x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob73bbec58341ecd6362fe95caa3b5b1900454a20d
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
33 * Radio control handlers.
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
37 int status;
40 * Don't enable the radio twice.
41 * And check if the hardware button has been disabled.
43 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
44 return 0;
47 * Initialize all data queues.
49 rt2x00queue_init_queues(rt2x00dev);
52 * Enable radio.
54 status =
55 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
56 if (status)
57 return status;
59 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61 rt2x00leds_led_radio(rt2x00dev, true);
62 rt2x00led_led_activity(rt2x00dev, true);
64 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67 * Enable RX.
69 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
72 * Start the TX queues.
74 ieee80211_wake_queues(rt2x00dev->hw);
76 return 0;
79 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
81 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
82 return;
85 * Stop the TX queues in mac80211.
87 ieee80211_stop_queues(rt2x00dev->hw);
88 rt2x00queue_stop_queues(rt2x00dev);
91 * Disable RX.
93 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
96 * Disable radio.
98 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
99 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
100 rt2x00led_led_activity(rt2x00dev, false);
101 rt2x00leds_led_radio(rt2x00dev, false);
104 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
107 * When we are disabling the RX, we should also stop the link tuner.
109 if (state == STATE_RADIO_RX_OFF)
110 rt2x00link_stop_tuner(rt2x00dev);
112 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
115 * When we are enabling the RX, we should also start the link tuner.
117 if (state == STATE_RADIO_RX_ON)
118 rt2x00link_start_tuner(rt2x00dev);
121 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
122 struct ieee80211_vif *vif)
124 struct rt2x00_dev *rt2x00dev = data;
125 struct rt2x00_intf *intf = vif_to_intf(vif);
126 int delayed_flags;
129 * Copy all data we need during this action under the protection
130 * of a spinlock. Otherwise race conditions might occur which results
131 * into an invalid configuration.
133 spin_lock(&intf->lock);
135 delayed_flags = intf->delayed_flags;
136 intf->delayed_flags = 0;
138 spin_unlock(&intf->lock);
141 * It is possible the radio was disabled while the work had been
142 * scheduled. If that happens we should return here immediately,
143 * note that in the spinlock protected area above the delayed_flags
144 * have been cleared correctly.
146 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
147 return;
149 if (delayed_flags & DELAYED_UPDATE_BEACON)
150 rt2x00queue_update_beacon(rt2x00dev, vif, true);
153 static void rt2x00lib_intf_scheduled(struct work_struct *work)
155 struct rt2x00_dev *rt2x00dev =
156 container_of(work, struct rt2x00_dev, intf_work);
159 * Iterate over each interface and perform the
160 * requested configurations.
162 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
163 rt2x00lib_intf_scheduled_iter,
164 rt2x00dev);
168 * Interrupt context handlers.
170 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
171 struct ieee80211_vif *vif)
173 struct rt2x00_intf *intf = vif_to_intf(vif);
175 if (vif->type != NL80211_IFTYPE_AP &&
176 vif->type != NL80211_IFTYPE_ADHOC &&
177 vif->type != NL80211_IFTYPE_MESH_POINT &&
178 vif->type != NL80211_IFTYPE_WDS)
179 return;
181 spin_lock(&intf->lock);
182 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
183 spin_unlock(&intf->lock);
186 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
188 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
189 return;
191 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
192 rt2x00lib_beacondone_iter,
193 rt2x00dev);
195 ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
197 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
199 void rt2x00lib_txdone(struct queue_entry *entry,
200 struct txdone_entry_desc *txdesc)
202 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
203 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
204 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
205 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
206 unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
207 u8 rate_idx, rate_flags, retry_rates;
208 unsigned int i;
209 bool success;
212 * Unmap the skb.
214 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
217 * Remove L2 padding which was added during
219 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
220 rt2x00queue_remove_l2pad(entry->skb, header_length);
223 * If the IV/EIV data was stripped from the frame before it was
224 * passed to the hardware, we should now reinsert it again because
225 * mac80211 will expect the the same data to be present it the
226 * frame as it was passed to us.
