void ath_descdma_cleanup(struct ath_softc *sc,
1805 struct ath_descdma *dd,
1806 struct list_head *head)
1808 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1809 dd->dd_desc_paddr);
1811 INIT_LIST_HEAD(head);
1812 kfree(dd->dd_bufptr);
1813 memset(dd, 0, sizeof(*dd));
1816 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1818 int qnum;
1820 switch (queue) {
1821 case 0:
1822 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1823 break;
1824 case 1:
1825 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1826 break;
1827 case 2:
1828 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1829 break;
1830 case 3:
1831 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1832 break;
1833 default:
1834 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1835 break;
1838 return qnum;
1841 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1843 int qnum;
1845 switch (queue) {
1846 case ATH9K_WME_AC_VO:
1847 qnum = 0;
1848 break;
1849 case ATH9K_WME_AC_VI:
1850 qnum = 1;
1851 break;
1852 case ATH9K_WME_AC_BE:
1853 qnum = 2;
1854 break;
1855 case ATH9K_WME_AC_BK:
1856 qnum = 3;
1857 break;
1858 default:
1859 qnum = -1;
1860 break;
1863 return qnum;
1866 /* XXX: Remove me once we don't depend on ath9k_channel for all
1867 * this redundant data */
1868 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1869 struct ath9k_channel *ichan)
1871 struct ieee80211_channel *chan = hw->conf.channel;
1872 struct ieee80211_conf *conf = &hw->conf;
1874 ichan->channel = chan->center_freq;
1875 ichan->chan = chan;
1877 if (chan->band == IEEE80211_BAND_2GHZ) {
1878 ichan->chanmode = CHANNEL_G;
1879 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
1880 } else {
1881 ichan->chanmode = CHANNEL_A;
1882 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1885 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1887 if (conf_is_ht(conf)) {
1888 if (conf_is_ht40(conf))
1889 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1891 ichan->chanmode = ath_get_extchanmode(sc, chan,
1892 conf->channel_type);
1896 /**********************/
1897 /* mac80211 callbacks */
1898 /**********************/
1900 static int ath9k_start(struct ieee80211_hw *hw)
1902 struct ath_wiphy *aphy = hw->priv;
1903 struct ath_softc *sc = aphy->sc;
1904 struct ieee80211_channel *curchan = hw->conf.channel;
1905 struct ath9k_channel *init_channel;
1906 int r;
1908 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1909 "initial channel: %d MHz\n", curchan->center_freq);
1911 mutex_lock(&sc->mutex);
1913 if (ath9k_wiphy_started(sc)) {
1914 if (sc->chan_idx == curchan->hw_value) {
1916 * Already on the operational channel, the new wiphy
1917 * can be marked active.
1919 aphy->state = ATH_WIPHY_ACTIVE;
1920 ieee80211_wake_queues(hw);
1921 } else {
1923 * Another wiphy is on another channel, start the new
1924 * wiphy in paused state.
1926 aphy->state = ATH_WIPHY_PAUSED;
1927 ieee80211_stop_queues(hw);
1929 mutex_unlock(&sc->mutex);
1930 return 0;
1932 aphy->state = ATH_WIPHY_ACTIVE;
1934 /* setup initial channel */
1936 sc->chan_idx = curchan->hw_value;
1938 init_channel = ath_get_curchannel(sc, hw);
1940 /* Reset SERDES registers */
1941 ath9k_hw_configpcipowersave(sc->sc_ah, 0, 0);
1944 * The basic interface to setting the hardware in a good
1945 * state is ``reset''. On return the hardware is known to
1946 * be powered up and with interrupts disabled. This must
1947 * be followed by initialization of the appropriate bits
1948 * and then setup of the interrupt mask.
1950 spin_lock_bh(&sc->sc_resetlock);
1951 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1952 if (r) {
1953 DPRINTF(sc, ATH_DBG_FATAL,
1954 "Unable to reset hardware; reset status %d "
1955 "(freq %u MHz)\n", r,
1956 curchan->center_freq);
1957 spin_unlock_bh(&sc->sc_resetlock);
1958 goto mutex_unlock;
1960 spin_unlock_bh(&sc->sc_resetlock);
1963 * This is needed only to setup initial state
1964 * but it's best done after a reset.
