x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / rc.c
blob1895d63aad0a8a8e65c3599918ab6bd159bef88e
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include "ath9k.h"
20 static const struct ath_rate_table ar5416_11na_ratetable = {
21 42,
23 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
24 5400, 0x0b, 0x00, 12,
25 0, 0, 0, 0, 0, 0 },
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
27 7800, 0x0f, 0x00, 18,
28 0, 1, 1, 1, 1, 0 },
29 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
30 10000, 0x0a, 0x00, 24,
31 2, 2, 2, 2, 2, 0 },
32 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
33 13900, 0x0e, 0x00, 36,
34 2, 3, 3, 3, 3, 0 },
35 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
36 17300, 0x09, 0x00, 48,
37 4, 4, 4, 4, 4, 0 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
39 23000, 0x0d, 0x00, 72,
40 4, 5, 5, 5, 5, 0 },
41 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
42 27400, 0x08, 0x00, 96,
43 4, 6, 6, 6, 6, 0 },
44 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
45 29300, 0x0c, 0x00, 108,
46 4, 7, 7, 7, 7, 0 },
47 { VALID_2040, VALID_2040, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
48 6400, 0x80, 0x00, 0,
49 0, 8, 24, 8, 24, 3216 },
50 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
51 12700, 0x81, 0x00, 1,
52 2, 9, 25, 9, 25, 6434 },
53 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
54 18800, 0x82, 0x00, 2,
55 2, 10, 26, 10, 26, 9650 },
56 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
57 25000, 0x83, 0x00, 3,
58 4, 11, 27, 11, 27, 12868 },
59 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
60 36700, 0x84, 0x00, 4,
61 4, 12, 28, 12, 28, 19304 },
62 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
63 48100, 0x85, 0x00, 5,
64 4, 13, 29, 13, 29, 25740 },
65 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
66 53500, 0x86, 0x00, 6,
67 4, 14, 30, 14, 30, 28956 },
68 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
69 59000, 0x87, 0x00, 7,
70 4, 15, 31, 15, 32, 32180 },
71 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
72 12700, 0x88, 0x00,
73 8, 3, 16, 33, 16, 33, 6430 },
74 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
75 24800, 0x89, 0x00, 9,
76 2, 17, 34, 17, 34, 12860 },
77 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
78 36600, 0x8a, 0x00, 10,
79 2, 18, 35, 18, 35, 19300 },
80 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
81 48100, 0x8b, 0x00, 11,
82 4, 19, 36, 19, 36, 25736 },
83 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
84 69500, 0x8c, 0x00, 12,
85 4, 20, 37, 20, 37, 38600 },
86 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
87 89500, 0x8d, 0x00, 13,
88 4, 21, 38, 21, 38, 51472 },
89 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
90 98900, 0x8e, 0x00, 14,
91 4, 22, 39, 22, 39, 57890 },
92 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
93 108300, 0x8f, 0x00, 15,
94 4, 23, 40, 23, 41, 64320 },
95 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
96 13200, 0x80, 0x00, 0,
97 0, 8, 24, 24, 24, 6684 },
98 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
99 25900, 0x81, 0x00, 1,
100 2, 9, 25, 25, 25, 13368 },
101 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
102 38600, 0x82, 0x00, 2,
103 2, 10, 26, 26, 26, 20052 },
104 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
105 49800, 0x83, 0x00, 3,
106 4, 11, 27, 27, 27, 26738 },
107 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
108 72200, 0x84, 0x00, 4,
109 4, 12, 28, 28, 28, 40104 },
110 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
111 92900, 0x85, 0x00, 5,
112 4, 13, 29, 29, 29, 53476 },
113 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
114 102700, 0x86, 0x00, 6,
115 4, 14, 30, 30, 30, 60156 },
116 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
117 112000, 0x87, 0x00, 7,
118 4, 15, 31, 32, 32, 66840 },
119 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
120 122000, 0x87, 0x00, 7,
121 4, 15, 31, 32, 32, 74200 },
122 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
123 25800, 0x88, 0x00, 8,
124 0, 16, 33, 33, 33, 13360 },
125 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
126 49800, 0x89, 0x00, 9,
127 2, 17, 34, 34, 34, 26720 },
128 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
129 71900, 0x8a, 0x00, 10,
130 2, 18, 35, 35, 35, 40080 },
131 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
132 92500, 0x8b, 0x00, 11,
133 4, 19, 36, 36, 36, 53440 },
134 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
135 130300, 0x8c, 0x00, 12,
136 4, 20, 37, 37, 37, 80160 },
137 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
138 162800, 0x8d, 0x00, 13,
139 4, 21, 38, 38, 38, 106880 },
140 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
141 178200, 0x8e, 0x00, 14,
142 4, 22, 39, 39, 39, 120240 },
143 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
144 192100, 0x8f, 0x00, 15,
145 4, 23, 40, 41, 41, 133600 },
146 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
147 207000, 0x8f, 0x00, 15,
148 4, 23, 40, 41, 41, 148400 },
150 50, /* probe interval */
151 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
154 /* 4ms frame limit not used for NG mode. The values filled
155 * for HT are the 64K max aggregate limit */
157 static const struct ath_rate_table ar5416_11ng_ratetable = {
160 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
161 900, 0x1b, 0x00, 2,
162 0, 0, 0, 0, 0, 0 },
163 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
164 1900, 0x1a, 0x04, 4,
165 1, 1, 1, 1, 1, 0 },
166 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
167 4900, 0x19, 0x04, 11,
168 2, 2, 2, 2, 2, 0 },
169 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
170 8100, 0x18, 0x04, 22,
171 3, 3, 3, 3, 3, 0 },
172 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
173 5400, 0x0b, 0x00, 12,
174 4, 4, 4, 4, 4, 0 },
175 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
176 7800, 0x0f, 0x00, 18,
177 4, 5, 5, 5, 5, 0 },
178 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
179 10100, 0x0a, 0x00, 24,
180 6, 6, 6, 6, 6, 0 },
181 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
182 14100, 0x0e, 0x00, 36,
183 6, 7, 7, 7, 7, 0 },
184 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
185 17700, 0x09, 0x00, 48,
186 8, 8, 8, 8, 8, 0 },
187 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
188 23700, 0x0d, 0x00, 72,
189 8, 9, 9, 9, 9, 0 },
