2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 static const struct ath_rate_table ar5416_11na_ratetable
= {
23 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 6000, /* 6 Mb */
26 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 9000, /* 9 Mb */
29 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 12000, /* 12 Mb */
30 10000, 0x0a, 0x00, 24,
32 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 18000, /* 18 Mb */
33 13900, 0x0e, 0x00, 36,
35 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 24000, /* 24 Mb */
36 17300, 0x09, 0x00, 48,
38 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 36000, /* 36 Mb */
39 23000, 0x0d, 0x00, 72,
41 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 48000, /* 48 Mb */
42 27400, 0x08, 0x00, 96,
44 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 54000, /* 54 Mb */
45 29300, 0x0c, 0x00, 108,
47 { VALID_2040
, VALID_2040
, WLAN_RC_PHY_HT_20_SS
, 6500, /* 6.5 Mb */
49 0, 8, 24, 8, 24, 3216 },
50 { VALID_20
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 13000, /* 13 Mb */
52 2, 9, 25, 9, 25, 6434 },
53 { VALID_20
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 19500, /* 19.5 Mb */
55 2, 10, 26, 10, 26, 9650 },
56 { VALID_20
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 26000, /* 26 Mb */
58 4, 11, 27, 11, 27, 12868 },
59 { VALID_20
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 39000, /* 39 Mb */
61 4, 12, 28, 12, 28, 19304 },
62 { INVALID
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 52000, /* 52 Mb */
64 4, 13, 29, 13, 29, 25740 },
65 { INVALID
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 58500, /* 58.5 Mb */
67 4, 14, 30, 14, 30, 28956 },
68 { INVALID
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 65000, /* 65 Mb */
70 4, 15, 31, 15, 32, 32180 },
71 { INVALID
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 13000, /* 13 Mb */
73 8, 3, 16, 33, 16, 33, 6430 },
74 { INVALID
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 26000, /* 26 Mb */
76 2, 17, 34, 17, 34, 12860 },
77 { INVALID
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 39000, /* 39 Mb */
78 36600, 0x8a, 0x00, 10,
79 2, 18, 35, 18, 35, 19300 },
80 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 52000, /* 52 Mb */
81 48100, 0x8b, 0x00, 11,
82 4, 19, 36, 19, 36, 25736 },
83 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 78000, /* 78 Mb */
84 69500, 0x8c, 0x00, 12,
85 4, 20, 37, 20, 37, 38600 },
86 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 104000, /* 104 Mb */
87 89500, 0x8d, 0x00, 13,
88 4, 21, 38, 21, 38, 51472 },
89 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 117000, /* 117 Mb */
90 98900, 0x8e, 0x00, 14,
91 4, 22, 39, 22, 39, 57890 },
92 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 130000, /* 130 Mb */
93 108300, 0x8f, 0x00, 15,
94 4, 23, 40, 23, 41, 64320 },
95 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 13500, /* 13.5 Mb */
97 0, 8, 24, 24, 24, 6684 },
98 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 27500, /* 27.0 Mb */
100 2, 9, 25, 25, 25, 13368 },
101 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 40500, /* 40.5 Mb */
102 38600, 0x82, 0x00, 2,
103 2, 10, 26, 26, 26, 20052 },
104 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 54000, /* 54 Mb */
105 49800, 0x83, 0x00, 3,
106 4, 11, 27, 27, 27, 26738 },
107 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 81500, /* 81 Mb */
108 72200, 0x84, 0x00, 4,
109 4, 12, 28, 28, 28, 40104 },
110 { INVALID
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 108000, /* 108 Mb */
111 92900, 0x85, 0x00, 5,
112 4, 13, 29, 29, 29, 53476 },
113 { INVALID
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 121500, /* 121.5 Mb */
114 102700, 0x86, 0x00, 6,
115 4, 14, 30, 30, 30, 60156 },
116 { INVALID
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 135000, /* 135 Mb */
117 112000, 0x87, 0x00, 7,
118 4, 15, 31, 32, 32, 66840 },
119 { INVALID
, VALID_40
, WLAN_RC_PHY_HT_40_SS_HGI
, 150000, /* 150 Mb */
120 122000, 0x87, 0x00, 7,
121 4, 15, 31, 32, 32, 74200 },
122 { INVALID
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 27000, /* 27 Mb */
123 25800, 0x88, 0x00, 8,
124 0, 16, 33, 33, 33, 13360 },
125 { INVALID
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 54000, /* 54 Mb */
126 49800, 0x89, 0x00, 9,
127 2, 17, 34, 34, 34, 26720 },
128 { INVALID
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 81000, /* 81 Mb */
129 71900, 0x8a, 0x00, 10,
130 2, 18, 35, 35, 35, 40080 },
131 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 108000, /* 108 Mb */
132 92500, 0x8b, 0x00, 11,
133 4, 19, 36, 36, 36, 53440 },
134 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 162000, /* 162 Mb */
135 130300, 0x8c, 0x00, 12,
136 4, 20, 37, 37, 37, 80160 },
137 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 216000, /* 216 Mb */
138 162800, 0x8d, 0x00, 13,
139 4, 21, 38, 38, 38, 106880 },
140 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 243000, /* 243 Mb */
141 178200, 0x8e, 0x00, 14,
142 4, 22, 39, 39, 39, 120240 },
143 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 270000, /* 270 Mb */
144 192100, 0x8f, 0x00, 15,
145 4, 23, 40, 41, 41, 133600 },
146 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS_HGI
, 300000, /* 300 Mb */
147 207000, 0x8f, 0x00, 15,
148 4, 23, 40, 41, 41, 148400 },
150 50, /* probe interval */
151 WLAN_RC_HT_FLAG
, /* Phy rates allowed initially */
154 /* 4ms frame limit not used for NG mode. The values filled
155 * for HT are the 64K max aggregate limit */
157 static const struct ath_rate_table ar5416_11ng_ratetable
= {
160 { VALID_ALL
, VALID_ALL
, WLAN_RC_PHY_CCK
, 1000, /* 1 Mb */
163 { VALID_ALL
, VALID_ALL
, WLAN_RC_PHY_CCK
, 2000, /* 2 Mb */
166 { VALID_ALL
, VALID_ALL
, WLAN_RC_PHY_CCK
, 5500, /* 5.5 Mb */
167 4900, 0x19, 0x04, 11,
169 { VALID_ALL
, VALID_ALL
, WLAN_RC_PHY_CCK
, 11000, /* 11 Mb */
170 8100, 0x18, 0x04, 22,
172 { INVALID
, INVALID
, WLAN_RC_PHY_OFDM
, 6000, /* 6 Mb */
173 5400, 0x0b, 0x00, 12,
175 { INVALID
, INVALID
, WLAN_RC_PHY_OFDM
, 9000, /* 9 Mb */
