x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
blob577029efe320d1e01bc847b7120fb088908f7a31
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 queue specific routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34 struct queue_entry *entry)
36 struct sk_buff *skb;
37 struct skb_frame_desc *skbdesc;
38 unsigned int frame_size;
39 unsigned int head_size = 0;
40 unsigned int tail_size = 0;
43 * The frame size includes descriptor size, because the
44 * hardware directly receive the frame into the skbuffer.
46 frame_size = entry->queue->data_size + entry->queue->desc_size;
49 * The payload should be aligned to a 4-byte boundary,
50 * this means we need at least 3 bytes for moving the frame
51 * into the correct offset.
53 head_size = 4;
56 * For IV/EIV/ICV assembly we must make sure there is
57 * at least 8 bytes bytes available in headroom for IV/EIV
58 * and 8 bytes for ICV data as tailroon.
60 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
61 head_size += 8;
62 tail_size += 8;
66 * Allocate skbuffer.
68 skb = dev_alloc_skb(frame_size + head_size + tail_size);
69 if (!skb)
70 return NULL;
73 * Make sure we not have a frame with the requested bytes
74 * available in the head and tail.
76 skb_reserve(skb, head_size);
77 skb_put(skb, frame_size);
80 * Populate skbdesc.
82 skbdesc = get_skb_frame_desc(skb);
83 memset(skbdesc, 0, sizeof(*skbdesc));
84 skbdesc->entry = entry;
86 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
87 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
88 skb->data,
89 skb->len,
90 DMA_FROM_DEVICE);
91 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
94 return skb;
97 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
99 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
102 * If device has requested headroom, we should make sure that
103 * is also mapped to the DMA so it can be used for transfering
104 * additional descriptor information to the hardware.
106 skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
108 skbdesc->skb_dma =
109 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
112 * Restore data pointer to original location again.
114 skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
116 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
118 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
120 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
122 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
124 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
125 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
126 DMA_FROM_DEVICE);
127 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
130 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
132 * Add headroom to the skb length, it has been removed
133 * by the driver, but it was actually mapped to DMA.
135 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
136 skb->len + rt2x00dev->hw->extra_tx_headroom,
137 DMA_TO_DEVICE);
138 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
142 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
144 if (!skb)
145 return;
147 rt2x00queue_unmap_skb(rt2x00dev, skb);
148 dev_kfree_skb_any(skb);
151 void rt2x00queue_align_frame(struct sk_buff *skb)
153 unsigned int frame_length = skb->len;
154 unsigned int align = ALIGN_SIZE(skb, 0);
156 if (!align)
157 return;
159 skb_push(skb, align);
160 memmove(skb->data, skb->data + align, frame_length);
161 skb_trim(skb, frame_length);
164 void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_lengt)
166 unsigned int frame_length = skb->len;
167 unsigned int align = ALIGN_SIZE(skb, header_lengt);
169 if (!align)
170 return;
172 skb_push(skb, align);
173 memmove(skb->data, skb->data + align, frame_length);
174 skb_trim(skb, frame_length);
177 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
179 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
180 unsigned int frame_length = skb->len;
181 unsigned int header_align = ALIGN_SIZE(skb, 0);
182 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
183 unsigned int l2pad = 4 - (payload_align - header_align);
185 if (header_align == payload_align) {
187 * Both header and payload must be moved the same
188 * amount of bytes to align them properly. This means
189 * we don't use the L2 padding but just move the entire
190 * frame.
192 rt2x00queue_align_frame(skb);
193 } else if (!payload_align) {
195 * Simple L2 padding, only the header needs to be moved,
196 * the payload is already properly aligned.
198 skb_push(skb, header_align);
199 memmove(skb->data, skb->data + header_align, frame_length);
200 skbdesc->flags |= SKBDESC_L2_PADDED;
201 } else {
204 * Complicated L2 padding, both header and payload need
205 * to be moved. By default we only move to the start
206 * of the buffer, so our header alignment needs to be
207 * increased if there is not enough room for the header
208 * to be moved.