190 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
191 27400, 0x08, 0x00, 96,
192 8, 10, 10, 10, 10, 0 },
193 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
194 30900, 0x0c, 0x00, 108,
195 8, 11, 11, 11, 11, 0 },
196 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
197 6400, 0x80, 0x00, 0,
198 4, 12, 28, 12, 28, 3216 },
199 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
200 12700, 0x81, 0x00, 1,
201 6, 13, 29, 13, 29, 6434 },
202 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
203 18800, 0x82, 0x00, 2,
204 6, 14, 30, 14, 30, 9650 },
205 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
206 25000, 0x83, 0x00, 3,
207 8, 15, 31, 15, 31, 12868 },
208 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
209 36700, 0x84, 0x00, 4,
210 8, 16, 32, 16, 32, 19304 },
211 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
212 48100, 0x85, 0x00, 5,
213 8, 17, 33, 17, 33, 25740 },
214 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
215 53500, 0x86, 0x00, 6,
216 8, 18, 34, 18, 34, 28956 },
217 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
218 59000, 0x87, 0x00, 7,
219 8, 19, 35, 19, 36, 32180 },
220 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
221 12700, 0x88, 0x00, 8,
222 4, 20, 37, 20, 37, 6430 },
223 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
224 24800, 0x89, 0x00, 9,
225 6, 21, 38, 21, 38, 12860 },
226 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
227 36600, 0x8a, 0x00, 10,
228 6, 22, 39, 22, 39, 19300 },
229 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
230 48100, 0x8b, 0x00, 11,
231 8, 23, 40, 23, 40, 25736 },
232 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
233 69500, 0x8c, 0x00, 12,
234 8, 24, 41, 24, 41, 38600 },
235 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
236 89500, 0x8d, 0x00, 13,
237 8, 25, 42, 25, 42, 51472 },
238 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
239 98900, 0x8e, 0x00, 14,
240 8, 26, 43, 26, 44, 57890 },
241 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
242 108300, 0x8f, 0x00, 15,
243 8, 27, 44, 27, 45, 64320 },
244 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
245 13200, 0x80, 0x00, 0,
246 8, 12, 28, 28, 28, 6684 },
247 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
248 25900, 0x81, 0x00, 1,
249 8, 13, 29, 29, 29, 13368 },
250 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
251 38600, 0x82, 0x00, 2,
252 8, 14, 30, 30, 30, 20052 },
253 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
254 49800, 0x83, 0x00, 3,
255 8, 15, 31, 31, 31, 26738 },
256 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
257 72200, 0x84, 0x00, 4,
258 8, 16, 32, 32, 32, 40104 },
259 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
260 92900, 0x85, 0x00, 5,
261 8, 17, 33, 33, 33, 53476 },
262 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
263 102700, 0x86, 0x00, 6,
264 8, 18, 34, 34, 34, 60156 },
265 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
266 112000, 0x87, 0x00, 7,
267 8, 19, 35, 36, 36, 66840 },
268 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
269 122000, 0x87, 0x00, 7,
270 8, 19, 35, 36, 36, 74200 },
271 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
272 25800, 0x88, 0x00, 8,
273 8, 20, 37, 37, 37, 13360 },
274 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
275 49800, 0x89, 0x00, 9,
276 8, 21, 38, 38, 38, 26720 },
277 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
278 71900, 0x8a, 0x00, 10,
279 8, 22, 39, 39, 39, 40080 },
280 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
281 92500, 0x8b, 0x00, 11,
282 8, 23, 40, 40, 40, 53440 },
283 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
284 130300, 0x8c, 0x00, 12,
285 8, 24, 41, 41, 41, 80160 },
286 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
287 162800, 0x8d, 0x00, 13,
288 8, 25, 42, 42, 42, 106880 },
289 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
290 178200, 0x8e, 0x00, 14,
291 8, 26, 43, 43, 43, 120240 },
292 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
293 192100, 0x8f, 0x00, 15,
294 8, 27, 44, 45, 45, 133600 },
295 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
296 207000, 0x8f, 0x00, 15,
297 8, 27, 44, 45, 45, 148400 },
299 50, /* probe interval */
300 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
303 static const struct ath_rate_table ar5416_11a_ratetable = {
306 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
307 5400, 0x0b, 0x00, (0x80|12),
308 0, 0, 0 },
309 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
310 7800, 0x0f, 0x00, 18,
311 0, 1, 0 },
312 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
313 10000, 0x0a, 0x00, (0x80|24),
314 2, 2, 0 },
315 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
316 13900, 0x0e, 0x00, 36,
317 2, 3, 0 },
318 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
319 17300, 0x09, 0x00, (0x80|48),
320 4, 4, 0 },
321 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
322 23000, 0x0d, 0x00, 72,
323 4, 5, 0 },
324 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
325 27400, 0x08, 0x00, 96,
326 4, 6, 0 },
327 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
328 29300, 0x0c, 0x00, 108,
329 4, 7, 0 },
331 50, /* probe interval */
332 0, /* Phy rates allowed initially */
335 static const struct ath_rate_table ar5416_11g_ratetable = {
338 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
339 900, 0x1b, 0x00, 2,
340 0, 0, 0 },
341 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
342 1900, 0x1a, 0x04, 4,
343 1, 1, 0 },
344 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
345 4900, 0x19, 0x04, 11,
346 2, 2, 0 },
347 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
348 8100, 0x18, 0x04, 22,
349 3, 3, 0 },
350 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
351 5400, 0x0b, 0x00, 12,
352 4, 4, 0 },
353 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
354 7800, 0x0f, 0x00, 18,
355 4, 5, 0 },
356 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
357 10000, 0x0a, 0x00, 24,
358 6, 6, 0 },
359 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
360 13900, 0x0e, 0x00, 36,
361 6, 7, 0 },
362 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
363 17300, 0x09, 0x00, 48,
364 8, 8, 0 },
365 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
366 23000, 0x0d, 0x00, 72,
367 8, 9, 0 },
368 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
