x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / xmit.c
blob42551a48c8acd92af474073ba43c20b0cd2f329c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "ath9k.h"
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF 8
24 #define L_LTF 8
25 #define L_SIG 4
26 #define HT_SIG 8
27 #define HT_STF 4
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34 #define OFDM_SIFS_TIME 16
36 static u32 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
58 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
59 struct ath_atx_tid *tid,
60 struct list_head *bf_head);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_txq *txq,
63 struct list_head *bf_q,
64 int txok, int sendbar);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 struct list_head *head);
67 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
68 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
69 int txok);
70 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
71 int nbad, int txok, bool update_rc);
73 /*********************/
74 /* Aggregation logic */
75 /*********************/
77 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
79 struct ath_atx_ac *ac = tid->ac;
81 if (tid->paused)
82 return;
84 if (tid->sched)
85 return;
87 tid->sched = true;
88 list_add_tail(&tid->list, &ac->tid_q);
90 if (ac->sched)
91 return;
93 ac->sched = true;
94 list_add_tail(&ac->list, &txq->axq_acq);
97 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
99 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
101 spin_lock_bh(&txq->axq_lock);
102 tid->paused++;
103 spin_unlock_bh(&txq->axq_lock);
106 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
108 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
110 ASSERT(tid->paused > 0);
111 spin_lock_bh(&txq->axq_lock);
113 tid->paused--;
115 if (tid->paused > 0)
116 goto unlock;
118 if (list_empty(&tid->buf_q))
119 goto unlock;
121 ath_tx_queue_tid(txq, tid);
122 ath_txq_schedule(sc, txq);
123 unlock:
124 spin_unlock_bh(&txq->axq_lock);
127 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
129 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
130 struct ath_buf *bf;
131 struct list_head bf_head;
132 INIT_LIST_HEAD(&bf_head);
134 ASSERT(tid->paused > 0);
135 spin_lock_bh(&txq->axq_lock);
137 tid->paused--;
139 if (tid->paused > 0) {
140 spin_unlock_bh(&txq->axq_lock);
141 return;
144 while (!list_empty(&tid->buf_q)) {
145 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
146 ASSERT(!bf_isretried(bf));
147 list_move_tail(&bf->list, &bf_head);
148 ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
151 spin_unlock_bh(&txq->axq_lock);
154 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
155 int seqno)
157 int index, cindex;
159 index = ATH_BA_INDEX(tid->seq_start, seqno);
160 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
162 tid->tx_buf[cindex] = NULL;
164 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
165 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
166 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
170 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
171 struct ath_buf *bf)
173 int index, cindex;
175 if (bf_isretried(bf))
176 return;
178 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
179 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
181 ASSERT(tid->tx_buf[cindex] == NULL);
182 tid->tx_buf[cindex] = bf;
184 if (index >= ((tid->baw_tail - tid->baw_head) &
185 (ATH_TID_MAX_BUFS - 1))) {
186 tid->baw_tail = cindex;
187 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
192 * TODO: For frame(s) that are in the retry state, we will reuse the
193 * sequence number(s) without setting the retry bit. The
194 * alternative is to give up on these and BAR the receiver's window
195 * forward.
197 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
198 struct ath_atx_tid *tid)
201 struct ath_buf *bf;
202 struct list_head bf_head;
203 INIT_LIST_HEAD(&bf_head);
205 for (;;) {
206 if (list_empty(&tid->buf_q))
207 break;
209 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
210 list_move_tail(&bf->list, &bf_head);
212 if (bf_isretried(bf))
213 ath_tx_update_baw(sc, tid, bf->bf_seqno);
215 spin_unlock(&txq->axq_lock);
216 ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
217 spin_lock(&txq->axq_lock);
220 tid->seq_next = tid->seq_start;
221 tid->baw_tail = tid->baw_head;
224 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
225 struct ath_buf *bf)
227 struct sk_buff *skb;
228 struct ieee80211_hdr *hdr;
230 bf->bf_state.bf_type |= BUF_RETRY;
231 bf->bf_retries++;
232 TX_STAT_INC(txq->axq_qnum, a_retries);
234 skb = bf->bf_mpdu;
235 hdr = (struct ieee80211_hdr *)skb->data;
236 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
239 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
241 struct ath_buf *tbf;
243 spin_lock_bh(&sc->tx.txbuflock);
244 if (WARN_ON(list_empty(&sc->tx.txbuf))) {
245 spin_unlock_bh(&sc->tx.txbuflock);
246 return NULL;
248 tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
249 list_del(&tbf->list);
250 spin_unlock_bh(&sc->tx.txbuflock);
252 ATH_TXBUF_RESET(tbf);
254 tbf->bf_mpdu = bf->bf_mpdu;
255 tbf->bf_buf_addr = bf->bf_buf_addr;
256 *(tbf->bf_desc) = *(bf->bf_desc);
257 tbf->bf_state = bf->bf_state;
258 tbf->bf_dmacontext = bf->bf_dmacontext;
260 return tbf;
263 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
264 struct ath_buf *bf, struct list_head *bf_q,
265 int txok)
267 struct ath_node *an = NULL;
268 struct sk_buff *skb;
269 struct ieee80211_sta *sta;
270 struct ieee80211_hdr *hdr;
271 struct ath_atx_tid *tid = NULL;
272 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
273 struct ath_desc *ds = bf_last->bf_desc;
274 struct list_head bf_head, bf_pending;
275 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
276 u32 ba[WME_BA_BMP_SIZE >> 5];
277 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
278 bool rc_update = true;
280 skb = bf->bf_mpdu;
281 hdr = (struct ieee80211_hdr *)skb->data;
283 rcu_read_lock();
285 sta = ieee80211_find_sta(sc->hw, hdr->addr1);
286 if (!sta) {
287 rcu_read_unlock();
288 return;
291 an = (struct ath_node *)sta->drv_priv;
292 tid = ATH_AN_2_TID(an, bf->bf_tidno);
294 isaggr = bf_isaggr(bf);
295 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
297 if (isaggr && txok) {
298 if (ATH_DS_TX_BA(ds)) {
299 seq_st = ATH_DS_BA_SEQ(ds);
300 memcpy(ba, ATH_DS_BA_BITMAP(ds),
301 WME_BA_BMP_SIZE >> 3);
302 } else {
304 * AR5416 can become deaf/mute when BA
305 * issue happens. Chip needs to be reset.
306 * But AP code may have sychronization issues
307 * when perform internal reset in this routine.
308 * Only enable reset in STA mode for now.
310 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
311 needreset = 1;
315 INIT_LIST_HEAD(&bf_pending);
316 INIT_LIST_HEAD(&bf_head);
318 nbad = ath_tx_num_badfrms(sc, bf, txok);
319 while (bf) {
320 txfail = txpending = 0;
321 bf_next = bf->bf_next;
323 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
324 /* transmit completion, subframe is
325 * acked by block ack */
326 acked_cnt++;
327 } else if (!isaggr && txok) {
328 /* transmit completion */
329 acked_cnt++;
330 } else {
331 if (!(tid->state & AGGR_CLEANUP) &&
332 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
333 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
334 ath_tx_set_retry(sc, txq, bf);
335 txpending = 1;
336 } else {
337 bf->bf_state.bf_type |= BUF_XRETRY;
338 txfail = 1;
339 sendbar = 1;
340 txfail_cnt++;
342 } else {
344 * cleanup in progress, just fail
345 * the un-acked sub-frames
347 txfail = 1;
351 if (bf_next == NULL) {
353 * Make sure the last desc is reclaimed if it
354 * not a holding desc.
