x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt73usb.c
blob14e7bb210075d1405300f71759e467bcde64e7d9
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt73usb
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/usb.h>
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt73usb.h"
40 * Allow hardware encryption to be disabled.
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47 * Register access.
48 * All access to the CSR registers will go through the methods
49 * rt2x00usb_register_read and rt2x00usb_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * The _lock versions must be used if you already hold the csr_mutex
60 #define WAIT_FOR_BBP(__dev, __reg) \
61 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
62 #define WAIT_FOR_RF(__dev, __reg) \
63 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
65 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
66 const unsigned int word, const u8 value)
68 u32 reg;
70 mutex_lock(&rt2x00dev->csr_mutex);
73 * Wait until the BBP becomes available, afterwards we
74 * can safely write the new data into the register.
76 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77 reg = 0;
78 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
86 mutex_unlock(&rt2x00dev->csr_mutex);
89 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
90 const unsigned int word, u8 *value)
92 u32 reg;
94 mutex_lock(&rt2x00dev->csr_mutex);
97 * Wait until the BBP becomes available, afterwards we
98 * can safely write the read request into the register.
99 * After the data has been written, we wait until hardware
100 * returns the correct value, if at any time the register
101 * doesn't become available in time, reg will be 0xffffffff
102 * which means we return 0xff to the caller.
104 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
105 reg = 0;
106 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
107 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
108 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
112 WAIT_FOR_BBP(rt2x00dev, &reg);
115 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117 mutex_unlock(&rt2x00dev->csr_mutex);
120 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
121 const unsigned int word, const u32 value)
123 u32 reg;
125 mutex_lock(&rt2x00dev->csr_mutex);
128 * Wait until the RF becomes available, afterwards we
129 * can safely write the new data into the register.
131 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
132 reg = 0;
133 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135 * RF5225 and RF2527 contain 21 bits per RF register value,
136 * all others contain 20 bits.
138 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
139 20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
140 rt2x00_rf(&rt2x00dev->chip, RF2527)));
141 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
142 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
144 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
145 rt2x00_rf_write(rt2x00dev, word, value);
148 mutex_unlock(&rt2x00dev->csr_mutex);
151 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
152 static const struct rt2x00debug rt73usb_rt2x00debug = {
153 .owner = THIS_MODULE,
154 .csr = {
155 .read = rt2x00usb_register_read,
156 .write = rt2x00usb_register_write,
157 .flags = RT2X00DEBUGFS_OFFSET,
158 .word_base = CSR_REG_BASE,
159 .word_size = sizeof(u32),
160 .word_count = CSR_REG_SIZE / sizeof(u32),
162 .eeprom = {
163 .read = rt2x00_eeprom_read,
164 .write = rt2x00_eeprom_write,
165 .word_base = EEPROM_BASE,
166 .word_size = sizeof(u16),
167 .word_count = EEPROM_SIZE / sizeof(u16),
169 .bbp = {
170 .read = rt73usb_bbp_read,
171 .write = rt73usb_bbp_write,
172 .word_base = BBP_BASE,
173 .word_size = sizeof(u8),
174 .word_count = BBP_SIZE / sizeof(u8),
176 .rf = {
177 .read = rt2x00_rf_read,
178 .write = rt73usb_rf_write,
179 .word_base = RF_BASE,
180 .word_size = sizeof(u32),
181 .word_count = RF_SIZE / sizeof(u32),
184 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
186 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
188 u32 reg;
190 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
191 return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
194 #ifdef CONFIG_RT2X00_LIB_LEDS
195 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
196 enum led_brightness brightness)
198 struct rt2x00_led *led =
199 container_of(led_cdev, struct rt2x00_led, led_dev);
200 unsigned int enabled = brightness != LED_OFF;
201 unsigned int a_mode =
202 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
203 unsigned int bg_mode =
204 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
206 if (led->type == LED_TYPE_RADIO) {
207 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
208 MCU_LEDCS_RADIO_STATUS, enabled);
210 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
211 0, led->rt2x00dev->led_mcu_reg,
212 REGISTER_TIMEOUT);
213 } else if (led->type == LED_TYPE_ASSOC) {
214 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
215 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
216 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
217 MCU_LEDCS_LINK_A_STATUS, a_mode);
219 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
220 0, led->rt2x00dev->led_mcu_reg,
221 REGISTER_TIMEOUT);
222 } else if (led->type == LED_TYPE_QUALITY) {
224 * The brightness is divided into 6 levels (0 - 5),
225 * this means we need to convert the brightness
226 * argument into the matching level within that range.