1966 ath_update_txpow(sc);
1969 * Setup the hardware after reset:
1970 * The receive engine is set going.
1971 * Frame transmit is handled entirely
1972 * in the frame output path; there's nothing to do
1973 * here except setup the interrupt mask.
1975 if (ath_startrecv(sc) != 0) {
1976 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1977 r = -EIO;
1978 goto mutex_unlock;
1981 /* Setup our intr mask. */
1982 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
1983 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1984 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1986 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1987 sc->imask |= ATH9K_INT_GTT;
1989 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1990 sc->imask |= ATH9K_INT_CST;
1992 ath_cache_conf_rate(sc, &hw->conf);
1994 sc->sc_flags &= ~SC_OP_INVALID;
1996 /* Disable BMISS interrupt when we're not associated */
1997 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1998 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2000 ieee80211_wake_queues(hw);
2002 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2004 if ((sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE) &&
2005 !(sc->sc_flags & SC_OP_BTCOEX_ENABLED)) {
2006 ath_btcoex_set_weight(&sc->btcoex_info, AR_BT_COEX_WGHT,
2007 AR_STOMP_LOW_WLAN_WGHT);
2008 ath9k_hw_btcoex_enable(sc->sc_ah);
2010 ath_pcie_aspm_disable(sc);
2011 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2012 ath_btcoex_timer_resume(sc, &sc->btcoex_info);
2015 mutex_unlock:
2016 mutex_unlock(&sc->mutex);
2018 return r;
2021 static int ath9k_tx(struct ieee80211_hw *hw,
2022 struct sk_buff *skb)
2024 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2025 struct ath_wiphy *aphy = hw->priv;
2026 struct ath_softc *sc = aphy->sc;
2027 struct ath_tx_control txctl;
2028 int hdrlen, padsize;
2030 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2031 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2032 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2033 goto exit;
2036 if (sc->ps_enabled) {
2037 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2039 * mac80211 does not set PM field for normal data frames, so we
2040 * need to update that based on the current PS mode.
2042 if (ieee80211_is_data(hdr->frame_control) &&
2043 !ieee80211_is_nullfunc(hdr->frame_control) &&
2044 !ieee80211_has_pm(hdr->frame_control)) {
2045 DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2046 "while in PS mode\n");
2047 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2051 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2053 * We are using PS-Poll and mac80211 can request TX while in
2054 * power save mode. Need to wake up hardware for the TX to be
2055 * completed and if needed, also for RX of buffered frames.
2057 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2058 ath9k_ps_wakeup(sc);
2059 ath9k_hw_setrxabort(sc->sc_ah, 0);
2060 if (ieee80211_is_pspoll(hdr->frame_control)) {
2061 DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2062 "buffered frame\n");
2063 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2064 } else {
2065 DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2066 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2069 * The actual restore operation will happen only after
2070 * the sc_flags bit is cleared. We are just dropping
2071 * the ps_usecount here.
2073 ath9k_ps_restore(sc);
2076 memset(&txctl, 0, sizeof(struct ath_tx_control));
2079 * As a temporary workaround, assign seq# here; this will likely need
2080 * to be cleaned up to work better with Beacon transmission and virtual
2081 * BSSes.
