x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / iwmc3200wifi / cfg80211.c
blobf3c55658225bb97951a5ab9055030b84f9ed6389
1 /*
2 * Intel Wireless Multicomm 3200 WiFi driver
4 * Copyright (C) 2009 Intel Corporation <ilw@linux.intel.com>
5 * Samuel Ortiz <samuel.ortiz@intel.com>
6 * Zhu Yi <yi.zhu@intel.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
24 #include <linux/kernel.h>
25 #include <linux/netdevice.h>
26 #include <linux/sched.h>
27 #include <linux/etherdevice.h>
28 #include <linux/wireless.h>
29 #include <linux/ieee80211.h>
30 #include <net/cfg80211.h>
32 #include "iwm.h"
33 #include "commands.h"
34 #include "cfg80211.h"
35 #include "debug.h"
37 #define RATETAB_ENT(_rate, _rateid, _flags) \
38 { \
39 .bitrate = (_rate), \
40 .hw_value = (_rateid), \
41 .flags = (_flags), \
44 #define CHAN2G(_channel, _freq, _flags) { \
45 .band = IEEE80211_BAND_2GHZ, \
46 .center_freq = (_freq), \
47 .hw_value = (_channel), \
48 .flags = (_flags), \
49 .max_antenna_gain = 0, \
50 .max_power = 30, \
53 #define CHAN5G(_channel, _flags) { \
54 .band = IEEE80211_BAND_5GHZ, \
55 .center_freq = 5000 + (5 * (_channel)), \
56 .hw_value = (_channel), \
57 .flags = (_flags), \
58 .max_antenna_gain = 0, \
59 .max_power = 30, \
62 static struct ieee80211_rate iwm_rates[] = {
63 RATETAB_ENT(10, 0x1, 0),
64 RATETAB_ENT(20, 0x2, 0),
65 RATETAB_ENT(55, 0x4, 0),
66 RATETAB_ENT(110, 0x8, 0),
67 RATETAB_ENT(60, 0x10, 0),
68 RATETAB_ENT(90, 0x20, 0),
69 RATETAB_ENT(120, 0x40, 0),
70 RATETAB_ENT(180, 0x80, 0),
71 RATETAB_ENT(240, 0x100, 0),
72 RATETAB_ENT(360, 0x200, 0),
73 RATETAB_ENT(480, 0x400, 0),
74 RATETAB_ENT(540, 0x800, 0),
77 #define iwm_a_rates (iwm_rates + 4)
78 #define iwm_a_rates_size 8
79 #define iwm_g_rates (iwm_rates + 0)
80 #define iwm_g_rates_size 12
82 static struct ieee80211_channel iwm_2ghz_channels[] = {
83 CHAN2G(1, 2412, 0),
84 CHAN2G(2, 2417, 0),
85 CHAN2G(3, 2422, 0),
86 CHAN2G(4, 2427, 0),
87 CHAN2G(5, 2432, 0),
88 CHAN2G(6, 2437, 0),
89 CHAN2G(7, 2442, 0),
90 CHAN2G(8, 2447, 0),
91 CHAN2G(9, 2452, 0),
92 CHAN2G(10, 2457, 0),
93 CHAN2G(11, 2462, 0),
94 CHAN2G(12, 2467, 0),
95 CHAN2G(13, 2472, 0),
96 CHAN2G(14, 2484, 0),
99 static struct ieee80211_channel iwm_5ghz_a_channels[] = {
100 CHAN5G(34, 0), CHAN5G(36, 0),
101 CHAN5G(38, 0), CHAN5G(40, 0),
102 CHAN5G(42, 0), CHAN5G(44, 0),
103 CHAN5G(46, 0), CHAN5G(48, 0),
104 CHAN5G(52, 0), CHAN5G(56, 0),
105 CHAN5G(60, 0), CHAN5G(64, 0),
106 CHAN5G(100, 0), CHAN5G(104, 0),
107 CHAN5G(108, 0), CHAN5G(112, 0),
108 CHAN5G(116, 0), CHAN5G(120, 0),
109 CHAN5G(124, 0), CHAN5G(128, 0),
110 CHAN5G(132, 0), CHAN5G(136, 0),
111 CHAN5G(140, 0), CHAN5G(149, 0),
112 CHAN5G(153, 0), CHAN5G(157, 0),
113 CHAN5G(161, 0), CHAN5G(165, 0),
114 CHAN5G(184, 0), CHAN5G(188, 0),
115 CHAN5G(192, 0), CHAN5G(196, 0),
116 CHAN5G(200, 0), CHAN5G(204, 0),
117 CHAN5G(208, 0), CHAN5G(212, 0),