356 if (!bf_last->bf_stale)
357 list_move_tail(&bf->list, &bf_head);
358 else
359 INIT_LIST_HEAD(&bf_head);
360 } else {
361 ASSERT(!list_empty(bf_q));
362 list_move_tail(&bf->list, &bf_head);
365 if (!txpending) {
367 * complete the acked-ones/xretried ones; update
368 * block-ack window
370 spin_lock_bh(&txq->axq_lock);
371 ath_tx_update_baw(sc, tid, bf->bf_seqno);
372 spin_unlock_bh(&txq->axq_lock);
374 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
375 ath_tx_rc_status(bf, ds, nbad, txok, true);
376 rc_update = false;
377 } else {
378 ath_tx_rc_status(bf, ds, nbad, txok, false);
381 ath_tx_complete_buf(sc, bf, txq, &bf_head, !txfail, sendbar);
382 } else {
383 /* retry the un-acked ones */
384 if (bf->bf_next == NULL && bf_last->bf_stale) {
385 struct ath_buf *tbf;
387 tbf = ath_clone_txbuf(sc, bf_last);
389 * Update tx baw and complete the frame with
390 * failed status if we run out of tx buf
392 if (!tbf) {
393 spin_lock_bh(&txq->axq_lock);
394 ath_tx_update_baw(sc, tid,
395 bf->bf_seqno);
396 spin_unlock_bh(&txq->axq_lock);
398 bf->bf_state.bf_type |= BUF_XRETRY;
399 ath_tx_rc_status(bf, ds, nbad,
400 0, false);
401 ath_tx_complete_buf(sc, bf, txq,
402 &bf_head, 0, 0);
403 break;
406 ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
407 list_add_tail(&tbf->list, &bf_head);
408 } else {
410 * Clear descriptor status words for
411 * software retry
413 ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
417 * Put this buffer to the temporary pending
418 * queue to retain ordering
420 list_splice_tail_init(&bf_head, &bf_pending);
423 bf = bf_next;
426 if (tid->state & AGGR_CLEANUP) {
427 if (tid->baw_head == tid->baw_tail) {
428 tid->state &= ~AGGR_ADDBA_COMPLETE;
429 tid->state &= ~AGGR_CLEANUP;
431 /* send buffered frames as singles */
432 ath_tx_flush_tid(sc, tid);
434 rcu_read_unlock();
435 return;
438 /* prepend un-acked frames to the beginning of the pending frame queue */
439 if (!list_empty(&bf_pending)) {
440 spin_lock_bh(&txq->axq_lock);
441 list_splice(&bf_pending, &tid->buf_q);
442 ath_tx_queue_tid(txq, tid);
443 spin_unlock_bh(&txq->axq_lock);
446 rcu_read_unlock();
448 if (needreset)
449 ath_reset(sc, false);
452 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
453 struct ath_atx_tid *tid)
455 const struct ath_rate_table *rate_table = sc->cur_rate_table;
456 struct sk_buff *skb;
457 struct ieee80211_tx_info *tx_info;
458 struct ieee80211_tx_rate *rates;
459 struct ath_tx_info_priv *tx_info_priv;
460 u32 max_4ms_framelen, frmlen;
461 u16 aggr_limit, legacy = 0;
462 int i;
464 skb = bf->bf_mpdu;
465 tx_info = IEEE80211_SKB_CB(skb);
466 rates = tx_info->control.rates;
467 tx_info_priv = (struct ath_tx_info_priv *)tx_info->rate_driver_data[0];
470 * Find the lowest frame length among the rate series that will have a
471 * 4ms transmit duration.
472 * TODO - TXOP limit needs to be considered.
474 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
476 for (i = 0; i < 4; i++) {
477 if (rates[i].count) {
478 if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) {
479 legacy = 1;
480 break;
483 frmlen = rate_table->info[rates[i].idx].max_4ms_framelen;
484 max_4ms_framelen = min(max_4ms_framelen, frmlen);
489 * limit aggregate size by the minimum rate if rate selected is
490 * not a probe rate, if rate selected is a probe rate then
491 * avoid aggregation of this packet.
493 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
494 return 0;
496 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
497 aggr_limit = min((max_4ms_framelen * 3) / 8,
498 (u32)ATH_AMPDU_LIMIT_MAX);
499 else
500 aggr_limit = min(max_4ms_framelen,
501 (u32)ATH_AMPDU_LIMIT_MAX);
504 * h/w can accept aggregates upto 16 bit lengths (65535).
505 * The IE, however can hold upto 65536, which shows up here
506 * as zero. Ignore 65536 since we are constrained by hw.
508 if (tid->an->maxampdu)
509 aggr_limit = min(aggr_limit, tid->an->maxampdu);
511 return aggr_limit;
515 * Returns the number of delimiters to be added to
516 * meet the minimum required mpdudensity.
518 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
519 struct ath_buf *bf, u16 frmlen)
521 const struct ath_rate_table *rt = sc->cur_rate_table;
522 struct sk_buff *skb = bf->bf_mpdu;
523 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
524 u32 nsymbits, nsymbols;
525 u16 minlen;
526 u8 rc, flags, rix;
527 int width, half_gi, ndelim, mindelim;
529 /* Select standard number of delimiters based on frame length alone */
530 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
533 * If encryption enabled, hardware requires some more padding between
534 * subframes.
535 * TODO - this could be improved to be dependent on the rate.
536 * The hardware can keep up at lower rates, but not higher rates
538 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
539 ndelim += ATH_AGGR_ENCRYPTDELIM;
542 * Convert desired mpdu density from microeconds to bytes based
543 * on highest rate in rate series (i.e. first rate) to determine
544 * required minimum length for subframe. Take into account
545 * whether high rate is 20 or 40Mhz and half or full GI.
547 * If there is no mpdu density restriction, no further calculation
548 * is needed.
551 if (tid->an->mpdudensity == 0)
552 return ndelim;
554 rix = tx_info->control.rates[0].idx;
555 flags = tx_info->control.rates[0].flags;
556 rc = rt->info[rix].ratecode;
557 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
558 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
560 if (half_gi)
561 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
562 else
563 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
565 if (nsymbols == 0)
566 nsymbols = 1;
568 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
569 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
571 if (frmlen < minlen) {
572 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
573 ndelim = max(mindelim, ndelim);
576 return ndelim;
579 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
580 struct ath_txq *txq,
581 struct ath_atx_tid *tid,
582 struct list_head *bf_q)
584 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
585 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
586 int rl = 0, nframes = 0, ndelim, prev_al = 0;
587 u16 aggr_limit = 0, al = 0, bpad = 0,
588 al_delta, h_baw = tid->baw_size / 2;
589 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
591 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
593 do {
594 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
596 /* do not step over block-ack window */
597 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
598 status = ATH_AGGR_BAW_CLOSED;
599 break;
602 if (!rl) {
603 aggr_limit = ath_lookup_rate(sc, bf, tid);
604 rl = 1;
607 /* do not exceed aggregation limit */
608 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
610 if (nframes &&
611 (aggr_limit < (al + bpad + al_delta + prev_al))) {
612 status = ATH_AGGR_LIMITED;
613 break;
616 /* do not exceed subframe limit */
617 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
618 status = ATH_AGGR_LIMITED;
619 break;
621 nframes++;
623 /* add padding for previous frame to aggregation length */
624 al += bpad + al_delta;
627 * Get the delimiters needed to meet the MPDU
628 * density for this node.