2083 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2084 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2085 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2086 sc->tx.seq_no += 0x10;
2087 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2088 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2091 /* Add the padding after the header if this is not already done */
2092 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2093 if (hdrlen & 3) {
2094 padsize = hdrlen % 4;
2095 if (skb_headroom(skb) < padsize)
2096 return -1;
2097 skb_push(skb, padsize);
2098 memmove(skb->data, skb->data + padsize, hdrlen);
2101 /* Check if a tx queue is available */
2103 txctl.txq = ath_test_get_txq(sc, skb);
2104 if (!txctl.txq)
2105 goto exit;
2107 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2109 if (ath_tx_start(hw, skb, &txctl) != 0) {
2110 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2111 goto exit;
2114 return 0;
2115 exit:
2116 dev_kfree_skb_any(skb);
2117 return 0;
2120 static void ath9k_stop(struct ieee80211_hw *hw)
2122 struct ath_wiphy *aphy = hw->priv;
2123 struct ath_softc *sc = aphy->sc;
2125 mutex_lock(&sc->mutex);
2127 aphy->state = ATH_WIPHY_INACTIVE;
2129 cancel_delayed_work_sync(&sc->ath_led_blink_work);
2130 cancel_delayed_work_sync(&sc->tx_complete_work);
2132 if (!sc->num_sec_wiphy) {
2133 cancel_delayed_work_sync(&sc->wiphy_work);
2134 cancel_work_sync(&sc->chan_work);
2137 if (sc->sc_flags & SC_OP_INVALID) {
2138 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2139 mutex_unlock(&sc->mutex);
2140 return;
2143 if (ath9k_wiphy_started(sc)) {
2144 mutex_unlock(&sc->mutex);
2145 return; /* another wiphy still in use */
2148 if (sc->sc_flags & SC_OP_BTCOEX_ENABLED) {
2149 ath9k_hw_btcoex_disable(sc->sc_ah);
2150 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2151 ath_btcoex_timer_pause(sc, &sc->btcoex_info);
2154 /* make sure h/w will not generate any interrupt
2155 * before setting the invalid flag. */
2156 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2158 if (!(sc->sc_flags & SC_OP_INVALID)) {
2159 ath_drain_all_txq(sc, false);
2160 ath_stoprecv(sc);
2161 ath9k_hw_phy_disable(sc->sc_ah);
2162 } else
2163 sc->rx.rxlink = NULL;
2165 /* disable HAL and put h/w to sleep */
2166 ath9k_hw_disable(sc->sc_ah);
2167 ath9k_hw_configpcipowersave(sc->sc_ah, 1, 1);
2168 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_FULL_SLEEP);
2170 sc->sc_flags |= SC_OP_INVALID;
2172 mutex_unlock(&sc->mutex);
2174 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2177 static int ath9k_add_interface(struct ieee80211_hw *hw,
2178 struct ieee80211_if_init_conf *conf)
2180 struct ath_wiphy *aphy = hw->priv;
2181 struct ath_softc *sc = aphy->sc;
2182 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2183 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2184 int ret = 0;
2186 mutex_lock(&sc->mutex);
2188 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2189 sc->nvifs > 0) {
2190 ret = -ENOBUFS;
2191 goto out;
2194 switch (conf->type) {
2195 case NL80211_IFTYPE_STATION:
2196 ic_opmode = NL80211_IFTYPE_STATION;
2197 break;
2198 case NL80211_IFTYPE_ADHOC:
2199 case NL80211_IFTYPE_AP:
2200 case NL80211_IFTYPE_MESH_POINT:
2201 if (sc->nbcnvifs >= ATH_BCBUF) {
2202 ret = -ENOBUFS;
2203 goto out;
2205 ic_opmode = conf->type;
2206 break;
2207 default:
2208 DPRINTF(sc, ATH_DBG_FATAL,
2209 "Interface type %d not yet supported\n", conf->type);
2210 ret = -EOPNOTSUPP;
2211 goto out;
2214 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2216 /* Set the VIF opmode */
2217 avp->av_opmode = ic_opmode;
2218 avp->av_bslot = -1;
2220 sc->nvifs++;
2222 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2223 ath9k_set_bssid_mask(hw);
2225 if (sc->nvifs > 1)
2226 goto out; /* skip global settings for secondary vif */
2228 if (ic_opmode == NL80211_IFTYPE_AP) {
2229 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2230 sc->sc_flags |= SC_OP_TSF_RESET;
2233 /* Set the device opmode */
2234 sc->sc_ah->opmode = ic_opmode;
2237 * Enable MIB interrupts when there are hardware phy counters.
2238 * Note we only do this (at the moment) for station mode.