176 7800, 0x0f, 0x00, 18,
178 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 12000, /* 12 Mb */
179 10100, 0x0a, 0x00, 24,
181 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 18000, /* 18 Mb */
182 14100, 0x0e, 0x00, 36,
184 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 24000, /* 24 Mb */
185 17700, 0x09, 0x00, 48,
187 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 36000, /* 36 Mb */
188 23700, 0x0d, 0x00, 72,
190 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 48000, /* 48 Mb */
191 27400, 0x08, 0x00, 96,
192 8, 10, 10, 10, 10, 0 },
193 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 54000, /* 54 Mb */
194 30900, 0x0c, 0x00, 108,
195 8, 11, 11, 11, 11, 0 },
196 { INVALID
, INVALID
, WLAN_RC_PHY_HT_20_SS
, 6500, /* 6.5 Mb */
198 4, 12, 28, 12, 28, 3216 },
199 { VALID_20
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 13000, /* 13 Mb */
200 12700, 0x81, 0x00, 1,
201 6, 13, 29, 13, 29, 6434 },
202 { VALID_20
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 19500, /* 19.5 Mb */
203 18800, 0x82, 0x00, 2,
204 6, 14, 30, 14, 30, 9650 },
205 { VALID_20
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 26000, /* 26 Mb */
206 25000, 0x83, 0x00, 3,
207 8, 15, 31, 15, 31, 12868 },
208 { VALID_20
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 39000, /* 39 Mb */
209 36700, 0x84, 0x00, 4,
210 8, 16, 32, 16, 32, 19304 },
211 { INVALID
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 52000, /* 52 Mb */
212 48100, 0x85, 0x00, 5,
213 8, 17, 33, 17, 33, 25740 },
214 { INVALID
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 58500, /* 58.5 Mb */
215 53500, 0x86, 0x00, 6,
216 8, 18, 34, 18, 34, 28956 },
217 { INVALID
, VALID_20
, WLAN_RC_PHY_HT_20_SS
, 65000, /* 65 Mb */
218 59000, 0x87, 0x00, 7,
219 8, 19, 35, 19, 36, 32180 },
220 { INVALID
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 13000, /* 13 Mb */
221 12700, 0x88, 0x00, 8,
222 4, 20, 37, 20, 37, 6430 },
223 { INVALID
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 26000, /* 26 Mb */
224 24800, 0x89, 0x00, 9,
225 6, 21, 38, 21, 38, 12860 },
226 { INVALID
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 39000, /* 39 Mb */
227 36600, 0x8a, 0x00, 10,
228 6, 22, 39, 22, 39, 19300 },
229 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 52000, /* 52 Mb */
230 48100, 0x8b, 0x00, 11,
231 8, 23, 40, 23, 40, 25736 },
232 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 78000, /* 78 Mb */
233 69500, 0x8c, 0x00, 12,
234 8, 24, 41, 24, 41, 38600 },
235 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 104000, /* 104 Mb */
236 89500, 0x8d, 0x00, 13,
237 8, 25, 42, 25, 42, 51472 },
238 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 117000, /* 117 Mb */
239 98900, 0x8e, 0x00, 14,
240 8, 26, 43, 26, 44, 57890 },
241 { VALID_20
, INVALID
, WLAN_RC_PHY_HT_20_DS
, 130000, /* 130 Mb */
242 108300, 0x8f, 0x00, 15,
243 8, 27, 44, 27, 45, 64320 },
244 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 13500, /* 13.5 Mb */
245 13200, 0x80, 0x00, 0,
246 8, 12, 28, 28, 28, 6684 },
247 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 27500, /* 27.0 Mb */
248 25900, 0x81, 0x00, 1,
249 8, 13, 29, 29, 29, 13368 },
250 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 40500, /* 40.5 Mb */
251 38600, 0x82, 0x00, 2,
252 8, 14, 30, 30, 30, 20052 },
253 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 54000, /* 54 Mb */
254 49800, 0x83, 0x00, 3,
255 8, 15, 31, 31, 31, 26738 },
256 { VALID_40
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 81500, /* 81 Mb */
257 72200, 0x84, 0x00, 4,
258 8, 16, 32, 32, 32, 40104 },
259 { INVALID
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 108000, /* 108 Mb */
260 92900, 0x85, 0x00, 5,
261 8, 17, 33, 33, 33, 53476 },
262 { INVALID
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 121500, /* 121.5 Mb */
263 102700, 0x86, 0x00, 6,
264 8, 18, 34, 34, 34, 60156 },
265 { INVALID
, VALID_40
, WLAN_RC_PHY_HT_40_SS
, 135000, /* 135 Mb */
266 112000, 0x87, 0x00, 7,
267 8, 19, 35, 36, 36, 66840 },
268 { INVALID
, VALID_40
, WLAN_RC_PHY_HT_40_SS_HGI
, 150000, /* 150 Mb */
269 122000, 0x87, 0x00, 7,
270 8, 19, 35, 36, 36, 74200 },
271 { INVALID
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 27000, /* 27 Mb */
272 25800, 0x88, 0x00, 8,
273 8, 20, 37, 37, 37, 13360 },
274 { INVALID
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 54000, /* 54 Mb */
275 49800, 0x89, 0x00, 9,
276 8, 21, 38, 38, 38, 26720 },
277 { INVALID
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 81000, /* 81 Mb */
278 71900, 0x8a, 0x00, 10,
279 8, 22, 39, 39, 39, 40080 },
280 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 108000, /* 108 Mb */
281 92500, 0x8b, 0x00, 11,
282 8, 23, 40, 40, 40, 53440 },
283 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 162000, /* 162 Mb */
284 130300, 0x8c, 0x00, 12,
285 8, 24, 41, 41, 41, 80160 },
286 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 216000, /* 216 Mb */
287 162800, 0x8d, 0x00, 13,
288 8, 25, 42, 42, 42, 106880 },
289 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 243000, /* 243 Mb */
290 178200, 0x8e, 0x00, 14,
291 8, 26, 43, 43, 43, 120240 },
292 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS
, 270000, /* 270 Mb */
293 192100, 0x8f, 0x00, 15,
294 8, 27, 44, 45, 45, 133600 },
295 { VALID_40
, INVALID
, WLAN_RC_PHY_HT_40_DS_HGI
, 300000, /* 300 Mb */
296 207000, 0x8f, 0x00, 15,
297 8, 27, 44, 45, 45, 148400 },
299 50, /* probe interval */
300 WLAN_RC_HT_FLAG
, /* Phy rates allowed initially */
303 static const struct ath_rate_table ar5416_11a_ratetable
= {
306 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 6000, /* 6 Mb */
307 5400, 0x0b, 0x00, (0x80|12),
309 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 9000, /* 9 Mb */
310 7800, 0x0f, 0x00, 18,
312 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 12000, /* 12 Mb */
313 10000, 0x0a, 0x00, (0x80|24),
315 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 18000, /* 18 Mb */
316 13900, 0x0e, 0x00, 36,
318 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 24000, /* 24 Mb */