210 if (payload_align > header_align)
211 header_align += 4;
213 skb_push(skb, header_align);
214 memmove(skb->data, skb->data + header_align, header_length);
215 memmove(skb->data + header_length + l2pad,
216 skb->data + header_length + l2pad + header_align,
217 frame_length - header_length);
218 skbdesc->flags |= SKBDESC_L2_PADDED;
222 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
224 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
225 unsigned int l2pad = 4 - (header_length & 3);
227 if (!l2pad || (skbdesc->flags & SKBDESC_L2_PADDED))
228 return;
230 memmove(skb->data + l2pad, skb->data, header_length);
231 skb_pull(skb, l2pad);
234 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
235 struct txentry_desc *txdesc)
237 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
238 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
239 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
240 unsigned long irqflags;
242 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
243 unlikely(!tx_info->control.vif))
244 return;
247 * Hardware should insert sequence counter.
248 * FIXME: We insert a software sequence counter first for
249 * hardware that doesn't support hardware sequence counting.
251 * This is wrong because beacons are not getting sequence
252 * numbers assigned properly.
254 * A secondary problem exists for drivers that cannot toggle
255 * sequence counting per-frame, since those will override the
256 * sequence counter given by mac80211.
258 spin_lock_irqsave(&intf->seqlock, irqflags);
260 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
261 intf->seqno += 0x10;
262 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
263 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
265 spin_unlock_irqrestore(&intf->seqlock, irqflags);
267 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
270 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
271 struct txentry_desc *txdesc,
272 const struct rt2x00_rate *hwrate)
274 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
275 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
276 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
277 unsigned int data_length;
278 unsigned int duration;
279 unsigned int residual;
281 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
282 data_length = entry->skb->len + 4;
283 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
286 * PLCP setup
287 * Length calculation depends on OFDM/CCK rate.
289 txdesc->signal = hwrate->plcp;
290 txdesc->service = 0x04;
292 if (hwrate->flags & DEV_RATE_OFDM) {
293 txdesc->length_high = (data_length >> 6) & 0x3f;
294 txdesc->length_low = data_length & 0x3f;
295 } else {
297 * Convert length to microseconds.
299 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
300 duration = GET_DURATION(data_length, hwrate->bitrate);
302 if (residual != 0) {
303 duration++;
306 * Check if we need to set the Length Extension
308 if (hwrate->bitrate == 110 && residual <= 30)
309 txdesc->service |= 0x80;
312 txdesc->length_high = (duration >> 8) & 0xff;
313 txdesc->length_low = duration & 0xff;
316 * When preamble is enabled we should set the
317 * preamble bit for the signal.
319 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
320 txdesc->signal |= 0x08;
324 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
325 struct txentry_desc *txdesc)
327 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
328 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
329 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
330 struct ieee80211_rate *rate =
331 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
332 const struct rt2x00_rate *hwrate;
334 memset(txdesc, 0, sizeof(*txdesc));
337 * Initialize information from queue
339 txdesc->queue = entry->queue->qid;
340 txdesc->cw_min = entry->queue->cw_min;
341 txdesc->cw_max = entry->queue->cw_max;
342 txdesc->aifs = entry->queue->aifs;
345 * Header and alignment information.
347 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
348 txdesc->l2pad = ALIGN_SIZE(entry->skb, txdesc->header_length);
351 * Check whether this frame is to be acked.
353 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
354 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
357 * Check if this is a RTS/CTS frame
359 if (ieee80211_is_rts(hdr->frame_control) ||
360 ieee80211_is_cts(hdr->frame_control)) {
361 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
362 if (ieee80211_is_rts(hdr->frame_control))
363 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
364 else
365 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
366 if (tx_info->control.rts_cts_rate_idx >= 0)
367 rate =
368 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
372 * Determine retry information.
374 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
375 if (txdesc->retry_limit >= rt2x00dev->long_retry)
376 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
379 * Check if more fragments are pending
381 if (ieee80211_has_morefrags(hdr->frame_control) ||
382 (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)) {
383 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
384 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
388 * Beacons and probe responses require the tsf timestamp
389 * to be inserted into the frame.