2240 if ((conf->type == NL80211_IFTYPE_STATION) ||
2241 (conf->type == NL80211_IFTYPE_ADHOC) ||
2242 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2243 sc->imask |= ATH9K_INT_MIB;
2244 sc->imask |= ATH9K_INT_TSFOOR;
2247 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2249 if (conf->type == NL80211_IFTYPE_AP ||
2250 conf->type == NL80211_IFTYPE_ADHOC ||
2251 conf->type == NL80211_IFTYPE_MONITOR)
2252 ath_start_ani(sc);
2254 out:
2255 mutex_unlock(&sc->mutex);
2256 return ret;
2259 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2260 struct ieee80211_if_init_conf *conf)
2262 struct ath_wiphy *aphy = hw->priv;
2263 struct ath_softc *sc = aphy->sc;
2264 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2265 int i;
2267 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2269 mutex_lock(&sc->mutex);
2271 /* Stop ANI */
2272 del_timer_sync(&sc->ani.timer);
2274 /* Reclaim beacon resources */
2275 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2276 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2277 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2278 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2279 ath_beacon_return(sc, avp);
2282 sc->sc_flags &= ~SC_OP_BEACONS;
2284 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2285 if (sc->beacon.bslot[i] == conf->vif) {
2286 printk(KERN_DEBUG "%s: vif had allocated beacon "
2287 "slot\n", __func__);
2288 sc->beacon.bslot[i] = NULL;
2289 sc->beacon.bslot_aphy[i] = NULL;
2293 sc->nvifs--;
2295 mutex_unlock(&sc->mutex);
2298 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2300 struct ath_wiphy *aphy = hw->priv;
2301 struct ath_softc *sc = aphy->sc;
2302 struct ieee80211_conf *conf = &hw->conf;
2303 struct ath_hw *ah = sc->sc_ah;
2304 bool all_wiphys_idle = false, disable_radio = false;
2306 mutex_lock(&sc->mutex);
2308 /* Leave this as the first check */
2309 if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2311 spin_lock_bh(&sc->wiphy_lock);
2312 all_wiphys_idle = ath9k_all_wiphys_idle(sc);
2313 spin_unlock_bh(&sc->wiphy_lock);
2315 if (conf->flags & IEEE80211_CONF_IDLE){
2316 if (all_wiphys_idle)
2317 disable_radio = true;
2319 else if (all_wiphys_idle) {
2320 ath_radio_enable(sc);
2321 DPRINTF(sc, ATH_DBG_CONFIG,
2322 "not-idle: enabling radio\n");
2326 if (changed & IEEE80211_CONF_CHANGE_PS) {
2327 if (conf->flags & IEEE80211_CONF_PS) {
2328 if (!(ah->caps.hw_caps &
2329 ATH9K_HW_CAP_AUTOSLEEP)) {
2330 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2331 sc->imask |= ATH9K_INT_TIM_TIMER;
2332 ath9k_hw_set_interrupts(sc->sc_ah,
2333 sc->imask);
2335 ath9k_hw_setrxabort(sc->sc_ah, 1);
2337 sc->ps_enabled = true;
2338 } else {
2339 sc->ps_enabled = false;
2340 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2341 if (!(ah->caps.hw_caps &
2342 ATH9K_HW_CAP_AUTOSLEEP)) {
2343 ath9k_hw_setrxabort(sc->sc_ah, 0);
2344 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2345 SC_OP_WAIT_FOR_CAB |
2346 SC_OP_WAIT_FOR_PSPOLL_DATA |
2347 SC_OP_WAIT_FOR_TX_ACK);
2348 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2349 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2350 ath9k_hw_set_interrupts(sc->sc_ah,
2351 sc->imask);
2357 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2358 struct ieee80211_channel *curchan = hw->conf.channel;
2359 int pos = curchan->hw_value;
2361 aphy->chan_idx = pos;
2362 aphy->chan_is_ht = conf_is_ht(conf);
2364 if (aphy->state == ATH_WIPHY_SCAN ||
2365 aphy->state == ATH_WIPHY_ACTIVE)
2366 ath9k_wiphy_pause_all_forced(sc, aphy);
2367 else {
2369 * Do not change operational channel based on a paused
2370 * wiphy changes.