369 27400, 0x08, 0x00, 96,
370 8, 10, 0 },
371 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
372 29300, 0x0c, 0x00, 108,
373 8, 11, 0 },
375 50, /* probe interval */
376 0, /* Phy rates allowed initially */
379 static inline int8_t median(int8_t a, int8_t b, int8_t c)
381 if (a >= b) {
382 if (b >= c)
383 return b;
384 else if (a > c)
385 return c;
386 else
387 return a;
388 } else {
389 if (a >= c)
390 return a;
391 else if (b >= c)
392 return c;
393 else
394 return b;
398 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
399 struct ath_rate_priv *ath_rc_priv)
401 u8 i, j, idx, idx_next;
403 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
404 for (j = 0; j <= i-1; j++) {
405 idx = ath_rc_priv->valid_rate_index[j];
406 idx_next = ath_rc_priv->valid_rate_index[j+1];
408 if (rate_table->info[idx].ratekbps >
409 rate_table->info[idx_next].ratekbps) {
410 ath_rc_priv->valid_rate_index[j] = idx_next;
411 ath_rc_priv->valid_rate_index[j+1] = idx;
417 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
419 u8 i;
421 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
422 ath_rc_priv->valid_rate_index[i] = 0;
425 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
426 u8 index, int valid_tx_rate)
428 ASSERT(index <= ath_rc_priv->rate_table_size);
429 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
432 static inline
433 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
434 struct ath_rate_priv *ath_rc_priv,
435 u8 cur_valid_txrate,
436 u8 *next_idx)
438 u8 i;
440 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
441 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
442 *next_idx = ath_rc_priv->valid_rate_index[i+1];
443 return 1;
447 /* No more valid rates */
448 *next_idx = 0;
450 return 0;
453 /* Return true only for single stream */
455 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
457 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
458 return 0;
459 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
460 return 0;
461 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
462 return 0;
463 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
464 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
465 return 0;
466 return 1;
469 static inline int
470 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
471 struct ath_rate_priv *ath_rc_priv,
472 u8 cur_valid_txrate, u8 *next_idx)
474 int8_t i;
476 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
477 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
478 *next_idx = ath_rc_priv->valid_rate_index[i-1];
479 return 1;
483 return 0;
486 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
487 const struct ath_rate_table *rate_table,
488 u32 capflag)
490 u8 i, hi = 0;
491 u32 valid;
493 for (i = 0; i < rate_table->rate_cnt; i++) {
494 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
495 rate_table->info[i].valid_single_stream :
496 rate_table->info[i].valid);
497 if (valid == 1) {
498 u32 phy = rate_table->info[i].phy;
499 u8 valid_rate_count = 0;
501 if (!ath_rc_valid_phyrate(phy, capflag, 0))
502 continue;
504 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
506 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
507 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
508 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
509 hi = A_MAX(hi, i);
513 return hi;
516 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
517 const struct ath_rate_table *rate_table,
518 struct ath_rateset *rateset,
519 u32 capflag)
521 u8 i, j, hi = 0;
523 /* Use intersection of working rates and valid rates */
524 for (i = 0; i < rateset->rs_nrates; i++) {
525 for (j = 0; j < rate_table->rate_cnt; j++) {
526 u32 phy = rate_table->info[j].phy;
527 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
528 rate_table->info[j].valid_single_stream :
529 rate_table->info[j].valid);
530 u8 rate = rateset->rs_rates[i];
531 u8 dot11rate = rate_table->info[j].dot11rate;
533 /* We allow a rate only if its valid and the
534 * capflag matches one of the validity
535 * (VALID/VALID_20/VALID_40) flags */
537 if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
538 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
539 WLAN_RC_CAP_MODE(capflag)) &&
540 !WLAN_RC_PHY_HT(phy)) {
541 u8 valid_rate_count = 0;
543 if (!ath_rc_valid_phyrate(phy, capflag, 0))
544 continue;
546 valid_rate_count =
547 ath_rc_priv->valid_phy_ratecnt[phy];
549 ath_rc_priv->valid_phy_rateidx[phy]
550 [valid_rate_count] = j;
551 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
552 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
553 hi = A_MAX(hi, j);
558 return hi;
561 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
562 const struct ath_rate_table *rate_table,
563 u8 *mcs_set, u32 capflag)
565 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
567 u8 i, j, hi = 0;
569 /* Use intersection of working rates and valid rates */
570 for (i = 0; i < rateset->rs_nrates; i++) {
571 for (j = 0; j < rate_table->rate_cnt; j++) {
572 u32 phy = rate_table->info[j].phy;
573 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
574 rate_table->info[j].valid_single_stream :
575 rate_table->info[j].valid);
576 u8 rate = rateset->rs_rates[i];
577 u8 dot11rate = rate_table->info[j].dot11rate;
579 if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
580 !WLAN_RC_PHY_HT(phy) ||
581 !WLAN_RC_PHY_HT_VALID(valid, capflag))
582 continue;
584 if (!ath_rc_valid_phyrate(phy, capflag, 0))
585 continue;
587 ath_rc_priv->valid_phy_rateidx[phy]
588 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
589 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
590 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
591 hi = A_MAX(hi, j);
595 return hi;
598 /* Finds the highest rate index we can use */
599 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
600 struct ath_rate_priv *ath_rc_priv,
601 const struct ath_rate_table *rate_table,
602 int *is_probing)
604 u32 best_thruput, this_thruput, now_msec;
605 u8 rate, next_rate, best_rate, maxindex, minindex;
606 int8_t index = 0;
608 now_msec = jiffies_to_msecs(jiffies);
609 *is_probing = 0;
610 best_thruput = 0;
611 maxindex = ath_rc_priv->max_valid_rate-1;
612 minindex = 0;
613 best_rate = minindex;
616 * Try the higher rate first. It will reduce memory moving time
617 * if we have very good channel characteristics.
