x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / recv.c
blobec0abf8239952227813add280efa861140aa5943
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "ath9k.h"
19 static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
20 struct ieee80211_hdr *hdr)
22 struct ieee80211_hw *hw = sc->pri_wiphy->hw;
23 int i;
25 spin_lock_bh(&sc->wiphy_lock);
26 for (i = 0; i < sc->num_sec_wiphy; i++) {
27 struct ath_wiphy *aphy = sc->sec_wiphy[i];
28 if (aphy == NULL)
29 continue;
30 if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
31 == 0) {
32 hw = aphy->hw;
33 break;
36 spin_unlock_bh(&sc->wiphy_lock);
37 return hw;
41 * Setup and link descriptors.
43 * 11N: we can no longer afford to self link the last descriptor.
44 * MAC acknowledges BA status as long as it copies frames to host
45 * buffer (or rx fifo). This can incorrectly acknowledge packets
46 * to a sender if last desc is self-linked.
48 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
50 struct ath_hw *ah = sc->sc_ah;
51 struct ath_desc *ds;
52 struct sk_buff *skb;
54 ATH_RXBUF_RESET(bf);
56 ds = bf->bf_desc;
57 ds->ds_link = 0; /* link to null */
58 ds->ds_data = bf->bf_buf_addr;
60 /* virtual addr of the beginning of the buffer. */
61 skb = bf->bf_mpdu;
62 ASSERT(skb != NULL);
63 ds->ds_vdata = skb->data;
65 /* setup rx descriptors. The rx.bufsize here tells the harware
66 * how much data it can DMA to us and that we are prepared
67 * to process */
68 ath9k_hw_setuprxdesc(ah, ds,
69 sc->rx.bufsize,
70 0);
72 if (sc->rx.rxlink == NULL)
73 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
74 else
75 *sc->rx.rxlink = bf->bf_daddr;
77 sc->rx.rxlink = &ds->ds_link;
78 ath9k_hw_rxena(ah);
81 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
83 /* XXX block beacon interrupts */
84 ath9k_hw_setantenna(sc->sc_ah, antenna);
85 sc->rx.defant = antenna;
86 sc->rx.rxotherant = 0;
90 * Extend 15-bit time stamp from rx descriptor to
91 * a full 64-bit TSF using the current h/w TSF.
93 static u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp)
95 u64 tsf;
97 tsf = ath9k_hw_gettsf64(sc->sc_ah);
98 if ((tsf & 0x7fff) < rstamp)
99 tsf -= 0x8000;
100 return (tsf & ~0x7fff) | rstamp;
104 * For Decrypt or Demic errors, we only mark packet status here and always push
105 * up the frame up to let mac80211 handle the actual error case, be it no
106 * decryption key or real decryption error. This let us keep statistics there.
108 static int ath_rx_prepare(struct sk_buff *skb, struct ath_desc *ds,
109 struct ieee80211_rx_status *rx_status, bool *decrypt_error,
110 struct ath_softc *sc)
112 struct ieee80211_hdr *hdr;
113 u8 ratecode;
114 __le16 fc;
115 struct ieee80211_hw *hw;
116 struct ieee80211_sta *sta;
117 struct ath_node *an;
118 int last_rssi = ATH_RSSI_DUMMY_MARKER;
121 hdr = (struct ieee80211_hdr *)skb->data;
122 fc = hdr->frame_control;
123 memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
124 hw = ath_get_virt_hw(sc, hdr);
126 if (ds->ds_rxstat.rs_more) {
128 * Frame spans multiple descriptors; this cannot happen yet
129 * as we don't support jumbograms. If not in monitor mode,
130 * discard the frame. Enable this if you want to see
131 * error frames in Monitor mode.
133 if (sc->sc_ah->opmode != NL80211_IFTYPE_MONITOR)
134 goto rx_next;
135 } else if (ds->ds_rxstat.rs_status != 0) {
136 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
137 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
138 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY)
139 goto rx_next;
141 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
142 *decrypt_error = true;
143 } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
144 if (ieee80211_is_ctl(fc))
146 * Sometimes, we get invalid
147 * MIC failures on valid control frames.