391 if (ieee80211_is_beacon(hdr->frame_control) ||
392 ieee80211_is_probe_resp(hdr->frame_control))
393 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
396 * Determine with what IFS priority this frame should be send.
397 * Set ifs to IFS_SIFS when the this is not the first fragment,
398 * or this fragment came after RTS/CTS.
400 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
401 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
402 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
403 txdesc->ifs = IFS_BACKOFF;
404 } else
405 txdesc->ifs = IFS_SIFS;
408 * Determine rate modulation.
410 hwrate = rt2x00_get_rate(rate->hw_value);
411 txdesc->rate_mode = RATE_MODE_CCK;
412 if (hwrate->flags & DEV_RATE_OFDM)
413 txdesc->rate_mode = RATE_MODE_OFDM;
416 * Apply TX descriptor handling by components
418 rt2x00crypto_create_tx_descriptor(entry, txdesc);
419 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
420 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
421 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
424 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
425 struct txentry_desc *txdesc)
427 struct data_queue *queue = entry->queue;
428 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
430 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
433 * All processing on the frame has been completed, this means
434 * it is now ready to be dumped to userspace through debugfs.
436 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
439 * Check if we need to kick the queue, there are however a few rules
440 * 1) Don't kick beacon queue
441 * 2) Don't kick unless this is the last in frame in a burst.
442 * When the burst flag is set, this frame is always followed
443 * by another frame which in some way are related to eachother.
444 * This is true for fragments, RTS or CTS-to-self frames.
445 * 3) Rule 2 can be broken when the available entries
446 * in the queue are less then a certain threshold.
448 if (entry->queue->qid == QID_BEACON)
449 return;
451 if (rt2x00queue_threshold(queue) ||
452 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
453 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
456 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
458 struct ieee80211_tx_info *tx_info;
459 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
460 struct txentry_desc txdesc;
461 struct skb_frame_desc *skbdesc;
462 u8 rate_idx, rate_flags;
464 if (unlikely(rt2x00queue_full(queue)))
465 return -ENOBUFS;
467 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
468 ERROR(queue->rt2x00dev,
469 "Arrived at non-free entry in the non-full queue %d.\n"
470 "Please file bug report to %s.\n",
471 queue->qid, DRV_PROJECT);
472 return -EINVAL;
476 * Copy all TX descriptor information into txdesc,
477 * after that we are free to use the skb->cb array
478 * for our information.
480 entry->skb = skb;
481 rt2x00queue_create_tx_descriptor(entry, &txdesc);
484 * All information is retrieved from the skb->cb array,
485 * now we should claim ownership of the driver part of that
486 * array, preserving the bitrate index and flags.
488 tx_info = IEEE80211_SKB_CB(skb);
489 rate_idx = tx_info->control.rates[0].idx;
490 rate_flags = tx_info->control.rates[0].flags;
491 skbdesc = get_skb_frame_desc(skb);
492 memset(skbdesc, 0, sizeof(*skbdesc));
493 skbdesc->entry = entry;
494 skbdesc->tx_rate_idx = rate_idx;
495 skbdesc->tx_rate_flags = rate_flags;
498 * When hardware encryption is supported, and this frame
499 * is to be encrypted, we should strip the IV/EIV data from
500 * the frame so we can provide it to the driver seperately.
502 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
503 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
504 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
505 rt2x00crypto_tx_copy_iv(skb, &txdesc);
506 else
507 rt2x00crypto_tx_remove_iv(skb, &txdesc);
511 * When DMA allocation is required we should guarentee to the
512 * driver that the DMA is aligned to a 4-byte boundary.
513 * However some drivers require L2 padding to pad the payload
514 * rather then the header. This could be a requirement for
515 * PCI and USB devices, while header alignment only is valid
516 * for PCI devices.
518 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
519 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
520 else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
521 rt2x00queue_align_frame(entry->skb);
524 * It could be possible that the queue was corrupted and this
525 * call failed. Since we always return NETDEV_TX_OK to mac80211,
526 * this frame will simply be dropped.