118 CHAN5G(216, 0),
121 static struct ieee80211_supported_band iwm_band_2ghz = {
122 .channels = iwm_2ghz_channels,
123 .n_channels = ARRAY_SIZE(iwm_2ghz_channels),
124 .bitrates = iwm_g_rates,
125 .n_bitrates = iwm_g_rates_size,
128 static struct ieee80211_supported_band iwm_band_5ghz = {
129 .channels = iwm_5ghz_a_channels,
130 .n_channels = ARRAY_SIZE(iwm_5ghz_a_channels),
131 .bitrates = iwm_a_rates,
132 .n_bitrates = iwm_a_rates_size,
135 static int iwm_key_init(struct iwm_key *key, u8 key_index,
136 const u8 *mac_addr, struct key_params *params)
138 key->hdr.key_idx = key_index;
139 if (!mac_addr || is_broadcast_ether_addr(mac_addr)) {
140 key->hdr.multicast = 1;
141 memset(key->hdr.mac, 0xff, ETH_ALEN);
142 } else {
143 key->hdr.multicast = 0;
144 memcpy(key->hdr.mac, mac_addr, ETH_ALEN);
147 if (params) {
148 if (params->key_len > WLAN_MAX_KEY_LEN ||
149 params->seq_len > IW_ENCODE_SEQ_MAX_SIZE)
150 return -EINVAL;
152 key->cipher = params->cipher;
153 key->key_len = params->key_len;
154 key->seq_len = params->seq_len;
155 memcpy(key->key, params->key, key->key_len);
156 memcpy(key->seq, params->seq, key->seq_len);
159 return 0;
162 static int iwm_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
163 u8 key_index, const u8 *mac_addr,
164 struct key_params *params)
166 struct iwm_priv *iwm = ndev_to_iwm(ndev);
167 struct iwm_key *key = &iwm->keys[key_index];
168 int ret;
170 IWM_DBG_WEXT(iwm, DBG, "Adding key for %pM\n", mac_addr);
172 memset(key, 0, sizeof(struct iwm_key));
173 ret = iwm_key_init(key, key_index, mac_addr, params);
174 if (ret < 0) {
175 IWM_ERR(iwm, "Invalid key_params\n");
176 return ret;
179 return iwm_set_key(iwm, 0, key);
182 static int iwm_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
183 u8 key_index, const u8 *mac_addr, void *cookie,
184 void (*callback)(void *cookie,
185 struct key_params*))
187 struct iwm_priv *iwm = ndev_to_iwm(ndev);
188 struct iwm_key *key = &iwm->keys[key_index];
189 struct key_params params;
191 IWM_DBG_WEXT(iwm, DBG, "Getting key %d\n", key_index);
193 memset(&params, 0, sizeof(params));
195 params.cipher = key->cipher;
196 params.key_len = key->key_len;
197 params.seq_len = key->seq_len;
198 params.seq = key->seq;
199 params.key = key->key;
201 callback(cookie, &params);
203 return key->key_len ? 0 : -ENOENT;
207 static int iwm_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
208 u8 key_index, const u8 *mac_addr)
210 struct iwm_priv *iwm = ndev_to_iwm(ndev);
211 struct iwm_key *key = &iwm->keys[key_index];
213 if (!iwm->keys[key_index].key_len) {
214 IWM_DBG_WEXT(iwm, DBG, "Key %d not used\n", key_index);
215 return 0;
218 if (key_index == iwm->default_key)
219 iwm->default_key = -1;
221 return iwm_set_key(iwm, 1, key);
224 static int iwm_cfg80211_set_default_key(struct wiphy *wiphy,
225 struct net_device *ndev,