2372 goto skip_chan_change;
2375 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2376 curchan->center_freq);
2378 /* XXX: remove me eventualy */
2379 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2381 ath_update_chainmask(sc, conf_is_ht(conf));
2383 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2384 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2385 mutex_unlock(&sc->mutex);
2386 return -EINVAL;
2390 skip_chan_change:
2391 if (changed & IEEE80211_CONF_CHANGE_POWER)
2392 sc->config.txpowlimit = 2 * conf->power_level;
2394 if (disable_radio) {
2395 DPRINTF(sc, ATH_DBG_CONFIG, "idle: disabling radio\n");
2396 ath_radio_disable(sc);
2399 mutex_unlock(&sc->mutex);
2401 return 0;
2404 #define SUPPORTED_FILTERS \
2405 (FIF_PROMISC_IN_BSS | \
2406 FIF_ALLMULTI | \
2407 FIF_CONTROL | \
2408 FIF_PSPOLL | \
2409 FIF_OTHER_BSS | \
2410 FIF_BCN_PRBRESP_PROMISC | \
2411 FIF_FCSFAIL)
2413 /* FIXME: sc->sc_full_reset ? */
2414 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2415 unsigned int changed_flags,
2416 unsigned int *total_flags,
2417 u64 multicast)
2419 struct ath_wiphy *aphy = hw->priv;
2420 struct ath_softc *sc = aphy->sc;
2421 u32 rfilt;
2423 changed_flags &= SUPPORTED_FILTERS;
2424 *total_flags &= SUPPORTED_FILTERS;
2426 sc->rx.rxfilter = *total_flags;
2427 ath9k_ps_wakeup(sc);
2428 rfilt = ath_calcrxfilter(sc);
2429 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2430 ath9k_ps_restore(sc);
2432 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", rfilt);
2435 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2436 struct ieee80211_vif *vif,
2437 enum sta_notify_cmd cmd,
2438 struct ieee80211_sta *sta)
2440 struct ath_wiphy *aphy = hw->priv;
2441 struct ath_softc *sc = aphy->sc;
2443 switch (cmd) {
2444 case STA_NOTIFY_ADD:
2445 ath_node_attach(sc, sta);
2446 break;
2447 case STA_NOTIFY_REMOVE:
2448 ath_node_detach(sc, sta);
2449 break;
2450 default:
2451 break;
2455 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2456 const struct ieee80211_tx_queue_params *params)
2458 struct ath_wiphy *aphy = hw->priv;
2459 struct ath_softc *sc = aphy->sc;
2460 struct ath9k_tx_queue_info qi;
2461 int ret = 0, qnum;
2463 if (queue >= WME_NUM_AC)
2464 return 0;
2466 mutex_lock(&sc->mutex);
2468 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2470 qi.tqi_aifs = params->aifs;
2471 qi.tqi_cwmin = params->cw_min;
2472 qi.tqi_cwmax = params->cw_max;
2473 qi.tqi_burstTime = params->txop;
2474 qnum = ath_get_hal_qnum(queue, sc);
2476 DPRINTF(sc, ATH_DBG_CONFIG,
2477 "Configure tx [queue/halq] [%d/%d], "
2478 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2479 queue, qnum, params->aifs, params->cw_min,
2480 params->cw_max, params->txop);
2482 ret = ath_txq_update(sc, qnum, &qi);
2483 if (ret)
2484 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2486 mutex_unlock(&sc->mutex);
2488 return ret;
2491 static int ath9k_set_key(struct ieee80211_hw *hw,
2492 enum set_key_cmd cmd,
2493 struct ieee80211_vif *vif,
2494 struct ieee80211_sta *sta,
2495 struct ieee80211_key_conf *key)
2497 struct ath_wiphy *aphy = hw->priv;
2498 struct ath_softc *sc = aphy->sc;
2499 int ret = 0;
2501 if (modparam_nohwcrypt)
2502 return -ENOSPC;
2504 mutex_lock(&sc->mutex);
2505 ath9k_ps_wakeup(sc);
2506 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2508 switch (cmd) {
2509 case SET_KEY:
2510 ret = ath_key_config(sc, vif, sta, key);
2511 if (ret >= 0) {
2512 key->hw_key_idx = ret;
2513 /* push IV and Michael MIC generation to stack */
2514 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2515 if (key->alg == ALG_TKIP)
2516 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2517 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2518 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2519 ret = 0;