630 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
631 bpad = PADBYTES(al_delta) + (ndelim << 2);
633 bf->bf_next = NULL;
634 bf->bf_desc->ds_link = 0;
636 /* link buffers of this frame to the aggregate */
637 ath_tx_addto_baw(sc, tid, bf);
638 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
639 list_move_tail(&bf->list, bf_q);
640 if (bf_prev) {
641 bf_prev->bf_next = bf;
642 bf_prev->bf_desc->ds_link = bf->bf_daddr;
644 bf_prev = bf;
646 } while (!list_empty(&tid->buf_q));
648 bf_first->bf_al = al;
649 bf_first->bf_nframes = nframes;
651 return status;
652 #undef PADBYTES
655 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
656 struct ath_atx_tid *tid)
658 struct ath_buf *bf;
659 enum ATH_AGGR_STATUS status;
660 struct list_head bf_q;
662 do {
663 if (list_empty(&tid->buf_q))
664 return;
666 INIT_LIST_HEAD(&bf_q);
668 status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
671 * no frames picked up to be aggregated;
672 * block-ack window is not open.
674 if (list_empty(&bf_q))
675 break;
677 bf = list_first_entry(&bf_q, struct ath_buf, list);
678 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
680 /* if only one frame, send as non-aggregate */
681 if (bf->bf_nframes == 1) {
682 bf->bf_state.bf_type &= ~BUF_AGGR;
683 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
684 ath_buf_set_rate(sc, bf);
685 ath_tx_txqaddbuf(sc, txq, &bf_q);
686 continue;
689 /* setup first desc of aggregate */
690 bf->bf_state.bf_type |= BUF_AGGR;
691 ath_buf_set_rate(sc, bf);
692 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
694 /* anchor last desc of aggregate */
695 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
697 txq->axq_aggr_depth++;
698 ath_tx_txqaddbuf(sc, txq, &bf_q);
699 TX_STAT_INC(txq->axq_qnum, a_aggr);
701 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
702 status != ATH_AGGR_BAW_CLOSED);
705 void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
706 u16 tid, u16 *ssn)
708 struct ath_atx_tid *txtid;
709 struct ath_node *an;
711 an = (struct ath_node *)sta->drv_priv;
712 txtid = ATH_AN_2_TID(an, tid);
713 txtid->state |= AGGR_ADDBA_PROGRESS;
714 ath_tx_pause_tid(sc, txtid);
715 *ssn = txtid->seq_start;
718 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
720 struct ath_node *an = (struct ath_node *)sta->drv_priv;
721 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
722 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
723 struct ath_buf *bf;
724 struct list_head bf_head;
725 INIT_LIST_HEAD(&bf_head);
727 if (txtid->state & AGGR_CLEANUP)
728 return;
730 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
731 txtid->state &= ~AGGR_ADDBA_PROGRESS;
732 return;
735 ath_tx_pause_tid(sc, txtid);
737 /* drop all software retried frames and mark this TID */
738 spin_lock_bh(&txq->axq_lock);
739 while (!list_empty(&txtid->buf_q)) {
740 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
741 if (!bf_isretried(bf)) {
743 * NB: it's based on the assumption that
744 * software retried frame will always stay
745 * at the head of software queue.
747 break;
749 list_move_tail(&bf->list, &bf_head);
750 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
751 ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
753 spin_unlock_bh(&txq->axq_lock);
755 if (txtid->baw_head != txtid->baw_tail) {
756 txtid->state |= AGGR_CLEANUP;
757 } else {
758 txtid->state &= ~AGGR_ADDBA_COMPLETE;
759 ath_tx_flush_tid(sc, txtid);
763 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
765 struct ath_atx_tid *txtid;
766 struct ath_node *an;
768 an = (struct ath_node *)sta->drv_priv;
770 if (sc->sc_flags & SC_OP_TXAGGR) {
771 txtid = ATH_AN_2_TID(an, tid);
772 txtid->baw_size =
773 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
774 txtid->state |= AGGR_ADDBA_COMPLETE;
775 txtid->state &= ~AGGR_ADDBA_PROGRESS;
776 ath_tx_resume_tid(sc, txtid);
780 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
782 struct ath_atx_tid *txtid;
784 if (!(sc->sc_flags & SC_OP_TXAGGR))
785 return false;
787 txtid = ATH_AN_2_TID(an, tidno);
789 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
790 return true;
791 return false;
794 /********************/
795 /* Queue Management */
796 /********************/
798 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
799 struct ath_txq *txq)
801 struct ath_atx_ac *ac, *ac_tmp;
802 struct ath_atx_tid *tid, *tid_tmp;
804 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
805 list_del(&ac->list);
806 ac->sched = false;
807 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
808 list_del(&tid->list);
809 tid->sched = false;
810 ath_tid_drain(sc, txq, tid);
815 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
817 struct ath_hw *ah = sc->sc_ah;
818 struct ath9k_tx_queue_info qi;
819 int qnum;
821 memset(&qi, 0, sizeof(qi));
822 qi.tqi_subtype = subtype;
823 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
824 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
825 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
826 qi.tqi_physCompBuf = 0;
829 * Enable interrupts only for EOL and DESC conditions.
830 * We mark tx descriptors to receive a DESC interrupt
831 * when a tx queue gets deep; otherwise waiting for the
832 * EOL to reap descriptors. Note that this is done to
833 * reduce interrupt load and this only defers reaping
834 * descriptors, never transmitting frames. Aside from
835 * reducing interrupts this also permits more concurrency.
836 * The only potential downside is if the tx queue backs
837 * up in which case the top half of the kernel may backup
838 * due to a lack of tx descriptors.
840 * The UAPSD queue is an exception, since we take a desc-
841 * based intr on the EOSP frames.
