2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
20 static char *dev_info
= "ath9k";
22 MODULE_AUTHOR("Atheros Communications");
23 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
24 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
25 MODULE_LICENSE("Dual BSD/GPL");
27 static int modparam_nohwcrypt
;
28 module_param_named(nohwcrypt
, modparam_nohwcrypt
, int, 0444);
29 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption");
31 /* We use the hw_value as an index into our private channel structure */
33 #define CHAN2G(_freq, _idx) { \
34 .center_freq = (_freq), \
39 #define CHAN5G(_freq, _idx) { \
40 .band = IEEE80211_BAND_5GHZ, \
41 .center_freq = (_freq), \
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47 * on 5 MHz steps, we support the channels which we know
48 * we have calibration data for all cards though to make
50 static struct ieee80211_channel ath9k_2ghz_chantable
[] = {
51 CHAN2G(2412, 0), /* Channel 1 */
52 CHAN2G(2417, 1), /* Channel 2 */
53 CHAN2G(2422, 2), /* Channel 3 */
54 CHAN2G(2427, 3), /* Channel 4 */
55 CHAN2G(2432, 4), /* Channel 5 */
56 CHAN2G(2437, 5), /* Channel 6 */
57 CHAN2G(2442, 6), /* Channel 7 */
58 CHAN2G(2447, 7), /* Channel 8 */
59 CHAN2G(2452, 8), /* Channel 9 */
60 CHAN2G(2457, 9), /* Channel 10 */
61 CHAN2G(2462, 10), /* Channel 11 */
62 CHAN2G(2467, 11), /* Channel 12 */
63 CHAN2G(2472, 12), /* Channel 13 */
64 CHAN2G(2484, 13), /* Channel 14 */
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68 * on 5 MHz steps, we support the channels which we know
69 * we have calibration data for all cards though to make
71 static struct ieee80211_channel ath9k_5ghz_chantable
[] = {
72 /* _We_ call this UNII 1 */
73 CHAN5G(5180, 14), /* Channel 36 */
74 CHAN5G(5200, 15), /* Channel 40 */
75 CHAN5G(5220, 16), /* Channel 44 */
76 CHAN5G(5240, 17), /* Channel 48 */
77 /* _We_ call this UNII 2 */
78 CHAN5G(5260, 18), /* Channel 52 */
79 CHAN5G(5280, 19), /* Channel 56 */
80 CHAN5G(5300, 20), /* Channel 60 */
81 CHAN5G(5320, 21), /* Channel 64 */
82 /* _We_ call this "Middle band" */
83 CHAN5G(5500, 22), /* Channel 100 */
84 CHAN5G(5520, 23), /* Channel 104 */
85 CHAN5G(5540, 24), /* Channel 108 */
86 CHAN5G(5560, 25), /* Channel 112 */
87 CHAN5G(5580, 26), /* Channel 116 */
88 CHAN5G(5600, 27), /* Channel 120 */
89 CHAN5G(5620, 28), /* Channel 124 */
90 CHAN5G(5640, 29), /* Channel 128 */
91 CHAN5G(5660, 30), /* Channel 132 */
92 CHAN5G(5680, 31), /* Channel 136 */
93 CHAN5G(5700, 32), /* Channel 140 */
94 /* _We_ call this UNII 3 */
95 CHAN5G(5745, 33), /* Channel 149 */
96 CHAN5G(5765, 34), /* Channel 153 */
97 CHAN5G(5785, 35), /* Channel 157 */
98 CHAN5G(5805, 36), /* Channel 161 */
99 CHAN5G(5825, 37), /* Channel 165 */
102 static void ath_cache_conf_rate(struct ath_softc
*sc
,
103 struct ieee80211_conf
*conf
)
105 switch (conf
->channel
->band
) {
106 case IEEE80211_BAND_2GHZ
:
107 if (conf_is_ht20(conf
))
109 sc
->hw_rate_table
[ATH9K_MODE_11NG_HT20
];
110 else if (conf_is_ht40_minus(conf
))
112 sc
->hw_rate_table
[ATH9K_MODE_11NG_HT40MINUS
];
113 else if (conf_is_ht40_plus(conf
))
115 sc
->hw_rate_table
[ATH9K_MODE_11NG_HT40PLUS
];
118 sc
->hw_rate_table
[ATH9K_MODE_11G
];
120 case IEEE80211_BAND_5GHZ
:
121 if (conf_is_ht20(conf
))
123 sc
->hw_rate_table
[ATH9K_MODE_11NA_HT20
];
124 else if (conf_is_ht40_minus(conf
))
126 sc
->hw_rate_table
[ATH9K_MODE_11NA_HT40MINUS
];
127 else if (conf_is_ht40_plus(conf
))
129 sc
->hw_rate_table
[ATH9K_MODE_11NA_HT40PLUS
];
132 sc
->hw_rate_table
[ATH9K_MODE_11A
];
140 static void ath_update_txpow(struct ath_softc
*sc
)
142 struct ath_hw
*ah
= sc
->sc_ah
;
145 if (sc
->curtxpow
!= sc
->config
.txpowlimit
) {
146 ath9k_hw_set_txpowerlimit(ah
, sc
->config
.txpowlimit
);
147 /* read back in case value is clamped */
148 ath9k_hw_getcapability(ah
, ATH9K_CAP_TXPOW
, 1, &txpow
);
149 sc
->curtxpow
= txpow
;
153 static u8
parse_mpdudensity(u8 mpdudensity
)
156 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157 * 0 for no restriction
166 switch (mpdudensity
) {
172 /* Our lower layer calculations limit our precision to
188 static void ath_setup_rates(struct ath_softc
*sc
, enum ieee80211_band band
)
190 const struct ath_rate_table
*rate_table
= NULL
;
191 struct ieee80211_supported_band
*sband
;
192 struct ieee80211_rate
*rate
;
196 case IEEE80211_BAND_2GHZ
:
197 rate_table
= sc
->hw_rate_table
[ATH9K_MODE_11G
];
199 case IEEE80211_BAND_5GHZ
:
200 rate_table
= sc
->hw_rate_table
[ATH9K_MODE_11A
];
206 if (rate_table
== NULL
)
209 sband
= &sc
->sbands
[band
];
210 rate
= sc
->rates
[band
];
212 if (rate_table
->rate_cnt
> ATH_RATE_MAX
)
213 maxrates
= ATH_RATE_MAX
;
215 maxrates
= rate_table
->rate_cnt
;
217 for (i
= 0; i
< maxrates
; i
++) {
218 rate
[i
].bitrate
= rate_table
->info
[i
].ratekbps
/ 100;
219 rate
[i
].hw_value
= rate_table
->info
[i
].ratecode
;
220 if (rate_table
->info
[i
].short_preamble
) {
221 rate
[i
].hw_value_short
= rate_table
->info
[i
].ratecode
|
222 rate_table
->info
[i
].short_preamble
;
223 rate
[i
].flags
= IEEE80211_RATE_SHORT_PREAMBLE
;
227 DPRINTF(sc
, ATH_DBG_CONFIG
, "Rate: %2dMbps, ratecode: %2d\n",
228 rate
[i
].bitrate
/ 10, rate
[i
].hw_value
);
232 static struct ath9k_channel
*ath_get_curchannel(struct ath_softc
*sc
,
233 struct ieee80211_hw
*hw
)
235 struct ieee80211_channel
*curchan
= hw
->conf
.channel
;
236 struct ath9k_channel
*channel
;
239 chan_idx
= curchan
->hw_value
;
240 channel
= &sc
->sc_ah
->channels
[chan_idx
];
241 ath9k_update_ichannel(sc
, hw
, channel
);
246 * Set/change channels. If the channel is really being changed, it's done
247 * by reseting the chip. To accomplish this we must first cleanup any pending
248 * DMA, then restart stuff.
250 int ath_set_channel(struct ath_softc
*sc
, struct ieee80211_hw
*hw
,
251 struct ath9k_channel
*hchan
)
253 struct ath_hw
*ah
= sc
->sc_ah
;
254 bool fastcc
= true, stopped
;
255 struct ieee80211_channel
*channel
= hw
->conf
.channel
;
258 if (sc
->sc_flags
& SC_OP_INVALID
)
264 * This is only performed if the channel settings have
267 * To switch channels clear any pending DMA operations;
268 * wait long enough for the RX fifo to drain, reset the
269 * hardware at the new frequency, and then re-enable
270 * the relevant bits of the h/w.
272 ath9k_hw_set_interrupts(ah
, 0);
273 ath_drain_all_txq(sc
, false);
274 stopped
= ath_stoprecv(sc
);
276 /* XXX: do not flush receive queue here. We don't want
277 * to flush data frames already in queue because of
278 * changing channel. */
280 if (!stopped
|| (sc
->sc_flags
& SC_OP_FULL_RESET
))
283 DPRINTF(sc
, ATH_DBG_CONFIG
,
284 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
285 sc
->sc_ah
->curchan
->channel
,
286 channel
->center_freq
, sc
->tx_chan_width
);
288 spin_lock_bh(&sc
->sc_resetlock
);
290 r
= ath9k_hw_reset(ah
, hchan
, fastcc
);
292 DPRINTF(sc
, ATH_DBG_FATAL
,
293 "Unable to reset channel (%u Mhz) "
295 channel
->center_freq
, r
);
296 spin_unlock_bh(&sc
->sc_resetlock
);
299 spin_unlock_bh(&sc
->sc_resetlock
);
301 sc
->sc_flags
&= ~SC_OP_FULL_RESET
;
303 if (ath_startrecv(sc
) != 0) {
304 DPRINTF(sc
, ATH_DBG_FATAL
,
305 "Unable to restart recv logic\n");
310 ath_cache_conf_rate(sc
, &hw
->conf
);
311 ath_update_txpow(sc
);
312 ath9k_hw_set_interrupts(ah
, sc
->imask
);
315 ath9k_ps_restore(sc
);
320 * This routine performs the periodic noise floor calibration function
321 * that is used to adjust and optimize the chip performance. This
322 * takes environmental changes (location, temperature) into account.
323 * When the task is complete, it reschedules itself depending on the
324 * appropriate interval that was calculated.
326 static void ath_ani_calibrate(unsigned long data
)
328 struct ath_softc
*sc
= (struct ath_softc
*)data
;
329 struct ath_hw
*ah
= sc
->sc_ah
;
330 bool longcal
= false;
331 bool shortcal
= false;
332 bool aniflag
= false;
333 unsigned int timestamp
= jiffies_to_msecs(jiffies
);
334 u32 cal_interval
, short_cal_interval
;
336 short_cal_interval
= (ah
->opmode
== NL80211_IFTYPE_AP
) ?
337 ATH_AP_SHORT_CALINTERVAL
: ATH_STA_SHORT_CALINTERVAL
;
340 * don't calibrate when we're scanning.
341 * we are most likely not on our home channel.
343 spin_lock(&sc
->ani_lock
);
344 if (sc
->sc_flags
& SC_OP_SCANNING
)
347 /* Only calibrate if awake */
348 if (sc
->sc_ah
->power_mode
!= ATH9K_PM_AWAKE
)
353 /* Long calibration runs independently of short calibration. */
354 if ((timestamp
- sc
->ani
.longcal_timer
) >= ATH_LONG_CALINTERVAL
) {
356 DPRINTF(sc
, ATH_DBG_ANI
, "longcal @%lu\n", jiffies
);
357 sc
->ani
.longcal_timer
= timestamp
;
360 /* Short calibration applies only while caldone is false */
361 if (!sc
->ani
.caldone
) {
362 if ((timestamp
- sc
->ani
.shortcal_timer
) >= short_cal_interval
) {
364 DPRINTF(sc
, ATH_DBG_ANI
, "shortcal @%lu\n", jiffies
);
365 sc
->ani
.shortcal_timer
= timestamp
;
366 sc
->ani
.resetcal_timer
= timestamp
;
369 if ((timestamp
- sc
->ani
.resetcal_timer
) >=
370 ATH_RESTART_CALINTERVAL
) {
371 sc
->ani
.caldone
= ath9k_hw_reset_calvalid(ah
);
373 sc
->ani
.resetcal_timer
= timestamp
;
377 /* Verify whether we must check ANI */
378 if ((timestamp
- sc
->ani
.checkani_timer
) >= ATH_ANI_POLLINTERVAL
) {
380 sc
->ani
.checkani_timer
= timestamp
;
383 /* Skip all processing if there's nothing to do. */
384 if (longcal
|| shortcal
|| aniflag
) {
385 /* Call ANI routine if necessary */
387 ath9k_hw_ani_monitor(ah
, ah
->curchan
);
389 /* Perform calibration if necessary */
390 if (longcal
|| shortcal
) {
391 sc
->ani
.caldone
= ath9k_hw_calibrate(ah
, ah
->curchan
,
392 sc
->rx_chainmask
, longcal
);
395 sc
->ani
.noise_floor
= ath9k_hw_getchan_noise(ah
,
398 DPRINTF(sc
, ATH_DBG_ANI
," calibrate chan %u/%x nf: %d\n",
399 ah
->curchan
->channel
, ah
->curchan
->channelFlags
,
400 sc
->ani
.noise_floor
);
404 ath9k_ps_restore(sc
);
407 spin_unlock(&sc
->ani_lock
);
409 * Set timer interval based on previous results.