148 * Remove these mic errors.
150 ds->ds_rxstat.rs_status &= ~ATH9K_RXERR_MIC;
151 else
152 rx_status->flag |= RX_FLAG_MMIC_ERROR;
155 * Reject error frames with the exception of
156 * decryption and MIC failures. For monitor mode,
157 * we also ignore the CRC error.
159 if (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR) {
160 if (ds->ds_rxstat.rs_status &
161 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
162 ATH9K_RXERR_CRC))
163 goto rx_next;
164 } else {
165 if (ds->ds_rxstat.rs_status &
166 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
167 goto rx_next;
172 ratecode = ds->ds_rxstat.rs_rate;
174 if (ratecode & 0x80) {
175 /* HT rate */
176 rx_status->flag |= RX_FLAG_HT;
177 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040)
178 rx_status->flag |= RX_FLAG_40MHZ;
179 if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
180 rx_status->flag |= RX_FLAG_SHORT_GI;
181 rx_status->rate_idx = ratecode & 0x7f;
182 } else {
183 int i = 0, cur_band, n_rates;
185 cur_band = hw->conf.channel->band;
186 n_rates = sc->sbands[cur_band].n_bitrates;
188 for (i = 0; i < n_rates; i++) {
189 if (sc->sbands[cur_band].bitrates[i].hw_value ==
190 ratecode) {
191 rx_status->rate_idx = i;
192 break;
195 if (sc->sbands[cur_band].bitrates[i].hw_value_short ==
196 ratecode) {
197 rx_status->rate_idx = i;
198 rx_status->flag |= RX_FLAG_SHORTPRE;
199 break;
204 rcu_read_lock();
205 sta = ieee80211_find_sta(sc->hw, hdr->addr2);
206 if (sta) {
207 an = (struct ath_node *) sta->drv_priv;
208 if (ds->ds_rxstat.rs_rssi != ATH9K_RSSI_BAD &&
209 !ds->ds_rxstat.rs_moreaggr)
210 ATH_RSSI_LPF(an->last_rssi, ds->ds_rxstat.rs_rssi);
211 last_rssi = an->last_rssi;
213 rcu_read_unlock();
215 if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
216 ds->ds_rxstat.rs_rssi = ATH_EP_RND(last_rssi,
217 ATH_RSSI_EP_MULTIPLIER);
218 if (ds->ds_rxstat.rs_rssi < 0)
219 ds->ds_rxstat.rs_rssi = 0;
220 else if (ds->ds_rxstat.rs_rssi > 127)
221 ds->ds_rxstat.rs_rssi = 127;
223 /* Update Beacon RSSI, this is used by ANI. */
224 if (ieee80211_is_beacon(fc))
225 sc->sc_ah->stats.avgbrssi = ds->ds_rxstat.rs_rssi;
227 rx_status->mactime = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
228 rx_status->band = hw->conf.channel->band;
229 rx_status->freq = hw->conf.channel->center_freq;
230 rx_status->noise = sc->ani.noise_floor;
231 rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + ds->ds_rxstat.rs_rssi;
232 rx_status->antenna = ds->ds_rxstat.rs_antenna;
235 * Theory for reporting quality:
237 * At a hardware RSSI of 45 you will be able to use MCS 7 reliably.
238 * At a hardware RSSI of 45 you will be able to use MCS 15 reliably.
239 * At a hardware RSSI of 35 you should be able use 54 Mbps reliably.
241 * MCS 7 is the highets MCS index usable by a 1-stream device.
242 * MCS 15 is the highest MCS index usable by a 2-stream device.
244 * All ath9k devices are either 1-stream or 2-stream.
246 * How many bars you see is derived from the qual reporting.