843 if (qtype == ATH9K_TX_QUEUE_UAPSD)
844 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
845 else
846 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
847 TXQ_FLAG_TXDESCINT_ENABLE;
848 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
849 if (qnum == -1) {
851 * NB: don't print a message, this happens
852 * normally on parts with too few tx queues
854 return NULL;
856 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
857 DPRINTF(sc, ATH_DBG_FATAL,
858 "qnum %u out of range, max %u!\n",
859 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
860 ath9k_hw_releasetxqueue(ah, qnum);
861 return NULL;
863 if (!ATH_TXQ_SETUP(sc, qnum)) {
864 struct ath_txq *txq = &sc->tx.txq[qnum];
866 txq->axq_qnum = qnum;
867 txq->axq_link = NULL;
868 INIT_LIST_HEAD(&txq->axq_q);
869 INIT_LIST_HEAD(&txq->axq_acq);
870 spin_lock_init(&txq->axq_lock);
871 txq->axq_depth = 0;
872 txq->axq_aggr_depth = 0;
873 txq->axq_linkbuf = NULL;
874 txq->axq_tx_inprogress = false;
875 sc->tx.txqsetup |= 1<<qnum;
877 return &sc->tx.txq[qnum];
880 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
882 int qnum;
884 switch (qtype) {
885 case ATH9K_TX_QUEUE_DATA:
886 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
887 DPRINTF(sc, ATH_DBG_FATAL,
888 "HAL AC %u out of range, max %zu!\n",
889 haltype, ARRAY_SIZE(sc->tx.hwq_map));
890 return -1;
892 qnum = sc->tx.hwq_map[haltype];
893 break;
894 case ATH9K_TX_QUEUE_BEACON:
895 qnum = sc->beacon.beaconq;
896 break;
897 case ATH9K_TX_QUEUE_CAB:
898 qnum = sc->beacon.cabq->axq_qnum;
899 break;
900 default:
901 qnum = -1;
903 return qnum;
906 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
908 struct ath_txq *txq = NULL;
909 int qnum;
911 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
912 txq = &sc->tx.txq[qnum];
914 spin_lock_bh(&txq->axq_lock);
916 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
917 DPRINTF(sc, ATH_DBG_XMIT,
918 "TX queue: %d is full, depth: %d\n",
919 qnum, txq->axq_depth);
920 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
921 txq->stopped = 1;
922 spin_unlock_bh(&txq->axq_lock);
923 return NULL;
926 spin_unlock_bh(&txq->axq_lock);
928 return txq;
931 int ath_txq_update(struct ath_softc *sc, int qnum,
932 struct ath9k_tx_queue_info *qinfo)
934 struct ath_hw *ah = sc->sc_ah;
935 int error = 0;
936 struct ath9k_tx_queue_info qi;
938 if (qnum == sc->beacon.beaconq) {
940 * XXX: for beacon queue, we just save the parameter.
941 * It will be picked up by ath_beaconq_config when
942 * it's necessary.
944 sc->beacon.beacon_qi = *qinfo;
945 return 0;
948 ASSERT(sc->tx.txq[qnum].axq_qnum == qnum);
950 ath9k_hw_get_txq_props(ah, qnum, &qi);
951 qi.tqi_aifs = qinfo->tqi_aifs;
952 qi.tqi_cwmin = qinfo->tqi_cwmin;
953 qi.tqi_cwmax = qinfo->tqi_cwmax;
954 qi.tqi_burstTime = qinfo->tqi_burstTime;
955 qi.tqi_readyTime = qinfo->tqi_readyTime;
957 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
958 DPRINTF(sc, ATH_DBG_FATAL,
959 "Unable to update hardware queue %u!\n", qnum);
960 error = -EIO;
961 } else {
962 ath9k_hw_resettxqueue(ah, qnum);
965 return error;
968 int ath_cabq_update(struct ath_softc *sc)
970 struct ath9k_tx_queue_info qi;
971 int qnum = sc->beacon.cabq->axq_qnum;
973 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
975 * Ensure the readytime % is within the bounds.
977 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
978 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
979 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
980 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
982 qi.tqi_readyTime = (sc->beacon_interval *
983 sc->config.cabqReadytime) / 100;
984 ath_txq_update(sc, qnum, &qi);
986 return 0;
990 * Drain a given TX queue (could be Beacon or Data)
992 * This assumes output has been stopped and
993 * we do not need to block ath_tx_tasklet.
995 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
997 struct ath_buf *bf, *lastbf;
998 struct list_head bf_head;
1000 INIT_LIST_HEAD(&bf_head);
1002 for (;;) {
1003 spin_lock_bh(&txq->axq_lock);
1005 if (list_empty(&txq->axq_q)) {
1006 txq->axq_link = NULL;
1007 txq->axq_linkbuf = NULL;
1008 spin_unlock_bh(&txq->axq_lock);
1009 break;
1012 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1014 if (bf->bf_stale) {
1015 list_del(&bf->list);
1016 spin_unlock_bh(&txq->axq_lock);
1018 spin_lock_bh(&sc->tx.txbuflock);
1019 list_add_tail(&bf->list, &sc->tx.txbuf);
1020 spin_unlock_bh(&sc->tx.txbuflock);
1021 continue;
1024 lastbf = bf->bf_lastbf;
1025 if (!retry_tx)
1026 lastbf->bf_desc->ds_txstat.ts_flags =
1027 ATH9K_TX_SW_ABORTED;
1029 /* remove ath_buf's of the same mpdu from txq */
1030 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1031 txq->axq_depth--;
1033 spin_unlock_bh(&txq->axq_lock);
1035 if (bf_isampdu(bf))
1036 ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0);
1037 else
1038 ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
1041 spin_lock_bh(&txq->axq_lock);
1042 txq->axq_tx_inprogress = false;
1043 spin_unlock_bh(&txq->axq_lock);
1045 /* flush any pending frames if aggregation is enabled */
1046 if (sc->sc_flags & SC_OP_TXAGGR) {
1047 if (!retry_tx) {
1048 spin_lock_bh(&txq->axq_lock);
1049 ath_txq_drain_pending_buffers(sc, txq);
1050 spin_unlock_bh(&txq->axq_lock);
1055 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1057 struct ath_hw *ah = sc->sc_ah;
1058 struct ath_txq *txq;
1059 int i, npend = 0;
1061 if (sc->sc_flags & SC_OP_INVALID)
1062 return;
1064 /* Stop beacon queue */
1065 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1067 /* Stop data queues */
1068 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1069 if (ATH_TXQ_SETUP(sc, i)) {
1070 txq = &sc->tx.txq[i];
1071 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1072 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1076 if (npend) {
1077 int r;
1079 DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n");
1081 spin_lock_bh(&sc->sc_resetlock);
1082 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, true);
1083 if (r)
1084 DPRINTF(sc, ATH_DBG_FATAL,
1085 "Unable to reset hardware; reset status %d\n",
1087 spin_unlock_bh(&sc->sc_resetlock);
1090 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1091 if (ATH_TXQ_SETUP(sc, i))
1092 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1096 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1098 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1099 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1102 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1104 struct ath_atx_ac *ac;
1105 struct ath_atx_tid *tid;
1107 if (list_empty(&txq->axq_acq))
1108 return;
1110 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1111 list_del(&ac->list);
1112 ac->sched = false;
1114 do {
1115 if (list_empty(&ac->tid_q))
1116 return;
1118 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1119 list_del(&tid->list);
1120 tid->sched = false;
1122 if (tid->paused)
1123 continue;
1125 ath_tx_sched_aggr(sc, txq, tid);
1128 * add tid to round-robin queue if more frames
1129 * are pending for the tid
1131 if (!list_empty(&tid->buf_q))
1132 ath_tx_queue_tid(txq, tid);
1134 break;
1135 } while (!list_empty(&ac->tid_q));
1137 if (!list_empty(&ac->tid_q)) {
1138 if (!ac->sched) {
1139 ac->sched = true;
1140 list_add_tail(&ac->list, &txq->axq_acq);
1145 int ath_tx_setup(struct ath_softc *sc, int haltype)
1147 struct ath_txq *txq;
1149 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1150 DPRINTF(sc, ATH_DBG_FATAL,
1151 "HAL AC %u out of range, max %zu!\n",
1152 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1153 return 0;
1155 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1156 if (txq != NULL) {
1157 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1158 return 1;
1159 } else
1160 return 0;
1163 /***********/
1164 /* TX, DMA */
1165 /***********/
1168 * Insert a chain of ath_buf (descriptors) on a txq and
1169 * assume the descriptors are already chained together by caller.