410 * The interval must be the shortest necessary to satisfy ANI,
411 * short calibration and long calibration.
413 cal_interval
= ATH_LONG_CALINTERVAL
;
414 if (sc
->sc_ah
->config
.enable_ani
)
415 cal_interval
= min(cal_interval
, (u32
)ATH_ANI_POLLINTERVAL
);
416 if (!sc
->ani
.caldone
)
417 cal_interval
= min(cal_interval
, (u32
)short_cal_interval
);
419 mod_timer(&sc
->ani
.timer
, jiffies
+ msecs_to_jiffies(cal_interval
));
422 static void ath_start_ani(struct ath_softc
*sc
)
424 unsigned long timestamp
= jiffies_to_msecs(jiffies
);
426 sc
->ani
.longcal_timer
= timestamp
;
427 sc
->ani
.shortcal_timer
= timestamp
;
428 sc
->ani
.checkani_timer
= timestamp
;
430 mod_timer(&sc
->ani
.timer
,
431 jiffies
+ msecs_to_jiffies(ATH_ANI_POLLINTERVAL
));
435 * Update tx/rx chainmask. For legacy association,
436 * hard code chainmask to 1x1, for 11n association, use
437 * the chainmask configuration, for bt coexistence, use
438 * the chainmask configuration even in legacy mode.
440 void ath_update_chainmask(struct ath_softc
*sc
, int is_ht
)
442 if ((sc
->sc_flags
& SC_OP_SCANNING
) || is_ht
||
443 (sc
->btcoex_info
.btcoex_scheme
!= ATH_BTCOEX_CFG_NONE
)) {
444 sc
->tx_chainmask
= sc
->sc_ah
->caps
.tx_chainmask
;
445 sc
->rx_chainmask
= sc
->sc_ah
->caps
.rx_chainmask
;
447 sc
->tx_chainmask
= 1;
448 sc
->rx_chainmask
= 1;
451 DPRINTF(sc
, ATH_DBG_CONFIG
, "tx chmask: %d, rx chmask: %d\n",
452 sc
->tx_chainmask
, sc
->rx_chainmask
);
455 static void ath_node_attach(struct ath_softc
*sc
, struct ieee80211_sta
*sta
)
459 an
= (struct ath_node
*)sta
->drv_priv
;
461 if (sc
->sc_flags
& SC_OP_TXAGGR
) {
462 ath_tx_node_init(sc
, an
);
463 an
->maxampdu
= 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR
+
464 sta
->ht_cap
.ampdu_factor
);
465 an
->mpdudensity
= parse_mpdudensity(sta
->ht_cap
.ampdu_density
);
466 an
->last_rssi
= ATH_RSSI_DUMMY_MARKER
;
470 static void ath_node_detach(struct ath_softc
*sc
, struct ieee80211_sta
*sta
)
472 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
474 if (sc
->sc_flags
& SC_OP_TXAGGR
)
475 ath_tx_node_cleanup(sc
, an
);
478 static void ath9k_tasklet(unsigned long data
)
480 struct ath_softc
*sc
= (struct ath_softc
*)data
;
481 u32 status
= sc
->intrstatus
;
485 if (status
& ATH9K_INT_FATAL
) {
486 ath_reset(sc
, false);
487 ath9k_ps_restore(sc
);
491 if (status
& (ATH9K_INT_RX
| ATH9K_INT_RXEOL
| ATH9K_INT_RXORN
)) {
492 spin_lock_bh(&sc
->rx
.rxflushlock
);
493 ath_rx_tasklet(sc
, 0);
494 spin_unlock_bh(&sc
->rx
.rxflushlock
);
497 if (status
& ATH9K_INT_TX
)
500 if ((status
& ATH9K_INT_TSFOOR
) && sc
->ps_enabled
) {
502 * TSF sync does not look correct; remain awake to sync with
505 DPRINTF(sc
, ATH_DBG_PS
, "TSFOOR - Sync with next Beacon\n");
506 sc
->sc_flags
|= SC_OP_WAIT_FOR_BEACON
| SC_OP_BEACON_SYNC
;
509 if (sc
->btcoex_info
.btcoex_scheme
== ATH_BTCOEX_CFG_3WIRE
)
510 if (status
& ATH9K_INT_GENTIMER
)
511 ath_gen_timer_isr(sc
->sc_ah
);
513 /* re-enable hardware interrupt */
514 ath9k_hw_set_interrupts(sc
->sc_ah
, sc
->imask
);
515 ath9k_ps_restore(sc
);
518 irqreturn_t
ath_isr(int irq
, void *dev
)
520 #define SCHED_INTR ( \
531 struct ath_softc
*sc
= dev
;
532 struct ath_hw
*ah
= sc
->sc_ah
;
533 enum ath9k_int status
;
537 * The hardware is not ready/present, don't
538 * touch anything. Note this can happen early
539 * on if the IRQ is shared.
541 if (sc
->sc_flags
& SC_OP_INVALID
)
545 /* shared irq, not for us */
547 if (!ath9k_hw_intrpend(ah
))
551 * Figure out the reason(s) for the interrupt. Note
552 * that the hal returns a pseudo-ISR that may include
553 * bits we haven't explicitly enabled so we mask the
554 * value to insure we only process bits we requested.
556 ath9k_hw_getisr(ah
, &status
); /* NB: clears ISR too */
557 status
&= sc
->imask
; /* discard unasked-for bits */
560 * If there are no status bits set, then this interrupt was not
561 * for me (should have been caught above).
566 /* Cache the status */
567 sc
->intrstatus
= status
;
569 if (status
& SCHED_INTR
)
573 * If a FATAL or RXORN interrupt is received, we have to reset the
576 if (status
& (ATH9K_INT_FATAL
| ATH9K_INT_RXORN
))
579 if (status
& ATH9K_INT_SWBA
)
580 tasklet_schedule(&sc
->bcon_tasklet
);
582 if (status
& ATH9K_INT_TXURN
)
583 ath9k_hw_updatetxtriglevel(ah
, true);
585 if (status
& ATH9K_INT_MIB
) {
587 * Disable interrupts until we service the MIB
588 * interrupt; otherwise it will continue to
591 ath9k_hw_set_interrupts(ah
, 0);
593 * Let the hal handle the event. We assume
594 * it will clear whatever condition caused
597 ath9k_hw_procmibevent(ah
);
598 ath9k_hw_set_interrupts(ah
, sc
->imask
);
601 if (!(ah
->caps
.hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
602 if (status
& ATH9K_INT_TIM_TIMER
) {
603 /* Clear RxAbort bit so that we can
605 ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
);
606 ath9k_hw_setrxabort(sc
->sc_ah
, 0);
607 sc
->sc_flags
|= SC_OP_WAIT_FOR_BEACON
;
612 ath_debug_stat_interrupt(sc
, status
);
615 /* turn off every interrupt except SWBA */
616 ath9k_hw_set_interrupts(ah
, (sc
->imask
& ATH9K_INT_SWBA
));
617 tasklet_schedule(&sc
->intr_tq
);
625 static u32
ath_get_extchanmode(struct ath_softc
*sc
,
626 struct ieee80211_channel
*chan
,
627 enum nl80211_channel_type channel_type
)
631 switch (chan
->band
) {
632 case IEEE80211_BAND_2GHZ
:
633 switch(channel_type
) {
634 case NL80211_CHAN_NO_HT
:
635 case NL80211_CHAN_HT20
:
636 chanmode
= CHANNEL_G_HT20
;
638 case NL80211_CHAN_HT40PLUS
:
639 chanmode
= CHANNEL_G_HT40PLUS
;
641 case NL80211_CHAN_HT40MINUS
:
642 chanmode
= CHANNEL_G_HT40MINUS
;
646 case IEEE80211_BAND_5GHZ
:
647 switch(channel_type
) {
648 case NL80211_CHAN_NO_HT
:
649 case NL80211_CHAN_HT20
:
650 chanmode
= CHANNEL_A_HT20
;
652 case NL80211_CHAN_HT40PLUS
:
653 chanmode
= CHANNEL_A_HT40PLUS
;
655 case NL80211_CHAN_HT40MINUS
:
656 chanmode
= CHANNEL_A_HT40MINUS
;
667 static int ath_setkey_tkip(struct ath_softc
*sc
, u16 keyix
, const u8
*key
,
668 struct ath9k_keyval
*hk
, const u8
*addr
,
674 key_txmic
= key
+ NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY
;
675 key_rxmic
= key
+ NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY
;
679 * Group key installation - only two key cache entries are used
680 * regardless of splitmic capability since group key is only
681 * used either for TX or RX.
684 memcpy(hk
->kv_mic
, key_txmic
, sizeof(hk
->kv_mic
));
685 memcpy(hk
->kv_txmic
, key_txmic
, sizeof(hk
->kv_mic
));
687 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
688 memcpy(hk
->kv_txmic
, key_rxmic
, sizeof(hk
->kv_mic
));
690 return ath9k_hw_set_keycache_entry(sc
->sc_ah
, keyix
, hk
, addr
);
693 /* TX and RX keys share the same key cache entry. */
694 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
695 memcpy(hk
->kv_txmic
, key_txmic
, sizeof(hk
->kv_txmic
));
696 return ath9k_hw_set_keycache_entry(sc
->sc_ah
, keyix
, hk
, addr
);
699 /* Separate key cache entries for TX and RX */
701 /* TX key goes at first index, RX key at +32. */
702 memcpy(hk
->kv_mic
, key_txmic
, sizeof(hk
->kv_mic
));
703 if (!ath9k_hw_set_keycache_entry(sc
->sc_ah
, keyix
, hk
, NULL
)) {
704 /* TX MIC entry failed. No need to proceed further */
705 DPRINTF(sc
, ATH_DBG_FATAL
,
706 "Setting TX MIC Key Failed\n");
710 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
711 /* XXX delete tx key on failure? */
712 return ath9k_hw_set_keycache_entry(sc
->sc_ah
, keyix
+ 32, hk
, addr
);
715 static int ath_reserve_key_cache_slot_tkip(struct ath_softc
*sc
)
719 for (i
= IEEE80211_WEP_NKID
; i
< sc
->keymax
/ 2; i
++) {
720 if (test_bit(i
, sc
->keymap
) ||
721 test_bit(i
+ 64, sc
->keymap
))
722 continue; /* At least one part of TKIP key allocated */
724 (test_bit(i
+ 32, sc
->keymap
) ||
725 test_bit(i
+ 64 + 32, sc
->keymap
)))
726 continue; /* At least one part of TKIP key allocated */
728 /* Found a free slot for a TKIP key */
734 static int ath_reserve_key_cache_slot(struct ath_softc
*sc
)
738 /* First, try to find slots that would not be available for TKIP. */
740 for (i
= IEEE80211_WEP_NKID
; i
< sc
->keymax
/ 4; i
++) {
741 if (!test_bit(i
, sc
->keymap
) &&
742 (test_bit(i
+ 32, sc
->keymap
) ||
743 test_bit(i
+ 64, sc
->keymap
) ||
744 test_bit(i
+ 64 + 32, sc
->keymap
)))
746 if (!test_bit(i
+ 32, sc
->keymap
) &&
747 (test_bit(i
, sc
->keymap
) ||
748 test_bit(i
+ 64, sc
->keymap
) ||
749 test_bit(i
+ 64 + 32, sc
->keymap
)))
751 if (!test_bit(i
+ 64, sc
->keymap
) &&
752 (test_bit(i
, sc
->keymap
) ||
753 test_bit(i
+ 32, sc
->keymap
) ||
754 test_bit(i
+ 64 + 32, sc
->keymap
)))
756 if (!test_bit(i
+ 64 + 32, sc
->keymap
) &&
757 (test_bit(i
, sc
->keymap
) ||
758 test_bit(i
+ 32, sc
->keymap
) ||
759 test_bit(i
+ 64, sc
->keymap
)))
763 for (i
= IEEE80211_WEP_NKID
; i
< sc
->keymax
/ 2; i
++) {
764 if (!test_bit(i
, sc
->keymap
) &&
765 test_bit(i
+ 64, sc
->keymap
))
767 if (test_bit(i
, sc
->keymap