319 17300, 0x09, 0x00, (0x80|48),
321 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 36000, /* 36 Mb */
322 23000, 0x0d, 0x00, 72,
324 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 48000, /* 48 Mb */
325 27400, 0x08, 0x00, 96,
327 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 54000, /* 54 Mb */
328 29300, 0x0c, 0x00, 108,
331 50, /* probe interval */
332 0, /* Phy rates allowed initially */
335 static const struct ath_rate_table ar5416_11g_ratetable
= {
338 { VALID
, VALID
, WLAN_RC_PHY_CCK
, 1000, /* 1 Mb */
341 { VALID
, VALID
, WLAN_RC_PHY_CCK
, 2000, /* 2 Mb */
344 { VALID
, VALID
, WLAN_RC_PHY_CCK
, 5500, /* 5.5 Mb */
345 4900, 0x19, 0x04, 11,
347 { VALID
, VALID
, WLAN_RC_PHY_CCK
, 11000, /* 11 Mb */
348 8100, 0x18, 0x04, 22,
350 { INVALID
, INVALID
, WLAN_RC_PHY_OFDM
, 6000, /* 6 Mb */
351 5400, 0x0b, 0x00, 12,
353 { INVALID
, INVALID
, WLAN_RC_PHY_OFDM
, 9000, /* 9 Mb */
354 7800, 0x0f, 0x00, 18,
356 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 12000, /* 12 Mb */
357 10000, 0x0a, 0x00, 24,
359 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 18000, /* 18 Mb */
360 13900, 0x0e, 0x00, 36,
362 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 24000, /* 24 Mb */
363 17300, 0x09, 0x00, 48,
365 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 36000, /* 36 Mb */
366 23000, 0x0d, 0x00, 72,
368 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 48000, /* 48 Mb */
369 27400, 0x08, 0x00, 96,
371 { VALID
, VALID
, WLAN_RC_PHY_OFDM
, 54000, /* 54 Mb */
372 29300, 0x0c, 0x00, 108,
375 50, /* probe interval */
376 0, /* Phy rates allowed initially */
379 static inline int8_t median(int8_t a
, int8_t b
, int8_t c
)
398 static void ath_rc_sort_validrates(const struct ath_rate_table
*rate_table
,
399 struct ath_rate_priv
*ath_rc_priv
)
401 u8 i
, j
, idx
, idx_next
;
403 for (i
= ath_rc_priv
->max_valid_rate
- 1; i
> 0; i
--) {
404 for (j
= 0; j
<= i
-1; j
++) {
405 idx
= ath_rc_priv
->valid_rate_index
[j
];
406 idx_next
= ath_rc_priv
->valid_rate_index
[j
+1];
408 if (rate_table
->info
[idx
].ratekbps
>
409 rate_table
->info
[idx_next
].ratekbps
) {
410 ath_rc_priv
->valid_rate_index
[j
] = idx_next
;
411 ath_rc_priv
->valid_rate_index
[j
+1] = idx
;
417 static void ath_rc_init_valid_txmask(struct ath_rate_priv
*ath_rc_priv
)
421 for (i
= 0; i
< ath_rc_priv
->rate_table_size
; i
++)
422 ath_rc_priv
->valid_rate_index
[i
] = 0;
425 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv
*ath_rc_priv
,
426 u8 index
, int valid_tx_rate
)
428 ASSERT(index
<= ath_rc_priv
->rate_table_size
);
429 ath_rc_priv
->valid_rate_index
[index
] = valid_tx_rate
? 1 : 0;
433 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table
*rate_table
,
434 struct ath_rate_priv
*ath_rc_priv
,
440 for (i
= 0; i
< ath_rc_priv
->max_valid_rate
- 1; i
++) {
441 if (ath_rc_priv
->valid_rate_index
[i
] == cur_valid_txrate
) {
442 *next_idx
= ath_rc_priv
->valid_rate_index
[i
+1];
447 /* No more valid rates */
453 /* Return true only for single stream */
455 static int ath_rc_valid_phyrate(u32 phy
, u32 capflag
, int ignore_cw
)
457 if (WLAN_RC_PHY_HT(phy
) && !(capflag
& WLAN_RC_HT_FLAG
))
459 if (WLAN_RC_PHY_DS(phy
) && !(capflag
& WLAN_RC_DS_FLAG
))
461 if (WLAN_RC_PHY_SGI(phy
) && !(capflag
& WLAN_RC_SGI_FLAG
))
463 if (!ignore_cw
&& WLAN_RC_PHY_HT(phy
))
464 if (WLAN_RC_PHY_40(phy
) && !(capflag
& WLAN_RC_40_FLAG
))
470 ath_rc_get_lower_rix(const struct ath_rate_table
*rate_table
,
471 struct ath_rate_priv
*ath_rc_priv
,
472 u8 cur_valid_txrate
, u8
*next_idx
)
476 for (i
= 1; i
< ath_rc_priv
->max_valid_rate
; i
++) {
477 if (ath_rc_priv
->valid_rate_index
[i
] == cur_valid_txrate
) {
478 *next_idx
= ath_rc_priv
->valid_rate_index
[i
-1];
486 static u8
ath_rc_init_validrates(struct ath_rate_priv
*ath_rc_priv
,
487 const struct ath_rate_table
*rate_table
,
493 for (i
= 0; i
< rate_table
->rate_cnt
; i
++) {
494 valid
= (!(ath_rc_priv
->ht_cap
& WLAN_RC_DS_FLAG
) ?
495 rate_table
->info
[i
].valid_single_stream
:
496 rate_table
->info
[i
].valid
);
498 u32 phy
= rate_table
->info
[i
].phy
;
499 u8 valid_rate_count
= 0;
501 if (!ath_rc_valid_phyrate(phy
, capflag
, 0))
504 valid_rate_count
= ath_rc_priv
->valid_phy_ratecnt
[phy
];
506 ath_rc_priv
->valid_phy_rateidx
[phy
][valid_rate_count
] = i
;
507 ath_rc_priv
->valid_phy_ratecnt
[phy
] += 1;
508 ath_rc_set_valid_txmask(ath_rc_priv
, i
, 1);
516 static u8
ath_rc_setvalid_rates(struct ath_rate_priv
*ath_rc_priv
,
517 const struct ath_rate_table
*rate_table
,
518 struct ath_rateset
*rateset
,
523 /* Use intersection of working rates and valid rates */
524 for (i
= 0; i
< rateset
->rs_nrates
; i
++) {
525 for (j
= 0; j
< rate_table
->rate_cnt
; j
++) {
526 u32 phy
= rate_table
->info
[j
].phy
;
527 u32 valid
= (!(ath_rc_priv
->ht_cap
& WLAN_RC_DS_FLAG
) ?
528 rate_table
->info
[j
].valid_single_stream
:
529 rate_table
->info
[j
].valid
);
530 u8 rate
= rateset
->rs_rates
[i
];
531 u8 dot11rate
= rate_table
->info
[j
].dot11rate
;
533 /* We allow a rate only if its valid and the
534 * capflag matches one of the validity
535 * (VALID/VALID_20/VALID_40) flags */
537 if (((rate
& 0x7F) == (dot11rate
& 0x7F)) &&
538 ((valid
& WLAN_RC_CAP_MODE(capflag
)) ==
539 WLAN_RC_CAP_MODE(capflag
)) &&
540 !WLAN_RC_PHY_HT(phy
)) {
541 u8 valid_rate_count
= 0;
543 if (!ath_rc_valid_phyrate(phy
, capflag
, 0))
547 ath_rc_priv
->valid_phy_ratecnt
[phy
];
549 ath_rc_priv
->valid_phy_rateidx
[phy
]
550 [valid_rate_count
] = j
;
551 ath_rc_priv
->valid_phy_ratecnt
[phy
] += 1;
552 ath_rc_set_valid_txmask(ath_rc_priv
, j
, 1);
561 static u8
ath_rc_setvalid_htrates(struct ath_rate_priv
*ath_rc_priv
,
562 const struct ath_rate_table
*rate_table
,
563 u8
*mcs_set
, u32 capflag
)
565 struct ath_rateset
*rateset
= (struct ath_rateset
*)mcs_set
;
569 /* Use intersection of working rates and valid rates */
570 for (i
= 0; i
< rateset
->rs_nrates
; i
++) {
571 for (j
= 0; j
< rate_table
->rate_cnt
; j
++) {
572 u32 phy
= rate_table
->info
[j
].phy
;
573 u32 valid
= (!(ath_rc_priv
->ht_cap
& WLAN_RC_DS_FLAG
) ?