226 u8 key_index)
228 struct iwm_priv *iwm = ndev_to_iwm(ndev);
230 IWM_DBG_WEXT(iwm, DBG, "Default key index is: %d\n", key_index);
232 if (!iwm->keys[key_index].key_len) {
233 IWM_ERR(iwm, "Key %d not used\n", key_index);
234 return -EINVAL;
237 iwm->default_key = key_index;
239 return iwm_set_tx_key(iwm, key_index);
242 static int iwm_cfg80211_get_station(struct wiphy *wiphy,
243 struct net_device *ndev,
244 u8 *mac, struct station_info *sinfo)
246 struct iwm_priv *iwm = ndev_to_iwm(ndev);
248 if (memcmp(mac, iwm->bssid, ETH_ALEN))
249 return -ENOENT;
251 sinfo->filled |= STATION_INFO_TX_BITRATE;
252 sinfo->txrate.legacy = iwm->rate * 10;
254 if (test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)) {
255 sinfo->filled |= STATION_INFO_SIGNAL;
256 sinfo->signal = iwm->wstats.qual.level;
259 return 0;
263 int iwm_cfg80211_inform_bss(struct iwm_priv *iwm)
265 struct wiphy *wiphy = iwm_to_wiphy(iwm);
266 struct iwm_bss_info *bss, *next;
267 struct iwm_umac_notif_bss_info *umac_bss;
268 struct ieee80211_mgmt *mgmt;
269 struct ieee80211_channel *channel;
270 struct ieee80211_supported_band *band;
271 s32 signal;
272 int freq;
274 list_for_each_entry_safe(bss, next, &iwm->bss_list, node) {
275 umac_bss = bss->bss;
276 mgmt = (struct ieee80211_mgmt *)(umac_bss->frame_buf);
278 if (umac_bss->band == UMAC_BAND_2GHZ)
279 band = wiphy->bands[IEEE80211_BAND_2GHZ];
280 else if (umac_bss->band == UMAC_BAND_5GHZ)
281 band = wiphy->bands[IEEE80211_BAND_5GHZ];
282 else {
283 IWM_ERR(iwm, "Invalid band: %d\n", umac_bss->band);
284 return -EINVAL;
287 freq = ieee80211_channel_to_frequency(umac_bss->channel);
288 channel = ieee80211_get_channel(wiphy, freq);
289 signal = umac_bss->rssi * 100;
291 if (!cfg80211_inform_bss_frame(wiphy, channel, mgmt,
292 le16_to_cpu(umac_bss->frame_len),
293 signal, GFP_KERNEL))
294 return -EINVAL;
297 return 0;
300 static int iwm_cfg80211_change_iface(struct wiphy *wiphy,
301 struct net_device *ndev,
302 enum nl80211_iftype type, u32 *flags,
303 struct vif_params *params)
305 struct wireless_dev *wdev;
306 struct iwm_priv *iwm;
307 u32 old_mode;
309 wdev = ndev->ieee80211_ptr;
310 iwm = ndev_to_iwm(ndev);
311 old_mode = iwm->conf.mode;
313 switch (type) {
314 case NL80211_IFTYPE_STATION:
315 iwm->conf.mode = UMAC_MODE_BSS;
316 break;
317 case NL80211_IFTYPE_ADHOC:
318 iwm->conf.mode = UMAC_MODE_IBSS;
319 break;
320 default:
321 return -EOPNOTSUPP;
324 wdev->iftype = type;
326 if ((old_mode == iwm->conf.mode) || !iwm->umac_profile)
327 return 0;
329 iwm->umac_profile->mode = cpu_to_le32(iwm->conf.mode);
331 if (iwm->umac_profile_active)
332 iwm_invalidate_mlme_profile(iwm);
334 return 0;
337 static int iwm_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
338 struct cfg80211_scan_request *request)
340 struct iwm_priv *iwm = ndev_to_iwm(ndev);
341 int ret;