) &&
768 !test_bit(i
+ 64, sc
->keymap
))
773 /* No partially used TKIP slots, pick any available slot */
774 for (i
= IEEE80211_WEP_NKID
; i
< sc
->keymax
; i
++) {
775 /* Do not allow slots that could be needed for TKIP group keys
776 * to be used. This limitation could be removed if we know that
777 * TKIP will not be used. */
778 if (i
>= 64 && i
< 64 + IEEE80211_WEP_NKID
)
781 if (i
>= 32 && i
< 32 + IEEE80211_WEP_NKID
)
783 if (i
>= 64 + 32 && i
< 64 + 32 + IEEE80211_WEP_NKID
)
787 if (!test_bit(i
, sc
->keymap
))
788 return i
; /* Found a free slot for a key */
791 /* No free slot found */
795 static int ath_key_config(struct ath_softc
*sc
,
796 struct ieee80211_vif
*vif
,
797 struct ieee80211_sta
*sta
,
798 struct ieee80211_key_conf
*key
)
800 struct ath9k_keyval hk
;
801 const u8
*mac
= NULL
;
805 memset(&hk
, 0, sizeof(hk
));
809 hk
.kv_type
= ATH9K_CIPHER_WEP
;
812 hk
.kv_type
= ATH9K_CIPHER_TKIP
;
815 hk
.kv_type
= ATH9K_CIPHER_AES_CCM
;
821 hk
.kv_len
= key
->keylen
;
822 memcpy(hk
.kv_val
, key
->key
, key
->keylen
);
824 if (!(key
->flags
& IEEE80211_KEY_FLAG_PAIRWISE
)) {
825 /* For now, use the default keys for broadcast keys. This may
826 * need to change with virtual interfaces. */
828 } else if (key
->keyidx
) {
833 if (vif
->type
!= NL80211_IFTYPE_AP
) {
834 /* Only keyidx 0 should be used with unicast key, but
835 * allow this for client mode for now. */
844 if (key
->alg
== ALG_TKIP
)
845 idx
= ath_reserve_key_cache_slot_tkip(sc
);
847 idx
= ath_reserve_key_cache_slot(sc
);
849 return -ENOSPC
; /* no free key cache entries */
852 if (key
->alg
== ALG_TKIP
)
853 ret
= ath_setkey_tkip(sc
, idx
, key
->key
, &hk
, mac
,
854 vif
->type
== NL80211_IFTYPE_AP
);
856 ret
= ath9k_hw_set_keycache_entry(sc
->sc_ah
, idx
, &hk
, mac
);
861 set_bit(idx
, sc
->keymap
);
862 if (key
->alg
== ALG_TKIP
) {
863 set_bit(idx
+ 64, sc
->keymap
);
865 set_bit(idx
+ 32, sc
->keymap
);
866 set_bit(idx
+ 64 + 32, sc
->keymap
);
873 static void ath_key_delete(struct ath_softc
*sc
, struct ieee80211_key_conf
*key
)
875 ath9k_hw_keyreset(sc
->sc_ah
, key
->hw_key_idx
);
876 if (key
->hw_key_idx
< IEEE80211_WEP_NKID
)
879 clear_bit(key
->hw_key_idx
, sc
->keymap
);
880 if (key
->alg
!= ALG_TKIP
)
883 clear_bit(key
->hw_key_idx
+ 64, sc
->keymap
);
885 clear_bit(key
->hw_key_idx
+ 32, sc
->keymap
);
886 clear_bit(key
->hw_key_idx
+ 64 + 32, sc
->keymap
);
890 static void setup_ht_cap(struct ath_softc
*sc
,
891 struct ieee80211_sta_ht_cap
*ht_info
)
893 u8 tx_streams
, rx_streams
;
895 ht_info
->ht_supported
= true;
896 ht_info
->cap
= IEEE80211_HT_CAP_SUP_WIDTH_20_40
|
897 IEEE80211_HT_CAP_SM_PS
|
898 IEEE80211_HT_CAP_SGI_40
|
899 IEEE80211_HT_CAP_DSSSCCK40
;
901 ht_info
->ampdu_factor
= IEEE80211_HT_MAX_AMPDU_64K
;
902 ht_info
->ampdu_density
= IEEE80211_HT_MPDU_DENSITY_8
;
904 /* set up supported mcs set */
905 memset(&ht_info
->mcs
, 0, sizeof(ht_info
->mcs
));
906 tx_streams
= !(sc
->tx_chainmask
& (sc
->tx_chainmask
- 1)) ? 1 : 2;
907 rx_streams
= !(sc
->rx_chainmask
& (sc
->rx_chainmask
- 1)) ? 1 : 2;
909 if (tx_streams
!= rx_streams
) {
910 DPRINTF(sc
, ATH_DBG_CONFIG
, "TX streams %d, RX streams: %d\n",
911 tx_streams
, rx_streams
);
912 ht_info
->mcs
.tx_params
|= IEEE80211_HT_MCS_TX_RX_DIFF
;
913 ht_info
->mcs
.tx_params
|= ((tx_streams
- 1) <<
914 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT
);
917 ht_info
->mcs
.rx_mask
[0] = 0xff;
919 ht_info
->mcs
.rx_mask
[1] = 0xff;
921 ht_info
->mcs
.tx_params
|= IEEE80211_HT_MCS_TX_DEFINED
;
924 static void ath9k_bss_assoc_info(struct ath_softc
*sc
,
925 struct ieee80211_vif
*vif
,
926 struct ieee80211_bss_conf
*bss_conf
)
929 if (bss_conf
->assoc
) {
930 DPRINTF(sc
, ATH_DBG_CONFIG
, "Bss Info ASSOC %d, bssid: %pM\n",
931 bss_conf
->aid
, sc
->curbssid
);
933 /* New association, store aid */
934 sc
->curaid
= bss_conf
->aid
;
935 ath9k_hw_write_associd(sc
);
938 * Request a re-configuration of Beacon related timers
939 * on the receipt of the first Beacon frame (i.e.,
940 * after time sync with the AP).
942 sc
->sc_flags
|= SC_OP_BEACON_SYNC
;
944 /* Configure the beacon */
945 ath_beacon_config(sc
, vif
);
947 /* Reset rssi stats */
948 sc
->sc_ah
->stats
.avgbrssi
= ATH_RSSI_DUMMY_MARKER
;
952 DPRINTF(sc
, ATH_DBG_CONFIG
, "Bss Info DISASSOC\n");
955 del_timer_sync(&sc
->ani
.timer
);
959 /********************************/
961 /********************************/
963 static void ath_led_blink_work(struct work_struct
*work
)
965 struct ath_softc
*sc
= container_of(work
, struct ath_softc
,
966 ath_led_blink_work
.work
);
968 if (!(sc
->sc_flags
& SC_OP_LED_ASSOCIATED
))
971 if ((sc
->led_on_duration
== ATH_LED_ON_DURATION_IDLE
) ||
972 (sc
->led_off_duration
== ATH_LED_OFF_DURATION_IDLE
))
973 ath9k_hw_set_gpio(sc
->sc_ah
, sc
->sc_ah
->led_pin
, 0);
975 ath9k_hw_set_gpio(sc
->sc_ah
, sc
->sc_ah
->led_pin
,
976 (sc
->sc_flags
& SC_OP_LED_ON
) ? 1 : 0);
978 ieee80211_queue_delayed_work(sc
->hw
,
979 &sc
->ath_led_blink_work
,
980 (sc
->sc_flags
& SC_OP_LED_ON
) ?
981 msecs_to_jiffies(sc
->led_off_duration
) :
982 msecs_to_jiffies(sc
->led_on_duration
));
984 sc
->led_on_duration
= sc
->led_on_cnt
?
985 max((ATH_LED_ON_DURATION_IDLE
- sc
->led_on_cnt
), 25) :
986 ATH_LED_ON_DURATION_IDLE
;
987 sc
->led_off_duration
= sc
->led_off_cnt
?
988 max((ATH_LED_OFF_DURATION_IDLE
- sc
->led_off_cnt
), 10) :
989 ATH_LED_OFF_DURATION_IDLE
;
990 sc
->led_on_cnt
= sc
->led_off_cnt
= 0;
991 if (sc
->sc_flags
& SC_OP_LED_ON
)
992 sc
->sc_flags
&= ~SC_OP_LED_ON
;
994 sc
->sc_flags
|= SC_OP_LED_ON
;
997 static void ath_led_brightness(struct led_classdev
*led_cdev
,
998 enum led_brightness brightness
)
1000 struct ath_led
*led
= container_of(led_cdev
, struct ath_led
, led_cdev
);
1001 struct ath_softc
*sc
= led
->sc
;
1003 switch (brightness
) {
1005 if (led
->led_type
== ATH_LED_ASSOC
||
1006 led
->led_type
== ATH_LED_RADIO
) {
1007 ath9k_hw_set_gpio(sc
->sc_ah
, sc
->sc_ah
->led_pin
,
1008 (led
->led_type
== ATH_LED_RADIO
));
1009 sc
->sc_flags
&= ~SC_OP_LED_ASSOCIATED
;
1010 if (led
->led_type
== ATH_LED_RADIO
)
1011 sc
->sc_flags
&= ~SC_OP_LED_ON
;
1017 if (led
->led_type
== ATH_LED_ASSOC
) {
1018 sc
->sc_flags
|= SC_OP_LED_ASSOCIATED
;
1019 ieee80211_queue_delayed_work(sc
->hw
,
1020 &sc
->ath_led_blink_work
, 0);
1021 } else if (led
->led_type
== ATH_LED_RADIO
) {
1022 ath9k_hw_set_gpio(sc
->sc_ah
, sc
->sc_ah
->led_pin
, 0);
1023 sc
->sc_flags
|= SC_OP_LED_ON
;
1033 static int ath_register_led(struct ath_softc
*sc
, struct ath_led
*led
,
1039 led
->led_cdev
.name
= led
->name
;
1040 led
->led_cdev
.default_trigger
= trigger
;
1041 led
->led_cdev
.brightness_set
= ath_led_brightness
;
1043 ret
= led_classdev_register(wiphy_dev(sc
->hw
->wiphy
), &led
->led_cdev
);
1045 DPRINTF(sc
, ATH_DBG_FATAL
,
1046 "Failed to register led:%s", led
->name
);
1048 led
->registered
= 1;
1052 static void ath_unregister_led(struct ath_led
*led
)
1054 if (led
->registered
) {
1055 led_classdev_unregister(&led
->led_cdev
);
1056 led
->registered
= 0;
1060 static void ath_deinit_leds(struct ath_softc
*sc
)
1062 ath_unregister_led(&sc
->assoc_led
);
1063 sc
->sc_flags
&= ~SC_OP_LED_ASSOCIATED
;
1064 ath_unregister_led(&sc
->tx_led
);
1065 ath_unregister_led(&sc
->rx_led
);
1066 ath_unregister_led(&sc
->radio_led
);
1067 ath9k_hw_set_gpio(sc
->sc_ah
, sc
->sc_ah
->led_pin
, 1);
1070 static void ath_init_leds(struct ath_softc
*sc
)
1075 if (AR_SREV_9287(sc
->sc_ah
))
1076 sc
->sc_ah
->led_pin
= ATH_LED_PIN_9287
;
1078 sc
->sc_ah
->led_pin
= ATH_LED_PIN_DEF
;
1080 /* Configure gpio 1 for output */
1081 ath9k_hw_cfg_output(sc
->sc_ah
, sc
->sc_ah
->led_pin
,
1082 AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1083 /* LED off, active low */
1084 ath9k_hw_set_gpio(sc
->sc_ah
, sc
->sc_ah
->led_pin
, 1);
1086 INIT_DELAYED_WORK(&sc
->ath_led_blink_work
, ath_led_blink_work
);
1088 trigger
= ieee80211_get_radio_led_name(sc
->hw
);
1089 snprintf(sc
->radio_led
.name
, sizeof(sc
->radio_led
.name
),
1090 "ath9k-%s::radio", wiphy_name(sc
->hw
->wiphy
));
1091 ret
= ath_register_led(sc
, &sc
->radio_led
, trigger
);
1092 sc
->radio_led
.led_type
= ATH_LED_RADIO
;
1096 trigger
= ieee80211_get_assoc_led_name(sc
->hw
);
1097 snprintf(sc
->assoc_led
.name
, sizeof(sc
->assoc_led
.name
),
1098 "ath9k-%s::assoc", wiphy_name(sc
->hw
->wiphy
));
1099 ret
= ath_register_led(sc
, &sc
->assoc_led
, trigger
);
1100 sc
->assoc_led
.led_type
= ATH_LED_ASSOC
;
1104 trigger
= ieee80211_get_tx_led_name(sc
->hw
);
1105 snprintf(sc
->tx_led
.name
, sizeof(sc
->tx_led
.name
),
1106 "ath9k-%s::tx", wiphy_name(sc
->hw
->wiphy
));
1107 ret
= ath_register_led(sc
, &sc
->tx_led
, trigger
);
1108 sc
->tx_led
.led_type
= ATH_LED_TX
;
1112 trigger
= ieee80211_get_rx_led_name(sc
->hw
);
1113 snprintf(sc
->rx_led
.name
, sizeof(sc
->rx_led
.name
),
1114 "ath9k-%s::rx", wiphy_name(sc
->hw
->wiphy
));
1115 ret
= ath_register_led(sc
, &sc