248 * A more elaborate scheme can be used here but it requires tables
249 * of SNR/throughput for each possible mode used. For the MCS table
250 * you can refer to the wireless wiki:
252 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
255 if (conf_is_ht(&hw->conf))
256 rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 45;
257 else
258 rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 35;
260 /* rssi can be more than 45 though, anything above that
261 * should be considered at 100% */
262 if (rx_status->qual > 100)
263 rx_status->qual = 100;
265 rx_status->flag |= RX_FLAG_TSFT;
267 return 1;
268 rx_next:
269 return 0;
272 static void ath_opmode_init(struct ath_softc *sc)
274 struct ath_hw *ah = sc->sc_ah;
275 u32 rfilt, mfilt[2];
277 /* configure rx filter */
278 rfilt = ath_calcrxfilter(sc);
279 ath9k_hw_setrxfilter(ah, rfilt);
281 /* configure bssid mask */
282 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
283 ath9k_hw_setbssidmask(sc);
285 /* configure operational mode */
286 ath9k_hw_setopmode(ah);
288 /* Handle any link-level address change. */
289 ath9k_hw_setmac(ah, sc->sc_ah->macaddr);
291 /* calculate and install multicast filter */
292 mfilt[0] = mfilt[1] = ~0;
293 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
296 int ath_rx_init(struct ath_softc *sc, int nbufs)
298 struct sk_buff *skb;
299 struct ath_buf *bf;
300 int error = 0;
302 spin_lock_init(&sc->rx.rxflushlock);
303 sc->sc_flags &= ~SC_OP_RXFLUSH;
304 spin_lock_init(&sc->rx.rxbuflock);
306 sc->rx.bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
307 min(sc->common.cachelsz, (u16)64));
309 DPRINTF(sc, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
310 sc->common.cachelsz, sc->rx.bufsize);
312 /* Initialize rx descriptors */
314 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
315 "rx", nbufs, 1);
316 if (error != 0) {
317 DPRINTF(sc, ATH_DBG_FATAL,
318 "failed to allocate rx descriptors: %d\n", error);
319 goto err;
322 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
323 skb = ath_rxbuf_alloc(&sc->common, sc->rx.bufsize, GFP_KERNEL);
324 if (skb == NULL) {
325 error = -ENOMEM;
326 goto err;
329 bf->bf_mpdu = skb;
330 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
331 sc->rx.bufsize,
332 DMA_FROM_DEVICE);
333 if (unlikely(dma_mapping_error(sc->dev,
334 bf->bf_buf_addr))) {
335 dev_kfree_skb_any(skb);
336 bf->bf_mpdu = NULL;
337 DPRINTF(sc, ATH_DBG_FATAL,
338 "dma_mapping_error() on RX init\n");
339 error = -ENOMEM;
340 goto err;
342 bf->bf_dmacontext = bf->bf_buf_addr;
344 sc->rx.rxlink = NULL;
346 err:
347 if (error)
348 ath_rx_cleanup(sc);
350 return error;
353 void ath_rx_cleanup(struct ath_softc *sc)
355 struct sk_buff *skb;
356 struct ath_buf *bf;
358 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
359 skb = bf->bf_mpdu;
360 if (skb) {
361 dma_unmap_single(sc->dev, bf->bf_buf_addr,
362 sc->rx.bufsize, DMA_FROM_DEVICE);
363 dev_kfree_skb(skb);
367 if (sc->rx.rxdma.dd_desc_len != 0)
368 ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
372 * Calculate the receive filter according to the
373 * operating mode and state:
375 * o always accept unicast, broadcast, and multicast traffic
376 * o maintain current state of phy error reception (the hal
377 * may enable phy error frames for noise immunity work)
378 * o probe request frames are accepted only when operating in
379 * hostap, adhoc, or monitor modes
380 * o enable promiscuous mode according to the interface state
381 * o accept beacons:
382 * - when operating in adhoc mode so the 802.11 layer creates
383 * node table entries for peers,
384 * - when operating in station mode for collecting rssi data when
385 * the station is otherwise quiet, or
386 * - when operating as a repeater so we see repeater-sta beacons
387 * - when scanning
390 u32 ath_calcrxfilter(struct ath_softc *sc)
392 #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
394 u32 rfilt;
396 rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
397 | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
398 | ATH9K_RX_FILTER_MCAST;
400 /* If not a STA, enable processing of Probe Requests */
401 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
402 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
405 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
406 * mode interface or when in monitor mode. AP mode does not need this
407 * since it receives all in-BSS frames anyway.