619 for (index = maxindex; index >= minindex ; index--) {
620 u8 per_thres;
622 rate = ath_rc_priv->valid_rate_index[index];
623 if (rate > ath_rc_priv->rate_max_phy)
624 continue;
627 * For TCP the average collision rate is around 11%,
628 * so we ignore PERs less than this. This is to
629 * prevent the rate we are currently using (whose
630 * PER might be in the 10-15 range because of TCP
631 * collisions) looking worse than the next lower
632 * rate whose PER has decayed close to 0. If we
633 * used to next lower rate, its PER would grow to
634 * 10-15 and we would be worse off then staying
635 * at the current rate.
637 per_thres = ath_rc_priv->per[rate];
638 if (per_thres < 12)
639 per_thres = 12;
641 this_thruput = rate_table->info[rate].user_ratekbps *
642 (100 - per_thres);
644 if (best_thruput <= this_thruput) {
645 best_thruput = this_thruput;
646 best_rate = rate;
650 rate = best_rate;
653 * Must check the actual rate (ratekbps) to account for
654 * non-monoticity of 11g's rate table
657 if (rate >= ath_rc_priv->rate_max_phy) {
658 rate = ath_rc_priv->rate_max_phy;
660 /* Probe the next allowed phy state */
661 if (ath_rc_get_nextvalid_txrate(rate_table,
662 ath_rc_priv, rate, &next_rate) &&
663 (now_msec - ath_rc_priv->probe_time >
664 rate_table->probe_interval) &&
665 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
666 rate = next_rate;
667 ath_rc_priv->probe_rate = rate;
668 ath_rc_priv->probe_time = now_msec;
669 ath_rc_priv->hw_maxretry_pktcnt = 0;
670 *is_probing = 1;
674 if (rate > (ath_rc_priv->rate_table_size - 1))
675 rate = ath_rc_priv->rate_table_size - 1;
677 if (rate_table->info[rate].valid &&
678 (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG))
679 return rate;
681 if (rate_table->info[rate].valid_single_stream &&
682 !(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG))
683 return rate;
685 /* This should not happen */
686 WARN_ON(1);
688 rate = ath_rc_priv->valid_rate_index[0];
690 return rate;
693 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
694 struct ieee80211_tx_rate *rate,
695 struct ieee80211_tx_rate_control *txrc,
696 u8 tries, u8 rix, int rtsctsenable)
698 rate->count = tries;
699 rate->idx = rix;
701 if (txrc->short_preamble)
702 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
703 if (txrc->rts || rtsctsenable)
704 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
705 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
706 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
707 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
708 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
709 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
710 rate->flags |= IEEE80211_TX_RC_MCS;
713 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
714 const struct ath_rate_table *rate_table,
715 struct ieee80211_tx_info *tx_info)
717 struct ieee80211_tx_rate *rates = tx_info->control.rates;
718 int i = 0, rix = 0, cix, enable_g_protection = 0;
720 /* get the cix for the lowest valid rix */
721 for (i = 3; i >= 0; i--) {
722 if (rates[i].count && (rates[i].idx >= 0)) {
723 rix = rates[i].idx;
724 break;
727 cix = rate_table->info[rix].ctrl_rate;
729 /* All protection frames are transmited at 2Mb/s for 802.11g,
730 * otherwise we transmit them at 1Mb/s */
731 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
732 !conf_is_ht(&sc->hw->conf))
733 enable_g_protection = 1;
736 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
737 * just CTS. Note that this is only done for OFDM/HT unicast frames.