343 if (!test_bit(IWM_STATUS_READY, &iwm->status)) {
344 IWM_ERR(iwm, "Scan while device is not ready\n");
345 return -EIO;
348 if (test_bit(IWM_STATUS_SCANNING, &iwm->status)) {
349 IWM_ERR(iwm, "Scanning already\n");
350 return -EAGAIN;
353 if (test_bit(IWM_STATUS_SCAN_ABORTING, &iwm->status)) {
354 IWM_ERR(iwm, "Scanning being aborted\n");
355 return -EAGAIN;
358 set_bit(IWM_STATUS_SCANNING, &iwm->status);
360 ret = iwm_scan_ssids(iwm, request->ssids, request->n_ssids);
361 if (ret) {
362 clear_bit(IWM_STATUS_SCANNING, &iwm->status);
363 return ret;
366 iwm->scan_request = request;
367 return 0;
370 static int iwm_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
372 struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
374 if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
375 (iwm->conf.rts_threshold != wiphy->rts_threshold)) {
376 int ret;
378 iwm->conf.rts_threshold = wiphy->rts_threshold;
380 ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
381 CFG_RTS_THRESHOLD,
382 iwm->conf.rts_threshold);
383 if (ret < 0)
384 return ret;
387 if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
388 (iwm->conf.frag_threshold != wiphy->frag_threshold)) {
389 int ret;
391 iwm->conf.frag_threshold = wiphy->frag_threshold;
393 ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
394 CFG_FRAG_THRESHOLD,
395 iwm->conf.frag_threshold);
396 if (ret < 0)
397 return ret;
400 return 0;
403 static int iwm_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
404 struct cfg80211_ibss_params *params)
406 struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
407 struct ieee80211_channel *chan = params->channel;
408 struct cfg80211_bss *bss;
410 if (!test_bit(IWM_STATUS_READY, &iwm->status))
411 return -EIO;
413 /* UMAC doesn't support creating IBSS network with specified bssid.
414 * This should be removed after we have join only mode supported. */
415 if (params->bssid)
416 return -EOPNOTSUPP;
418 bss = cfg80211_get_ibss(iwm_to_wiphy(iwm), NULL,
419 params->ssid, params->ssid_len);
420 if (!bss) {
421 iwm_scan_one_ssid(iwm, params->ssid, params->ssid_len);
422 schedule_timeout_interruptible(2 * HZ);
423 bss = cfg80211_get_ibss(iwm_to_wiphy(iwm), NULL,
424 params->ssid, params->ssid_len);
426 /* IBSS join only mode is not supported by UMAC ATM */
427 if (bss) {
428 cfg80211_put_bss(bss);
429 return -EOPNOTSUPP;
432 iwm->channel = ieee80211_frequency_to_channel(chan->center_freq);
433 iwm->umac_profile->ibss.band = chan->band;
434 iwm->umac_profile->ibss.channel = iwm->channel;
435 iwm->umac_profile->ssid.ssid_len = params->ssid_len;
436 memcpy(iwm->umac_profile->ssid.ssid, params->ssid, params->ssid_len);
438 if (params->bssid)
439 memcpy(&iwm->umac_profile->bssid[0], params->bssid, ETH_ALEN);
441 return iwm_send_mlme_profile(iwm);
444 static int iwm_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