409 if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
410 (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
411 (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR))
412 rfilt |= ATH9K_RX_FILTER_PROM;
414 if (sc->rx.rxfilter & FIF_CONTROL)
415 rfilt |= ATH9K_RX_FILTER_CONTROL;
417 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
418 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
419 rfilt |= ATH9K_RX_FILTER_MYBEACON;
420 else
421 rfilt |= ATH9K_RX_FILTER_BEACON;
423 if (sc->rx.rxfilter & FIF_PSPOLL)
424 rfilt |= ATH9K_RX_FILTER_PSPOLL;
426 if (conf_is_ht(&sc->hw->conf))
427 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
429 if (sc->sec_wiphy || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
430 /* TODO: only needed if more than one BSSID is in use in
431 * station/adhoc mode */
432 /* The following may also be needed for other older chips */
433 if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160)
434 rfilt |= ATH9K_RX_FILTER_PROM;
435 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
438 return rfilt;
440 #undef RX_FILTER_PRESERVE
443 int ath_startrecv(struct ath_softc *sc)
445 struct ath_hw *ah = sc->sc_ah;
446 struct ath_buf *bf, *tbf;
448 spin_lock_bh(&sc->rx.rxbuflock);
449 if (list_empty(&sc->rx.rxbuf))
450 goto start_recv;
452 sc->rx.rxlink = NULL;
453 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
454 ath_rx_buf_link(sc, bf);
457 /* We could have deleted elements so the list may be empty now */
458 if (list_empty(&sc->rx.rxbuf))
459 goto start_recv;
461 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
462 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
463 ath9k_hw_rxena(ah);
465 start_recv:
466 spin_unlock_bh(&sc->rx.rxbuflock);
467 ath_opmode_init(sc);
468 ath9k_hw_startpcureceive(ah);
470 return 0;
473 bool ath_stoprecv(struct ath_softc *sc)
475 struct ath_hw *ah = sc->sc_ah;
476 bool stopped;
478 ath9k_hw_stoppcurecv(ah);
479 ath9k_hw_setrxfilter(ah, 0);
480 stopped = ath9k_hw_stopdmarecv(ah);
481 sc->rx.rxlink = NULL;
483 return stopped;
486 void ath_flushrecv(struct ath_softc *sc)
488 spin_lock_bh(&sc->rx.rxflushlock);
489 sc->sc_flags |= SC_OP_RXFLUSH;
490 ath_rx_tasklet(sc, 1);
491 sc->sc_flags &= ~SC_OP_RXFLUSH;
492 spin_unlock_bh(&sc->rx.rxflushlock);
495 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
497 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
498 struct ieee80211_mgmt *mgmt;
499 u8 *pos, *end, id, elen;
500 struct ieee80211_tim_ie *tim;
502 mgmt = (struct ieee80211_mgmt *)skb->data;
503 pos = mgmt->u.beacon.variable;
504 end = skb->data + skb->len;
506 while (pos + 2 < end) {
507 id = *pos++;
508 elen = *pos++;
509 if (pos + elen > end)
510 break;
512 if (id == WLAN_EID_TIM) {
513 if (elen < sizeof(*tim))
514 break;
515 tim = (struct ieee80211_tim_ie *) pos;
516 if (tim->dtim_count != 0)
517 break;
518 return tim->bitmap_ctrl & 0x01;
521 pos += elen;
524 return false;
527 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
529 struct ieee80211_mgmt *mgmt;
531 if (skb->len < 24 + 8 + 2 + 2)
532 return;
534 mgmt = (struct ieee80211_mgmt *)skb->data;
535 if (memcmp(sc->curbssid, mgmt->bssid, ETH_ALEN) != 0)
536 return; /* not from our current AP */
538 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
540 if (sc->sc_flags & SC_OP_BEACON_SYNC) {
541 sc->sc_flags &= ~SC_OP_BEACON_SYNC;
542 DPRINTF(sc, ATH_DBG_PS, "Reconfigure Beacon timers based on "
543 "timestamp from the AP\n");
544 ath_beacon_config(sc, NULL);
547 if (ath_beacon_dtim_pending_cab(skb)) {
549 * Remain awake waiting for buffered broadcast/multicast
550 * frames. If the last broadcast/multicast frame is not
551 * received properly, the next beacon frame will work as
552 * a backup trigger for returning into NETWORK SLEEP state,
553 * so we are waiting for it as well.