1171 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1172 struct list_head *head)
1174 struct ath_hw *ah = sc->sc_ah;
1175 struct ath_buf *bf;
1178 * Insert the frame on the outbound list and
1179 * pass it on to the hardware.
1182 if (list_empty(head))
1183 return;
1185 bf = list_first_entry(head, struct ath_buf, list);
1187 list_splice_tail_init(head, &txq->axq_q);
1188 txq->axq_depth++;
1189 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
1191 DPRINTF(sc, ATH_DBG_QUEUE,
1192 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1194 if (txq->axq_link == NULL) {
1195 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1196 DPRINTF(sc, ATH_DBG_XMIT,
1197 "TXDP[%u] = %llx (%p)\n",
1198 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1199 } else {
1200 *txq->axq_link = bf->bf_daddr;
1201 DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1202 txq->axq_qnum, txq->axq_link,
1203 ito64(bf->bf_daddr), bf->bf_desc);
1205 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1206 ath9k_hw_txstart(ah, txq->axq_qnum);
1209 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
1211 struct ath_buf *bf = NULL;
1213 spin_lock_bh(&sc->tx.txbuflock);
1215 if (unlikely(list_empty(&sc->tx.txbuf))) {
1216 spin_unlock_bh(&sc->tx.txbuflock);
1217 return NULL;
1220 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
1221 list_del(&bf->list);
1223 spin_unlock_bh(&sc->tx.txbuflock);
1225 return bf;
1228 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1229 struct list_head *bf_head,
1230 struct ath_tx_control *txctl)
1232 struct ath_buf *bf;
1234 bf = list_first_entry(bf_head, struct ath_buf, list);
1235 bf->bf_state.bf_type |= BUF_AMPDU;
1236 TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1239 * Do not queue to h/w when any of the following conditions is true:
1240 * - there are pending frames in software queue
1241 * - the TID is currently paused for ADDBA/BAR request
1242 * - seqno is not within block-ack window
1243 * - h/w queue depth exceeds low water mark
1245 if (!list_empty(&tid->buf_q) || tid->paused ||
1246 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1247 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1249 * Add this frame to software queue for scheduling later
1250 * for aggregation.
1252 list_move_tail(&bf->list, &tid->buf_q);
1253 ath_tx_queue_tid(txctl->txq, tid);
1254 return;
1257 /* Add sub-frame to BAW */
1258 ath_tx_addto_baw(sc, tid, bf);
1260 /* Queue to h/w without aggregation */
1261 bf->bf_nframes = 1;
1262 bf->bf_lastbf = bf;
1263 ath_buf_set_rate(sc, bf);
1264 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1267 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1268 struct ath_atx_tid *tid,
1269 struct list_head *bf_head)
1271 struct ath_buf *bf;
1273 bf = list_first_entry(bf_head, struct ath_buf, list);
1274 bf->bf_state.bf_type &= ~BUF_AMPDU;
1276 /* update starting sequence number for subsequent ADDBA request */
1277 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1279 bf->bf_nframes = 1;
1280 bf->bf_lastbf = bf;
1281 ath_buf_set_rate(sc, bf);
1282 ath_tx_txqaddbuf(sc, txq, bf_head);
1283 TX_STAT_INC(txq->axq_qnum, queued);
1286 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1287 struct list_head *bf_head)
1289 struct ath_buf *bf;
1291 bf = list_first_entry(bf_head, struct ath_buf, list);
1293 bf->bf_lastbf = bf;
1294 bf->bf_nframes = 1;
1295 ath_buf_set_rate(sc, bf);
1296 ath_tx_txqaddbuf(sc, txq, bf_head);
1297 TX_STAT_INC(txq->axq_qnum, queued);
1300 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1302 struct ieee80211_hdr *hdr;
1303 enum ath9k_pkt_type htype;
1304 __le16 fc;
1306 hdr = (struct ieee80211_hdr *)skb->data;
1307 fc = hdr->frame_control;
1309 if (ieee80211_is_beacon(fc))
1310 htype = ATH9K_PKT_TYPE_BEACON;
1311 else if (ieee80211_is_probe_resp(fc))
1312 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1313 else if (ieee80211_is_atim(fc))
1314 htype = ATH9K_PKT_TYPE_ATIM;
1315 else if (ieee80211_is_pspoll(fc))
1316 htype = ATH9K_PKT_TYPE_PSPOLL;
1317 else
1318 htype = ATH9K_PKT_TYPE_NORMAL;
1320 return htype;
1323 static bool is_pae(struct sk_buff *skb)
1325 struct ieee80211_hdr *hdr;
1326 __le16 fc;
1328 hdr = (struct ieee80211_hdr *)skb->data;
1329 fc = hdr->frame_control;
1331 if (ieee80211_is_data(fc)) {
1332 if (ieee80211_is_nullfunc(fc) ||
1333 /* Port Access Entity (IEEE 802.1X) */
1334 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1335 return true;
1339 return false;
1342 static int get_hw_crypto_keytype(struct sk_buff *skb)
1344 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1346 if (tx_info->control.hw_key) {
1347 if (tx_info->control.hw_key->alg == ALG_WEP)
1348 return ATH9K_KEY_TYPE_WEP;
1349 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1350 return ATH9K_KEY_TYPE_TKIP;
1351 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1352 return ATH9K_KEY_TYPE_AES;
1355 return ATH9K_KEY_TYPE_CLEAR;
1358 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1359 struct ath_buf *bf)
1361 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1362 struct ieee80211_hdr *hdr;
1363 struct ath_node *an;
1364 struct ath_atx_tid *tid;
1365 __le16 fc;
1366 u8 *qc;
1368 if (!tx_info->control.sta)
1369 return;
1371 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1372 hdr = (struct ieee80211_hdr *)skb->data;
1373 fc = hdr->frame_control;
1375 if (ieee80211_is_data_qos(fc)) {
1376 qc = ieee80211_get_qos_ctl(hdr);
1377 bf->bf_tidno = qc[0] & 0xf;
1381 * For HT capable stations, we save tidno for later use.
1382 * We also override seqno set by upper layer with the one
1383 * in tx aggregation state.
1385 * If fragmentation is on, the sequence number is
1386 * not overridden, since it has been
1387 * incremented by the fragmentation routine.
1389 * FIXME: check if the fragmentation threshold exceeds
1390 * IEEE80211 max.