2521 break;
2522 case DISABLE_KEY:
2523 ath_key_delete(sc, key);
2524 break;
2525 default:
2526 ret = -EINVAL;
2529 ath9k_ps_restore(sc);
2530 mutex_unlock(&sc->mutex);
2532 return ret;
2535 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2536 struct ieee80211_vif *vif,
2537 struct ieee80211_bss_conf *bss_conf,
2538 u32 changed)
2540 struct ath_wiphy *aphy = hw->priv;
2541 struct ath_softc *sc = aphy->sc;
2542 struct ath_hw *ah = sc->sc_ah;
2543 struct ath_vif *avp = (void *)vif->drv_priv;
2544 u32 rfilt = 0;
2545 int error, i;
2547 mutex_lock(&sc->mutex);
2550 * TODO: Need to decide which hw opmode to use for
2551 * multi-interface cases
2552 * XXX: This belongs into add_interface!
2554 if (vif->type == NL80211_IFTYPE_AP &&
2555 ah->opmode != NL80211_IFTYPE_AP) {
2556 ah->opmode = NL80211_IFTYPE_STATION;
2557 ath9k_hw_setopmode(ah);
2558 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2559 sc->curaid = 0;
2560 ath9k_hw_write_associd(sc);
2561 /* Request full reset to get hw opmode changed properly */
2562 sc->sc_flags |= SC_OP_FULL_RESET;
2565 if ((changed & BSS_CHANGED_BSSID) &&
2566 !is_zero_ether_addr(bss_conf->bssid)) {
2567 switch (vif->type) {
2568 case NL80211_IFTYPE_STATION:
2569 case NL80211_IFTYPE_ADHOC:
2570 case NL80211_IFTYPE_MESH_POINT:
2571 /* Set BSSID */
2572 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2573 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2574 sc->curaid = 0;
2575 ath9k_hw_write_associd(sc);
2577 /* Set aggregation protection mode parameters */
2578 sc->config.ath_aggr_prot = 0;
2580 DPRINTF(sc, ATH_DBG_CONFIG,
2581 "RX filter 0x%x bssid %pM aid 0x%x\n",
2582 rfilt, sc->curbssid, sc->curaid);
2584 /* need to reconfigure the beacon */
2585 sc->sc_flags &= ~SC_OP_BEACONS ;
2587 break;
2588 default:
2589 break;
2593 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2594 (vif->type == NL80211_IFTYPE_AP) ||
2595 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2596 if ((changed & BSS_CHANGED_BEACON) ||
2597 (changed & BSS_CHANGED_BEACON_ENABLED &&
2598 bss_conf->enable_beacon)) {
2600 * Allocate and setup the beacon frame.
2602 * Stop any previous beacon DMA. This may be
2603 * necessary, for example, when an ibss merge
2604 * causes reconfiguration; we may be called
2605 * with beacon transmission active.
2607 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2609 error = ath_beacon_alloc(aphy, vif);
2610 if (!error)
2611 ath_beacon_config(sc, vif);
2615 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2616 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2617 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2618 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2619 ath9k_hw_keysetmac(sc->sc_ah,
2620 (u16)i,
2621 sc->curbssid);
2624 /* Only legacy IBSS for now */
2625 if (vif->type == NL80211_IFTYPE_ADHOC)
2626 ath_update_chainmask(sc, 0);
2628 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2629 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2630 bss_conf->use_short_preamble);
2631 if (bss_conf->use_short_preamble)
2632 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2633 else
2634 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2637 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2638 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2639 bss_conf->use_cts_prot);
2640 if (bss_conf->use_cts_prot &&
2641 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2642 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2643 else
2644 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2647 if (changed & BSS_CHANGED_ASSOC) {
2648 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2649 bss_conf->assoc);
2650 ath9k_bss_assoc_info(sc, vif, bss_conf);
2654 * The HW TSF has to be reset when the beacon interval changes.