555 DPRINTF(sc, ATH_DBG_PS, "Received DTIM beacon indicating "
556 "buffered broadcast/multicast frame(s)\n");
557 sc->sc_flags |= SC_OP_WAIT_FOR_CAB | SC_OP_WAIT_FOR_BEACON;
558 return;
561 if (sc->sc_flags & SC_OP_WAIT_FOR_CAB) {
563 * This can happen if a broadcast frame is dropped or the AP
564 * fails to send a frame indicating that all CAB frames have
565 * been delivered.
567 sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB;
568 DPRINTF(sc, ATH_DBG_PS, "PS wait for CAB frames timed out\n");
572 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
574 struct ieee80211_hdr *hdr;
576 hdr = (struct ieee80211_hdr *)skb->data;
578 /* Process Beacon and CAB receive in PS state */
579 if ((sc->sc_flags & SC_OP_WAIT_FOR_BEACON) &&
580 ieee80211_is_beacon(hdr->frame_control))
581 ath_rx_ps_beacon(sc, skb);
582 else if ((sc->sc_flags & SC_OP_WAIT_FOR_CAB) &&
583 (ieee80211_is_data(hdr->frame_control) ||
584 ieee80211_is_action(hdr->frame_control)) &&
585 is_multicast_ether_addr(hdr->addr1) &&
586 !ieee80211_has_moredata(hdr->frame_control)) {
588 * No more broadcast/multicast frames to be received at this
589 * point.
591 sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB;
592 DPRINTF(sc, ATH_DBG_PS, "All PS CAB frames received, back to "
593 "sleep\n");
594 } else if ((sc->sc_flags & SC_OP_WAIT_FOR_PSPOLL_DATA) &&
595 !is_multicast_ether_addr(hdr->addr1) &&
596 !ieee80211_has_morefrags(hdr->frame_control)) {
597 sc->sc_flags &= ~SC_OP_WAIT_FOR_PSPOLL_DATA;
598 DPRINTF(sc, ATH_DBG_PS, "Going back to sleep after having "
599 "received PS-Poll data (0x%x)\n",
600 sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
601 SC_OP_WAIT_FOR_CAB |
602 SC_OP_WAIT_FOR_PSPOLL_DATA |
603 SC_OP_WAIT_FOR_TX_ACK));
607 static void ath_rx_send_to_mac80211(struct ath_softc *sc, struct sk_buff *skb,
608 struct ieee80211_rx_status *rx_status)
610 struct ieee80211_hdr *hdr;
612 hdr = (struct ieee80211_hdr *)skb->data;
614 /* Send the frame to mac80211 */
615 if (is_multicast_ether_addr(hdr->addr1)) {
616 int i;
618 * Deliver broadcast/multicast frames to all suitable
619 * virtual wiphys.