228 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
229 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
232 * Send frame to debugfs immediately, after this call is completed
233 * we are going to overwrite the skb->cb array.
235 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
238 * Determine if the frame has been successfully transmitted.
240 success =
241 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
242 test_bit(TXDONE_UNKNOWN, &txdesc->flags) ||
243 test_bit(TXDONE_FALLBACK, &txdesc->flags);
246 * Update TX statistics.
248 rt2x00dev->link.qual.tx_success += success;
249 rt2x00dev->link.qual.tx_failed += !success;
251 rate_idx = skbdesc->tx_rate_idx;
252 rate_flags = skbdesc->tx_rate_flags;
253 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
254 (txdesc->retry + 1) : 1;
257 * Initialize TX status
259 memset(&tx_info->status, 0, sizeof(tx_info->status));
260 tx_info->status.ack_signal = 0;
263 * Frame was send with retries, hardware tried
264 * different rates to send out the frame, at each
265 * retry it lowered the rate 1 step.
267 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
268 tx_info->status.rates[i].idx = rate_idx - i;
269 tx_info->status.rates[i].flags = rate_flags;
270 tx_info->status.rates[i].count = 1;
272 if (i < (IEEE80211_TX_MAX_RATES - 1))
273 tx_info->status.rates[i].idx = -1; /* terminate */
275 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
276 if (success)
277 tx_info->flags |= IEEE80211_TX_STAT_ACK;
278 else
279 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
282 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
283 if (success)
284 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
285 else
286 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
290 * Only send the status report to mac80211 when TX status was
291 * requested by it. If this was a extra frame coming through
292 * a mac80211 library call (RTS/CTS) then we should not send the
293 * status report back.
295 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
296 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
297 else
298 dev_kfree_skb_irq(entry->skb);
301 * Make this entry available for reuse.
303 entry->skb = NULL;
304 entry->flags = 0;
306 rt2x00dev->ops->lib->clear_entry(entry);
308 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
309 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
312 * If the data queue was below the threshold before the txdone
313 * handler we must make sure the packet queue in the mac80211 stack
314 * is reenabled when the txdone handler has finished.
316 if (!rt2x00queue_threshold(entry->queue))
317 ieee80211_wake_queue(rt2x00dev->hw, qid);
319 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
321 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
322 struct rxdone_entry_desc *rxdesc)
324 struct ieee80211_supported_band *sband;
325 const struct rt2x00_rate *rate;
326 unsigned int i;
327 int signal;
328 int type;
331 * For non-HT rates the MCS value needs to contain the
332 * actually used rate modulation (CCK or OFDM).
334 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
335 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
336 else
337 signal = rxdesc->signal;
339 type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
341 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
342 for (i = 0; i < sband->n_bitrates; i++) {
343 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
345 if (((type == RXDONE_SIGNAL_PLCP) &&
346 (rate->plcp == signal)) ||
347 ((type == RXDONE_SIGNAL_BITRATE) &&
348 (rate->bitrate == signal)) ||
349 ((type == RXDONE_SIGNAL_MCS) &&
350 (rate->mcs == signal))) {
351 return i;
355 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
356 "signal=0x%.4x, type=%d.\n", signal, type);
357 return 0;
360 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
361 struct queue_entry *entry)
363 struct rxdone_entry_desc rxdesc;
364 struct sk_buff *skb;
365 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
366 unsigned int header_length;
367 int rate_idx;
369 * Allocate a new sk_buffer. If no new buffer available, drop the
370 * received frame and reuse the existing buffer.
372 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
373 if (!skb)
374 return;
377 * Unmap the skb.
379 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
382 * Extract the RXD details.
384 memset(&rxdesc, 0, sizeof(rxdesc));
385 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
387 /* Trim buffer to correct size */
388 skb_trim(entry->skb, rxdesc.size);
391 * The data behind the ieee80211 header must be
392 * aligned on a 4 byte boundary.
394 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
397 * Hardware might have stripped the IV/EIV/ICV data,
398 * in that case it is possible that the data was
399 * provided seperately (through hardware descriptor)
400 * in which case we should reinsert the data into the frame.