739 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
740 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
741 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
742 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
743 cix = rate_table->info[enable_g_protection].ctrl_rate;
746 tx_info->control.rts_cts_rate_idx = cix;
749 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
750 struct ieee80211_tx_rate_control *txrc)
752 struct ath_softc *sc = priv;
753 struct ath_rate_priv *ath_rc_priv = priv_sta;
754 const struct ath_rate_table *rate_table;
755 struct sk_buff *skb = txrc->skb;
756 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
757 struct ieee80211_tx_rate *rates = tx_info->control.rates;
758 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
759 __le16 fc = hdr->frame_control;
760 u8 try_per_rate, i = 0, rix, nrix;
761 int is_probe = 0;
763 if (rate_control_send_low(sta, priv_sta, txrc))
764 return;
767 * For Multi Rate Retry we use a different number of
768 * retry attempt counts. This ends up looking like this:
770 * MRR[0] = 2
771 * MRR[1] = 2
772 * MRR[2] = 2
773 * MRR[3] = 4
776 try_per_rate = sc->hw->max_rate_tries;
778 rate_table = sc->cur_rate_table;
779 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe);
780 nrix = rix;
782 if (is_probe) {
783 /* set one try for probe rates. For the
784 * probes don't enable rts */
785 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
786 1, nrix, 0);
788 /* Get the next tried/allowed rate. No RTS for the next series
789 * after the probe rate
791 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
792 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
793 try_per_rate, nrix, 0);
795 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
796 } else {
797 /* Set the choosen rate. No RTS for first series entry. */
798 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
799 try_per_rate, nrix, 0);
802 /* Fill in the other rates for multirate retry */
803 for ( ; i < 4; i++) {
804 /* Use twice the number of tries for the last MRR segment. */
805 if (i + 1 == 4)
806 try_per_rate = 4;
808 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
809 /* All other rates in the series have RTS enabled */
810 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
811 try_per_rate, nrix, 1);
815 * NB:Change rate series to enable aggregation when operating
816 * at lower MCS rates. When first rate in series is MCS2
817 * in HT40 @ 2.4GHz, series should look like:
819 * {MCS2, MCS1, MCS0, MCS0}.
821 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
822 * look like:
824 * {MCS3, MCS2, MCS1, MCS1}
826 * So, set fourth rate in series to be same as third one for
827 * above conditions.
829 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
830 (conf_is_ht(&sc->hw->conf))) {
831 u8 dot11rate = rate_table->info[rix].dot11rate;
832 u8 phy = rate_table->info[rix].phy;
833 if (i == 4 &&
834 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
835 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
836 rates[3].idx = rates[2].idx;
837 rates[3].flags = rates[2].flags;
842 * Force hardware to use computed duration for next
843 * fragment by disabling multi-rate retry, which
844 * updates duration based on the multi-rate duration table.
846 * FIXME: Fix duration
848 if (ieee80211_has_morefrags(fc) ||
849 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
850 rates[1].count = rates[2].count = rates[3].count = 0;
851 rates[1].idx = rates[2].idx = rates[3].idx = 0;
852 rates[0].count = ATH_TXMAXTRY;
855 /* Setup RTS/CTS */
856 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
859 static bool ath_rc_update_per(struct ath_softc *sc,
860 const struct ath_rate_table *rate_table,
861 struct ath_rate_priv *ath_rc_priv,
862 struct ath_tx_info_priv *tx_info_priv,
863 int tx_rate, int xretries, int retries,
864 u32 now_msec)
866 bool state_change = false;
867 int count;
868 u8 last_per;
869 static u32 nretry_to_per_lookup[10] = {
870 100 * 0 / 1,
871 100 * 1 / 4,
872 100 * 1 / 2,
873 100 * 3 / 4,
874 100 * 4 / 5,
875 100 * 5 / 6,
876 100 * 6 / 7,
877 100 * 7 / 8,
878 100 * 8 / 9,
879 100 * 9 / 10
882 last_per = ath_rc_priv->per[tx_rate];
884 if (xretries) {
885 if (xretries == 1) {
886 ath_rc_priv->per[tx_rate] += 30;
887 if (ath_rc_priv->per[tx_rate] > 100)
888 ath_rc_priv->per[tx_rate] = 100;
889 } else {
890 /* xretries == 2 */
891 count = ARRAY_SIZE(nretry_to_per_lookup);
892 if (retries >= count)
893 retries = count - 1;
895 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
896 ath_rc_priv->per[tx_rate] =
897 (u8)(last_per - (last_per >> 3) + (100 >> 3));
900 /* xretries == 1 or 2 */
902 if (ath_rc_priv->probe_rate == tx_rate)
903 ath_rc_priv->probe_rate = 0;
905 } else { /* xretries == 0 */
906 count = ARRAY_SIZE(nretry_to_per_lookup);
907 if (retries >= count)
908 retries = count - 1;
910 if (tx_info_priv->n_bad_frames) {
911 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
912 * Assuming that n_frames is not 0. The current PER
913 * from the retries is 100 * retries / (retries+1),
914 * since the first retries attempts failed, and the
915 * next one worked. For the one that worked,
916 * n_bad_frames subframes out of n_frames wored,
917 * so the PER for that part is
918 * 100 * n_bad_frames / n_frames, and it contributes
919 * 100 * n_bad_frames / (n_frames * (retries+1)) to
920 * the above PER. The expression below is a
921 * simplified version of the sum of these two terms.
923 if (tx_info_priv->n_frames > 0) {
924 int n_frames, n_bad_frames;
925 u8 cur_per, new_per;
927 n_bad_frames = retries * tx_info_priv->n_frames +
928 tx_info_priv->n_bad_frames;
929 n_frames = tx_info_priv->n_frames * (retries + 1);
930 cur_per = (100 * n_bad_frames / n_frames) >> 3;
931 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
932 ath_rc_priv->per[tx_rate] = new_per;
934 } else {
935 ath_rc_priv->per[tx_rate] =
936 (u8)(last_per - (last_per >> 3) +
937 (nretry_to_per_lookup[retries] >> 3));
942 * If we got at most one retry then increase the max rate if
943 * this was a probe. Otherwise, ignore the probe.