1392 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1393 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
1394 IEEE80211_SEQ_SEQ_SHIFT);
1395 bf->bf_seqno = tid->seq_next;
1396 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1399 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
1400 struct ath_txq *txq)
1402 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1403 int flags = 0;
1405 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1406 flags |= ATH9K_TXDESC_INTREQ;
1408 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1409 flags |= ATH9K_TXDESC_NOACK;
1411 return flags;
1415 * rix - rate index
1416 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1417 * width - 0 for 20 MHz, 1 for 40 MHz
1418 * half_gi - to use 4us v/s 3.6 us for symbol time
1420 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1421 int width, int half_gi, bool shortPreamble)
1423 const struct ath_rate_table *rate_table = sc->cur_rate_table;
1424 u32 nbits, nsymbits, duration, nsymbols;
1425 u8 rc;
1426 int streams, pktlen;
1428 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1429 rc = rate_table->info[rix].ratecode;
1431 /* for legacy rates, use old function to compute packet duration */
1432 if (!IS_HT_RATE(rc))
1433 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
1434 rix, shortPreamble);
1436 /* find number of symbols: PLCP + data */
1437 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1438 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1439 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1441 if (!half_gi)
1442 duration = SYMBOL_TIME(nsymbols);
1443 else
1444 duration = SYMBOL_TIME_HALFGI(nsymbols);
1446 /* addup duration for legacy/ht training and signal fields */
1447 streams = HT_RC_2_STREAMS(rc);
1448 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1450 return duration;
1453 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1455 const struct ath_rate_table *rt = sc->cur_rate_table;
1456 struct ath9k_11n_rate_series series[4];
1457 struct sk_buff *skb;
1458 struct ieee80211_tx_info *tx_info;
1459 struct ieee80211_tx_rate *rates;
1460 struct ieee80211_hdr *hdr;
1461 int i, flags = 0;
1462 u8 rix = 0, ctsrate = 0;
1463 bool is_pspoll;
1465 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1467 skb = bf->bf_mpdu;
1468 tx_info = IEEE80211_SKB_CB(skb);
1469 rates = tx_info->control.rates;
1470 hdr = (struct ieee80211_hdr *)skb->data;
1471 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1474 * We check if Short Preamble is needed for the CTS rate by
1475 * checking the BSS's global flag.
1476 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1478 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1479 ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode |
1480 rt->info[tx_info->control.rts_cts_rate_idx].short_preamble;
1481 else
1482 ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode;
1485 * ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive.
1486 * Check the first rate in the series to decide whether RTS/CTS
1487 * or CTS-to-self has to be used.
1489 if (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1490 flags = ATH9K_TXDESC_CTSENA;
1491 else if (rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1492 flags = ATH9K_TXDESC_RTSENA;
1494 /* FIXME: Handle aggregation protection */
1495 if (sc->config.ath_aggr_prot &&
1496 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
1497 flags = ATH9K_TXDESC_RTSENA;
1500 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1501 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1502 flags &= ~(ATH9K_TXDESC_RTSENA);
1504 for (i = 0; i < 4; i++) {
1505 if (!rates[i].count || (rates[i].idx < 0))
1506 continue;
1508 rix = rates[i].idx;
1509 series[i].Tries = rates[i].count;
1510 series[i].ChSel = sc->tx_chainmask;
1512 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1513 series[i].Rate = rt->info[rix].ratecode |
1514 rt->info[rix].short_preamble;
1515 else
1516 series[i].Rate = rt->info[rix].ratecode;
1518 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1519 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1520 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1521 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1522 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1523 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1525 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1526 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
1527 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
1528 (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE));
1531 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1532 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1533 bf->bf_lastbf->bf_desc,
1534 !is_pspoll, ctsrate,
1535 0, series, 4, flags);
1537 if (sc->config.ath_aggr_prot && flags)
1538 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1541 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1542 struct sk_buff *skb,
1543 struct ath_tx_control *txctl)
1545 struct ath_wiphy *aphy = hw->priv;
1546 struct ath_softc *sc = aphy->sc;
1547 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1548 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1549 struct ath_tx_info_priv *tx_info_priv;
1550 int hdrlen;
1551 __le16 fc;
1553 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1554 if (unlikely(!tx_info_priv))
1555 return -ENOMEM;
1556 tx_info->rate_driver_data[0] = tx_info_priv;
1557 tx_info_priv->aphy = aphy;
1558 tx_info_priv->frame_type = txctl->frame_type;
1559 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1560 fc = hdr->frame_control;
1562 ATH_TXBUF_RESET(bf);
1564 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1566 if (conf_is_ht(&sc->hw->conf) && !is_pae(skb))
1567 bf->bf_state.bf_type |= BUF_HT;
1569 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1571 bf->bf_keytype = get_hw_crypto_keytype(skb);
1572 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1573 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1574 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1575 } else {
1576 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1579 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1580 assign_aggr_tid_seqno(skb, bf);
1582 bf->bf_mpdu = skb;
1584 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1585 skb->len, DMA_TO_DEVICE);
1586 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1587 bf->bf_mpdu = NULL;
1588 kfree(tx_info_priv);
1589 tx_info->rate_driver_data[0] = NULL;
1590 DPRINTF(sc, ATH_DBG_FATAL, "dma_mapping_error() on TX\n");
1591 return -ENOMEM;
1594 bf->bf_buf_addr = bf->bf_dmacontext;
1595 return 0;
1598 /* FIXME: tx power */
1599 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1600 struct ath_tx_control *txctl)
1602 struct sk_buff *skb = bf->bf_mpdu;
1603 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1604 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1605 struct ath_node *an = NULL;
1606 struct list_head bf_head;
1607 struct ath_desc *ds;
1608 struct ath_atx_tid *tid;
1609 struct ath_hw *ah = sc->sc_ah;
1610 int frm_type;
1611 __le16 fc;
1613 frm_type = get_hw_packet_type(skb);
1614 fc = hdr->frame_control;
1616 INIT_LIST_HEAD(&bf_head);
1617 list_add_tail(&bf->list, &bf_head);
1619 ds = bf->bf_desc;
1620 ds->ds_link = 0;
1621 ds->ds_data = bf->bf_buf_addr;
1623 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1624 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1626 ath9k_hw_filltxdesc(ah, ds,
1627 skb->len, /* segment length */
1628 true, /* first segment */
1629 true, /* last segment */
1630 ds); /* first descriptor */
1632 spin_lock_bh(&txctl->txq->axq_lock);
1634 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1635 tx_info->control.sta) {
1636 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1637 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1639 if (!ieee80211_is_data_qos(fc)) {
1640 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1641 goto tx_done;
1644 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1646 * Try aggregation if it's a unicast data frame
1647 * and the destination is HT capable.
1649 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1650 } else {
1652 * Send this frame as regular when ADDBA
1653 * exchange is neither complete nor pending.
1655 ath_tx_send_ht_normal(sc, txctl->txq,
1656 tid, &bf_head);
1658 } else {
1659 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1662 tx_done:
1663 spin_unlock_bh(&txctl->txq->axq_lock);
1666 /* Upon failure caller should free skb */
1667 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1668 struct ath_tx_control *txctl)
1670 struct ath_wiphy *aphy = hw->priv;
1671 struct ath_softc *sc = aphy->sc;
1672 struct ath_buf *bf;
1673 int r;
1675 bf = ath_tx_get_buffer(sc);
1676 if (!bf) {
1677 DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n");
1678 return -1;
1681 r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1682 if (unlikely(r)) {
1683 struct ath_txq *txq = txctl->txq;
1685 DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n");
1687 /* upon ath_tx_processq() this TX queue will be resumed, we
1688 * guarantee this will happen by knowing beforehand that
1689 * we will at least have to run TX completionon one buffer
1690 * on the queue */
1691 spin_lock_bh(&txq->axq_lock);
1692 if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) {
1693 ieee80211_stop_queue(sc->hw,
1694 skb_get_queue_mapping(skb));
1695 txq->stopped = 1;
1697 spin_unlock_bh(&txq->axq_lock);
1699 spin_lock_bh(&sc->tx.txbuflock);
1700 list_add_tail(&bf->list, &sc->tx.txbuf);
1701 spin_unlock_bh(&sc->tx.txbuflock);
1703 return r;
1706 ath_tx_start_dma(sc, bf, txctl);
1708 return 0;
1711 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1713 struct ath_wiphy *aphy = hw->priv;
1714 struct ath_softc *sc = aphy->sc;
1715 int hdrlen, padsize;
1716 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1717 struct ath_tx_control txctl;
1719 memset(&txctl, 0, sizeof(struct ath_tx_control));
1722 * As a temporary workaround, assign seq# here; this will likely need
1723 * to be cleaned up to work better with Beacon transmission and virtual
1724 * BSSes.