528 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
529 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
530 entry->skb = NULL;
531 return -EIO;
534 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
535 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
537 set_bit(ENTRY_DATA_PENDING, &entry->flags);
539 rt2x00queue_index_inc(queue, Q_INDEX);
540 rt2x00queue_write_tx_descriptor(entry, &txdesc);
542 return 0;
545 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
546 struct ieee80211_vif *vif,
547 const bool enable_beacon)
549 struct rt2x00_intf *intf = vif_to_intf(vif);
550 struct skb_frame_desc *skbdesc;
551 struct txentry_desc txdesc;
552 __le32 desc[16];
554 if (unlikely(!intf->beacon))
555 return -ENOBUFS;
557 mutex_lock(&intf->beacon_skb_mutex);
560 * Clean up the beacon skb.
562 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
563 intf->beacon->skb = NULL;
565 if (!enable_beacon) {
566 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
567 mutex_unlock(&intf->beacon_skb_mutex);
568 return 0;
571 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
572 if (!intf->beacon->skb) {
573 mutex_unlock(&intf->beacon_skb_mutex);
574 return -ENOMEM;
578 * Copy all TX descriptor information into txdesc,
579 * after that we are free to use the skb->cb array
580 * for our information.
582 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
585 * For the descriptor we use a local array from where the
586 * driver can move it to the correct location required for
587 * the hardware.
589 memset(desc, 0, sizeof(desc));
592 * Fill in skb descriptor
594 skbdesc = get_skb_frame_desc(intf->beacon->skb);
595 memset(skbdesc, 0, sizeof(*skbdesc));
596 skbdesc->desc = desc;
597 skbdesc->desc_len = intf->beacon->queue->desc_size;
598 skbdesc->entry = intf->beacon;
601 * Write TX descriptor into reserved room in front of the beacon.
603 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
606 * Send beacon to hardware.
607 * Also enable beacon generation, which might have been disabled
608 * by the driver during the config_beacon() callback function.
610 rt2x00dev->ops->lib->write_beacon(intf->beacon);
611 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
613 mutex_unlock(&intf->beacon_skb_mutex);
615 return 0;
618 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
619 const enum data_queue_qid queue)
621 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
623 if (queue == QID_RX)
624 return rt2x00dev->rx;
626 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
627 return &rt2x00dev->tx[queue];
629 if (!rt2x00dev->bcn)
630 return NULL;
632 if (queue == QID_BEACON)
633 return &rt2x00dev->bcn[0];
634 else if (queue == QID_ATIM && atim)
635 return &rt2x00dev->bcn[1];
637 return NULL;
639 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
641 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
642 enum queue_index index)
644 struct queue_entry *entry;
645 unsigned long irqflags;
647 if (unlikely(index >= Q_INDEX_MAX)) {
648 ERROR(queue->rt2x00dev,
649 "Entry requested from invalid index type (%d)\n", index);
650 return NULL;
653 spin_lock_irqsave(&queue->lock, irqflags);
655 entry = &queue->entries[queue->index[index]];
657 spin_unlock_irqrestore(&queue->lock, irqflags);
659 return entry;
661 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
663 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
665 unsigned long irqflags;
667 if (unlikely(index >= Q_INDEX_MAX)) {
668 ERROR(queue->rt2x00dev,
669 "Index change on invalid index type (%d)\n", index);
670 return;
673 spin_lock_irqsave(&queue->lock, irqflags);
675 queue->index[index]++;
676 if (queue->index[index] >= queue->limit)
677 queue->index[index] = 0;
679 if (index == Q_INDEX) {
680 queue->length++;
681 } else if (index == Q_INDEX_DONE) {
682 queue->length--;
683 queue->count++;
686 spin_unlock_irqrestore(&queue->lock, irqflags);
689 static void rt2x00queue_reset(struct data_queue *queue)
691 unsigned long irqflags;
693 spin_lock_irqsave(&queue->lock, irqflags);
695 queue->count = 0;
696 queue->length = 0;
697 memset(queue->index, 0, sizeof(queue->index));
699 spin_unlock_irqrestore(&queue->lock, irqflags);
702 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
704 struct data_queue *queue;
706 txall_queue_for_each(rt2x00dev, queue)
707 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
710 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
712 struct data_queue *queue;
713 unsigned int i;
715 queue_for_each(rt2x00dev, queue) {
716 rt2x00queue_reset(queue);
718 for (i = 0; i < queue->limit; i++) {
719 queue->entries[i].flags = 0;
721 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
726 static int rt2x00queue_alloc_entries(struct data_queue *queue,
727 const struct data_queue_desc *qdesc)
729 struct queue_entry *entries;
730 unsigned int entry_size;
731 unsigned int i;
733 rt2x00queue_reset(queue);
735 queue->limit = qdesc->entry_num;
736 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
737 queue->data_size = qdesc->data_size;
738 queue->desc_size = qdesc->desc_size;
741 * Allocate all queue entries.