->rx_led
, trigger
);
1116 sc
->rx_led
.led_type
= ATH_LED_RX
;
1123 cancel_delayed_work_sync(&sc
->ath_led_blink_work
);
1124 ath_deinit_leds(sc
);
1127 void ath_radio_enable(struct ath_softc
*sc
)
1129 struct ath_hw
*ah
= sc
->sc_ah
;
1130 struct ieee80211_channel
*channel
= sc
->hw
->conf
.channel
;
1133 ath9k_ps_wakeup(sc
);
1134 ath9k_hw_configpcipowersave(ah
, 0, 0);
1137 ah
->curchan
= ath_get_curchannel(sc
, sc
->hw
);
1139 spin_lock_bh(&sc
->sc_resetlock
);
1140 r
= ath9k_hw_reset(ah
, ah
->curchan
, false);
1142 DPRINTF(sc
, ATH_DBG_FATAL
,
1143 "Unable to reset channel %u (%uMhz) ",
1144 "reset status %d\n",
1145 channel
->center_freq
, r
);
1147 spin_unlock_bh(&sc
->sc_resetlock
);
1149 ath_update_txpow(sc
);
1150 if (ath_startrecv(sc
) != 0) {
1151 DPRINTF(sc
, ATH_DBG_FATAL
,
1152 "Unable to restart recv logic\n");
1156 if (sc
->sc_flags
& SC_OP_BEACONS
)
1157 ath_beacon_config(sc
, NULL
); /* restart beacons */
1159 /* Re-Enable interrupts */
1160 ath9k_hw_set_interrupts(ah
, sc
->imask
);
1163 ath9k_hw_cfg_output(ah
, ah
->led_pin
,
1164 AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1165 ath9k_hw_set_gpio(ah
, ah
->led_pin
, 0);
1167 ieee80211_wake_queues(sc
->hw
);
1168 ath9k_ps_restore(sc
);
1171 void ath_radio_disable(struct ath_softc
*sc
)
1173 struct ath_hw
*ah
= sc
->sc_ah
;
1174 struct ieee80211_channel
*channel
= sc
->hw
->conf
.channel
;
1177 ath9k_ps_wakeup(sc
);
1178 ieee80211_stop_queues(sc
->hw
);
1181 ath9k_hw_set_gpio(ah
, ah
->led_pin
, 1);
1182 ath9k_hw_cfg_gpio_input(ah
, ah
->led_pin
);
1184 /* Disable interrupts */
1185 ath9k_hw_set_interrupts(ah
, 0);
1187 ath_drain_all_txq(sc
, false); /* clear pending tx frames */
1188 ath_stoprecv(sc
); /* turn off frame recv */
1189 ath_flushrecv(sc
); /* flush recv queue */
1192 ah
->curchan
= ath_get_curchannel(sc
, sc
->hw
);
1194 spin_lock_bh(&sc
->sc_resetlock
);
1195 r
= ath9k_hw_reset(ah
, ah
->curchan
, false);
1197 DPRINTF(sc
, ATH_DBG_FATAL
,
1198 "Unable to reset channel %u (%uMhz) "
1199 "reset status %d\n",
1200 channel
->center_freq
, r
);
1202 spin_unlock_bh(&sc
->sc_resetlock
);
1204 ath9k_hw_phy_disable(ah
);
1205 ath9k_hw_configpcipowersave(ah
, 1, 1);
1206 ath9k_ps_restore(sc
);
1207 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1210 /*******************/
1212 /*******************/
1214 static bool ath_is_rfkill_set(struct ath_softc
*sc
)
1216 struct ath_hw
*ah
= sc
->sc_ah
;
1218 return ath9k_hw_gpio_get(ah
, ah
->rfkill_gpio
) ==
1219 ah
->rfkill_polarity
;
1222 static void ath9k_rfkill_poll_state(struct ieee80211_hw
*hw
)
1224 struct ath_wiphy
*aphy
= hw
->priv
;
1225 struct ath_softc
*sc
= aphy
->sc
;
1226 bool blocked
= !!ath_is_rfkill_set(sc
);
1228 wiphy_rfkill_set_hw_state(hw
->wiphy
, blocked
);
1231 static void ath_start_rfkill_poll(struct ath_softc
*sc
)
1233 struct ath_hw
*ah
= sc
->sc_ah
;
1235 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1236 wiphy_rfkill_start_polling(sc
->hw
->wiphy
);
1239 void ath_cleanup(struct ath_softc
*sc
)
1242 free_irq(sc
->irq
, sc
);
1243 ath_bus_cleanup(sc
);
1244 kfree(sc
->sec_wiphy
);
1245 ieee80211_free_hw(sc
->hw
);
1248 void ath_detach(struct ath_softc
*sc
)
1250 struct ieee80211_hw
*hw
= sc
->hw
;
1253 ath9k_ps_wakeup(sc
);
1255 DPRINTF(sc
, ATH_DBG_CONFIG
, "Detach ATH hw\n");
1257 ath_deinit_leds(sc
);
1258 wiphy_rfkill_stop_polling(sc
->hw
->wiphy
);
1260 for (i
= 0; i
< sc
->num_sec_wiphy
; i
++) {
1261 struct ath_wiphy
*aphy
= sc
->sec_wiphy
[i
];
1264 sc
->sec_wiphy
[i
] = NULL
;
1265 ieee80211_unregister_hw(aphy
->hw
);
1266 ieee80211_free_hw(aphy
->hw
);
1268 ieee80211_unregister_hw(hw
);
1272 tasklet_kill(&sc
->intr_tq
);
1273 tasklet_kill(&sc
->bcon_tasklet
);
1275 if (!(sc
->sc_flags
& SC_OP_INVALID
))
1276 ath9k_hw_setpower(sc
->sc_ah
, ATH9K_PM_AWAKE
);
1278 /* cleanup tx queues */
1279 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1280 if (ATH_TXQ_SETUP(sc
, i
))
1281 ath_tx_cleanupq(sc
, &sc
->tx
.txq
[i
]);
1283 if ((sc
->btcoex_info
.no_stomp_timer
) &&
1284 sc
->btcoex_info
.btcoex_scheme
== ATH_BTCOEX_CFG_3WIRE
)
1285 ath_gen_timer_free(sc
->sc_ah
, sc
->btcoex_info
.no_stomp_timer
);
1287 ath9k_hw_detach(sc
->sc_ah
);
1289 ath9k_exit_debug(sc
);
1292 static int ath9k_reg_notifier(struct wiphy
*wiphy
,
1293 struct regulatory_request
*request
)
1295 struct ieee80211_hw
*hw
= wiphy_to_ieee80211_hw(wiphy
);
1296 struct ath_wiphy
*aphy
= hw
->priv
;
1297 struct ath_softc
*sc
= aphy
->sc
;
1298 struct ath_regulatory
*reg
= &sc
->common
.regulatory
;
1300 return ath_reg_notifier_apply(wiphy
, request
, reg
);
1304 * Initialize and fill ath_softc, ath_sofct is the
1305 * "Software Carrier" struct. Historically it has existed
1306 * to allow the separation between hardware specific
1307 * variables (now in ath_hw) and driver specific variables.
1309 static int ath_init_softc(u16 devid
, struct ath_softc
*sc
, u16 subsysid
)
1311 struct ath_hw
*ah
= NULL
;
1315 /* XXX: hardware will not be ready until ath_open() being called */
1316 sc
->sc_flags
|= SC_OP_INVALID
;
1318 if (ath9k_init_debug(sc
) < 0)
1319 printk(KERN_ERR
"Unable to create debugfs files\n");
1321 spin_lock_init(&sc
->wiphy_lock
);
1322 spin_lock_init(&sc
->sc_resetlock
);
1323 spin_lock_init(&sc
->sc_serial_rw
);
1324 spin_lock_init(&sc
->ani_lock
);
1325 spin_lock_init(&sc
->sc_pm_lock
);
1326 mutex_init(&sc
->mutex
);
1327 tasklet_init(&sc
->intr_tq
, ath9k_tasklet
, (unsigned long)sc
);
1328 tasklet_init(&sc
->bcon_tasklet
, ath_beacon_tasklet
,
1332 * Cache line size is used to size and align various
1333 * structures used to communicate with the hardware.
1335 ath_read_cachesize(sc
, &csz
);
1336 /* XXX assert csz is non-zero */
1337 sc
->common
.cachelsz
= csz
<< 2; /* convert to bytes */
1339 ah
= kzalloc(sizeof(struct ath_hw
), GFP_KERNEL
);
1346 ah
->hw_version
.devid
= devid
;
1347 ah
->hw_version
.subsysid
= subsysid
;
1350 r
= ath9k_hw_init(ah
);
1352 DPRINTF(sc
, ATH_DBG_FATAL
,
1353 "Unable to initialize hardware; "
1354 "initialization status: %d\n", r
);
1358 /* Get the hardware key cache size. */
1359 sc
->keymax
= ah
->caps
.keycache_size
;
1360 if (sc
->keymax
> ATH_KEYMAX
) {
1361 DPRINTF(sc
, ATH_DBG_ANY
,
1362 "Warning, using only %u entries in %u key cache\n",
1363 ATH_KEYMAX
, sc
->keymax
);
1364 sc
->keymax
= ATH_KEYMAX
;
1368 * Reset the key cache since some parts do not
1369 * reset the contents on initial power up.
1371 for (i
= 0; i
< sc
->keymax
; i
++)
1372 ath9k_hw_keyreset(ah
, (u16
) i
);
1374 /* default to MONITOR mode */
1375 sc
->sc_ah
->opmode
= NL80211_IFTYPE_MONITOR
;
1377 /* Setup rate tables */
1379 ath_rate_attach(sc
);
1380 ath_setup_rates(sc
, IEEE80211_BAND_2GHZ
);
1381 ath_setup_rates(sc
, IEEE80211_BAND_5GHZ
);
1384 * Allocate hardware transmit queues: one queue for
1385 * beacon frames and one data queue for each QoS
1386 * priority. Note that the hal handles reseting
1387 * these queues at the needed time.
1389 sc
->beacon
.beaconq
= ath_beaconq_setup(ah
);
1390 if (sc
->beacon
.beaconq
== -1) {
1391 DPRINTF(sc
, ATH_DBG_FATAL
,
1392 "Unable to setup a beacon xmit queue\n");
1396 sc
->beacon
.cabq
= ath_txq_setup(sc
, ATH9K_TX_QUEUE_CAB
, 0);
1397 if (sc
->beacon
.cabq
== NULL
) {
1398 DPRINTF(sc
, ATH_DBG_FATAL
,
1399 "Unable to setup CAB xmit queue\n");
1404 sc
->config
.cabqReadytime
= ATH_CABQ_READY_TIME
;
1405 ath_cabq_update(sc
);
1407 for (i
= 0; i
< ARRAY_SIZE(sc
->tx
.hwq_map
); i
++)
1408 sc
->tx
.hwq_map
[i
] = -1;
1410 /* Setup data queues */
1411 /* NB: ensure BK queue is the lowest priority h/w queue */
1412 if (!ath_tx_setup(sc
, ATH9K_WME_AC_BK
)) {
1413 DPRINTF(sc
, ATH_DBG_FATAL
,
1414 "Unable to setup xmit queue for BK traffic\n");
1419 if (!ath_tx_setup(sc
, ATH9K_WME_AC_BE
)) {
1420 DPRINTF(sc
, ATH_DBG_FATAL
,
1421 "Unable to setup xmit queue for BE traffic\n");
1425 if (!ath_tx_setup(sc
, ATH9K_WME_AC_VI
)) {
1426 DPRINTF(sc
, ATH_DBG_FATAL
,
1427 "Unable to setup xmit queue for VI traffic\n");
1431 if (!ath_tx_setup(sc
, ATH9K_WME_AC_VO
)) {
1432 DPRINTF(sc
, ATH_DBG_FATAL
,
1433 "Unable to setup xmit queue for VO traffic\n");
1438 /* Initializes the noise floor to a reasonable default value.
1439 * Later on this will be updated during ANI processing. */
1441 sc
->ani
.noise_floor
= ATH_DEFAULT_NOISE_FLOOR
;
1442 setup_timer(&sc
->ani
.timer
, ath_ani_calibrate
, (unsigned long)sc
);
1444 if (ath9k_hw_getcapability(ah
, ATH9K_CAP_CIPHER
,
1445 ATH9K_CIPHER_TKIP
, NULL
)) {
1447 * Whether we should enable h/w TKIP MIC.
1448 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1449 * report WMM capable, so it's always safe to turn on
1450 * TKIP MIC in this case.
1452 ath9k_hw_setcapability(sc
->sc_ah
, ATH9K_CAP_TKIP_MIC
,
1457 * Check whether the separate key cache entries
1458 * are required to handle both tx+rx MIC keys.
1459 * With split mic keys the number of stations is limited
1460 * to 27 otherwise 59.