574 rate_table
->info
[j
].valid_single_stream
:
575 rate_table
->info
[j
].valid
);
576 u8 rate
= rateset
->rs_rates
[i
];
577 u8 dot11rate
= rate_table
->info
[j
].dot11rate
;
579 if (((rate
& 0x7F) != (dot11rate
& 0x7F)) ||
580 !WLAN_RC_PHY_HT(phy
) ||
581 !WLAN_RC_PHY_HT_VALID(valid
, capflag
))
584 if (!ath_rc_valid_phyrate(phy
, capflag
, 0))
587 ath_rc_priv
->valid_phy_rateidx
[phy
]
588 [ath_rc_priv
->valid_phy_ratecnt
[phy
]] = j
;
589 ath_rc_priv
->valid_phy_ratecnt
[phy
] += 1;
590 ath_rc_set_valid_txmask(ath_rc_priv
, j
, 1);
598 /* Finds the highest rate index we can use */
599 static u8
ath_rc_get_highest_rix(struct ath_softc
*sc
,
600 struct ath_rate_priv
*ath_rc_priv
,
601 const struct ath_rate_table
*rate_table
,
604 u32 best_thruput
, this_thruput
, now_msec
;
605 u8 rate
, next_rate
, best_rate
, maxindex
, minindex
;
608 now_msec
= jiffies_to_msecs(jiffies
);
611 maxindex
= ath_rc_priv
->max_valid_rate
-1;
613 best_rate
= minindex
;
616 * Try the higher rate first. It will reduce memory moving time
617 * if we have very good channel characteristics.
619 for (index
= maxindex
; index
>= minindex
; index
--) {
622 rate
= ath_rc_priv
->valid_rate_index
[index
];
623 if (rate
> ath_rc_priv
->rate_max_phy
)
627 * For TCP the average collision rate is around 11%,
628 * so we ignore PERs less than this. This is to
629 * prevent the rate we are currently using (whose
630 * PER might be in the 10-15 range because of TCP
631 * collisions) looking worse than the next lower
632 * rate whose PER has decayed close to 0. If we
633 * used to next lower rate, its PER would grow to
634 * 10-15 and we would be worse off then staying
635 * at the current rate.
637 per_thres
= ath_rc_priv
->per
[rate
];
641 this_thruput
= rate_table
->info
[rate
].user_ratekbps
*
644 if (best_thruput
<= this_thruput
) {
645 best_thruput
= this_thruput
;
653 * Must check the actual rate (ratekbps) to account for
654 * non-monoticity of 11g's rate table
657 if (rate
>= ath_rc_priv
->rate_max_phy
) {
658 rate
= ath_rc_priv
->rate_max_phy
;
660 /* Probe the next allowed phy state */
661 if (ath_rc_get_nextvalid_txrate(rate_table
,
662 ath_rc_priv
, rate
, &next_rate
) &&
663 (now_msec
- ath_rc_priv
->probe_time
>
664 rate_table
->probe_interval
) &&
665 (ath_rc_priv
->hw_maxretry_pktcnt
>= 1)) {
667 ath_rc_priv
->probe_rate
= rate
;
668 ath_rc_priv
->probe_time
= now_msec
;
669 ath_rc_priv
->hw_maxretry_pktcnt
= 0;
674 if (rate
> (ath_rc_priv
->rate_table_size
- 1))
675 rate
= ath_rc_priv
->rate_table_size
- 1;
677 if (rate_table
->info
[rate
].valid
&&
678 (ath_rc_priv
->ht_cap
& WLAN_RC_DS_FLAG
))
681 if (rate_table
->info
[rate
].valid_single_stream
&&
682 !(ath_rc_priv
->ht_cap
& WLAN_RC_DS_FLAG
))
685 /* This should not happen */
688 rate
= ath_rc_priv
->valid_rate_index
[0];
693 static void ath_rc_rate_set_series(const struct ath_rate_table
*rate_table
,
694 struct ieee80211_tx_rate
*rate
,
695 struct ieee80211_tx_rate_control
*txrc
,
696 u8 tries
, u8 rix
, int rtsctsenable
)
701 if (txrc
->short_preamble
)
702 rate
->flags
|= IEEE80211_TX_RC_USE_SHORT_PREAMBLE
;
703 if (txrc
->rts
|| rtsctsenable
)
704 rate
->flags
|= IEEE80211_TX_RC_USE_RTS_CTS
;
705 if (WLAN_RC_PHY_40(rate_table
->info
[rix
].phy
))
706 rate
->flags
|= IEEE80211_TX_RC_40_MHZ_WIDTH
;
707 if (WLAN_RC_PHY_SGI(rate_table
->info
[rix
].phy
))
708 rate
->flags
|= IEEE80211_TX_RC_SHORT_GI
;
709 if (WLAN_RC_PHY_HT(rate_table
->info
[rix
].phy
))
710 rate
->flags
|= IEEE80211_TX_RC_MCS
;
713 static void ath_rc_rate_set_rtscts(struct ath_softc
*sc
,
714 const struct ath_rate_table
*rate_table
,
715 struct ieee80211_tx_info
*tx_info
)
717 struct ieee80211_tx_rate
*rates
= tx_info
->control
.rates
;
718 int i
= 0, rix
= 0, cix
, enable_g_protection
= 0;
720 /* get the cix for the lowest valid rix */
721 for (i
= 3; i
>= 0; i
--) {
722 if (rates
[i
].count
&& (rates
[i
].idx
>= 0)) {
727 cix
= rate_table
->info
[rix
].ctrl_rate
;
729 /* All protection frames are transmited at 2Mb/s for 802.11g,
730 * otherwise we transmit them at 1Mb/s */
731 if (sc
->hw
->conf
.channel
->band
== IEEE80211_BAND_2GHZ
&&
732 !conf_is_ht(&sc
->hw
->conf
))
733 enable_g_protection
= 1;
736 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
737 * just CTS. Note that this is only done for OFDM/HT unicast frames.