228 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
229 brightness / (LED_FULL / 6),
230 led->rt2x00dev->led_mcu_reg,
231 REGISTER_TIMEOUT);
235 static int rt73usb_blink_set(struct led_classdev *led_cdev,
236 unsigned long *delay_on,
237 unsigned long *delay_off)
239 struct rt2x00_led *led =
240 container_of(led_cdev, struct rt2x00_led, led_dev);
241 u32 reg;
243 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
244 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
245 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
246 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
248 return 0;
251 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
252 struct rt2x00_led *led,
253 enum led_type type)
255 led->rt2x00dev = rt2x00dev;
256 led->type = type;
257 led->led_dev.brightness_set = rt73usb_brightness_set;
258 led->led_dev.blink_set = rt73usb_blink_set;
259 led->flags = LED_INITIALIZED;
261 #endif /* CONFIG_RT2X00_LIB_LEDS */
264 * Configuration handlers.
266 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
267 struct rt2x00lib_crypto *crypto,
268 struct ieee80211_key_conf *key)
270 struct hw_key_entry key_entry;
271 struct rt2x00_field32 field;
272 int timeout;
273 u32 mask;
274 u32 reg;
276 if (crypto->cmd == SET_KEY) {
278 * rt2x00lib can't determine the correct free
279 * key_idx for shared keys. We have 1 register
280 * with key valid bits. The goal is simple, read
281 * the register, if that is full we have no slots
282 * left.
283 * Note that each BSS is allowed to have up to 4
284 * shared keys, so put a mask over the allowed
285 * entries.
287 mask = (0xf << crypto->bssidx);
289 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
290 reg &= mask;
292 if (reg && reg == mask)
293 return -ENOSPC;
295 key->hw_key_idx += reg ? ffz(reg) : 0;
298 * Upload key to hardware
300 memcpy(key_entry.key, crypto->key,
301 sizeof(key_entry.key));
302 memcpy(key_entry.tx_mic, crypto->tx_mic,
303 sizeof(key_entry.tx_mic));
304 memcpy(key_entry.rx_mic, crypto->rx_mic,
305 sizeof(key_entry.rx_mic));
307 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
308 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
309 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
310 USB_VENDOR_REQUEST_OUT, reg,
311 &key_entry,
312 sizeof(key_entry),
313 timeout);
316 * The cipher types are stored over 2 registers.
317 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
318 * bssidx 1 and 2 keys are stored in SEC_CSR5.
319 * Using the correct defines correctly will cause overhead,
320 * so just calculate the correct offset.
322 if (key->hw_key_idx < 8) {
323 field.bit_offset = (3 * key->hw_key_idx);
324 field.bit_mask = 0x7 << field.bit_offset;
326 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
327 rt2x00_set_field32(&reg, field, crypto->cipher);
328 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
329 } else {
330 field.bit_offset = (3 * (key->hw_key_idx - 8));
331 field.bit_mask = 0x7 << field.bit_offset;
333 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
334 rt2x00_set_field32(&reg, field, crypto->cipher);
335 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
339 * The driver does not support the IV/EIV generation
340 * in hardware. However it doesn't support the IV/EIV
341 * inside the ieee80211 frame either, but requires it
342 * to be provided seperately for the descriptor.
343 * rt2x00lib will cut the IV/EIV data out of all frames
344 * given to us by mac80211, but we must tell mac80211
345 * to generate the IV/EIV data.
347 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
351 * SEC_CSR0 contains only single-bit fields to indicate
352 * a particular key is valid. Because using the FIELD32()
353 * defines directly will cause a lot of overhead we use
354 * a calculation to determine the correct bit directly.
356 mask = 1 << key->hw_key_idx;
358 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
359 if (crypto->cmd == SET_KEY)
360 reg |= mask;
361 else if (crypto->cmd == DISABLE_KEY)
362 reg &= ~mask;
363 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
365 return 0;
368 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
369 struct rt2x00lib_crypto *crypto,
370 struct ieee80211_key_conf *key)
372 struct hw_pairwise_ta_entry addr_entry;
373 struct hw_key_entry key_entry;
374 int timeout;
375 u32 mask;
376 u32 reg;
378 if (crypto->cmd == SET_KEY) {
380 * rt2x00lib can't determine the correct free
381 * key_idx for pairwise keys. We have 2 registers
382 * with key valid bits. The goal is simple, read
383 * the first register, if that is full move to
384 * the next register.
385 * When both registers are full, we drop the key,
386 * otherwise we use the first invalid entry.