743 entry_size = sizeof(*entries) + qdesc->priv_size;
744 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
745 if (!entries)
746 return -ENOMEM;
748 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
749 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
750 ((__index) * (__psize)) )
752 for (i = 0; i < queue->limit; i++) {
753 entries[i].flags = 0;
754 entries[i].queue = queue;
755 entries[i].skb = NULL;
756 entries[i].entry_idx = i;
757 entries[i].priv_data =
758 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
759 sizeof(*entries), qdesc->priv_size);
762 #undef QUEUE_ENTRY_PRIV_OFFSET
764 queue->entries = entries;
766 return 0;
769 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
770 struct data_queue *queue)
772 unsigned int i;
774 if (!queue->entries)
775 return;
777 for (i = 0; i < queue->limit; i++) {
778 if (queue->entries[i].skb)
779 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
783 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
784 struct data_queue *queue)
786 unsigned int i;
787 struct sk_buff *skb;
789 for (i = 0; i < queue->limit; i++) {
790 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
791 if (!skb)
792 return -ENOMEM;
793 queue->entries[i].skb = skb;
796 return 0;
799 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
801 struct data_queue *queue;
802 int status;
804 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
805 if (status)
806 goto exit;
808 tx_queue_for_each(rt2x00dev, queue) {
809 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
810 if (status)
811 goto exit;
814 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
815 if (status)
816 goto exit;
818 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
819 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
820 rt2x00dev->ops->atim);
821 if (status)
822 goto exit;
825 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
826 if (status)
827 goto exit;
829 return 0;
831 exit:
832 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
834 rt2x00queue_uninitialize(rt2x00dev);
836 return status;
839 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
841 struct data_queue *queue;
843 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
845 queue_for_each(rt2x00dev, queue) {
846 kfree(queue->entries);
847 queue->entries = NULL;
851 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
852 struct data_queue *queue, enum data_queue_qid qid)
854 spin_lock_init(&queue->lock);
856 queue->rt2x00dev = rt2x00dev;
857 queue->qid = qid;
858 queue->txop = 0;
859 queue->aifs = 2;
860 queue->cw_min = 5;
861 queue->cw_max = 10;
864 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
866 struct data_queue *queue;
867 enum data_queue_qid qid;
868 unsigned int req_atim =
869 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
872 * We need the following queues:
873 * RX: 1
874 * TX: ops->tx_queues
875 * Beacon: 1
876 * Atim: 1 (if required)
878 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
880 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
881 if (!queue) {
882 ERROR(rt2x00dev, "Queue allocation failed.\n");
883 return -ENOMEM;
887 * Initialize pointers
889 rt2x00dev->rx = queue;
890 rt2x00dev->tx = &queue[1];
891 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
894 * Initialize queue parameters.
895 * RX: qid = QID_RX
896 * TX: qid = QID_AC_BE + index
897 * TX: cw_min: 2^5 = 32.
898 * TX: cw_max: 2^10 = 1024.
899 * BCN: qid = QID_BEACON
900 * ATIM: qid = QID_ATIM
902 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
904 qid = QID_AC_BE;
905 tx_queue_for_each(rt2x00dev, queue)
906 rt2x00queue_init(rt2x00dev, queue, qid++);
908 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
909 if (req_atim)
910 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
912 return 0;
915 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
917 kfree(rt2x00dev->rx);
918 rt2x00dev->rx = NULL;
919 rt2x00dev->tx = NULL;
920 rt2x00dev->bcn = NULL;