739 if ((sc
->sc_flags
& SC_OP_PROTECT_ENABLE
) &&
740 (rate_table
->info
[rix
].phy
== WLAN_RC_PHY_OFDM
||
741 WLAN_RC_PHY_HT(rate_table
->info
[rix
].phy
))) {
742 rates
[0].flags
|= IEEE80211_TX_RC_USE_CTS_PROTECT
;
743 cix
= rate_table
->info
[enable_g_protection
].ctrl_rate
;
746 tx_info
->control
.rts_cts_rate_idx
= cix
;
749 static void ath_get_rate(void *priv
, struct ieee80211_sta
*sta
, void *priv_sta
,
750 struct ieee80211_tx_rate_control
*txrc
)
752 struct ath_softc
*sc
= priv
;
753 struct ath_rate_priv
*ath_rc_priv
= priv_sta
;
754 const struct ath_rate_table
*rate_table
;
755 struct sk_buff
*skb
= txrc
->skb
;
756 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
757 struct ieee80211_tx_rate
*rates
= tx_info
->control
.rates
;
758 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
759 __le16 fc
= hdr
->frame_control
;
760 u8 try_per_rate
, i
= 0, rix
, nrix
;
763 if (rate_control_send_low(sta
, priv_sta
, txrc
))
767 * For Multi Rate Retry we use a different number of
768 * retry attempt counts. This ends up looking like this:
776 try_per_rate
= sc
->hw
->max_rate_tries
;
778 rate_table
= sc
->cur_rate_table
;
779 rix
= ath_rc_get_highest_rix(sc
, ath_rc_priv
, rate_table
, &is_probe
);
783 /* set one try for probe rates. For the
784 * probes don't enable rts */
785 ath_rc_rate_set_series(rate_table
, &rates
[i
++], txrc
,
788 /* Get the next tried/allowed rate. No RTS for the next series
789 * after the probe rate
791 ath_rc_get_lower_rix(rate_table
, ath_rc_priv
, rix
, &nrix
);
792 ath_rc_rate_set_series(rate_table
, &rates
[i
++], txrc
,
793 try_per_rate
, nrix
, 0);
795 tx_info
->flags
|= IEEE80211_TX_CTL_RATE_CTRL_PROBE
;
797 /* Set the choosen rate. No RTS for first series entry. */
798 ath_rc_rate_set_series(rate_table
, &rates
[i
++], txrc
,
799 try_per_rate
, nrix
, 0);
802 /* Fill in the other rates for multirate retry */
803 for ( ; i
< 4; i
++) {
804 /* Use twice the number of tries for the last MRR segment. */
808 ath_rc_get_lower_rix(rate_table
, ath_rc_priv
, rix
, &nrix
);
809 /* All other rates in the series have RTS enabled */
810 ath_rc_rate_set_series(rate_table
, &rates
[i
], txrc
,
811 try_per_rate
, nrix
, 1);
815 * NB:Change rate series to enable aggregation when operating
816 * at lower MCS rates. When first rate in series is MCS2
817 * in HT40 @ 2.4GHz, series should look like:
819 * {MCS2, MCS1, MCS0, MCS0}.
821 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
824 * {MCS3, MCS2, MCS1, MCS1}
826 * So, set fourth rate in series to be same as third one for
829 if ((sc
->hw
->conf
.channel
->band
== IEEE80211_BAND_2GHZ
) &&
830 (conf_is_ht(&sc
->hw
->conf
))) {
831 u8 dot11rate
= rate_table
->info
[rix
].dot11rate
;
832 u8 phy
= rate_table
->info
[rix
].phy
;
834 ((dot11rate
== 2 && phy
== WLAN_RC_PHY_HT_40_SS
) ||
835 (dot11rate
== 3 && phy
== WLAN_RC_PHY_HT_20_SS
))) {
836 rates
[3].idx
= rates
[2].idx
;
837 rates
[3].flags
= rates
[2].flags
;
842 * Force hardware to use computed duration for next
843 * fragment by disabling multi-rate retry, which
844 * updates duration based on the multi-rate duration table.
846 * FIXME: Fix duration
848 if (ieee80211_has_morefrags(fc
) ||
849 (le16_to_cpu(hdr
->seq_ctrl
) & IEEE80211_SCTL_FRAG
)) {
850 rates
[1].count
= rates
[2].count
= rates
[3].count
= 0;
851 rates
[1].idx
= rates
[2].idx
= rates
[3].idx
= 0;
852 rates
[0].count
= ATH_TXMAXTRY
;
856 ath_rc_rate_set_rtscts(sc
, rate_table
, tx_info
);
859 static bool ath_rc_update_per(struct ath_softc
*sc
,
860 const struct ath_rate_table
*rate_table
,
861 struct ath_rate_priv
*ath_rc_priv
,
862 struct ath_tx_info_priv
*tx_info_priv
,
863 int tx_rate
, int xretries
, int retries
,
866 bool state_change
= false;
869 static u32 nretry_to_per_lookup
[10] = {
882 last_per
= ath_rc_priv
->per
[tx_rate
];
886 ath_rc_priv
->per
[tx_rate
] += 30;
887 if (ath_rc_priv
->per
[tx_rate
] > 100)
888 ath_rc_priv
->per
[tx_rate
] = 100;
891 count
= ARRAY_SIZE(nretry_to_per_lookup
);
892 if (retries
>= count
)
895 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
896 ath_rc_priv
->per
[tx_rate
] =
897 (u8
)(last_per
- (last_per
>> 3) + (100 >> 3));
900 /* xretries == 1 or 2 */
902 if (ath_rc_priv
->probe_rate
== tx_rate
)
903 ath_rc_priv
->probe_rate
= 0;
905 } else { /* xretries == 0 */
906 count
= ARRAY_SIZE(nretry_to_per_lookup
);
907 if (retries
>= count
)
910 if (tx_info_priv
->n_bad_frames
) {
911 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
912 * Assuming that n_frames is not 0. The current PER
913 * from the retries is 100 * retries / (retries+1),
914 * since the first retries attempts failed, and the
915 * next one worked. For the one that worked,
916 * n_bad_frames subframes out of n_frames wored,
917 * so the PER for that part is
918 * 100 * n_bad_frames / n_frames, and it contributes
919 * 100 * n_bad_frames / (n_frames * (retries+1)) to
920 * the above PER. The expression below is a
921 * simplified version of the sum of these two terms.
923 if (tx_info_priv
->n_frames
> 0) {
924 int n_frames
, n_bad_frames
;
927 n_bad_frames
= retries
* tx_info_priv
->n_frames
+
928 tx_info_priv
->n_bad_frames
;
929 n_frames
= tx_info_priv
->n_frames
* (retries
+ 1);
930 cur_per
= (100 * n_bad_frames
/ n_frames
) >> 3;
931 new_per
= (u8
)(last_per
- (last_per
>> 3) + cur_per
);
932 ath_rc_priv
->per
[tx_rate
] = new_per
;
935 ath_rc_priv
->per
[tx_rate
] =
936 (u8
)(last_per
- (last_per
>> 3) +
937 (nretry_to_per_lookup
[retries
] >> 3));
942 * If we got at most one retry then increase the max rate if
943 * this was a probe. Otherwise, ignore the probe.
945 if (ath_rc_priv
->probe_rate
&& ath_rc_priv
->probe_rate
== tx_rate
) {
946 if (retries
> 0 || 2 * tx_info_priv
->n_bad_frames
>
947 tx_info_priv
->n_frames
) {
949 * Since we probed with just a single attempt,
950 * any retries means the probe failed. Also,
951 * if the attempt worked, but more than half
952 * the subframes were bad then also consider
953 * the probe a failure.
955 ath_rc_priv
->probe_rate
= 0;
959 ath_rc_priv
->rate_max_phy
=
960 ath_rc_priv
->probe_rate
;
961 probe_rate
= ath_rc_priv
->probe_rate
;
963 if (ath_rc_priv
->per
[probe_rate
] > 30)
964 ath_rc_priv
->per
[probe_rate
] = 20;
966 ath_rc_priv
->probe_rate
= 0;
969 * Since this probe succeeded, we allow the next
970 * probe twice as soon. This allows the maxRate
971 * to move up faster if the probes are
974 ath_rc_priv
->probe_time
=
975 now_msec
- rate_table
->probe_interval
/ 2;
981 * Don't update anything. We don't know if
982 * this was because of collisions or poor signal.