945 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
946 if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
947 tx_info_priv->n_frames) {
949 * Since we probed with just a single attempt,
950 * any retries means the probe failed. Also,
951 * if the attempt worked, but more than half
952 * the subframes were bad then also consider
953 * the probe a failure.
955 ath_rc_priv->probe_rate = 0;
956 } else {
957 u8 probe_rate = 0;
959 ath_rc_priv->rate_max_phy =
960 ath_rc_priv->probe_rate;
961 probe_rate = ath_rc_priv->probe_rate;
963 if (ath_rc_priv->per[probe_rate] > 30)
964 ath_rc_priv->per[probe_rate] = 20;
966 ath_rc_priv->probe_rate = 0;
969 * Since this probe succeeded, we allow the next
970 * probe twice as soon. This allows the maxRate
971 * to move up faster if the probes are
972 * succesful.
974 ath_rc_priv->probe_time =
975 now_msec - rate_table->probe_interval / 2;
979 if (retries > 0) {
981 * Don't update anything. We don't know if
982 * this was because of collisions or poor signal.
984 ath_rc_priv->hw_maxretry_pktcnt = 0;
985 } else {
987 * It worked with no retries. First ignore bogus (small)
988 * rssi_ack values.
990 if (tx_rate == ath_rc_priv->rate_max_phy &&
991 ath_rc_priv->hw_maxretry_pktcnt < 255) {
992 ath_rc_priv->hw_maxretry_pktcnt++;
998 return state_change;
1001 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1002 If you can make sense of all this, you really need to go out more. */
1004 static void ath_rc_update_ht(struct ath_softc *sc,
1005 struct ath_rate_priv *ath_rc_priv,
1006 struct ath_tx_info_priv *tx_info_priv,
1007 int tx_rate, int xretries, int retries)
1009 u32 now_msec = jiffies_to_msecs(jiffies);
1010 int rate;
1011 u8 last_per;
1012 bool state_change = false;
1013 const struct ath_rate_table *rate_table = sc->cur_rate_table;
1014 int size = ath_rc_priv->rate_table_size;
1016 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1017 return;
1019 last_per = ath_rc_priv->per[tx_rate];
1021 /* Update PER first */
1022 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1023 tx_info_priv, tx_rate, xretries,
1024 retries, now_msec);
1027 * If this rate looks bad (high PER) then stop using it for
1028 * a while (except if we are probing).
1030 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1031 rate_table->info[tx_rate].ratekbps <=
1032 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1033 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
1034 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1036 /* Don't probe for a little while. */
1037 ath_rc_priv->probe_time = now_msec;
1040 /* Make sure the rates below this have lower PER */
1041 /* Monotonicity is kept only for rates below the current rate. */
1042 if (ath_rc_priv->per[tx_rate] < last_per) {
1043 for (rate = tx_rate - 1; rate >= 0; rate--) {
1045 if (ath_rc_priv->per[rate] >
1046 ath_rc_priv->per[rate+1]) {
1047 ath_rc_priv->per[rate] =
1048 ath_rc_priv->per[rate+1];
1053 /* Maintain monotonicity for rates above the current rate */
1054 for (rate = tx_rate; rate < size - 1; rate++) {
1055 if (ath_rc_priv->per[rate+1] <
1056 ath_rc_priv->per[rate])
1057 ath_rc_priv->per[rate+1] =
1058 ath_rc_priv->per[rate];
1061 /* Every so often, we reduce the thresholds
1062 * and PER (different for CCK and OFDM). */
1063 if (now_msec - ath_rc_priv->per_down_time >=
1064 rate_table->probe_interval) {
1065 for (rate = 0; rate < size; rate++) {
1066 ath_rc_priv->per[rate] =
1067 7 * ath_rc_priv->per[rate] / 8;
1070 ath_rc_priv->per_down_time = now_msec;
1073 ath_debug_stat_retries(sc, tx_rate, xretries, retries,
1074 ath_rc_priv->per[tx_rate]);
1078 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
1079 struct ieee80211_tx_rate *rate)
1081 int rix;
1083 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1084 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1085 rix = rate_table->info[rate->idx].ht_index;
1086 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1087 rix = rate_table->info[rate->idx].sgi_index;
1088 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1089 rix = rate_table->info[rate->idx].cw40index;
1090 else
1091 rix = rate_table->info[rate->idx].base_index;
1093 return rix;
1096 static void ath_rc_tx_status(struct ath_softc *sc,
1097 struct ath_rate_priv *ath_rc_priv,
1098 struct ieee80211_tx_info *tx_info,
1099 int final_ts_idx, int xretries, int long_retry)
1101 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1102 const struct ath_rate_table *rate_table;
1103 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1104 u8 flags;
1105 u32 i = 0, rix;
1107 rate_table = sc->cur_rate_table;
1110 * If the first rate is not the final index, there
1111 * are intermediate rate failures to be processed.
1113 if (final_ts_idx != 0) {
1114 /* Process intermediate rates that failed.*/
1115 for (i = 0; i < final_ts_idx ; i++) {
1116 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1117 flags = rates[i].flags;
1119 /* If HT40 and we have switched mode from
1120 * 40 to 20 => don't update */
1122 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1123 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1124 return;
1126 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1127 ath_rc_update_ht(sc, ath_rc_priv,
1128 tx_info_priv, rix,
1129 xretries ? 1 : 2,
1130 rates[i].count);
1133 } else {
1135 * Handle the special case of MIMO PS burst, where the second
1136 * aggregate is sent out with only one rate and one try.