446 struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
448 if (iwm->umac_profile_active)
449 return iwm_invalidate_mlme_profile(iwm);
451 return 0;
454 static int iwm_set_auth_type(struct iwm_priv *iwm,
455 enum nl80211_auth_type sme_auth_type)
457 u8 *auth_type = &iwm->umac_profile->sec.auth_type;
459 switch (sme_auth_type) {
460 case NL80211_AUTHTYPE_AUTOMATIC:
461 case NL80211_AUTHTYPE_OPEN_SYSTEM:
462 IWM_DBG_WEXT(iwm, DBG, "OPEN auth\n");
463 *auth_type = UMAC_AUTH_TYPE_OPEN;
464 break;
465 case NL80211_AUTHTYPE_SHARED_KEY:
466 if (iwm->umac_profile->sec.flags &
467 (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) {
468 IWM_DBG_WEXT(iwm, DBG, "WPA auth alg\n");
469 *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
470 } else {
471 IWM_DBG_WEXT(iwm, DBG, "WEP shared key auth alg\n");
472 *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
475 break;
476 default:
477 IWM_ERR(iwm, "Unsupported auth alg: 0x%x\n", sme_auth_type);
478 return -ENOTSUPP;
481 return 0;
484 static int iwm_set_wpa_version(struct iwm_priv *iwm, u32 wpa_version)
486 IWM_DBG_WEXT(iwm, DBG, "wpa_version: %d\n", wpa_version);
488 if (!wpa_version) {
489 iwm->umac_profile->sec.flags = UMAC_SEC_FLG_LEGACY_PROFILE;
490 return 0;
493 if (wpa_version & NL80211_WPA_VERSION_2)
494 iwm->umac_profile->sec.flags = UMAC_SEC_FLG_RSNA_ON_MSK;
496 if (wpa_version & NL80211_WPA_VERSION_1)
497 iwm->umac_profile->sec.flags |= UMAC_SEC_FLG_WPA_ON_MSK;
499 return 0;
502 static int iwm_set_cipher(struct iwm_priv *iwm, u32 cipher, bool ucast)
504 u8 *profile_cipher = ucast ? &iwm->umac_profile->sec.ucast_cipher :
505 &iwm->umac_profile->sec.mcast_cipher;
507 if (!cipher) {
508 *profile_cipher = UMAC_CIPHER_TYPE_NONE;
509 return 0;
512 IWM_DBG_WEXT(iwm, DBG, "%ccast cipher is 0x%x\n", ucast ? 'u' : 'm',
513 cipher);
515 switch (cipher) {
516 case IW_AUTH_CIPHER_NONE:
517 *profile_cipher = UMAC_CIPHER_TYPE_NONE;
518 break;
519 case WLAN_CIPHER_SUITE_WEP40:
520 *profile_cipher = UMAC_CIPHER_TYPE_WEP_40;
521 break;
522 case WLAN_CIPHER_SUITE_WEP104:
523 *profile_cipher = UMAC_CIPHER_TYPE_WEP_104;
524 break;
525 case WLAN_CIPHER_SUITE_TKIP:
526 *profile_cipher = UMAC_CIPHER_TYPE_TKIP;
527 break;
528 case WLAN_CIPHER_SUITE_CCMP:
529 *profile_cipher = UMAC_CIPHER_TYPE_CCMP;
530 break;
531 default:
532 IWM_ERR(iwm, "Unsupported cipher: 0x%x\n", cipher);
533 return -ENOTSUPP;
536 return 0;
539 static int iwm_set_key_mgt(struct iwm_priv *iwm, u32 key_mgt)
541 u8 *auth_type = &iwm->umac_profile->sec.auth_type;
543 IWM_DBG_WEXT(iwm, DBG, "key_mgt: 0x%x\n", key_mgt);
545 if (key_mgt == WLAN_AKM_SUITE_8021X)
546 *auth_type = UMAC_AUTH_TYPE_8021X;
547 else if (key_mgt == WLAN_AKM_SUITE_PSK) {
548 if (iwm->umac_profile->sec.flags &
549 (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK))
550 *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