2655 * We set the flag here, and ath_beacon_config_ap() would take this
2656 * into account when it gets called through the subsequent
2657 * config_interface() call - with IFCC_BEACON in the changed field.
2660 if (changed & BSS_CHANGED_BEACON_INT) {
2661 sc->sc_flags |= SC_OP_TSF_RESET;
2662 sc->beacon_interval = bss_conf->beacon_int;
2665 mutex_unlock(&sc->mutex);
2668 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2670 u64 tsf;
2671 struct ath_wiphy *aphy = hw->priv;
2672 struct ath_softc *sc = aphy->sc;
2674 mutex_lock(&sc->mutex);
2675 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2676 mutex_unlock(&sc->mutex);
2678 return tsf;
2681 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2683 struct ath_wiphy *aphy = hw->priv;
2684 struct ath_softc *sc = aphy->sc;
2686 mutex_lock(&sc->mutex);
2687 ath9k_hw_settsf64(sc->sc_ah, tsf);
2688 mutex_unlock(&sc->mutex);
2691 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2693 struct ath_wiphy *aphy = hw->priv;
2694 struct ath_softc *sc = aphy->sc;
2696 mutex_lock(&sc->mutex);
2697 ath9k_hw_reset_tsf(sc->sc_ah);
2698 mutex_unlock(&sc->mutex);
2701 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2702 enum ieee80211_ampdu_mlme_action action,
2703 struct ieee80211_sta *sta,
2704 u16 tid, u16 *ssn)
2706 struct ath_wiphy *aphy = hw->priv;
2707 struct ath_softc *sc = aphy->sc;
2708 int ret = 0;
2710 switch (action) {
2711 case IEEE80211_AMPDU_RX_START:
2712 if (!(sc->sc_flags & SC_OP_RXAGGR))
2713 ret = -ENOTSUPP;
2714 break;
2715 case IEEE80211_AMPDU_RX_STOP:
2716 break;
2717 case IEEE80211_AMPDU_TX_START:
2718 ath_tx_aggr_start(sc, sta, tid, ssn);
2719 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2720 break;
2721 case IEEE80211_AMPDU_TX_STOP:
2722 ath_tx_aggr_stop(sc, sta, tid);
2723 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2724 break;
2725 case IEEE80211_AMPDU_TX_OPERATIONAL:
2726 ath_tx_aggr_resume(sc, sta, tid);
2727 break;
2728 default:
2729 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2732 return ret;
2735 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2737 struct ath_wiphy *aphy = hw->priv;
2738 struct ath_softc *sc = aphy->sc;
2740 mutex_lock(&sc->mutex);
2741 if (ath9k_wiphy_scanning(sc)) {
2742 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2743 "same time\n");
2745 * Do not allow the concurrent scanning state for now. This
2746 * could be improved with scanning control moved into ath9k.