388 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
389 if (reg && reg == ~0) {
390 key->hw_key_idx = 32;
391 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
392 if (reg && reg == ~0)
393 return -ENOSPC;
396 key->hw_key_idx += reg ? ffz(reg) : 0;
399 * Upload key to hardware
401 memcpy(key_entry.key, crypto->key,
402 sizeof(key_entry.key));
403 memcpy(key_entry.tx_mic, crypto->tx_mic,
404 sizeof(key_entry.tx_mic));
405 memcpy(key_entry.rx_mic, crypto->rx_mic,
406 sizeof(key_entry.rx_mic));
408 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
409 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
410 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
411 USB_VENDOR_REQUEST_OUT, reg,
412 &key_entry,
413 sizeof(key_entry),
414 timeout);
417 * Send the address and cipher type to the hardware register.
418 * This data fits within the CSR cache size, so we can use
419 * rt2x00usb_register_multiwrite() directly.
421 memset(&addr_entry, 0, sizeof(addr_entry));
422 memcpy(&addr_entry, crypto->address, ETH_ALEN);
423 addr_entry.cipher = crypto->cipher;
425 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
426 rt2x00usb_register_multiwrite(rt2x00dev, reg,
427 &addr_entry, sizeof(addr_entry));
430 * Enable pairwise lookup table for given BSS idx,
431 * without this received frames will not be decrypted
432 * by the hardware.
434 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
435 reg |= (1 << crypto->bssidx);
436 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
439 * The driver does not support the IV/EIV generation
440 * in hardware. However it doesn't support the IV/EIV
441 * inside the ieee80211 frame either, but requires it
442 * to be provided seperately for the descriptor.
443 * rt2x00lib will cut the IV/EIV data out of all frames
444 * given to us by mac80211, but we must tell mac80211
445 * to generate the IV/EIV data.
447 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
451 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
452 * a particular key is valid. Because using the FIELD32()
453 * defines directly will cause a lot of overhead we use
454 * a calculation to determine the correct bit directly.
456 if (key->hw_key_idx < 32) {
457 mask = 1 << key->hw_key_idx;
459 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
460 if (crypto->cmd == SET_KEY)
461 reg |= mask;
462 else if (crypto->cmd == DISABLE_KEY)
463 reg &= ~mask;
464 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
465 } else {
466 mask = 1 << (key->hw_key_idx - 32);
468 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
469 if (crypto->cmd == SET_KEY)
470 reg |= mask;
471 else if (crypto->cmd == DISABLE_KEY)
472 reg &= ~mask;
473 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
476 return 0;
479 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
480 const unsigned int filter_flags)
482 u32 reg;
485 * Start configuration steps.
486 * Note that the version error will always be dropped
487 * and broadcast frames will always be accepted since
488 * there is no filter for it at this time.
490 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
491 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
492 !(filter_flags & FIF_FCSFAIL));
493 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
494 !(filter_flags & FIF_PLCPFAIL));
495 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
496 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
497 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
498 !(filter_flags & FIF_PROMISC_IN_BSS));
499 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
500 !(filter_flags & FIF_PROMISC_IN_BSS) &&
501 !rt2x00dev->intf_ap_count);
502 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
503 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
504 !(filter_flags & FIF_ALLMULTI));
505 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
506 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
507 !(filter_flags & FIF_CONTROL));
508 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
511 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
512 struct rt2x00_intf *intf,
513 struct rt2x00intf_conf *conf,
514 const unsigned int flags)
516 unsigned int beacon_base;
517 u32 reg;
519 if (flags & CONFIG_UPDATE_TYPE) {
521 * Clear current synchronisation setup.
522 * For the Beacon base registers we only need to clear
523 * the first byte since that byte contains the VALID and OWNER
524 * bits which (when set to 0) will invalidate the entire beacon.
526 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
527 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
530 * Enable synchronisation.
532 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
533 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
534 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
535 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
536 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
539 if (flags & CONFIG_UPDATE_MAC) {
540 reg = le32_to_cpu(conf->mac[1]);
541 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
542 conf->mac[1] = cpu_to_le32(reg);
544 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
545 conf->mac, sizeof(conf->mac));
548 if (flags & CONFIG_UPDATE_BSSID) {
549 reg = le32_to_cpu(conf->bssid[1]);
550 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
551 conf->bssid[1] = cpu_to_le32(reg);
553 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
554 conf->bssid, sizeof(conf->bssid));
558 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
559 struct rt2x00lib_erp *erp)
561 u32 reg;
563 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
564 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
565 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
566 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
568 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
569 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
570 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
571 !!erp->short_preamble);
572 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
574 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
576 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
577 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
578 erp->beacon_int * 16);
579 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
581 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
582 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
583 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
585 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
586 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
587 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
588 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
589 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
592 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
593 struct antenna_setup *ant)
595 u8 r3;
596 u8 r4;
597 u8 r77;
598 u8 temp;
600 rt73usb_bbp_read(rt2x00dev, 3, &r3);
601 rt73usb_bbp_read(rt2x00dev, 4, &r4);
602 rt73usb_bbp_read(rt2x00dev, 77, &r77);
604 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
607 * Configure the RX antenna.