551 else
552 *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
553 } else {
554 IWM_ERR(iwm, "Invalid key mgt: 0x%x\n", key_mgt);
555 return -EINVAL;
558 return 0;
562 static int iwm_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
563 struct cfg80211_connect_params *sme)
565 struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
566 struct ieee80211_channel *chan = sme->channel;
567 struct key_params key_param;
568 int ret;
570 if (!test_bit(IWM_STATUS_READY, &iwm->status))
571 return -EIO;
573 if (!sme->ssid)
574 return -EINVAL;
576 if (iwm->umac_profile_active) {
577 ret = iwm_invalidate_mlme_profile(iwm);
578 if (ret) {
579 IWM_ERR(iwm, "Couldn't invalidate profile\n");
580 return ret;
584 if (chan)
585 iwm->channel =
586 ieee80211_frequency_to_channel(chan->center_freq);
588 iwm->umac_profile->ssid.ssid_len = sme->ssid_len;
589 memcpy(iwm->umac_profile->ssid.ssid, sme->ssid, sme->ssid_len);
591 if (sme->bssid) {
592 IWM_DBG_WEXT(iwm, DBG, "BSSID: %pM\n", sme->bssid);
593 memcpy(&iwm->umac_profile->bssid[0], sme->bssid, ETH_ALEN);
594 iwm->umac_profile->bss_num = 1;
595 } else {
596 memset(&iwm->umac_profile->bssid[0], 0, ETH_ALEN);
597 iwm->umac_profile->bss_num = 0;
600 ret = iwm_set_wpa_version(iwm, sme->crypto.wpa_versions);
601 if (ret < 0)
602 return ret;
604 ret = iwm_set_auth_type(iwm, sme->auth_type);
605 if (ret < 0)
606 return ret;
608 if (sme->crypto.n_ciphers_pairwise) {
609 ret = iwm_set_cipher(iwm, sme->crypto.ciphers_pairwise[0],
610 true);
611 if (ret < 0)
612 return ret;
615 ret = iwm_set_cipher(iwm, sme->crypto.cipher_group, false);
616 if (ret < 0)
617 return ret;
619 if (sme->crypto.n_akm_suites) {
620 ret = iwm_set_key_mgt(iwm, sme->crypto.akm_suites[0]);
621 if (ret < 0)
622 return ret;
626 * We save the WEP key in case we want to do shared authentication.
627 * We have to do it so because UMAC will assert whenever it gets a
628 * key before a profile.
630 if (sme->key) {
631 key_param.key = kmemdup(sme->key, sme->key_len, GFP_KERNEL);
632 if (key_param.key == NULL)
633 return -ENOMEM;
634 key_param.key_len = sme->key_len;
635 key_param.seq_len = 0;
636 key_param.cipher = sme->crypto.ciphers_pairwise[0];
638 ret = iwm_key_init(&iwm->keys[sme->key_idx], sme->key_idx,
639 NULL, &key_param);
640 kfree(key_param.key);
641 if (ret < 0) {
642 IWM_ERR(iwm, "Invalid key_params\n");
643 return ret;
646 iwm->default_key = sme->key_idx;
649 ret = iwm_send_mlme_profile(iwm);
651 if (iwm->umac_profile->sec.auth_type != UMAC_AUTH_TYPE_LEGACY_PSK ||
652 sme->key == NULL)
653 return ret;
656 * We want to do shared auth.
657 * We need to actually set the key we previously cached,
658 * and then tell the UMAC it's the default one.
659 * That will trigger the auth+assoc UMAC machinery, and again,
660 * this must be done after setting the profile.