402 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
403 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
404 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
405 &rxdesc);
406 else if (rxdesc.dev_flags & RXDONE_L2PAD)
407 rt2x00queue_remove_l2pad(entry->skb, header_length);
408 else
409 rt2x00queue_align_payload(entry->skb, header_length);
412 * Check if the frame was received using HT. In that case,
413 * the rate is the MCS index and should be passed to mac80211
414 * directly. Otherwise we need to translate the signal to
415 * the correct bitrate index.
417 if (rxdesc.rate_mode == RATE_MODE_CCK ||
418 rxdesc.rate_mode == RATE_MODE_OFDM) {
419 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
420 } else {
421 rxdesc.flags |= RX_FLAG_HT;
422 rate_idx = rxdesc.signal;
426 * Update extra components
428 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
429 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
431 rx_status->mactime = rxdesc.timestamp;
432 rx_status->rate_idx = rate_idx;
433 rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
434 rx_status->signal = rxdesc.rssi;
435 rx_status->noise = rxdesc.noise;
436 rx_status->flag = rxdesc.flags;
437 rx_status->antenna = rt2x00dev->link.ant.active.rx;
440 * Send frame to mac80211 & debugfs.
441 * mac80211 will clean up the skb structure.
443 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
444 memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
445 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
448 * Replace the skb with the freshly allocated one.
450 entry->skb = skb;
451 entry->flags = 0;
453 rt2x00dev->ops->lib->clear_entry(entry);
455 rt2x00queue_index_inc(entry->queue, Q_INDEX);
457 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
460 * Driver initialization handlers.
462 const struct rt2x00_rate rt2x00_supported_rates[12] = {
464 .flags = DEV_RATE_CCK,
465 .bitrate = 10,
466 .ratemask = BIT(0),
467 .plcp = 0x00,
468 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
471 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
472 .bitrate = 20,
473 .ratemask = BIT(1),
474 .plcp = 0x01,
475 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
478 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
479 .bitrate = 55,
480 .ratemask = BIT(2),
481 .plcp = 0x02,
482 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
485 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
486 .bitrate = 110,
487 .ratemask = BIT(3),
488 .plcp = 0x03,
489 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
492 .flags = DEV_RATE_OFDM,
493 .bitrate = 60,
494 .ratemask = BIT(4),
495 .plcp = 0x0b,
496 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
499 .flags = DEV_RATE_OFDM,
500 .bitrate = 90,
501 .ratemask = BIT(5),
502 .plcp = 0x0f,
503 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
506 .flags = DEV_RATE_OFDM,
507 .bitrate = 120,
508 .ratemask = BIT(6),
509 .plcp = 0x0a,
510 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
513 .flags = DEV_RATE_OFDM,
514 .bitrate = 180,
515 .ratemask = BIT(7),
516 .plcp = 0x0e,
517 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
520 .flags = DEV_RATE_OFDM,
521 .bitrate = 240,
522 .ratemask = BIT(8),
523 .plcp = 0x09,
524 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
527 .flags = DEV_RATE_OFDM,
528 .bitrate = 360,
529 .ratemask = BIT(9),
530 .plcp = 0x0d,
531 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
534 .flags = DEV_RATE_OFDM,
535 .bitrate = 480,
536 .ratemask = BIT(10),
537 .plcp = 0x08,
538 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
541 .flags = DEV_RATE_OFDM,
542 .bitrate = 540,
543 .ratemask = BIT(11),
544 .plcp = 0x0c,
545 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
549 static void rt2x00lib_channel(struct ieee80211_channel *entry,
550 const int channel, const int tx_power,
551 const int value)
553 entry->center_freq = ieee80211_channel_to_frequency(channel);
554 entry->hw_value = value;
555 entry->max_power = tx_power;
556 entry->max_antenna_gain = 0xff;
559 static void rt2x00lib_rate(struct ieee80211_rate *entry,
560 const u16 index, const struct rt2x00_rate *rate)
562 entry->flags = 0;
563 entry->bitrate = rate->bitrate;
564 entry->hw_value =index;
565 entry->hw_value_short = index;
567 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
568 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
571 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
572 struct hw_mode_spec *spec)
574 struct ieee80211_hw *hw = rt2x00dev->hw;
575 struct ieee80211_channel *channels;
576 struct ieee80211_rate *rates;
577 unsigned int num_rates;
578 unsigned int i;
580 num_rates = 0;
581 if (spec->supported_rates & SUPPORT_RATE_CCK)
582 num_rates += 4;
583 if (spec->supported_rates & SUPPORT_RATE_OFDM)
584 num_rates += 8;
586 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
587 if (!channels)
588 return -ENOMEM;
590 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
591 if (!rates)
592 goto exit_free_channels;
595 * Initialize Rate list.