1462 if (ath9k_hw_getcapability(ah
, ATH9K_CAP_CIPHER
,
1463 ATH9K_CIPHER_TKIP
, NULL
)
1464 && ath9k_hw_getcapability(ah
, ATH9K_CAP_CIPHER
,
1465 ATH9K_CIPHER_MIC
, NULL
)
1466 && ath9k_hw_getcapability(ah
, ATH9K_CAP_TKIP_SPLIT
,
1470 /* turn on mcast key search if possible */
1471 if (!ath9k_hw_getcapability(ah
, ATH9K_CAP_MCAST_KEYSRCH
, 0, NULL
))
1472 (void)ath9k_hw_setcapability(ah
, ATH9K_CAP_MCAST_KEYSRCH
, 1,
1475 sc
->config
.txpowlimit
= ATH_TXPOWER_MAX
;
1477 /* 11n Capabilities */
1478 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_HT
) {
1479 sc
->sc_flags
|= SC_OP_TXAGGR
;
1480 sc
->sc_flags
|= SC_OP_RXAGGR
;
1483 sc
->tx_chainmask
= ah
->caps
.tx_chainmask
;
1484 sc
->rx_chainmask
= ah
->caps
.rx_chainmask
;
1486 ath9k_hw_setcapability(ah
, ATH9K_CAP_DIVERSITY
, 1, true, NULL
);
1487 sc
->rx
.defant
= ath9k_hw_getdefantenna(ah
);
1489 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_BSSIDMASK
)
1490 memcpy(sc
->bssidmask
, ath_bcast_mac
, ETH_ALEN
);
1492 sc
->beacon
.slottime
= ATH9K_SLOT_TIME_9
; /* default to short slot time */
1494 /* initialize beacon slots */
1495 for (i
= 0; i
< ARRAY_SIZE(sc
->beacon
.bslot
); i
++) {
1496 sc
->beacon
.bslot
[i
] = NULL
;
1497 sc
->beacon
.bslot_aphy
[i
] = NULL
;
1500 /* setup channels and rates */
1502 sc
->sbands
[IEEE80211_BAND_2GHZ
].channels
= ath9k_2ghz_chantable
;
1503 sc
->sbands
[IEEE80211_BAND_2GHZ
].bitrates
=
1504 sc
->rates
[IEEE80211_BAND_2GHZ
];
1505 sc
->sbands
[IEEE80211_BAND_2GHZ
].band
= IEEE80211_BAND_2GHZ
;
1506 sc
->sbands
[IEEE80211_BAND_2GHZ
].n_channels
=
1507 ARRAY_SIZE(ath9k_2ghz_chantable
);
1509 if (test_bit(ATH9K_MODE_11A
, sc
->sc_ah
->caps
.wireless_modes
)) {
1510 sc
->sbands
[IEEE80211_BAND_5GHZ
].channels
= ath9k_5ghz_chantable
;
1511 sc
->sbands
[IEEE80211_BAND_5GHZ
].bitrates
=
1512 sc
->rates
[IEEE80211_BAND_5GHZ
];
1513 sc
->sbands
[IEEE80211_BAND_5GHZ
].band
= IEEE80211_BAND_5GHZ
;
1514 sc
->sbands
[IEEE80211_BAND_5GHZ
].n_channels
=
1515 ARRAY_SIZE(ath9k_5ghz_chantable
);
1518 if (sc
->btcoex_info
.btcoex_scheme
!= ATH_BTCOEX_CFG_NONE
) {
1519 r
= ath9k_hw_btcoex_init(ah
);
1526 /* cleanup tx queues */
1527 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1528 if (ATH_TXQ_SETUP(sc
, i
))
1529 ath_tx_cleanupq(sc
, &sc
->tx
.txq
[i
]);
1531 ath9k_hw_detach(ah
);
1534 ath9k_exit_debug(sc
);
1539 void ath_set_hw_capab(struct ath_softc
*sc
, struct ieee80211_hw
*hw
)
1541 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
1542 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
1543 IEEE80211_HW_SIGNAL_DBM
|
1544 IEEE80211_HW_AMPDU_AGGREGATION
|
1545 IEEE80211_HW_SUPPORTS_PS
|
1546 IEEE80211_HW_PS_NULLFUNC_STACK
|
1547 IEEE80211_HW_SPECTRUM_MGMT
;
1549 if (AR_SREV_9160_10_OR_LATER(sc
->sc_ah
) || modparam_nohwcrypt
)
1550 hw
->flags
|= IEEE80211_HW_MFP_CAPABLE
;
1552 hw
->wiphy
->interface_modes
=
1553 BIT(NL80211_IFTYPE_AP
) |
1554 BIT(NL80211_IFTYPE_STATION
) |
1555 BIT(NL80211_IFTYPE_ADHOC
) |
1556 BIT(NL80211_IFTYPE_MESH_POINT
);
1560 hw
->channel_change_time
= 5000;
1561 hw
->max_listen_interval
= 10;
1562 /* Hardware supports 10 but we use 4 */
1563 hw
->max_rate_tries
= 4;
1564 hw
->sta_data_size
= sizeof(struct ath_node
);
1565 hw
->vif_data_size
= sizeof(struct ath_vif
);
1567 hw
->rate_control_algorithm
= "ath9k_rate_control";
1569 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] =
1570 &sc
->sbands
[IEEE80211_BAND_2GHZ
];
1571 if (test_bit(ATH9K_MODE_11A
, sc
->sc_ah
->caps
.wireless_modes
))
1572 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] =
1573 &sc
->sbands
[IEEE80211_BAND_5GHZ
];
1576 /* Device driver core initialization */
1577 int ath_init_device(u16 devid
, struct ath_softc
*sc
, u16 subsysid
)
1579 struct ieee80211_hw
*hw
= sc
->hw
;
1581 struct ath_regulatory
*reg
;
1583 DPRINTF(sc
, ATH_DBG_CONFIG
, "Attach ATH hw\n");
1585 error
= ath_init_softc(devid
, sc
, subsysid
);
1589 /* get mac address from hardware and set in mac80211 */
1591 SET_IEEE80211_PERM_ADDR(hw
, sc
->sc_ah
->macaddr
);
1593 ath_set_hw_capab(sc
, hw
);
1595 error
= ath_regd_init(&sc
->common
.regulatory
, sc
->hw
->wiphy
,
1596 ath9k_reg_notifier
);
1600 reg
= &sc
->common
.regulatory
;
1602 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_HT
) {
1603 setup_ht_cap(sc
, &sc
->sbands
[IEEE80211_BAND_2GHZ
].ht_cap
);
1604 if (test_bit(ATH9K_MODE_11A
, sc
->sc_ah
->caps
.wireless_modes
))
1605 setup_ht_cap(sc
, &sc
->sbands
[IEEE80211_BAND_5GHZ
].ht_cap
);
1608 /* initialize tx/rx engine */
1609 error
= ath_tx_init(sc
, ATH_TXBUF
);
1613 error
= ath_rx_init(sc
, ATH_RXBUF
);
1617 INIT_WORK(&sc
->chan_work
, ath9k_wiphy_chan_work
);
1618 INIT_DELAYED_WORK(&sc
->wiphy_work
, ath9k_wiphy_work
);
1619 sc
->wiphy_scheduler_int
= msecs_to_jiffies(500);
1621 error
= ieee80211_register_hw(hw
);
1623 if (!ath_is_world_regd(reg
)) {
1624 error
= regulatory_hint(hw
->wiphy
, reg
->alpha2
);
1629 /* Initialize LED control */
1632 ath_start_rfkill_poll(sc
);
1637 /* cleanup tx queues */
1638 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1639 if (ATH_TXQ_SETUP(sc
, i
))
1640 ath_tx_cleanupq(sc
, &sc
->tx
.txq
[i
]);
1642 ath9k_hw_detach(sc
->sc_ah
);
1644 ath9k_exit_debug(sc
);
1649 int ath_reset(struct ath_softc
*sc
, bool retry_tx
)
1651 struct ath_hw
*ah
= sc
->sc_ah
;
1652 struct ieee80211_hw
*hw
= sc
->hw
;
1655 ath9k_hw_set_interrupts(ah
, 0);
1656 ath_drain_all_txq(sc
, retry_tx
);
1660 spin_lock_bh(&sc
->sc_resetlock
);
1661 r
= ath9k_hw_reset(ah
, sc
->sc_ah
->curchan
, false);
1663 DPRINTF(sc
, ATH_DBG_FATAL
,
1664 "Unable to reset hardware; reset status %d\n", r
);
1665 spin_unlock_bh(&sc
->sc_resetlock
);
1667 if (ath_startrecv(sc
) != 0)
1668 DPRINTF(sc
, ATH_DBG_FATAL
, "Unable to start recv logic\n");
1671 * We may be doing a reset in response to a request
1672 * that changes the channel so update any state that
1673 * might change as a result.
1675 ath_cache_conf_rate(sc
, &hw
->conf
);
1677 ath_update_txpow(sc
);
1679 if (sc
->sc_flags
& SC_OP_BEACONS
)
1680 ath_beacon_config(sc
, NULL
); /* restart beacons */
1682 ath9k_hw_set_interrupts(ah
, sc
->imask
);
1686 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1687 if (ATH_TXQ_SETUP(sc
, i
)) {
1688 spin_lock_bh(&sc
->tx
.txq
[i
].axq_lock
);
1689 ath_txq_schedule(sc
, &sc
->tx
.txq
[i
]);
1690 spin_unlock_bh(&sc
->tx
.txq
[i
].axq_lock
);
1699 * This function will allocate both the DMA descriptor structure, and the
1700 * buffers it contains. These are used to contain the descriptors used
1703 int ath_descdma_setup(struct ath_softc
*sc
, struct ath_descdma
*dd
,
1704 struct list_head
*head
, const char *name
,
1705 int nbuf
, int ndesc
)
1707 #define DS2PHYS(_dd, _ds) \
1708 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1709 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1710 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1712 struct ath_desc
*ds
;
1714 int i
, bsize
, error
;
1716 DPRINTF(sc
, ATH_DBG_CONFIG
, "%s DMA: %u buffers %u desc/buf\n",
1719 INIT_LIST_HEAD(head
);
1720 /* ath_desc must be a multiple of DWORDs */
1721 if ((sizeof(struct ath_desc
) % 4) != 0) {
1722 DPRINTF(sc
, ATH_DBG_FATAL
, "ath_desc not DWORD aligned\n");
1723 ASSERT((sizeof(struct ath_desc
) % 4) == 0);
1728 dd
->dd_desc_len
= sizeof(struct ath_desc
) * nbuf
* ndesc
;
1731 * Need additional DMA memory because we can't use
1732 * descriptors that cross the 4K page boundary. Assume
1733 * one skipped descriptor per 4K page.