621 /* TODO: filter based on channel configuration */
622 for (i = 0; i < sc->num_sec_wiphy; i++) {
623 struct ath_wiphy *aphy = sc->sec_wiphy[i];
624 struct sk_buff *nskb;
625 if (aphy == NULL)
626 continue;
627 nskb = skb_copy(skb, GFP_ATOMIC);
628 if (nskb) {
629 memcpy(IEEE80211_SKB_RXCB(nskb), rx_status,
630 sizeof(*rx_status));
631 ieee80211_rx(aphy->hw, nskb);
634 memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status));
635 ieee80211_rx(sc->hw, skb);
636 } else {
637 /* Deliver unicast frames based on receiver address */
638 memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status));
639 ieee80211_rx(ath_get_virt_hw(sc, hdr), skb);
643 int ath_rx_tasklet(struct ath_softc *sc, int flush)
645 #define PA2DESC(_sc, _pa) \
646 ((struct ath_desc *)((caddr_t)(_sc)->rx.rxdma.dd_desc + \
647 ((_pa) - (_sc)->rx.rxdma.dd_desc_paddr)))
649 struct ath_buf *bf;
650 struct ath_desc *ds;
651 struct sk_buff *skb = NULL, *requeue_skb;
652 struct ieee80211_rx_status rx_status;
653 struct ath_hw *ah = sc->sc_ah;
654 struct ieee80211_hdr *hdr;
655 int hdrlen, padsize, retval;
656 bool decrypt_error = false;
657 u8 keyix;
658 __le16 fc;
660 spin_lock_bh(&sc->rx.rxbuflock);
662 do {
663 /* If handling rx interrupt and flush is in progress => exit */
664 if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
665 break;
667 if (list_empty(&sc->rx.rxbuf)) {
668 sc->rx.rxlink = NULL;
669 break;
672 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
673 ds = bf->bf_desc;
676 * Must provide the virtual address of the current
677 * descriptor, the physical address, and the virtual
678 * address of the next descriptor in the h/w chain.
679 * This allows the HAL to look ahead to see if the
680 * hardware is done with a descriptor by checking the
681 * done bit in the following descriptor and the address
682 * of the current descriptor the DMA engine is working
683 * on. All this is necessary because of our use of
684 * a self-linked list to avoid rx overruns.
686 retval = ath9k_hw_rxprocdesc(ah, ds,
687 bf->bf_daddr,
688 PA2DESC(sc, ds->ds_link),
690 if (retval == -EINPROGRESS) {
691 struct ath_buf *tbf;
692 struct ath_desc *tds;
694 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
695 sc->rx.rxlink = NULL;
696 break;
699 tbf = list_entry(bf->list.next, struct ath_buf, list);
702 * On some hardware the descriptor status words could
703 * get corrupted, including the done bit. Because of
704 * this, check if the next descriptor's done bit is
705 * set or not.
707 * If the next descriptor's done bit is set, the current
708 * descriptor has been corrupted. Force s/w to discard
709 * this descriptor and continue...
712 tds = tbf->bf_desc;
713 retval = ath9k_hw_rxprocdesc(ah, tds, tbf->bf_daddr,
714 PA2DESC(sc, tds->ds_link), 0);
715 if (retval == -EINPROGRESS) {
716 break;
720 skb = bf->bf_mpdu;
721 if (!skb)
722 continue;
725 * Synchronize the DMA transfer with CPU before
726 * 1. accessing the frame
727 * 2. requeueing the same buffer to h/w
729 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
730 sc->rx.bufsize,
731 DMA_FROM_DEVICE);
734 * If we're asked to flush receive queue, directly
735 * chain it back at the queue without processing it.