1726 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1727 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1728 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1729 sc->tx.seq_no += 0x10;
1730 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1731 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1734 /* Add the padding after the header if this is not already done */
1735 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1736 if (hdrlen & 3) {
1737 padsize = hdrlen % 4;
1738 if (skb_headroom(skb) < padsize) {
1739 DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n");
1740 dev_kfree_skb_any(skb);
1741 return;
1743 skb_push(skb, padsize);
1744 memmove(skb->data, skb->data + padsize, hdrlen);
1747 txctl.txq = sc->beacon.cabq;
1749 DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb);
1751 if (ath_tx_start(hw, skb, &txctl) != 0) {
1752 DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n");
1753 goto exit;
1756 return;
1757 exit:
1758 dev_kfree_skb_any(skb);
1761 /*****************/
1762 /* TX Completion */
1763 /*****************/
1765 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1766 int tx_flags)
1768 struct ieee80211_hw *hw = sc->hw;
1769 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1770 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1771 int hdrlen, padsize;
1772 int frame_type = ATH9K_NOT_INTERNAL;
1774 DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1776 if (tx_info_priv) {
1777 hw = tx_info_priv->aphy->hw;
1778 frame_type = tx_info_priv->frame_type;
1781 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
1782 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
1783 kfree(tx_info_priv);
1784 tx_info->rate_driver_data[0] = NULL;
1787 if (tx_flags & ATH_TX_BAR)
1788 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1790 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1791 /* Frame was ACKed */
1792 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1795 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1796 padsize = hdrlen & 3;
1797 if (padsize && hdrlen >= 24) {
1799 * Remove MAC header padding before giving the frame back to
1800 * mac80211.
1802 memmove(skb->data + padsize, skb->data, hdrlen);
1803 skb_pull(skb, padsize);
1806 if (sc->sc_flags & SC_OP_WAIT_FOR_TX_ACK) {
1807 sc->sc_flags &= ~SC_OP_WAIT_FOR_TX_ACK;
1808 DPRINTF(sc, ATH_DBG_PS, "Going back to sleep after having "
1809 "received TX status (0x%x)\n",
1810 sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
1811 SC_OP_WAIT_FOR_CAB |
1812 SC_OP_WAIT_FOR_PSPOLL_DATA |
1813 SC_OP_WAIT_FOR_TX_ACK));
1816 if (frame_type == ATH9K_NOT_INTERNAL)
1817 ieee80211_tx_status(hw, skb);
1818 else
1819 ath9k_tx_status(hw, skb);
1822 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1823 struct ath_txq *txq,
1824 struct list_head *bf_q,
1825 int txok, int sendbar)
1827 struct sk_buff *skb = bf->bf_mpdu;
1828 unsigned long flags;
1829 int tx_flags = 0;
1831 if (sendbar)
1832 tx_flags = ATH_TX_BAR;
1834 if (!txok) {
1835 tx_flags |= ATH_TX_ERROR;
1837 if (bf_isxretried(bf))
1838 tx_flags |= ATH_TX_XRETRY;
1841 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1842 ath_tx_complete(sc, skb, tx_flags);
1843 ath_debug_stat_tx(sc, txq, bf);
1846 * Return the list of ath_buf of this mpdu to free queue
1848 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1849 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1850 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1853 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1854 int txok)
1856 struct ath_buf *bf_last = bf->bf_lastbf;
1857 struct ath_desc *ds = bf_last->bf_desc;
1858 u16 seq_st = 0;
1859 u32 ba[WME_BA_BMP_SIZE >> 5];
1860 int ba_index;
1861 int nbad = 0;
1862 int isaggr = 0;
1864 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
1865 return 0;
1867 isaggr = bf_isaggr(bf);
1868 if (isaggr) {
1869 seq_st = ATH_DS_BA_SEQ(ds);
1870 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
1873 while (bf) {
1874 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1875 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1876 nbad++;
1878 bf = bf->bf_next;
1881 return nbad;
1884 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
1885 int nbad, int txok, bool update_rc)
1887 struct sk_buff *skb = bf->bf_mpdu;
1888 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1889 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1890 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1891 struct ieee80211_hw *hw = tx_info_priv->aphy->hw;
1892 u8 i, tx_rateindex;
1894 if (txok)
1895 tx_info->status.ack_signal = ds->ds_txstat.ts_rssi;
1897 tx_rateindex = ds->ds_txstat.ts_rateindex;
1898 WARN_ON(tx_rateindex >= hw->max_rates);
1900 tx_info_priv->update_rc = update_rc;
1901 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1902 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1904 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1905 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
1906 if (ieee80211_is_data(hdr->frame_control)) {
1907 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
1908 sizeof(tx_info_priv->tx));
1909 tx_info_priv->n_frames = bf->bf_nframes;
1910 tx_info_priv->n_bad_frames = nbad;
1914 for (i = tx_rateindex + 1; i < hw->max_rates; i++)
1915 tx_info->status.rates[i].count = 0;
1917 tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
1920 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
1922 int qnum;
1924 spin_lock_bh(&txq->axq_lock);
1925 if (txq->stopped &&
1926 sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) {
1927 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1928 if (qnum != -1) {
1929 ieee80211_wake_queue(sc->hw, qnum);
1930 txq->stopped = 0;
1933 spin_unlock_bh(&txq->axq_lock);
1936 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1938 struct ath_hw *ah = sc->sc_ah;
1939 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1940 struct list_head bf_head;
1941 struct ath_desc *ds;
1942 int txok;
1943 int status;
1945 DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
1946 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1947 txq->axq_link);
1949 for (;;) {
1950 spin_lock_bh(&txq->axq_lock);
1951 if (list_empty(&txq->axq_q)) {
1952 txq->axq_link = NULL;
1953 txq->axq_linkbuf = NULL;
1954 spin_unlock_bh(&txq->axq_lock);
1955 break;
1957 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1960 * There is a race condition that a BH gets scheduled
1961 * after sw writes TxE and before hw re-load the last
1962 * descriptor to get the newly chained one.
1963 * Software must keep the last DONE descriptor as a
1964 * holding descriptor - software does so by marking
1965 * it with the STALE flag.