1735 if (!(sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_4KB_SPLITTRANS
)) {
1737 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd
->dd_desc_len
);
1740 while (ndesc_skipped
) {
1741 dma_len
= ndesc_skipped
* sizeof(struct ath_desc
);
1742 dd
->dd_desc_len
+= dma_len
;
1744 ndesc_skipped
= ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len
);
1748 /* allocate descriptors */
1749 dd
->dd_desc
= dma_alloc_coherent(sc
->dev
, dd
->dd_desc_len
,
1750 &dd
->dd_desc_paddr
, GFP_KERNEL
);
1751 if (dd
->dd_desc
== NULL
) {
1756 DPRINTF(sc
, ATH_DBG_CONFIG
, "%s DMA map: %p (%u) -> %llx (%u)\n",
1757 name
, ds
, (u32
) dd
->dd_desc_len
,
1758 ito64(dd
->dd_desc_paddr
), /*XXX*/(u32
) dd
->dd_desc_len
);
1760 /* allocate buffers */
1761 bsize
= sizeof(struct ath_buf
) * nbuf
;
1762 bf
= kzalloc(bsize
, GFP_KERNEL
);
1769 for (i
= 0; i
< nbuf
; i
++, bf
++, ds
+= ndesc
) {
1771 bf
->bf_daddr
= DS2PHYS(dd
, ds
);
1773 if (!(sc
->sc_ah
->caps
.hw_caps
&
1774 ATH9K_HW_CAP_4KB_SPLITTRANS
)) {
1776 * Skip descriptor addresses which can cause 4KB
1777 * boundary crossing (addr + length) with a 32 dword
1780 while (ATH_DESC_4KB_BOUND_CHECK(bf
->bf_daddr
)) {
1781 ASSERT((caddr_t
) bf
->bf_desc
<
1782 ((caddr_t
) dd
->dd_desc
+
1787 bf
->bf_daddr
= DS2PHYS(dd
, ds
);
1790 list_add_tail(&bf
->list
, head
);
1794 dma_free_coherent(sc
->dev
, dd
->dd_desc_len
, dd
->dd_desc
,
1797 memset(dd
, 0, sizeof(*dd
));
1799 #undef ATH_DESC_4KB_BOUND_CHECK
1800 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1804 void ath_descdma_cleanup(struct ath_softc
*sc
,
1805 struct ath_descdma
*dd
,
1806 struct list_head
*head
)
1808 dma_free_coherent(sc
->dev
, dd
->dd_desc_len
, dd
->dd_desc
,
1811 INIT_LIST_HEAD(head
);
1812 kfree(dd
->dd_bufptr
);
1813 memset(dd
, 0, sizeof(*dd
));
1816 int ath_get_hal_qnum(u16 queue
, struct ath_softc
*sc
)
1822 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_VO
];
1825 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_VI
];
1828 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_BE
];
1831 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_BK
];
1834 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_BE
];
1841 int ath_get_mac80211_qnum(u32 queue
, struct ath_softc
*sc
)
1846 case ATH9K_WME_AC_VO
:
1849 case ATH9K_WME_AC_VI
:
1852 case ATH9K_WME_AC_BE
:
1855 case ATH9K_WME_AC_BK
:
1866 /* XXX: Remove me once we don't depend on ath9k_channel for all
1867 * this redundant data */
1868 void ath9k_update_ichannel(struct ath_softc
*sc
, struct ieee80211_hw
*hw
,
1869 struct ath9k_channel
*ichan
)
1871 struct ieee80211_channel
*chan
= hw
->conf
.channel
;
1872 struct ieee80211_conf
*conf
= &hw
->conf
;
1874 ichan
->channel
= chan
->center_freq
;
1877 if (chan
->band
== IEEE80211_BAND_2GHZ
) {
1878 ichan
->chanmode
= CHANNEL_G
;
1879 ichan
->channelFlags
= CHANNEL_2GHZ
| CHANNEL_OFDM
| CHANNEL_G
;
1881 ichan
->chanmode
= CHANNEL_A
;
1882 ichan
->channelFlags
= CHANNEL_5GHZ
| CHANNEL_OFDM
;
1885 sc
->tx_chan_width
= ATH9K_HT_MACMODE_20
;
1887 if (conf_is_ht(conf
)) {
1888 if (conf_is_ht40(conf
))
1889 sc
->tx_chan_width
= ATH9K_HT_MACMODE_2040
;
1891 ichan
->chanmode
= ath_get_extchanmode(sc
, chan
,
1892 conf
->channel_type
);
1896 /**********************/
1897 /* mac80211 callbacks */
1898 /**********************/
1900 static int ath9k_start(struct ieee80211_hw
*hw
)
1902 struct ath_wiphy
*aphy
= hw
->priv
;
1903 struct ath_softc
*sc
= aphy
->sc
;
1904 struct ieee80211_channel
*curchan
= hw
->conf
.channel
;
1905 struct ath9k_channel
*init_channel
;
1908 DPRINTF(sc
, ATH_DBG_CONFIG
, "Starting driver with "
1909 "initial channel: %d MHz\n", curchan
->center_freq
);
1911 mutex_lock(&sc
->mutex
);
1913 if (ath9k_wiphy_started(sc
)) {
1914 if (sc
->chan_idx
== curchan
->hw_value
) {
1916 * Already on the operational channel, the new wiphy
1917 * can be marked active.
1919 aphy
->state
= ATH_WIPHY_ACTIVE
;
1920 ieee80211_wake_queues(hw
);
1923 * Another wiphy is on another channel, start the new
1924 * wiphy in paused state.
1926 aphy
->state
= ATH_WIPHY_PAUSED
;
1927 ieee80211_stop_queues(hw
);
1929 mutex_unlock(&sc
->mutex
);
1932 aphy
->state
= ATH_WIPHY_ACTIVE
;
1934 /* setup initial channel */
1936 sc
->chan_idx
= curchan
->hw_value
;
1938 init_channel
= ath_get_curchannel(sc
, hw
);
1940 /* Reset SERDES registers */
1941 ath9k_hw_configpcipowersave(sc
->sc_ah
, 0, 0);
1944 * The basic interface to setting the hardware in a good
1945 * state is ``reset''. On return the hardware is known to
1946 * be powered up and with interrupts disabled. This must
1947 * be followed by initialization of the appropriate bits
1948 * and then setup of the interrupt mask.
1950 spin_lock_bh(&sc
->sc_resetlock
);
1951 r
= ath9k_hw_reset(sc
->sc_ah
, init_channel
, false);
1953 DPRINTF(sc
, ATH_DBG_FATAL
,
1954 "Unable to reset hardware; reset status %d "
1955 "(freq %u MHz)\n", r
,
1956 curchan
->center_freq
);
1957 spin_unlock_bh(&sc
->sc_resetlock
);
1960 spin_unlock_bh(&sc
->sc_resetlock
);
1963 * This is needed only to setup initial state
1964 * but it's best done after a reset.
1966 ath_update_txpow(sc
);
1969 * Setup the hardware after reset:
1970 * The receive engine is set going.
1971 * Frame transmit is handled entirely
1972 * in the frame output path; there's nothing to do
1973 * here except setup the interrupt mask.
1975 if (ath_startrecv(sc
) != 0) {
1976 DPRINTF(sc
, ATH_DBG_FATAL
, "Unable to start recv logic\n");
1981 /* Setup our intr mask. */
1982 sc
->imask
= ATH9K_INT_RX
| ATH9K_INT_TX
1983 | ATH9K_INT_RXEOL
| ATH9K_INT_RXORN
1984 | ATH9K_INT_FATAL
| ATH9K_INT_GLOBAL
;
1986 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_GTT
)
1987 sc
->imask
|= ATH9K_INT_GTT
;
1989 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_HT
)
1990 sc
->imask
|= ATH9K_INT_CST
;
1992 ath_cache_conf_rate(sc
, &hw
->conf
);
1994 sc
->sc_flags
&= ~SC_OP_INVALID
;
1996 /* Disable BMISS interrupt when we're not associated */
1997 sc
->imask
&= ~(ATH9K_INT_SWBA
| ATH9K_INT_BMISS
);
1998 ath9k_hw_set_interrupts(sc
->sc_ah
, sc
->imask
);
2000 ieee80211_wake_queues(hw
);
2002 ieee80211_queue_delayed_work(sc
->hw
, &sc
->tx_complete_work
, 0);
2004 if ((sc
->btcoex_info
.btcoex_scheme
!= ATH_BTCOEX_CFG_NONE
) &&
2005 !(sc
->sc_flags
& SC_OP_BTCOEX_ENABLED
)) {
2006 ath_btcoex_set_weight(&sc
->btcoex_info
, AR_BT_COEX_WGHT
,
2007 AR_STOMP_LOW_WLAN_WGHT
);
2008 ath9k_hw_btcoex_enable(sc
->sc_ah
);
2010 ath_pcie_aspm_disable(sc
);
2011 if (sc
->btcoex_info
.btcoex_scheme
== ATH_BTCOEX_CFG_3WIRE
)
2012 ath_btcoex_timer_resume(sc
, &sc
->btcoex_info
);
2016 mutex_unlock(&sc
->mutex
);
2021 static int ath9k_tx(struct ieee80211_hw
*hw
,
2022 struct sk_buff
*skb
)
2024 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2025 struct ath_wiphy
*aphy
= hw
->priv
;
2026 struct ath_softc
*sc
= aphy
->sc
;
2027 struct ath_tx_control txctl
;
2028 int hdrlen
, padsize
;
2030 if (aphy
->state
!= ATH_WIPHY_ACTIVE
&& aphy
->state
!= ATH_WIPHY_SCAN
) {
2031 printk(KERN_DEBUG
"ath9k: %s: TX in unexpected wiphy state "
2032 "%d\n", wiphy_name(hw
->wiphy
), aphy
->state
);
2036 if (sc
->ps_enabled
) {
2037 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2039 * mac80211 does not set PM field for normal data frames, so we
2040 * need to update that based on the current PS mode.
2042 if (ieee80211_is_data(hdr
->frame_control
) &&
2043 !ieee80211_is_nullfunc(hdr
->frame_control
) &&
2044 !ieee80211_has_pm(hdr
->frame_control
)) {
2045 DPRINTF(sc
, ATH_DBG_PS
, "Add PM=1 for a TX frame "
2046 "while in PS mode\n");
2047 hdr
->frame_control
|= cpu_to_le16(IEEE80211_FCTL_PM
);
2051 if (unlikely(sc
->sc_ah
->power_mode
!= ATH9K_PM_AWAKE
)) {
2053 * We are using PS-Poll and mac80211 can request TX while in
2054 * power save mode. Need to wake up hardware for the TX to be
2055 * completed and if needed, also for RX of buffered frames.
2057 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2058 ath9k_ps_wakeup(sc
);
2059 ath9k_hw_setrxabort(sc
->sc_ah
, 0);
2060 if (ieee80211_is_pspoll(hdr
->frame_control
)) {
2061 DPRINTF(sc
, ATH_DBG_PS
, "Sending PS-Poll to pick a "
2062 "buffered frame\n");
2063 sc
->sc_flags
|= SC_OP_WAIT_FOR_PSPOLL_DATA
;
2065 DPRINTF(sc
, ATH_DBG_PS
, "Wake up to complete TX\n");
2066 sc
->sc_flags
|= SC_OP_WAIT_FOR_TX_ACK
;
2069 * The actual restore operation will happen only after
2070 * the sc_flags bit is cleared. We are just dropping
2071 * the ps_usecount here.
2073 ath9k_ps_restore(sc
);
2076 memset(&txctl
, 0, sizeof(struct ath_tx_control
));
2079 * As a temporary workaround, assign seq# here; this will likely need
2080 * to be cleaned up to work better with Beacon transmission and virtual
2083 if (info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
) {
2084 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2085 if (info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
)
2086 sc
->tx
.seq_no
+= 0x10;
2087 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
2088 hdr
->seq_ctrl
|= cpu_to_le16(sc
->tx
.seq_no
);
2091 /* Add the padding after the header if this is not already done */
2092 hdrlen
= ieee80211_get_hdrlen_from_skb(skb
);
2094 padsize
= hdrlen
% 4;
2095 if (skb_headroom(skb
) < padsize
)
2097 skb_push(skb
, padsize
);
2098 memmove(skb
->data
, skb
->data
+ padsize
, hdrlen
);
2101 /* Check if a tx queue is available */
2103 txctl
.txq
= ath_test_get_txq(sc
, skb
);
2107 DPRINTF(sc
, ATH_DBG_XMIT
, "transmitting packet, skb: %p\n", skb
);
2109 if (ath_tx_start(hw
, skb
, &txctl
) != 0) {
2110 DPRINTF(sc
, ATH_DBG_XMIT
, "TX failed\n");
2116 dev_kfree_skb_any(skb
);
2120 static void ath9k_stop(struct ieee80211_hw
*hw
)
2122 struct ath_wiphy
*aphy
= hw
->priv
;
2123 struct ath_softc
*sc
= aphy
->sc
;
2125 mutex_lock(&sc
->mutex
);
2127 aphy
->state
= ATH_WIPHY_INACTIVE
;
2129 cancel_delayed_work_sync(&sc
->ath_led_blink_work
);
2130 cancel_delayed_work_sync(&sc
->tx_complete_work
);
2132 if (!sc
->num_sec_wiphy
) {
2133 cancel_delayed_work_sync(&sc
->wiphy_work
);
2134 cancel_work_sync(&sc
->chan_work
);
2137 if (sc
->sc_flags
& SC_OP_INVALID
) {
2138 DPRINTF(sc
, ATH_DBG_ANY
, "Device not present\n");
2139 mutex_unlock(&sc
->mutex
);
2143 if (ath9k_wiphy_started(sc
)) {
2144 mutex_unlock(&sc
->mutex
);
2145 return; /* another wiphy still in use */
2148 if (sc
->sc_flags
& SC_OP_BTCOEX_ENABLED
) {
2149 ath9k_hw_btcoex_disable(sc
->sc_ah
);
2150 if (sc
->btcoex_info
.btcoex_scheme
== ATH_BTCOEX_CFG_3WIRE
)
2151 ath_btcoex_timer_pause(sc
, &sc
->btcoex_info
);
2154 /* make sure h/w will not generate any interrupt
2155 * before setting the invalid flag. */
2156 ath9k_hw_set_interrupts(sc
->sc_ah
, 0);
2158 if (!(sc
->sc_flags
& SC_OP_INVALID
)) {
2159 ath_drain_all_txq(sc
, false);
2161 ath9k_hw_phy_disable(sc
->sc_ah
);
2163 sc
->rx
.rxlink
= NULL
;
2165 /* disable HAL and put h/w to sleep */
2166 ath9k_hw_disable(sc
->sc_ah
);
2167 ath9k_hw_configpcipowersave(sc
->sc_ah
, 1, 1);
2168 ath9k_hw_setpower(sc
->sc_ah
, ATH9K_PM_FULL_SLEEP
);
2170 sc
->sc_flags
|= SC_OP_INVALID
;
2172 mutex_unlock(&sc
->mutex
);
2174 DPRINTF(sc
, ATH_DBG_CONFIG
, "Driver halt\n");
2177 static int ath9k_add_interface(struct ieee80211_hw
*hw
,
2178 struct ieee80211_if_init_conf
*conf
)
2180 struct ath_wiphy
*aphy
= hw
->priv
;
2181 struct ath_softc
*sc
= aphy
->sc
;
2182 struct ath_vif
*avp
= (void *)conf
->vif
->drv_priv
;
2183 enum nl80211_iftype ic_opmode
= NL80211_IFTYPE_UNSPECIFIED
;
2186 mutex_lock(&sc
->mutex
);
2188 if (!(sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_BSSIDMASK
) &&
2194 switch (conf
->type
) {
2195 case NL80211_IFTYPE_STATION
:
2196 ic_opmode
= NL80211_IFTYPE_STATION
;
2198 case NL80211_IFTYPE_ADHOC
:
2199 case NL80211_IFTYPE_AP
:
2200 case NL80211_IFTYPE_MESH_POINT
:
2201 if (sc
->nbcnvifs
>= ATH_BCBUF
) {
2205 ic_opmode
= conf
->type
;
2208 DPRINTF(sc
, ATH_DBG_FATAL
,
2209 "Interface type %d not yet supported\n", conf
->type
);
2214 DPRINTF(sc
, ATH_DBG_CONFIG
, "Attach a VIF of type: %d\n", ic_opmode
);
2216 /* Set the VIF opmode */
2217 avp
->av_opmode
= ic_opmode
;
2222 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_BSSIDMASK
)
2223 ath9k_set_bssid_mask(hw
);
2226 goto out
; /* skip global settings for secondary vif */
2228 if (ic_opmode
== NL80211_IFTYPE_AP
) {
2229 ath9k_hw_set_tsfadjust(sc
->sc_ah
, 1);
2230 sc
->sc_flags
|= SC_OP_TSF_RESET
;
2233 /* Set the device opmode */
2234 sc
->sc_ah
->opmode
= ic_opmode
;
2237 * Enable MIB interrupts when there are hardware phy counters.