597 for (i = 0; i < num_rates; i++)
598 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
601 * Initialize Channel list.
603 for (i = 0; i < spec->num_channels; i++) {
604 rt2x00lib_channel(&channels[i],
605 spec->channels[i].channel,
606 spec->channels_info[i].tx_power1, i);
610 * Intitialize 802.11b, 802.11g
611 * Rates: CCK, OFDM.
612 * Channels: 2.4 GHz
614 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
615 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
616 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
617 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
618 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
619 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
620 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
621 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
622 &spec->ht, sizeof(spec->ht));
626 * Intitialize 802.11a
627 * Rates: OFDM.
628 * Channels: OFDM, UNII, HiperLAN2.
630 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
631 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
632 spec->num_channels - 14;
633 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
634 num_rates - 4;
635 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
636 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
637 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
638 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
639 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
640 &spec->ht, sizeof(spec->ht));
643 return 0;
645 exit_free_channels:
646 kfree(channels);
647 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
648 return -ENOMEM;
651 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
653 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
654 ieee80211_unregister_hw(rt2x00dev->hw);
656 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
657 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
658 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
659 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
660 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
663 kfree(rt2x00dev->spec.channels_info);
666 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
668 struct hw_mode_spec *spec = &rt2x00dev->spec;
669 int status;
671 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
672 return 0;
675 * Initialize HW modes.
677 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
678 if (status)
679 return status;
682 * Initialize HW fields.
684 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
687 * Register HW.
689 status = ieee80211_register_hw(rt2x00dev->hw);
690 if (status)
691 return status;
693 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
695 return 0;
699 * Initialization/uninitialization handlers.
701 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
703 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
704 return;
707 * Unregister extra components.
709 rt2x00rfkill_unregister(rt2x00dev);
712 * Allow the HW to uninitialize.
714 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
717 * Free allocated queue entries.
719 rt2x00queue_uninitialize(rt2x00dev);
722 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
724 int status;
726 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
727 return 0;
730 * Allocate all queue entries.
732 status = rt2x00queue_initialize(rt2x00dev);
733 if (status)
734 return status;
737 * Initialize the device.
739 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
740 if (status) {
741 rt2x00queue_uninitialize(rt2x00dev);
742 return status;
745 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
748 * Register the extra components.
750 rt2x00rfkill_register(rt2x00dev);
752 return 0;
755 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
757 int retval;
759 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
760 return 0;
763 * If this is the first interface which is added,
764 * we should load the firmware now.
766 retval = rt2x00lib_load_firmware(rt2x00dev);
767 if (retval)
768 return retval;
771 * Initialize the device.
773 retval = rt2x00lib_initialize(rt2x00dev);
774 if (retval)
775 return retval;
777 rt2x00dev->intf_ap_count = 0;
778 rt2x00dev->intf_sta_count = 0;
779 rt2x00dev->intf_associated = 0;
781 /* Enable the radio */
782 retval = rt2x00lib_enable_radio(rt2x00dev);
783 if (retval) {
784 rt2x00queue_uninitialize(rt2x00dev);
785 return retval;
788 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
790 return 0;
793 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
795 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
796 return;
799 * Perhaps we can add something smarter here,
800 * but for now just disabling the radio should do.
802 rt2x00lib_disable_radio(rt2x00dev);
804 rt2x00dev->intf_ap_count = 0;
805 rt2x00dev->intf_sta_count = 0;
806 rt2x00dev->intf_associated = 0;
810 * driver allocation handlers.