1137 * Treating it as an excessive retry penalizes the rate
1138 * inordinately.
1140 if (rates[0].count == 1 && xretries == 1)
1141 xretries = 2;
1144 flags = rates[i].flags;
1146 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1147 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1148 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1149 return;
1151 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1152 ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
1153 xretries, long_retry);
1156 static const
1157 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1158 enum ieee80211_band band,
1159 bool is_ht,
1160 bool is_cw_40)
1162 int mode = 0;
1164 switch(band) {
1165 case IEEE80211_BAND_2GHZ:
1166 mode = ATH9K_MODE_11G;
1167 if (is_ht)
1168 mode = ATH9K_MODE_11NG_HT20;
1169 if (is_cw_40)
1170 mode = ATH9K_MODE_11NG_HT40PLUS;
1171 break;
1172 case IEEE80211_BAND_5GHZ:
1173 mode = ATH9K_MODE_11A;
1174 if (is_ht)
1175 mode = ATH9K_MODE_11NA_HT20;
1176 if (is_cw_40)
1177 mode = ATH9K_MODE_11NA_HT40PLUS;
1178 break;
1179 default:
1180 DPRINTF(sc, ATH_DBG_CONFIG, "Invalid band\n");
1181 return NULL;
1184 BUG_ON(mode >= ATH9K_MODE_MAX);
1186 DPRINTF(sc, ATH_DBG_CONFIG, "Choosing rate table for mode: %d\n", mode);
1187 return sc->hw_rate_table[mode];
1190 static void ath_rc_init(struct ath_softc *sc,
1191 struct ath_rate_priv *ath_rc_priv,
1192 struct ieee80211_supported_band *sband,
1193 struct ieee80211_sta *sta,
1194 const struct ath_rate_table *rate_table)
1196 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1197 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1198 u8 i, j, k, hi = 0, hthi = 0;
1200 if (!rate_table) {
1201 DPRINTF(sc, ATH_DBG_FATAL, "Rate table not initialized\n");
1202 return;
1205 /* Initial rate table size. Will change depending
1206 * on the working rate set */
1207 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1209 /* Initialize thresholds according to the global rate table */
1210 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1211 ath_rc_priv->per[i] = 0;
1214 /* Determine the valid rates */
1215 ath_rc_init_valid_txmask(ath_rc_priv);
1217 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1218 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1219 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1220 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1223 if (!rateset->rs_nrates) {
1224 /* No working rate, just initialize valid rates */
1225 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1226 ath_rc_priv->ht_cap);
1227 } else {
1228 /* Use intersection of working rates and valid rates */
1229 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1230 rateset, ath_rc_priv->ht_cap);
1231 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1232 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1233 rate_table,
1234 ht_mcs,
1235 ath_rc_priv->ht_cap);
1237 hi = A_MAX(hi, hthi);
1240 ath_rc_priv->rate_table_size = hi + 1;
1241 ath_rc_priv->rate_max_phy = 0;
1242 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1244 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1245 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1246 ath_rc_priv->valid_rate_index[k++] =
1247 ath_rc_priv->valid_phy_rateidx[i][j];
1250 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1251 || !ath_rc_priv->valid_phy_ratecnt[i])
1252 continue;
1254 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1256 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1257 ASSERT(k <= RATE_TABLE_SIZE);
1259 ath_rc_priv->max_valid_rate = k;
1260 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1261 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1262 sc->cur_rate_table = rate_table;
1264 DPRINTF(sc, ATH_DBG_CONFIG, "RC Initialized with capabilities: 0x%x\n",
1265 ath_rc_priv->ht_cap);
1268 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1269 bool is_cw40, bool is_sgi40)
1271 u8 caps = 0;
1273 if (sta->ht_cap.ht_supported) {
1274 caps = WLAN_RC_HT_FLAG;
1275 if (sc->sc_ah->caps.tx_chainmask != 1 &&
1276 ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL)) {
1277 if (sta->ht_cap.mcs.rx_mask[1])
1278 caps |= WLAN_RC_DS_FLAG;
1280 if (is_cw40)
1281 caps |= WLAN_RC_40_FLAG;
1282 if (is_sgi40)
1283 caps |= WLAN_RC_SGI_FLAG;
1286 return caps;
1289 /***********************************/
1290 /* mac80211 Rate Control callbacks */
1291 /***********************************/
1293 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1294 struct ieee80211_sta *sta, void *priv_sta,
1295 struct sk_buff *skb)
1297 struct ath_softc *sc = priv;
1298 struct ath_rate_priv *ath_rc_priv = priv_sta;
1299 struct ath_tx_info_priv *tx_info_priv = NULL;
1300 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1301 struct ieee80211_hdr *hdr;
1302 int final_ts_idx, tx_status = 0, is_underrun = 0;
1303 __le16 fc;
1305 hdr = (struct ieee80211_hdr *)skb->data;
1306 fc = hdr->frame_control;
1307 tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1308 final_ts_idx = tx_info_priv->tx.ts_rateindex;
1310 if (!priv_sta || !ieee80211_is_data(fc) ||
1311 !tx_info_priv->update_rc)
1312 goto exit;
1314 if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1315 goto exit;
1318 * If underrun error is seen assume it as an excessive retry only
1319 * if prefetch trigger level have reached the max (0x3f for 5416)
1320 * Adjust the long retry as if the frame was tried hw->max_rate_tries
1321 * times. This affects how ratectrl updates PER for the failed rate.