609 switch (ant->rx) {
610 case ANTENNA_HW_DIVERSITY:
611 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
612 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
613 && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
614 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
615 break;
616 case ANTENNA_A:
617 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
618 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
619 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
620 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
621 else
622 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
623 break;
624 case ANTENNA_B:
625 default:
626 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
627 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
628 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
629 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
630 else
631 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
632 break;
635 rt73usb_bbp_write(rt2x00dev, 77, r77);
636 rt73usb_bbp_write(rt2x00dev, 3, r3);
637 rt73usb_bbp_write(rt2x00dev, 4, r4);
640 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
641 struct antenna_setup *ant)
643 u8 r3;
644 u8 r4;
645 u8 r77;
647 rt73usb_bbp_read(rt2x00dev, 3, &r3);
648 rt73usb_bbp_read(rt2x00dev, 4, &r4);
649 rt73usb_bbp_read(rt2x00dev, 77, &r77);
651 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
652 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
653 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
656 * Configure the RX antenna.
658 switch (ant->rx) {
659 case ANTENNA_HW_DIVERSITY:
660 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
661 break;
662 case ANTENNA_A:
663 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
664 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
665 break;
666 case ANTENNA_B:
667 default:
668 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
669 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
670 break;
673 rt73usb_bbp_write(rt2x00dev, 77, r77);
674 rt73usb_bbp_write(rt2x00dev, 3, r3);
675 rt73usb_bbp_write(rt2x00dev, 4, r4);
678 struct antenna_sel {
679 u8 word;
681 * value[0] -> non-LNA
682 * value[1] -> LNA
684 u8 value[2];
687 static const struct antenna_sel antenna_sel_a[] = {
688 { 96, { 0x58, 0x78 } },
689 { 104, { 0x38, 0x48 } },
690 { 75, { 0xfe, 0x80 } },
691 { 86, { 0xfe, 0x80 } },
692 { 88, { 0xfe, 0x80 } },
693 { 35, { 0x60, 0x60 } },
694 { 97, { 0x58, 0x58 } },
695 { 98, { 0x58, 0x58 } },
698 static const struct antenna_sel antenna_sel_bg[] = {
699 { 96, { 0x48, 0x68 } },
700 { 104, { 0x2c, 0x3c } },
701 { 75, { 0xfe, 0x80 } },
702 { 86, { 0xfe, 0x80 } },
703 { 88, { 0xfe, 0x80 } },
704 { 35, { 0x50, 0x50 } },
705 { 97, { 0x48, 0x48 } },
706 { 98, { 0x48, 0x48 } },
709 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
710 struct antenna_setup *ant)
712 const struct antenna_sel *sel;
713 unsigned int lna;
714 unsigned int i;
715 u32 reg;
718 * We should never come here because rt2x00lib is supposed
719 * to catch this and send us the correct antenna explicitely.
721 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
722 ant->tx == ANTENNA_SW_DIVERSITY);
724 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
725 sel = antenna_sel_a;
726 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
727 } else {
728 sel = antenna_sel_bg;
729 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
732 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
733 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
735 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
737 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
738 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
739 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
740 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
742 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
744 if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
745 rt2x00_rf(&rt2x00dev->chip, RF5225))
746 rt73usb_config_antenna_5x(rt2x00dev, ant);
747 else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
748 rt2x00_rf(&rt2x00dev->chip, RF2527))
749 rt73usb_config_antenna_2x(rt2x00dev, ant);
752 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
753 struct rt2x00lib_conf *libconf)
755 u16 eeprom;
756 short lna_gain = 0;
758 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
759 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
760 lna_gain += 14;
762 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
763 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
764 } else {
765 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
766 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
769 rt2x00dev->lna_gain = lna_gain;
772 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
773 struct rf_channel *rf, const int txpower)
775 u8 r3;
776 u8 r94;
777 u8 smart;
779 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
780 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
782 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
783 rt2x00_rf(&rt2x00dev->chip, RF2527));
785 rt73usb_bbp_read(rt2x00dev, 3, &r3);
786 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
787 rt73usb_bbp_write(rt2x00dev, 3, r3);
789 r94 = 6;
790 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
791 r94 += txpower - MAX_TXPOWER;
792 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
793 r94 += txpower;
794 rt73usb_bbp_write(rt2x00dev, 94, r94);
796 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
797 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
798 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
799 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
801 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
802 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
803 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
804 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
806 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
807 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
808 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
809 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
811 udelay(10);
814 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
815 const int txpower)
817 struct rf_channel rf;
819 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
820 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
821 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
822 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
824 rt73usb_config_channel(rt2x00dev, &rf, txpower);
827 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
828 struct rt2x00lib_conf *libconf)
830 u32 reg;
832 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
833 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
834 libconf->conf->long_frame_max_tx_count);
835 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
836 libconf->conf->short_frame_max_tx_count);
837 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
840 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
841 struct rt2x00lib_conf *libconf)
843 enum dev_state state =
844 (libconf->conf->flags & IEEE80211_CONF_PS) ?