812 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
814 int retval = -ENOMEM;
816 mutex_init(&rt2x00dev->csr_mutex);
818 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
821 * Make room for rt2x00_intf inside the per-interface
822 * structure ieee80211_vif.
824 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
827 * Determine which operating modes are supported, all modes
828 * which require beaconing, depend on the availability of
829 * beacon entries.
831 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
832 if (rt2x00dev->ops->bcn->entry_num > 0)
833 rt2x00dev->hw->wiphy->interface_modes |=
834 BIT(NL80211_IFTYPE_ADHOC) |
835 BIT(NL80211_IFTYPE_AP) |
836 BIT(NL80211_IFTYPE_MESH_POINT) |
837 BIT(NL80211_IFTYPE_WDS);
840 * Let the driver probe the device to detect the capabilities.
842 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
843 if (retval) {
844 ERROR(rt2x00dev, "Failed to allocate device.\n");
845 goto exit;
849 * Initialize configuration work.
851 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
854 * Allocate queue array.
856 retval = rt2x00queue_allocate(rt2x00dev);
857 if (retval)
858 goto exit;
861 * Initialize ieee80211 structure.
863 retval = rt2x00lib_probe_hw(rt2x00dev);
864 if (retval) {
865 ERROR(rt2x00dev, "Failed to initialize hw.\n");
866 goto exit;
870 * Register extra components.
872 rt2x00link_register(rt2x00dev);
873 rt2x00leds_register(rt2x00dev);
874 rt2x00debug_register(rt2x00dev);
876 return 0;
878 exit:
879 rt2x00lib_remove_dev(rt2x00dev);
881 return retval;
883 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
885 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
887 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
890 * Disable radio.
892 rt2x00lib_disable_radio(rt2x00dev);
895 * Stop all work.
897 cancel_work_sync(&rt2x00dev->intf_work);
900 * Uninitialize device.
902 rt2x00lib_uninitialize(rt2x00dev);
905 * Free extra components
907 rt2x00debug_deregister(rt2x00dev);
908 rt2x00leds_unregister(rt2x00dev);
911 * Free ieee80211_hw memory.
913 rt2x00lib_remove_hw(rt2x00dev);
916 * Free firmware image.
918 rt2x00lib_free_firmware(rt2x00dev);
921 * Free queue structures.
923 rt2x00queue_free(rt2x00dev);
925 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
928 * Device state handlers
930 #ifdef CONFIG_PM
931 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
933 NOTICE(rt2x00dev, "Going to sleep.\n");
936 * Prevent mac80211 from accessing driver while suspended.
938 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
939 return 0;
942 * Cleanup as much as possible.
944 rt2x00lib_uninitialize(rt2x00dev);
947 * Suspend/disable extra components.
949 rt2x00leds_suspend(rt2x00dev);
950 rt2x00debug_deregister(rt2x00dev);
953 * Set device mode to sleep for power management,
954 * on some hardware this call seems to consistently fail.
955 * From the specifications it is hard to tell why it fails,
956 * and if this is a "bad thing".
957 * Overall it is safe to just ignore the failure and
958 * continue suspending. The only downside is that the
959 * device will not be in optimal power save mode, but with
960 * the radio and the other components already disabled the
961 * device is as good as disabled.
963 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
964 WARNING(rt2x00dev, "Device failed to enter sleep state, "
965 "continue suspending.\n");
967 return 0;
969 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
971 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
973 NOTICE(rt2x00dev, "Waking up.\n");
976 * Restore/enable extra components.
978 rt2x00debug_register(rt2x00dev);
979 rt2x00leds_resume(rt2x00dev);
982 * We are ready again to receive requests from mac80211.
984 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
986 return 0;
988 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
989 #endif /* CONFIG_PM */
992 * rt2x00lib module information.
994 MODULE_AUTHOR(DRV_PROJECT);
995 MODULE_VERSION(DRV_VERSION);
996 MODULE_DESCRIPTION("rt2x00 library");
997 MODULE_LICENSE("GPL");