1967 bf_held = NULL;
1968 if (bf->bf_stale) {
1969 bf_held = bf;
1970 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1971 spin_unlock_bh(&txq->axq_lock);
1972 break;
1973 } else {
1974 bf = list_entry(bf_held->list.next,
1975 struct ath_buf, list);
1979 lastbf = bf->bf_lastbf;
1980 ds = lastbf->bf_desc;
1982 status = ath9k_hw_txprocdesc(ah, ds);
1983 if (status == -EINPROGRESS) {
1984 spin_unlock_bh(&txq->axq_lock);
1985 break;
1987 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1988 txq->axq_lastdsWithCTS = NULL;
1989 if (ds == txq->axq_gatingds)
1990 txq->axq_gatingds = NULL;
1993 * Remove ath_buf's of the same transmit unit from txq,
1994 * however leave the last descriptor back as the holding
1995 * descriptor for hw.
1997 lastbf->bf_stale = true;
1998 INIT_LIST_HEAD(&bf_head);
1999 if (!list_is_singular(&lastbf->list))
2000 list_cut_position(&bf_head,
2001 &txq->axq_q, lastbf->list.prev);
2003 txq->axq_depth--;
2004 if (bf_isaggr(bf))
2005 txq->axq_aggr_depth--;
2007 txok = (ds->ds_txstat.ts_status == 0);
2008 txq->axq_tx_inprogress = false;
2009 spin_unlock_bh(&txq->axq_lock);
2011 if (bf_held) {
2012 spin_lock_bh(&sc->tx.txbuflock);
2013 list_move_tail(&bf_held->list, &sc->tx.txbuf);
2014 spin_unlock_bh(&sc->tx.txbuflock);
2017 if (!bf_isampdu(bf)) {
2019 * This frame is sent out as a single frame.
2020 * Use hardware retry status for this frame.
2022 bf->bf_retries = ds->ds_txstat.ts_longretry;
2023 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
2024 bf->bf_state.bf_type |= BUF_XRETRY;
2025 ath_tx_rc_status(bf, ds, 0, txok, true);
2028 if (bf_isampdu(bf))
2029 ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok);
2030 else
2031 ath_tx_complete_buf(sc, bf, txq, &bf_head, txok, 0);
2033 ath_wake_mac80211_queue(sc, txq);
2035 spin_lock_bh(&txq->axq_lock);
2036 if (sc->sc_flags & SC_OP_TXAGGR)
2037 ath_txq_schedule(sc, txq);
2038 spin_unlock_bh(&txq->axq_lock);
2042 static void ath_tx_complete_poll_work(struct work_struct *work)
2044 struct ath_softc *sc = container_of(work, struct ath_softc,
2045 tx_complete_work.work);
2046 struct ath_txq *txq;
2047 int i;
2048 bool needreset = false;
2050 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2051 if (ATH_TXQ_SETUP(sc, i)) {
2052 txq = &sc->tx.txq[i];
2053 spin_lock_bh(&txq->axq_lock);
2054 if (txq->axq_depth) {
2055 if (txq->axq_tx_inprogress) {
2056 needreset = true;
2057 spin_unlock_bh(&txq->axq_lock);
2058 break;
2059 } else {
2060 txq->axq_tx_inprogress = true;
2063 spin_unlock_bh(&txq->axq_lock);
2066 if (needreset) {
2067 DPRINTF(sc, ATH_DBG_RESET, "tx hung, resetting the chip\n");
2068 ath_reset(sc, false);
2071 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2072 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2077 void ath_tx_tasklet(struct ath_softc *sc)
2079 int i;
2080 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2082 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2084 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2085 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2086 ath_tx_processq(sc, &sc->tx.txq[i]);
2090 /*****************/
2091 /* Init, Cleanup */
2092 /*****************/
2094 int ath_tx_init(struct ath_softc *sc, int nbufs)
2096 int error = 0;
2098 spin_lock_init(&sc->tx.txbuflock);
2100 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2101 "tx", nbufs, 1);
2102 if (error != 0) {
2103 DPRINTF(sc, ATH_DBG_FATAL,
2104 "Failed to allocate tx descriptors: %d\n", error);
2105 goto err;
2108 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2109 "beacon", ATH_BCBUF, 1);
2110 if (error != 0) {
2111 DPRINTF(sc, ATH_DBG_FATAL,
2112 "Failed to allocate beacon descriptors: %d\n", error);
2113 goto err;
2116 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2118 err:
2119 if (error != 0)
2120 ath_tx_cleanup(sc);
2122 return error;
2125 void ath_tx_cleanup(struct ath_softc *sc)
2127 if (sc->beacon.bdma.dd_desc_len != 0)
2128 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2130 if (sc->tx.txdma.dd_desc_len != 0)
2131 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2134 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2136 struct ath_atx_tid *tid;
2137 struct ath_atx_ac *ac;
2138 int tidno, acno;
2140 for (tidno = 0, tid = &an->tid[tidno];
2141 tidno < WME_NUM_TID;
2142 tidno++, tid++) {
2143 tid->an = an;
2144 tid->tidno = tidno;
2145 tid->seq_start = tid->seq_next = 0;
2146 tid->baw_size = WME_MAX_BA;
2147 tid->baw_head = tid->baw_tail = 0;
2148 tid->sched = false;
2149 tid->paused = false;
2150 tid->state &= ~AGGR_CLEANUP;
2151 INIT_LIST_HEAD(&tid->buf_q);
2152 acno = TID_TO_WME_AC(tidno);
2153 tid->ac = &an->ac[acno];
2154 tid->state &= ~AGGR_ADDBA_COMPLETE;
2155 tid->state &= ~AGGR_ADDBA_PROGRESS;
2158 for (acno = 0, ac = &an->ac[acno];
2159 acno < WME_NUM_AC; acno++, ac++) {
2160 ac->sched = false;
2161 INIT_LIST_HEAD(&ac->tid_q);
2163 switch (acno) {
2164 case WME_AC_BE:
2165 ac->qnum = ath_tx_get_qnum(sc,
2166 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2167 break;
2168 case WME_AC_BK:
2169 ac->qnum = ath_tx_get_qnum(sc,
2170 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2171 break;
2172 case WME_AC_VI:
2173 ac->qnum = ath_tx_get_qnum(sc,
2174 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2175 break;
2176 case WME_AC_VO:
2177 ac->qnum = ath_tx_get_qnum(sc,
2178 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2179 break;
2184 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2186 int i;
2187 struct ath_atx_ac *ac, *ac_tmp;
2188 struct ath_atx_tid *tid, *tid_tmp;
2189 struct ath_txq *txq;
2191 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2192 if (ATH_TXQ_SETUP(sc, i)) {
2193 txq = &sc->tx.txq[i];
2195 spin_lock(&txq->axq_lock);
2197 list_for_each_entry_safe(ac,
2198 ac_tmp, &txq->axq_acq, list) {
2199 tid = list_first_entry(&ac->tid_q,
2200 struct ath_atx_tid, list);
2201 if (tid && tid->an != an)
2202 continue;
2203 list_del(&ac->list);
2204 ac->sched = false;
2206 list_for_each_entry_safe(tid,
2207 tid_tmp, &ac->tid_q, list) {
2208 list_del(&tid->list);
2209 tid->sched = false;
2210 ath_tid_drain(sc, txq, tid);
2211 tid->state &= ~AGGR_ADDBA_COMPLETE;
2212 tid->state &= ~AGGR_CLEANUP;
2216 spin_unlock(&txq->axq_lock);