662 ret = iwm_set_key(iwm, 0, &iwm->keys[sme->key_idx]);
663 if (ret < 0)
664 return ret;
666 return iwm_set_tx_key(iwm, iwm->default_key);
669 static int iwm_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev,
670 u16 reason_code)
672 struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
674 IWM_DBG_WEXT(iwm, DBG, "Active: %d\n", iwm->umac_profile_active);
676 if (iwm->umac_profile_active)
677 iwm_invalidate_mlme_profile(iwm);
679 return 0;
682 static int iwm_cfg80211_set_txpower(struct wiphy *wiphy,
683 enum tx_power_setting type, int dbm)
685 switch (type) {
686 case TX_POWER_AUTOMATIC:
687 return 0;
688 default:
689 return -EOPNOTSUPP;
692 return 0;
695 static int iwm_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm)
697 struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
699 *dbm = iwm->txpower;
701 return 0;
704 static int iwm_cfg80211_set_power_mgmt(struct wiphy *wiphy,
705 struct net_device *dev,
706 bool enabled, int timeout)
708 struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
709 u32 power_index;
711 if (enabled)
712 power_index = IWM_POWER_INDEX_DEFAULT;
713 else
714 power_index = IWM_POWER_INDEX_MIN;
716 if (power_index == iwm->conf.power_index)
717 return 0;
719 iwm->conf.power_index = power_index;
721 return iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
722 CFG_POWER_INDEX, iwm->conf.power_index);
725 static struct cfg80211_ops iwm_cfg80211_ops = {
726 .change_virtual_intf = iwm_cfg80211_change_iface,
727 .add_key = iwm_cfg80211_add_key,
728 .get_key = iwm_cfg80211_get_key,
729 .del_key = iwm_cfg80211_del_key,
730 .set_default_key = iwm_cfg80211_set_default_key,
731 .get_station = iwm_cfg80211_get_station,
732 .scan = iwm_cfg80211_scan,
733 .set_wiphy_params = iwm_cfg80211_set_wiphy_params,
734 .connect = iwm_cfg80211_connect,
735 .disconnect = iwm_cfg80211_disconnect,
736 .join_ibss = iwm_cfg80211_join_ibss,
737 .leave_ibss = iwm_cfg80211_leave_ibss,
738 .set_tx_power = iwm_cfg80211_set_txpower,
739 .get_tx_power = iwm_cfg80211_get_txpower,
740 .set_power_mgmt = iwm_cfg80211_set_power_mgmt,
743 static const u32 cipher_suites[] = {
744 WLAN_CIPHER_SUITE_WEP40,
745 WLAN_CIPHER_SUITE_WEP104,
746 WLAN_CIPHER_SUITE_TKIP,
747 WLAN_CIPHER_SUITE_CCMP,
750 struct wireless_dev *iwm_wdev_alloc(int sizeof_bus, struct device *dev)
752 int ret = 0;
753 struct wireless_dev *wdev;
756 * We're trying to have the following memory
757 * layout:
759 * +-------------------------+
760 * | struct wiphy |
761 * +-------------------------+
762 * | struct iwm_priv |
763 * +-------------------------+
764 * | bus private data |
765 * | (e.g. iwm_priv_sdio) |
766 * +-------------------------+
770 wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
771 if (!wdev) {
772 dev_err(dev, "Couldn't allocate wireless device\n");
773 return ERR_PTR(-ENOMEM);
776 wdev->wiphy = wiphy_new(&iwm_cfg80211_ops,
777 sizeof(struct iwm_priv) + sizeof_bus);
778 if (!wdev->wiphy) {
779 dev_err(dev, "Couldn't allocate wiphy device\n");
780 ret = -ENOMEM;
781 goto out_err_new;
784 set_wiphy_dev(wdev->wiphy, dev);
785 wdev->wiphy->max_scan_ssids = UMAC_WIFI_IF_PROBE_OPTION_MAX;
786 wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
787 BIT(NL80211_IFTYPE_ADHOC);
788 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &iwm_band_2ghz;
789 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &iwm_band_5ghz;
790 wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
792 wdev->wiphy->cipher_suites = cipher_suites;
793 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
795 ret = wiphy_register(wdev->wiphy);
796 if (ret < 0) {
797 dev_err(dev, "Couldn't register wiphy device\n");
798 goto out_err_register;
801 return wdev;
803 out_err_register:
804 wiphy_free(wdev->wiphy);
806 out_err_new:
807 kfree(wdev);
809 return ERR_PTR(ret);
812 void iwm_wdev_free(struct iwm_priv *iwm)
814 struct wireless_dev *wdev = iwm_to_wdev(iwm);
816 if (!wdev)
817 return;
819 wiphy_unregister(wdev->wiphy);
820 wiphy_free(wdev->wiphy);
821 kfree(wdev);