984 ath_rc_priv
->hw_maxretry_pktcnt
= 0;
987 * It worked with no retries. First ignore bogus (small)
990 if (tx_rate
== ath_rc_priv
->rate_max_phy
&&
991 ath_rc_priv
->hw_maxretry_pktcnt
< 255) {
992 ath_rc_priv
->hw_maxretry_pktcnt
++;
1001 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1002 If you can make sense of all this, you really need to go out more. */
1004 static void ath_rc_update_ht(struct ath_softc
*sc
,
1005 struct ath_rate_priv
*ath_rc_priv
,
1006 struct ath_tx_info_priv
*tx_info_priv
,
1007 int tx_rate
, int xretries
, int retries
)
1009 u32 now_msec
= jiffies_to_msecs(jiffies
);
1012 bool state_change
= false;
1013 const struct ath_rate_table
*rate_table
= sc
->cur_rate_table
;
1014 int size
= ath_rc_priv
->rate_table_size
;
1016 if ((tx_rate
< 0) || (tx_rate
> rate_table
->rate_cnt
))
1019 last_per
= ath_rc_priv
->per
[tx_rate
];
1021 /* Update PER first */
1022 state_change
= ath_rc_update_per(sc
, rate_table
, ath_rc_priv
,
1023 tx_info_priv
, tx_rate
, xretries
,
1027 * If this rate looks bad (high PER) then stop using it for
1028 * a while (except if we are probing).
1030 if (ath_rc_priv
->per
[tx_rate
] >= 55 && tx_rate
> 0 &&
1031 rate_table
->info
[tx_rate
].ratekbps
<=
1032 rate_table
->info
[ath_rc_priv
->rate_max_phy
].ratekbps
) {
1033 ath_rc_get_lower_rix(rate_table
, ath_rc_priv
,
1034 (u8
)tx_rate
, &ath_rc_priv
->rate_max_phy
);
1036 /* Don't probe for a little while. */
1037 ath_rc_priv
->probe_time
= now_msec
;
1040 /* Make sure the rates below this have lower PER */
1041 /* Monotonicity is kept only for rates below the current rate. */
1042 if (ath_rc_priv
->per
[tx_rate
] < last_per
) {
1043 for (rate
= tx_rate
- 1; rate
>= 0; rate
--) {
1045 if (ath_rc_priv
->per
[rate
] >
1046 ath_rc_priv
->per
[rate
+1]) {
1047 ath_rc_priv
->per
[rate
] =
1048 ath_rc_priv
->per
[rate
+1];
1053 /* Maintain monotonicity for rates above the current rate */
1054 for (rate
= tx_rate
; rate
< size
- 1; rate
++) {
1055 if (ath_rc_priv
->per
[rate
+1] <
1056 ath_rc_priv
->per
[rate
])
1057 ath_rc_priv
->per
[rate
+1] =
1058 ath_rc_priv
->per
[rate
];
1061 /* Every so often, we reduce the thresholds
1062 * and PER (different for CCK and OFDM). */
1063 if (now_msec
- ath_rc_priv
->per_down_time
>=
1064 rate_table
->probe_interval
) {
1065 for (rate
= 0; rate
< size
; rate
++) {
1066 ath_rc_priv
->per
[rate
] =
1067 7 * ath_rc_priv
->per
[rate
] / 8;
1070 ath_rc_priv
->per_down_time
= now_msec
;
1073 ath_debug_stat_retries(sc
, tx_rate
, xretries
, retries
,
1074 ath_rc_priv
->per
[tx_rate
]);
1078 static int ath_rc_get_rateindex(const struct ath_rate_table
*rate_table
,
1079 struct ieee80211_tx_rate
*rate
)
1083 if ((rate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
) &&
1084 (rate
->flags
& IEEE80211_TX_RC_SHORT_GI
))
1085 rix
= rate_table
->info
[rate
->idx
].ht_index
;
1086 else if (rate
->flags
& IEEE80211_TX_RC_SHORT_GI
)
1087 rix
= rate_table
->info
[rate
->idx
].sgi_index
;
1088 else if (rate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
1089 rix
= rate_table
->info
[rate
->idx
].cw40index
;
1091 rix
= rate_table
->info
[rate
->idx
].base_index
;
1096 static void ath_rc_tx_status(struct ath_softc
*sc
,
1097 struct ath_rate_priv
*ath_rc_priv
,
1098 struct ieee80211_tx_info
*tx_info
,
1099 int final_ts_idx
, int xretries
, int long_retry
)
1101 struct ath_tx_info_priv
*tx_info_priv
= ATH_TX_INFO_PRIV(tx_info
);
1102 const struct ath_rate_table
*rate_table
;
1103 struct ieee80211_tx_rate
*rates
= tx_info
->status
.rates
;
1107 rate_table
= sc
->cur_rate_table
;
1110 * If the first rate is not the final index, there
1111 * are intermediate rate failures to be processed.
1113 if (final_ts_idx
!= 0) {
1114 /* Process intermediate rates that failed.*/
1115 for (i
= 0; i
< final_ts_idx
; i
++) {
1116 if (rates
[i
].count
!= 0 && (rates
[i
].idx
>= 0)) {
1117 flags
= rates
[i
].flags
;
1119 /* If HT40 and we have switched mode from
1120 * 40 to 20 => don't update */
1122 if ((flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
) &&
1123 !(ath_rc_priv
->ht_cap
& WLAN_RC_40_FLAG
))
1126 rix
= ath_rc_get_rateindex(rate_table
, &rates
[i
]);
1127 ath_rc_update_ht(sc
, ath_rc_priv
,
1135 * Handle the special case of MIMO PS burst, where the second
1136 * aggregate is sent out with only one rate and one try.