737 if (flush)
738 goto requeue;
740 if (!ds->ds_rxstat.rs_datalen)
741 goto requeue;
743 /* The status portion of the descriptor could get corrupted. */
744 if (sc->rx.bufsize < ds->ds_rxstat.rs_datalen)
745 goto requeue;
747 if (!ath_rx_prepare(skb, ds, &rx_status, &decrypt_error, sc))
748 goto requeue;
750 /* Ensure we always have an skb to requeue once we are done
751 * processing the current buffer's skb */
752 requeue_skb = ath_rxbuf_alloc(&sc->common, sc->rx.bufsize, GFP_ATOMIC);
754 /* If there is no memory we ignore the current RX'd frame,
755 * tell hardware it can give us a new frame using the old
756 * skb and put it at the tail of the sc->rx.rxbuf list for
757 * processing. */
758 if (!requeue_skb)
759 goto requeue;
761 /* Unmap the frame */
762 dma_unmap_single(sc->dev, bf->bf_buf_addr,
763 sc->rx.bufsize,
764 DMA_FROM_DEVICE);
766 skb_put(skb, ds->ds_rxstat.rs_datalen);
768 /* see if any padding is done by the hw and remove it */
769 hdr = (struct ieee80211_hdr *)skb->data;
770 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
771 fc = hdr->frame_control;
773 /* The MAC header is padded to have 32-bit boundary if the
774 * packet payload is non-zero. The general calculation for
775 * padsize would take into account odd header lengths:
776 * padsize = (4 - hdrlen % 4) % 4; However, since only
777 * even-length headers are used, padding can only be 0 or 2
778 * bytes and we can optimize this a bit. In addition, we must
779 * not try to remove padding from short control frames that do
780 * not have payload. */
781 padsize = hdrlen & 3;
782 if (padsize && hdrlen >= 24) {
783 memmove(skb->data + padsize, skb->data, hdrlen);
784 skb_pull(skb, padsize);
787 keyix = ds->ds_rxstat.rs_keyix;
789 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error) {
790 rx_status.flag |= RX_FLAG_DECRYPTED;
791 } else if (ieee80211_has_protected(fc)
792 && !decrypt_error && skb->len >= hdrlen + 4) {
793 keyix = skb->data[hdrlen + 3] >> 6;
795 if (test_bit(keyix, sc->keymap))
796 rx_status.flag |= RX_FLAG_DECRYPTED;
798 if (ah->sw_mgmt_crypto &&
799 (rx_status.flag & RX_FLAG_DECRYPTED) &&
800 ieee80211_is_mgmt(fc)) {
801 /* Use software decrypt for management frames. */
802 rx_status.flag &= ~RX_FLAG_DECRYPTED;
805 /* We will now give hardware our shiny new allocated skb */
806 bf->bf_mpdu = requeue_skb;
807 bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
808 sc->rx.bufsize,
809 DMA_FROM_DEVICE);
810 if (unlikely(dma_mapping_error(sc->dev,
811 bf->bf_buf_addr))) {
812 dev_kfree_skb_any(requeue_skb);
813 bf->bf_mpdu = NULL;
814 DPRINTF(sc, ATH_DBG_FATAL,
815 "dma_mapping_error() on RX\n");
816 ath_rx_send_to_mac80211(sc, skb, &rx_status);
817 break;
819 bf->bf_dmacontext = bf->bf_buf_addr;
822 * change the default rx antenna if rx diversity chooses the
823 * other antenna 3 times in a row.
825 if (sc->rx.defant != ds->ds_rxstat.rs_antenna) {
826 if (++sc->rx.rxotherant >= 3)
827 ath_setdefantenna(sc, ds->ds_rxstat.rs_antenna);
828 } else {
829 sc->rx.rxotherant = 0;
832 if (unlikely(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
833 SC_OP_WAIT_FOR_CAB |
834 SC_OP_WAIT_FOR_PSPOLL_DATA)))
835 ath_rx_ps(sc, skb);
837 ath_rx_send_to_mac80211(sc, skb, &rx_status);
839 requeue:
840 list_move_tail(&bf->list, &sc->rx.rxbuf);
841 ath_rx_buf_link(sc, bf);
842 } while (1);
844 spin_unlock_bh(&sc->rx.rxbuflock);
846 return 0;
847 #undef PA2DESC