2238 * Note we only do this (at the moment) for station mode.
2240 if ((conf
->type
== NL80211_IFTYPE_STATION
) ||
2241 (conf
->type
== NL80211_IFTYPE_ADHOC
) ||
2242 (conf
->type
== NL80211_IFTYPE_MESH_POINT
)) {
2243 sc
->imask
|= ATH9K_INT_MIB
;
2244 sc
->imask
|= ATH9K_INT_TSFOOR
;
2247 ath9k_hw_set_interrupts(sc
->sc_ah
, sc
->imask
);
2249 if (conf
->type
== NL80211_IFTYPE_AP
||
2250 conf
->type
== NL80211_IFTYPE_ADHOC
||
2251 conf
->type
== NL80211_IFTYPE_MONITOR
)
2255 mutex_unlock(&sc
->mutex
);
2259 static void ath9k_remove_interface(struct ieee80211_hw
*hw
,
2260 struct ieee80211_if_init_conf
*conf
)
2262 struct ath_wiphy
*aphy
= hw
->priv
;
2263 struct ath_softc
*sc
= aphy
->sc
;
2264 struct ath_vif
*avp
= (void *)conf
->vif
->drv_priv
;
2267 DPRINTF(sc
, ATH_DBG_CONFIG
, "Detach Interface\n");
2269 mutex_lock(&sc
->mutex
);
2272 del_timer_sync(&sc
->ani
.timer
);
2274 /* Reclaim beacon resources */
2275 if ((sc
->sc_ah
->opmode
== NL80211_IFTYPE_AP
) ||
2276 (sc
->sc_ah
->opmode
== NL80211_IFTYPE_ADHOC
) ||
2277 (sc
->sc_ah
->opmode
== NL80211_IFTYPE_MESH_POINT
)) {
2278 ath9k_hw_stoptxdma(sc
->sc_ah
, sc
->beacon
.beaconq
);
2279 ath_beacon_return(sc
, avp
);
2282 sc
->sc_flags
&= ~SC_OP_BEACONS
;
2284 for (i
= 0; i
< ARRAY_SIZE(sc
->beacon
.bslot
); i
++) {
2285 if (sc
->beacon
.bslot
[i
] == conf
->vif
) {
2286 printk(KERN_DEBUG
"%s: vif had allocated beacon "
2287 "slot\n", __func__
);
2288 sc
->beacon
.bslot
[i
] = NULL
;
2289 sc
->beacon
.bslot_aphy
[i
] = NULL
;
2295 mutex_unlock(&sc
->mutex
);
2298 static int ath9k_config(struct ieee80211_hw
*hw
, u32 changed
)
2300 struct ath_wiphy
*aphy
= hw
->priv
;
2301 struct ath_softc
*sc
= aphy
->sc
;
2302 struct ieee80211_conf
*conf
= &hw
->conf
;
2303 struct ath_hw
*ah
= sc
->sc_ah
;
2304 bool all_wiphys_idle
= false, disable_radio
= false;
2306 mutex_lock(&sc
->mutex
);
2308 /* Leave this as the first check */
2309 if (changed
& IEEE80211_CONF_CHANGE_IDLE
) {
2311 spin_lock_bh(&sc
->wiphy_lock
);
2312 all_wiphys_idle
= ath9k_all_wiphys_idle(sc
);
2313 spin_unlock_bh(&sc
->wiphy_lock
);
2315 if (conf
->flags
& IEEE80211_CONF_IDLE
){
2316 if (all_wiphys_idle
)
2317 disable_radio
= true;
2319 else if (all_wiphys_idle
) {
2320 ath_radio_enable(sc
);
2321 DPRINTF(sc
, ATH_DBG_CONFIG
,
2322 "not-idle: enabling radio\n");
2326 if (changed
& IEEE80211_CONF_CHANGE_PS
) {
2327 if (conf
->flags
& IEEE80211_CONF_PS
) {
2328 if (!(ah
->caps
.hw_caps
&
2329 ATH9K_HW_CAP_AUTOSLEEP
)) {
2330 if ((sc
->imask
& ATH9K_INT_TIM_TIMER
) == 0) {
2331 sc
->imask
|= ATH9K_INT_TIM_TIMER
;
2332 ath9k_hw_set_interrupts(sc
->sc_ah
,
2335 ath9k_hw_setrxabort(sc
->sc_ah
, 1);
2337 sc
->ps_enabled
= true;
2339 sc
->ps_enabled
= false;
2340 ath9k_hw_setpower(sc
->sc_ah
, ATH9K_PM_AWAKE
);
2341 if (!(ah
->caps
.hw_caps
&
2342 ATH9K_HW_CAP_AUTOSLEEP
)) {
2343 ath9k_hw_setrxabort(sc
->sc_ah
, 0);
2344 sc
->sc_flags
&= ~(SC_OP_WAIT_FOR_BEACON
|
2345 SC_OP_WAIT_FOR_CAB
|
2346 SC_OP_WAIT_FOR_PSPOLL_DATA
|
2347 SC_OP_WAIT_FOR_TX_ACK
);
2348 if (sc
->imask
& ATH9K_INT_TIM_TIMER
) {
2349 sc
->imask
&= ~ATH9K_INT_TIM_TIMER
;
2350 ath9k_hw_set_interrupts(sc
->sc_ah
,
2357 if (changed
& IEEE80211_CONF_CHANGE_CHANNEL
) {
2358 struct ieee80211_channel
*curchan
= hw
->conf
.channel
;
2359 int pos
= curchan
->hw_value
;
2361 aphy
->chan_idx
= pos
;
2362 aphy
->chan_is_ht
= conf_is_ht(conf
);
2364 if (aphy
->state
== ATH_WIPHY_SCAN
||
2365 aphy
->state
== ATH_WIPHY_ACTIVE
)
2366 ath9k_wiphy_pause_all_forced(sc
, aphy
);
2369 * Do not change operational channel based on a paused
2372 goto skip_chan_change
;
2375 DPRINTF(sc
, ATH_DBG_CONFIG
, "Set channel: %d MHz\n",
2376 curchan
->center_freq
);
2378 /* XXX: remove me eventualy */
2379 ath9k_update_ichannel(sc
, hw
, &sc
->sc_ah
->channels
[pos
]);
2381 ath_update_chainmask(sc
, conf_is_ht(conf
));
2383 if (ath_set_channel(sc
, hw
, &sc
->sc_ah
->channels
[pos
]) < 0) {
2384 DPRINTF(sc
, ATH_DBG_FATAL
, "Unable to set channel\n");
2385 mutex_unlock(&sc
->mutex
);
2391 if (changed
& IEEE80211_CONF_CHANGE_POWER
)
2392 sc
->config
.txpowlimit
= 2 * conf
->power_level
;
2394 if (disable_radio
) {
2395 DPRINTF(sc
, ATH_DBG_CONFIG
, "idle: disabling radio\n");
2396 ath_radio_disable(sc
);
2399 mutex_unlock(&sc
->mutex
);
2404 #define SUPPORTED_FILTERS \
2405 (FIF_PROMISC_IN_BSS | \
2410 FIF_BCN_PRBRESP_PROMISC | \
2413 /* FIXME: sc->sc_full_reset ? */
2414 static void ath9k_configure_filter(struct ieee80211_hw
*hw
,
2415 unsigned int changed_flags
,
2416 unsigned int *total_flags
,
2419 struct ath_wiphy
*aphy
= hw
->priv
;
2420 struct ath_softc
*sc
= aphy
->sc
;
2423 changed_flags
&= SUPPORTED_FILTERS
;
2424 *total_flags
&= SUPPORTED_FILTERS
;
2426 sc
->rx
.rxfilter
= *total_flags
;
2427 ath9k_ps_wakeup(sc
);
2428 rfilt
= ath_calcrxfilter(sc
);
2429 ath9k_hw_setrxfilter(sc
->sc_ah
, rfilt
);
2430 ath9k_ps_restore(sc
);
2432 DPRINTF(sc
, ATH_DBG_CONFIG
, "Set HW RX filter: 0x%x\n", rfilt
);
2435 static void ath9k_sta_notify(struct ieee80211_hw
*hw
,
2436 struct ieee80211_vif
*vif
,
2437 enum sta_notify_cmd cmd
,
2438 struct ieee80211_sta
*sta
)
2440 struct ath_wiphy
*aphy
= hw
->priv
;
2441 struct ath_softc
*sc
= aphy
->sc
;
2444 case STA_NOTIFY_ADD
:
2445 ath_node_attach(sc
, sta
);
2447 case STA_NOTIFY_REMOVE
:
2448 ath_node_detach(sc
, sta
);
2455 static int ath9k_conf_tx(struct ieee80211_hw
*hw
, u16 queue
,
2456 const struct ieee80211_tx_queue_params
*params
)
2458 struct ath_wiphy
*aphy
= hw
->priv
;
2459 struct ath_softc
*sc
= aphy
->sc
;
2460 struct ath9k_tx_queue_info qi
;
2463 if (queue
>= WME_NUM_AC
)
2466 mutex_lock(&sc
->mutex
);
2468 memset(&qi
, 0, sizeof(struct ath9k_tx_queue_info
));
2470 qi
.tqi_aifs
= params
->aifs
;
2471 qi
.tqi_cwmin
= params
->cw_min
;
2472 qi
.tqi_cwmax
= params
->cw_max
;
2473 qi
.tqi_burstTime
= params
->txop
;
2474 qnum
= ath_get_hal_qnum(queue
, sc
);
2476 DPRINTF(sc
, ATH_DBG_CONFIG
,
2477 "Configure tx [queue/halq] [%d/%d], "
2478 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2479 queue
, qnum
, params
->aifs
, params
->cw_min
,
2480 params
->cw_max
, params
->txop
);
2482 ret
= ath_txq_update(sc
, qnum
, &qi
);
2484 DPRINTF(sc
, ATH_DBG_FATAL
, "TXQ Update failed\n");
2486 mutex_unlock(&sc
->mutex
);
2491 static int ath9k_set_key(struct ieee80211_hw
*hw
,
2492 enum set_key_cmd cmd
,
2493 struct ieee80211_vif
*vif
,
2494 struct ieee80211_sta
*sta
,
2495 struct ieee80211_key_conf
*key
)
2497 struct ath_wiphy
*aphy
= hw
->priv
;
2498 struct ath_softc
*sc
= aphy
->sc
;
2501 if (modparam_nohwcrypt
)
2504 mutex_lock(&sc
->mutex
);
2505 ath9k_ps_wakeup(sc
);
2506 DPRINTF(sc
, ATH_DBG_CONFIG
, "Set HW Key\n");
2510 ret
= ath_key_config(sc
, vif
, sta
, key
);
2512 key
->hw_key_idx
= ret
;
2513 /* push IV and Michael MIC generation to stack */
2514 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
2515 if (key
->alg
== ALG_TKIP
)
2516 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_MMIC
;
2517 if (sc
->sc_ah
->sw_mgmt_crypto
&& key
->alg
== ALG_CCMP
)
2518 key
->flags
|= IEEE80211_KEY_FLAG_SW_MGMT
;
2523 ath_key_delete(sc
, key
);
2529 ath9k_ps_restore(sc
);
2530 mutex_unlock(&sc
->mutex
);
2535 static void ath9k_bss_info_changed(struct ieee80211_hw
*hw
,
2536 struct ieee80211_vif
*vif
,
2537 struct ieee80211_bss_conf
*bss_conf
,
2540 struct ath_wiphy
*aphy
= hw
->priv
;
2541 struct ath_softc
*sc
= aphy
->sc
;
2542 struct ath_hw
*ah
= sc
->sc_ah
;
2543 struct ath_vif
*avp
= (void *)vif
->drv_priv
;
2547 mutex_lock(&sc
->mutex
);
2550 * TODO: Need to decide which hw opmode to use for
2551 * multi-interface cases
2552 * XXX: This belongs into add_interface!