1137 * Treating it as an excessive retry penalizes the rate
1140 if (rates
[0].count
== 1 && xretries
== 1)
1144 flags
= rates
[i
].flags
;
1146 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1147 if ((flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
) &&
1148 !(ath_rc_priv
->ht_cap
& WLAN_RC_40_FLAG
))
1151 rix
= ath_rc_get_rateindex(rate_table
, &rates
[i
]);
1152 ath_rc_update_ht(sc
, ath_rc_priv
, tx_info_priv
, rix
,
1153 xretries
, long_retry
);
1157 struct ath_rate_table
*ath_choose_rate_table(struct ath_softc
*sc
,
1158 enum ieee80211_band band
,
1165 case IEEE80211_BAND_2GHZ
:
1166 mode
= ATH9K_MODE_11G
;
1168 mode
= ATH9K_MODE_11NG_HT20
;
1170 mode
= ATH9K_MODE_11NG_HT40PLUS
;
1172 case IEEE80211_BAND_5GHZ
:
1173 mode
= ATH9K_MODE_11A
;
1175 mode
= ATH9K_MODE_11NA_HT20
;
1177 mode
= ATH9K_MODE_11NA_HT40PLUS
;
1180 DPRINTF(sc
, ATH_DBG_CONFIG
, "Invalid band\n");
1184 BUG_ON(mode
>= ATH9K_MODE_MAX
);
1186 DPRINTF(sc
, ATH_DBG_CONFIG
, "Choosing rate table for mode: %d\n", mode
);
1187 return sc
->hw_rate_table
[mode
];
1190 static void ath_rc_init(struct ath_softc
*sc
,
1191 struct ath_rate_priv
*ath_rc_priv
,
1192 struct ieee80211_supported_band
*sband
,
1193 struct ieee80211_sta
*sta
,
1194 const struct ath_rate_table
*rate_table
)
1196 struct ath_rateset
*rateset
= &ath_rc_priv
->neg_rates
;
1197 u8
*ht_mcs
= (u8
*)&ath_rc_priv
->neg_ht_rates
;
1198 u8 i
, j
, k
, hi
= 0, hthi
= 0;
1201 DPRINTF(sc
, ATH_DBG_FATAL
, "Rate table not initialized\n");
1205 /* Initial rate table size. Will change depending
1206 * on the working rate set */
1207 ath_rc_priv
->rate_table_size
= RATE_TABLE_SIZE
;
1209 /* Initialize thresholds according to the global rate table */
1210 for (i
= 0 ; i
< ath_rc_priv
->rate_table_size
; i
++) {
1211 ath_rc_priv
->per
[i
] = 0;
1214 /* Determine the valid rates */
1215 ath_rc_init_valid_txmask(ath_rc_priv
);
1217 for (i
= 0; i
< WLAN_RC_PHY_MAX
; i
++) {
1218 for (j
= 0; j
< MAX_TX_RATE_PHY
; j
++)
1219 ath_rc_priv
->valid_phy_rateidx
[i
][j
] = 0;
1220 ath_rc_priv
->valid_phy_ratecnt
[i
] = 0;
1223 if (!rateset
->rs_nrates
) {
1224 /* No working rate, just initialize valid rates */
1225 hi
= ath_rc_init_validrates(ath_rc_priv
, rate_table
,
1226 ath_rc_priv
->ht_cap
);
1228 /* Use intersection of working rates and valid rates */
1229 hi
= ath_rc_setvalid_rates(ath_rc_priv
, rate_table
,
1230 rateset
, ath_rc_priv
->ht_cap
);
1231 if (ath_rc_priv
->ht_cap
& WLAN_RC_HT_FLAG
) {
1232 hthi
= ath_rc_setvalid_htrates(ath_rc_priv
,
1235 ath_rc_priv
->ht_cap
);
1237 hi
= A_MAX(hi
, hthi
);
1240 ath_rc_priv
->rate_table_size
= hi
+ 1;
1241 ath_rc_priv
->rate_max_phy
= 0;
1242 ASSERT(ath_rc_priv
->rate_table_size
<= RATE_TABLE_SIZE
);
1244 for (i
= 0, k
= 0; i
< WLAN_RC_PHY_MAX
; i
++) {
1245 for (j
= 0; j
< ath_rc_priv
->valid_phy_ratecnt
[i
]; j
++) {
1246 ath_rc_priv
->valid_rate_index
[k
++] =
1247 ath_rc_priv
->valid_phy_rateidx
[i
][j
];
1250 if (!ath_rc_valid_phyrate(i
, rate_table
->initial_ratemax
, 1)
1251 || !ath_rc_priv
->valid_phy_ratecnt
[i
])
1254 ath_rc_priv
->rate_max_phy
= ath_rc_priv
->valid_phy_rateidx
[i
][j
-1];
1256 ASSERT(ath_rc_priv
->rate_table_size
<= RATE_TABLE_SIZE
);
1257 ASSERT(k
<= RATE_TABLE_SIZE
);
1259 ath_rc_priv
->max_valid_rate
= k
;
1260 ath_rc_sort_validrates(rate_table
, ath_rc_priv
);
1261 ath_rc_priv
->rate_max_phy
= ath_rc_priv
->valid_rate_index
[k
-4];
1262 sc
->cur_rate_table
= rate_table
;
1264 DPRINTF(sc
, ATH_DBG_CONFIG
, "RC Initialized with capabilities: 0x%x\n",
1265 ath_rc_priv
->ht_cap
);
1268 static u8
ath_rc_build_ht_caps(struct ath_softc
*sc
, struct ieee80211_sta
*sta
,
1269 bool is_cw40
, bool is_sgi40
)
1273 if (sta
->ht_cap
.ht_supported
) {
1274 caps
= WLAN_RC_HT_FLAG
;
1275 if (sc
->sc_ah
->caps
.tx_chainmask
!= 1 &&
1276 ath9k_hw_getcapability(sc
->sc_ah
, ATH9K_CAP_DS
, 0, NULL
)) {
1277 if (sta
->ht_cap
.mcs
.rx_mask
[1])
1278 caps
|= WLAN_RC_DS_FLAG
;
1281 caps
|= WLAN_RC_40_FLAG
;
1283 caps
|= WLAN_RC_SGI_FLAG
;
1289 /***********************************/
1290 /* mac80211 Rate Control callbacks */
1291 /***********************************/
1293 static void ath_tx_status(void *priv
, struct ieee80211_supported_band
*sband
,
1294 struct ieee80211_sta
*sta
, void *priv_sta
,
1295 struct sk_buff
*skb
)
1297 struct ath_softc
*sc
= priv
;
1298 struct ath_rate_priv
*ath_rc_priv
= priv_sta
;
1299 struct ath_tx_info_priv
*tx_info_priv
= NULL
;
1300 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1301 struct ieee80211_hdr
*hdr
;
1302 int final_ts_idx
, tx_status
= 0, is_underrun
= 0;
1305 hdr
= (struct ieee80211_hdr
*)skb
->data
;
1306 fc
= hdr
->frame_control
;
1307 tx_info_priv
= ATH_TX_INFO_PRIV(tx_info
);
1308 final_ts_idx
= tx_info_priv
->tx
.ts_rateindex
;
1310 if (!priv_sta
|| !ieee80211_is_data(fc
) ||
1311 !tx_info_priv
->update_rc
)
1314 if (tx_info_priv
->tx
.ts_status
& ATH9K_TXERR_FILT
)
1318 * If underrun error is seen assume it as an excessive retry only
1319 * if prefetch trigger level have reached the max (0x3f for 5416)
1320 * Adjust the long retry as if the frame was tried hw->max_rate_tries
1321 * times. This affects how ratectrl updates PER for the failed rate.