2748 mutex_unlock(&sc->mutex);
2749 return;
2752 aphy->state = ATH_WIPHY_SCAN;
2753 ath9k_wiphy_pause_all_forced(sc, aphy);
2755 spin_lock_bh(&sc->ani_lock);
2756 sc->sc_flags |= SC_OP_SCANNING;
2757 spin_unlock_bh(&sc->ani_lock);
2758 mutex_unlock(&sc->mutex);
2761 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2763 struct ath_wiphy *aphy = hw->priv;
2764 struct ath_softc *sc = aphy->sc;
2766 mutex_lock(&sc->mutex);
2767 spin_lock_bh(&sc->ani_lock);
2768 aphy->state = ATH_WIPHY_ACTIVE;
2769 sc->sc_flags &= ~SC_OP_SCANNING;
2770 sc->sc_flags |= SC_OP_FULL_RESET;
2771 spin_unlock_bh(&sc->ani_lock);
2772 ath_beacon_config(sc, NULL);
2773 mutex_unlock(&sc->mutex);
2776 struct ieee80211_ops ath9k_ops = {
2777 .tx = ath9k_tx,
2778 .start = ath9k_start,
2779 .stop = ath9k_stop,
2780 .add_interface = ath9k_add_interface,
2781 .remove_interface = ath9k_remove_interface,
2782 .config = ath9k_config,
2783 .configure_filter = ath9k_configure_filter,
2784 .sta_notify = ath9k_sta_notify,
2785 .conf_tx = ath9k_conf_tx,
2786 .bss_info_changed = ath9k_bss_info_changed,
2787 .set_key = ath9k_set_key,
2788 .get_tsf = ath9k_get_tsf,
2789 .set_tsf = ath9k_set_tsf,
2790 .reset_tsf = ath9k_reset_tsf,
2791 .ampdu_action = ath9k_ampdu_action,
2792 .sw_scan_start = ath9k_sw_scan_start,
2793 .sw_scan_complete = ath9k_sw_scan_complete,
2794 .rfkill_poll = ath9k_rfkill_poll_state,
2797 static struct {
2798 u32 version;
2799 const char * name;
2800 } ath_mac_bb_names[] = {
2801 { AR_SREV_VERSION_5416_PCI, "5416" },
2802 { AR_SREV_VERSION_5416_PCIE, "5418" },
2803 { AR_SREV_VERSION_9100, "9100" },
2804 { AR_SREV_VERSION_9160, "9160" },
2805 { AR_SREV_VERSION_9280, "9280" },
2806 { AR_SREV_VERSION_9285, "9285" },
2807 { AR_SREV_VERSION_9287, "9287" }
2810 static struct {
2811 u16 version;
2812 const char * name;
2813 } ath_rf_names[] = {
2814 { 0, "5133" },
2815 { AR_RAD5133_SREV_MAJOR, "5133" },
2816 { AR_RAD5122_SREV_MAJOR, "5122" },
2817 { AR_RAD2133_SREV_MAJOR, "2133" },
2818 { AR_RAD2122_SREV_MAJOR, "2122" }
2822 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2824 const char *
2825 ath_mac_bb_name(u32 mac_bb_version)
2827 int i;
2829 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2830 if (ath_mac_bb_names[i].version == mac_bb_version) {
2831 return ath_mac_bb_names[i].name;
2835 return "????";
2839 * Return the RF name. "????" is returned if the RF is unknown.
2841 const char *
2842 ath_rf_name(u16 rf_version)
2844 int i;
2846 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2847 if (ath_rf_names[i].version == rf_version) {
2848 return ath_rf_names[i].name;
2852 return "????";
2855 static int __init ath9k_init(void)
2857 int error;
2859 /* Register rate control algorithm */
2860 error = ath_rate_control_register();
2861 if (error != 0) {
2862 printk(KERN_ERR
2863 "ath9k: Unable to register rate control "
2864 "algorithm: %d\n",
2865 error);
2866 goto err_out;
2869 error = ath9k_debug_create_root();
2870 if (error) {
2871 printk(KERN_ERR
2872 "ath9k: Unable to create debugfs root: %d\n",
2873 error);
2874 goto err_rate_unregister;
2877 error = ath_pci_init();
2878 if (error < 0) {
2879 printk(KERN_ERR
2880 "ath9k: No PCI devices found, driver not installed.\n");
2881 error = -ENODEV;
2882 goto err_remove_root;
2885 error = ath_ahb_init();
2886 if (error < 0) {
2887 error = -ENODEV;
2888 goto err_pci_exit;
2891 return 0;
2893 err_pci_exit:
2894 ath_pci_exit();
2896 err_remove_root:
2897 ath9k_debug_remove_root();
2898 err_rate_unregister:
2899 ath_rate_control_unregister();
2900 err_out:
2901 return error;
2903 module_init(ath9k_init);
2905 static void __exit ath9k_exit(void)
2907 ath_ahb_exit();
2908 ath_pci_exit();
2909 ath9k_debug_remove_root();
2910 ath_rate_control_unregister();
2911 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2913 module_exit(ath9k_exit);