2554 if (vif
->type
== NL80211_IFTYPE_AP
&&
2555 ah
->opmode
!= NL80211_IFTYPE_AP
) {
2556 ah
->opmode
= NL80211_IFTYPE_STATION
;
2557 ath9k_hw_setopmode(ah
);
2558 memcpy(sc
->curbssid
, sc
->sc_ah
->macaddr
, ETH_ALEN
);
2560 ath9k_hw_write_associd(sc
);
2561 /* Request full reset to get hw opmode changed properly */
2562 sc
->sc_flags
|= SC_OP_FULL_RESET
;
2565 if ((changed
& BSS_CHANGED_BSSID
) &&
2566 !is_zero_ether_addr(bss_conf
->bssid
)) {
2567 switch (vif
->type
) {
2568 case NL80211_IFTYPE_STATION
:
2569 case NL80211_IFTYPE_ADHOC
:
2570 case NL80211_IFTYPE_MESH_POINT
:
2572 memcpy(sc
->curbssid
, bss_conf
->bssid
, ETH_ALEN
);
2573 memcpy(avp
->bssid
, bss_conf
->bssid
, ETH_ALEN
);
2575 ath9k_hw_write_associd(sc
);
2577 /* Set aggregation protection mode parameters */
2578 sc
->config
.ath_aggr_prot
= 0;
2580 DPRINTF(sc
, ATH_DBG_CONFIG
,
2581 "RX filter 0x%x bssid %pM aid 0x%x\n",
2582 rfilt
, sc
->curbssid
, sc
->curaid
);
2584 /* need to reconfigure the beacon */
2585 sc
->sc_flags
&= ~SC_OP_BEACONS
;
2593 if ((vif
->type
== NL80211_IFTYPE_ADHOC
) ||
2594 (vif
->type
== NL80211_IFTYPE_AP
) ||
2595 (vif
->type
== NL80211_IFTYPE_MESH_POINT
)) {
2596 if ((changed
& BSS_CHANGED_BEACON
) ||
2597 (changed
& BSS_CHANGED_BEACON_ENABLED
&&
2598 bss_conf
->enable_beacon
)) {
2600 * Allocate and setup the beacon frame.
2602 * Stop any previous beacon DMA. This may be
2603 * necessary, for example, when an ibss merge
2604 * causes reconfiguration; we may be called
2605 * with beacon transmission active.
2607 ath9k_hw_stoptxdma(sc
->sc_ah
, sc
->beacon
.beaconq
);
2609 error
= ath_beacon_alloc(aphy
, vif
);
2611 ath_beacon_config(sc
, vif
);
2615 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2616 if ((avp
->av_opmode
!= NL80211_IFTYPE_STATION
)) {
2617 for (i
= 0; i
< IEEE80211_WEP_NKID
; i
++)
2618 if (ath9k_hw_keyisvalid(sc
->sc_ah
, (u16
)i
))
2619 ath9k_hw_keysetmac(sc
->sc_ah
,
2624 /* Only legacy IBSS for now */
2625 if (vif
->type
== NL80211_IFTYPE_ADHOC
)
2626 ath_update_chainmask(sc
, 0);
2628 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
2629 DPRINTF(sc
, ATH_DBG_CONFIG
, "BSS Changed PREAMBLE %d\n",
2630 bss_conf
->use_short_preamble
);
2631 if (bss_conf
->use_short_preamble
)
2632 sc
->sc_flags
|= SC_OP_PREAMBLE_SHORT
;
2634 sc
->sc_flags
&= ~SC_OP_PREAMBLE_SHORT
;
2637 if (changed
& BSS_CHANGED_ERP_CTS_PROT
) {
2638 DPRINTF(sc
, ATH_DBG_CONFIG
, "BSS Changed CTS PROT %d\n",
2639 bss_conf
->use_cts_prot
);
2640 if (bss_conf
->use_cts_prot
&&
2641 hw
->conf
.channel
->band
!= IEEE80211_BAND_5GHZ
)
2642 sc
->sc_flags
|= SC_OP_PROTECT_ENABLE
;
2644 sc
->sc_flags
&= ~SC_OP_PROTECT_ENABLE
;
2647 if (changed
& BSS_CHANGED_ASSOC
) {
2648 DPRINTF(sc
, ATH_DBG_CONFIG
, "BSS Changed ASSOC %d\n",
2650 ath9k_bss_assoc_info(sc
, vif
, bss_conf
);
2654 * The HW TSF has to be reset when the beacon interval changes.
2655 * We set the flag here, and ath_beacon_config_ap() would take this
2656 * into account when it gets called through the subsequent
2657 * config_interface() call - with IFCC_BEACON in the changed field.
2660 if (changed
& BSS_CHANGED_BEACON_INT
) {
2661 sc
->sc_flags
|= SC_OP_TSF_RESET
;
2662 sc
->beacon_interval
= bss_conf
->beacon_int
;
2665 mutex_unlock(&sc
->mutex
);
2668 static u64
ath9k_get_tsf(struct ieee80211_hw
*hw
)
2671 struct ath_wiphy
*aphy
= hw
->priv
;
2672 struct ath_softc
*sc
= aphy
->sc
;
2674 mutex_lock(&sc
->mutex
);
2675 tsf
= ath9k_hw_gettsf64(sc
->sc_ah
);
2676 mutex_unlock(&sc
->mutex
);
2681 static void ath9k_set_tsf(struct ieee80211_hw
*hw
, u64 tsf
)
2683 struct ath_wiphy
*aphy
= hw
->priv
;
2684 struct ath_softc
*sc
= aphy
->sc
;
2686 mutex_lock(&sc
->mutex
);
2687 ath9k_hw_settsf64(sc
->sc_ah
, tsf
);
2688 mutex_unlock(&sc
->mutex
);
2691 static void ath9k_reset_tsf(struct ieee80211_hw
*hw
)
2693 struct ath_wiphy
*aphy
= hw
->priv
;
2694 struct ath_softc
*sc
= aphy
->sc
;
2696 mutex_lock(&sc
->mutex
);
2697 ath9k_hw_reset_tsf(sc
->sc_ah
);
2698 mutex_unlock(&sc
->mutex
);
2701 static int ath9k_ampdu_action(struct ieee80211_hw
*hw
,
2702 enum ieee80211_ampdu_mlme_action action
,
2703 struct ieee80211_sta
*sta
,
2706 struct ath_wiphy
*aphy
= hw
->priv
;
2707 struct ath_softc
*sc
= aphy
->sc
;
2711 case IEEE80211_AMPDU_RX_START
:
2712 if (!(sc
->sc_flags
& SC_OP_RXAGGR
))
2715 case IEEE80211_AMPDU_RX_STOP
:
2717 case IEEE80211_AMPDU_TX_START
:
2718 ath_tx_aggr_start(sc
, sta
, tid
, ssn
);
2719 ieee80211_start_tx_ba_cb_irqsafe(hw
, sta
->addr
, tid
);
2721 case IEEE80211_AMPDU_TX_STOP
:
2722 ath_tx_aggr_stop(sc
, sta
, tid
);
2723 ieee80211_stop_tx_ba_cb_irqsafe(hw
, sta
->addr
, tid
);
2725 case IEEE80211_AMPDU_TX_OPERATIONAL
:
2726 ath_tx_aggr_resume(sc
, sta
, tid
);
2729 DPRINTF(sc
, ATH_DBG_FATAL
, "Unknown AMPDU action\n");
2735 static void ath9k_sw_scan_start(struct ieee80211_hw
*hw
)
2737 struct ath_wiphy
*aphy
= hw
->priv
;
2738 struct ath_softc
*sc
= aphy
->sc
;
2740 mutex_lock(&sc
->mutex
);
2741 if (ath9k_wiphy_scanning(sc
)) {
2742 printk(KERN_DEBUG
"ath9k: Two wiphys trying to scan at the "
2745 * Do not allow the concurrent scanning state for now. This
2746 * could be improved with scanning control moved into ath9k.
2748 mutex_unlock(&sc
->mutex
);
2752 aphy
->state
= ATH_WIPHY_SCAN
;
2753 ath9k_wiphy_pause_all_forced(sc
, aphy
);
2755 spin_lock_bh(&sc
->ani_lock
);
2756 sc
->sc_flags
|= SC_OP_SCANNING
;
2757 spin_unlock_bh(&sc
->ani_lock
);
2758 mutex_unlock(&sc
->mutex
);
2761 static void ath9k_sw_scan_complete(struct ieee80211_hw
*hw
)
2763 struct ath_wiphy
*aphy
= hw
->priv
;
2764 struct ath_softc
*sc
= aphy
->sc
;
2766 mutex_lock(&sc
->mutex
);
2767 spin_lock_bh(&sc
->ani_lock
);
2768 aphy
->state
= ATH_WIPHY_ACTIVE
;
2769 sc
->sc_flags
&= ~SC_OP_SCANNING
;
2770 sc
->sc_flags
|= SC_OP_FULL_RESET
;
2771 spin_unlock_bh(&sc
->ani_lock
);
2772 ath_beacon_config(sc
, NULL
);
2773 mutex_unlock(&sc
->mutex
);
2776 struct ieee80211_ops ath9k_ops
= {
2778 .start
= ath9k_start
,
2780 .add_interface
= ath9k_add_interface
,
2781 .remove_interface
= ath9k_remove_interface
,
2782 .config
= ath9k_config
,
2783 .configure_filter
= ath9k_configure_filter
,
2784 .sta_notify
= ath9k_sta_notify
,
2785 .conf_tx
= ath9k_conf_tx
,
2786 .bss_info_changed
= ath9k_bss_info_changed
,
2787 .set_key
= ath9k_set_key
,
2788 .get_tsf
= ath9k_get_tsf
,
2789 .set_tsf
= ath9k_set_tsf
,
2790 .reset_tsf
= ath9k_reset_tsf
,
2791 .ampdu_action
= ath9k_ampdu_action
,
2792 .sw_scan_start
= ath9k_sw_scan_start
,
2793 .sw_scan_complete
= ath9k_sw_scan_complete
,
2794 .rfkill_poll
= ath9k_rfkill_poll_state
,
2800 } ath_mac_bb_names
[] = {
2801 { AR_SREV_VERSION_5416_PCI
, "5416" },
2802 { AR_SREV_VERSION_5416_PCIE
, "5418" },
2803 { AR_SREV_VERSION_9100
, "9100" },
2804 { AR_SREV_VERSION_9160
, "9160" },
2805 { AR_SREV_VERSION_9280
, "9280" },
2806 { AR_SREV_VERSION_9285
, "9285" },
2807 { AR_SREV_VERSION_9287
, "9287" }
2813 } ath_rf_names
[] = {
2815 { AR_RAD5133_SREV_MAJOR
, "5133" },
2816 { AR_RAD5122_SREV_MAJOR
, "5122" },
2817 { AR_RAD2133_SREV_MAJOR
, "2133" },
2818 { AR_RAD2122_SREV_MAJOR
, "2122" }
2822 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2825 ath_mac_bb_name(u32 mac_bb_version
)
2829 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
2830 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
2831 return ath_mac_bb_names
[i
].name
;
2839 * Return the RF name. "????" is returned if the RF is unknown.
2842 ath_rf_name(u16 rf_version
)
2846 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
2847 if (ath_rf_names
[i
].version
== rf_version
) {
2848 return ath_rf_names
[i
].name
;
2855 static int __init
ath9k_init(void)
2859 /* Register rate control algorithm */
2860 error
= ath_rate_control_register();
2863 "ath9k: Unable to register rate control "
2869 error
= ath9k_debug_create_root();
2872 "ath9k: Unable to create debugfs root: %d\n",
2874 goto err_rate_unregister
;
2877 error
= ath_pci_init();
2880 "ath9k: No PCI devices found, driver not installed.\n");
2882 goto err_remove_root
;
2885 error
= ath_ahb_init();
2897 ath9k_debug_remove_root();
2898 err_rate_unregister
:
2899 ath_rate_control_unregister();
2903 module_init(ath9k_init
);
2905 static void __exit
ath9k_exit(void)
2909 ath9k_debug_remove_root();
2910 ath_rate_control_unregister();
2911 printk(KERN_INFO
"%s: Driver unloaded\n", dev_info
);
2913 module_exit(ath9k_exit
);