1323 if (tx_info_priv
->tx
.ts_flags
&
1324 (ATH9K_TX_DATA_UNDERRUN
| ATH9K_TX_DELIM_UNDERRUN
) &&
1325 ((sc
->sc_ah
->tx_trig_level
) >= ath_rc_priv
->tx_triglevel_max
)) {
1330 if ((tx_info_priv
->tx
.ts_status
& ATH9K_TXERR_XRETRY
) ||
1331 (tx_info_priv
->tx
.ts_status
& ATH9K_TXERR_FIFO
))
1334 ath_rc_tx_status(sc
, ath_rc_priv
, tx_info
, final_ts_idx
, tx_status
,
1335 (is_underrun
) ? sc
->hw
->max_rate_tries
:
1336 tx_info_priv
->tx
.ts_longretry
);
1338 /* Check if aggregation has to be enabled for this tid */
1339 if (conf_is_ht(&sc
->hw
->conf
) &&
1340 !(skb
->protocol
== cpu_to_be16(ETH_P_PAE
))) {
1341 if (ieee80211_is_data_qos(fc
)) {
1343 struct ath_node
*an
;
1345 qc
= ieee80211_get_qos_ctl(hdr
);
1347 an
= (struct ath_node
*)sta
->drv_priv
;
1349 if(ath_tx_aggr_check(sc
, an
, tid
))
1350 ieee80211_start_tx_ba_session(sc
->hw
, hdr
->addr1
, tid
);
1354 ath_debug_stat_rc(sc
, skb
);
1356 kfree(tx_info_priv
);
1359 static void ath_rate_init(void *priv
, struct ieee80211_supported_band
*sband
,
1360 struct ieee80211_sta
*sta
, void *priv_sta
)
1362 struct ath_softc
*sc
= priv
;
1363 struct ath_rate_priv
*ath_rc_priv
= priv_sta
;
1364 const struct ath_rate_table
*rate_table
= NULL
;
1365 bool is_cw40
, is_sgi40
;
1368 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
1369 if (sta
->supp_rates
[sband
->band
] & BIT(i
)) {
1370 ath_rc_priv
->neg_rates
.rs_rates
[j
]
1371 = (sband
->bitrates
[i
].bitrate
* 2) / 10;
1375 ath_rc_priv
->neg_rates
.rs_nrates
= j
;
1377 if (sta
->ht_cap
.ht_supported
) {
1378 for (i
= 0, j
= 0; i
< 77; i
++) {
1379 if (sta
->ht_cap
.mcs
.rx_mask
[i
/8] & (1<<(i
%8)))
1380 ath_rc_priv
->neg_ht_rates
.rs_rates
[j
++] = i
;
1381 if (j
== ATH_RATE_MAX
)
1384 ath_rc_priv
->neg_ht_rates
.rs_nrates
= j
;
1387 is_cw40
= sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SUP_WIDTH_20_40
;
1388 is_sgi40
= sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
;
1390 /* Choose rate table first */
1392 if ((sc
->sc_ah
->opmode
== NL80211_IFTYPE_STATION
) ||
1393 (sc
->sc_ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) ||
1394 (sc
->sc_ah
->opmode
== NL80211_IFTYPE_ADHOC
)) {
1395 rate_table
= ath_choose_rate_table(sc
, sband
->band
,
1396 sta
->ht_cap
.ht_supported
,
1398 } else if (sc
->sc_ah
->opmode
== NL80211_IFTYPE_AP
) {
1399 /* cur_rate_table would be set on init through config() */
1400 rate_table
= sc
->cur_rate_table
;
1403 ath_rc_priv
->ht_cap
= ath_rc_build_ht_caps(sc
, sta
, is_cw40
, is_sgi40
);
1404 ath_rc_init(sc
, priv_sta
, sband
, sta
, rate_table
);
1407 static void ath_rate_update(void *priv
, struct ieee80211_supported_band
*sband
,
1408 struct ieee80211_sta
*sta
, void *priv_sta
,
1411 struct ath_softc
*sc
= priv
;
1412 struct ath_rate_priv
*ath_rc_priv
= priv_sta
;
1413 const struct ath_rate_table
*rate_table
= NULL
;
1414 bool oper_cw40
= false, oper_sgi40
;
1415 bool local_cw40
= (ath_rc_priv
->ht_cap
& WLAN_RC_40_FLAG
) ?
1417 bool local_sgi40
= (ath_rc_priv
->ht_cap
& WLAN_RC_SGI_FLAG
) ?
1420 /* FIXME: Handle AP mode later when we support CWM */
1422 if (changed
& IEEE80211_RC_HT_CHANGED
) {
1423 if (sc
->sc_ah
->opmode
!= NL80211_IFTYPE_STATION
)
1426 if (sc
->hw
->conf
.channel_type
== NL80211_CHAN_HT40MINUS
||
1427 sc
->hw
->conf
.channel_type
== NL80211_CHAN_HT40PLUS
)
1430 oper_sgi40
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
1433 if ((local_cw40
!= oper_cw40
) || (local_sgi40
!= oper_sgi40
)) {
1434 rate_table
= ath_choose_rate_table(sc
, sband
->band
,
1435 sta
->ht_cap
.ht_supported
,
1437 ath_rc_priv
->ht_cap
= ath_rc_build_ht_caps(sc
, sta
,
1438 oper_cw40
, oper_sgi40
);
1439 ath_rc_init(sc
, priv_sta
, sband
, sta
, rate_table
);
1441 DPRINTF(sc
, ATH_DBG_CONFIG
,
1442 "Operating HT Bandwidth changed to: %d\n",
1443 sc
->hw
->conf
.channel_type
);
1448 static void *ath_rate_alloc(struct ieee80211_hw
*hw
, struct dentry
*debugfsdir
)
1450 struct ath_wiphy
*aphy
= hw
->priv
;
1454 static void ath_rate_free(void *priv
)
1459 static void *ath_rate_alloc_sta(void *priv
, struct ieee80211_sta
*sta
, gfp_t gfp
)
1461 struct ath_softc
*sc
= priv
;
1462 struct ath_rate_priv
*rate_priv
;
1464 rate_priv
= kzalloc(sizeof(struct ath_rate_priv
), gfp
);
1466 DPRINTF(sc
, ATH_DBG_FATAL
,
1467 "Unable to allocate private rc structure\n");
1471 rate_priv
->tx_triglevel_max
= sc
->sc_ah
->caps
.tx_triglevel_max
;
1476 static void ath_rate_free_sta(void *priv
, struct ieee80211_sta
*sta
,
1479 struct ath_rate_priv
*rate_priv
= priv_sta
;
1483 static struct rate_control_ops ath_rate_ops
= {
1485 .name
= "ath9k_rate_control",
1486 .tx_status
= ath_tx_status
,
1487 .get_rate
= ath_get_rate
,
1488 .rate_init
= ath_rate_init
,
1489 .rate_update
= ath_rate_update
,
1490 .alloc
= ath_rate_alloc
,
1491 .free
= ath_rate_free
,
1492 .alloc_sta
= ath_rate_alloc_sta
,
1493 .free_sta
= ath_rate_free_sta
,
1496 void ath_rate_attach(struct ath_softc
*sc
)
1498 sc
->hw_rate_table
[ATH9K_MODE_11A
] =
1499 &ar5416_11a_ratetable
;
1500 sc
->hw_rate_table
[ATH9K_MODE_11G
] =
1501 &ar5416_11g_ratetable
;
1502 sc
->hw_rate_table
[ATH9K_MODE_11NA_HT20
] =
1503 &ar5416_11na_ratetable
;
1504 sc
->hw_rate_table
[ATH9K_MODE_11NG_HT20
] =
1505 &ar5416_11ng_ratetable
;
1506 sc
->hw_rate_table
[ATH9K_MODE_11NA_HT40PLUS
] =
1507 &ar5416_11na_ratetable
;
1508 sc
->hw_rate_table
[ATH9K_MODE_11NA_HT40MINUS
] =
1509 &ar5416_11na_ratetable
;
1510 sc
->hw_rate_table
[ATH9K_MODE_11NG_HT40PLUS
] =
1511 &ar5416_11ng_ratetable
;
1512 sc
->hw_rate_table
[ATH9K_MODE_11NG_HT40MINUS
] =
1513 &ar5416_11ng_ratetable
;
1516 int ath_rate_control_register(void)
1518 return ieee80211_rate_control_register(&ath_rate_ops
);
1521 void ath_rate_control_unregister(void)
1523 ieee80211_rate_control_unregister(&ath_rate_ops
);