1323 if (tx_info_priv->tx.ts_flags &
1324 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1325 ((sc->sc_ah->tx_trig_level) >= ath_rc_priv->tx_triglevel_max)) {
1326 tx_status = 1;
1327 is_underrun = 1;
1330 if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1331 (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1332 tx_status = 1;
1334 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1335 (is_underrun) ? sc->hw->max_rate_tries :
1336 tx_info_priv->tx.ts_longretry);
1338 /* Check if aggregation has to be enabled for this tid */
1339 if (conf_is_ht(&sc->hw->conf) &&
1340 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1341 if (ieee80211_is_data_qos(fc)) {
1342 u8 *qc, tid;
1343 struct ath_node *an;
1345 qc = ieee80211_get_qos_ctl(hdr);
1346 tid = qc[0] & 0xf;
1347 an = (struct ath_node *)sta->drv_priv;
1349 if(ath_tx_aggr_check(sc, an, tid))
1350 ieee80211_start_tx_ba_session(sc->hw, hdr->addr1, tid);
1354 ath_debug_stat_rc(sc, skb);
1355 exit:
1356 kfree(tx_info_priv);
1359 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1360 struct ieee80211_sta *sta, void *priv_sta)
1362 struct ath_softc *sc = priv;
1363 struct ath_rate_priv *ath_rc_priv = priv_sta;
1364 const struct ath_rate_table *rate_table = NULL;
1365 bool is_cw40, is_sgi40;
1366 int i, j = 0;
1368 for (i = 0; i < sband->n_bitrates; i++) {
1369 if (sta->supp_rates[sband->band] & BIT(i)) {
1370 ath_rc_priv->neg_rates.rs_rates[j]
1371 = (sband->bitrates[i].bitrate * 2) / 10;
1372 j++;
1375 ath_rc_priv->neg_rates.rs_nrates = j;
1377 if (sta->ht_cap.ht_supported) {
1378 for (i = 0, j = 0; i < 77; i++) {
1379 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1380 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1381 if (j == ATH_RATE_MAX)
1382 break;
1384 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1387 is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1388 is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
1390 /* Choose rate table first */
1392 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
1393 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) ||
1394 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
1395 rate_table = ath_choose_rate_table(sc, sband->band,
1396 sta->ht_cap.ht_supported,
1397 is_cw40);
1398 } else if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) {
1399 /* cur_rate_table would be set on init through config() */
1400 rate_table = sc->cur_rate_table;
1403 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi40);
1404 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1407 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1408 struct ieee80211_sta *sta, void *priv_sta,
1409 u32 changed)
1411 struct ath_softc *sc = priv;
1412 struct ath_rate_priv *ath_rc_priv = priv_sta;
1413 const struct ath_rate_table *rate_table = NULL;
1414 bool oper_cw40 = false, oper_sgi40;
1415 bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
1416 true : false;
1417 bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
1418 true : false;
1420 /* FIXME: Handle AP mode later when we support CWM */
1422 if (changed & IEEE80211_RC_HT_CHANGED) {
1423 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1424 return;
1426 if (sc->hw->conf.channel_type == NL80211_CHAN_HT40MINUS ||
1427 sc->hw->conf.channel_type == NL80211_CHAN_HT40PLUS)
1428 oper_cw40 = true;
1430 oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1431 true : false;
1433 if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) {
1434 rate_table = ath_choose_rate_table(sc, sband->band,
1435 sta->ht_cap.ht_supported,
1436 oper_cw40);
1437 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1438 oper_cw40, oper_sgi40);
1439 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1441 DPRINTF(sc, ATH_DBG_CONFIG,
1442 "Operating HT Bandwidth changed to: %d\n",
1443 sc->hw->conf.channel_type);
1448 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1450 struct ath_wiphy *aphy = hw->priv;
1451 return aphy->sc;
1454 static void ath_rate_free(void *priv)
1456 return;
1459 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1461 struct ath_softc *sc = priv;
1462 struct ath_rate_priv *rate_priv;
1464 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1465 if (!rate_priv) {
1466 DPRINTF(sc, ATH_DBG_FATAL,
1467 "Unable to allocate private rc structure\n");
1468 return NULL;
1471 rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
1473 return rate_priv;
1476 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1477 void *priv_sta)
1479 struct ath_rate_priv *rate_priv = priv_sta;
1480 kfree(rate_priv);
1483 static struct rate_control_ops ath_rate_ops = {
1484 .module = NULL,
1485 .name = "ath9k_rate_control",
1486 .tx_status = ath_tx_status,
1487 .get_rate = ath_get_rate,
1488 .rate_init = ath_rate_init,
1489 .rate_update = ath_rate_update,
1490 .alloc = ath_rate_alloc,
1491 .free = ath_rate_free,
1492 .alloc_sta = ath_rate_alloc_sta,
1493 .free_sta = ath_rate_free_sta,
1496 void ath_rate_attach(struct ath_softc *sc)
1498 sc->hw_rate_table[ATH9K_MODE_11A] =
1499 &ar5416_11a_ratetable;
1500 sc->hw_rate_table[ATH9K_MODE_11G] =
1501 &ar5416_11g_ratetable;
1502 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
1503 &ar5416_11na_ratetable;
1504 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
1505 &ar5416_11ng_ratetable;
1506 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
1507 &ar5416_11na_ratetable;
1508 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
1509 &ar5416_11na_ratetable;
1510 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
1511 &ar5416_11ng_ratetable;
1512 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
1513 &ar5416_11ng_ratetable;
1516 int ath_rate_control_register(void)
1518 return ieee80211_rate_control_register(&ath_rate_ops);
1521 void ath_rate_control_unregister(void)
1523 ieee80211_rate_control_unregister(&ath_rate_ops);