845 STATE_SLEEP : STATE_AWAKE;
846 u32 reg;
848 if (state == STATE_SLEEP) {
849 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
850 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
851 rt2x00dev->beacon_int - 10);
852 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
853 libconf->conf->listen_interval - 1);
854 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
856 /* We must first disable autowake before it can be enabled */
857 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
858 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
860 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
861 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
863 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
864 USB_MODE_SLEEP, REGISTER_TIMEOUT);
865 } else {
866 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
867 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
869 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
870 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
871 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
872 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
873 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
874 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
878 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
879 struct rt2x00lib_conf *libconf,
880 const unsigned int flags)
882 /* Always recalculate LNA gain before changing configuration */
883 rt73usb_config_lna_gain(rt2x00dev, libconf);
885 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
886 rt73usb_config_channel(rt2x00dev, &libconf->rf,
887 libconf->conf->power_level);
888 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
889 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
890 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
891 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
892 rt73usb_config_retry_limit(rt2x00dev, libconf);
893 if (flags & IEEE80211_CONF_CHANGE_PS)
894 rt73usb_config_ps(rt2x00dev, libconf);
898 * Link tuning
900 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
901 struct link_qual *qual)
903 u32 reg;
906 * Update FCS error count from register.
908 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
909 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
912 * Update False CCA count from register.
914 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
915 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
918 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
919 struct link_qual *qual, u8 vgc_level)
921 if (qual->vgc_level != vgc_level) {
922 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
923 qual->vgc_level = vgc_level;
924 qual->vgc_level_reg = vgc_level;
928 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
929 struct link_qual *qual)
931 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
934 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
935 struct link_qual *qual, const u32 count)
937 u8 up_bound;
938 u8 low_bound;
941 * Determine r17 bounds.
943 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
944 low_bound = 0x28;
945 up_bound = 0x48;
947 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
948 low_bound += 0x10;
949 up_bound += 0x10;
951 } else {
952 if (qual->rssi > -82) {
953 low_bound = 0x1c;
954 up_bound = 0x40;
955 } else if (qual->rssi > -84) {
956 low_bound = 0x1c;
957 up_bound = 0x20;
958 } else {
959 low_bound = 0x1c;
960 up_bound = 0x1c;
963 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
964 low_bound += 0x14;
965 up_bound += 0x10;
970 * If we are not associated, we should go straight to the
971 * dynamic CCA tuning.
973 if (!rt2x00dev->intf_associated)
974 goto dynamic_cca_tune;
977 * Special big-R17 for very short distance
979 if (qual->rssi > -35) {
980 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
981 return;
985 * Special big-R17 for short distance
987 if (qual->rssi >= -58) {
988 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
989 return;
993 * Special big-R17 for middle-short distance
995 if (qual->rssi >= -66) {
996 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
997 return;
1001 * Special mid-R17 for middle distance
1003 if (qual->rssi >= -74) {
1004 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1005 return;
1009 * Special case: Change up_bound based on the rssi.
1010 * Lower up_bound when rssi is weaker then -74 dBm.
1012 up_bound -= 2 * (-74 - qual->rssi);
1013 if (low_bound > up_bound)
1014 up_bound = low_bound;
1016 if (qual->vgc_level > up_bound) {
1017 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1018 return;
1021 dynamic_cca_tune:
1024 * r17 does not yet exceed upper limit, continue and base
1025 * the r17 tuning on the false CCA count.
1027 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1028 rt73usb_set_vgc(rt2x00dev, qual,
1029 min_t(u8, qual->vgc_level + 4, up_bound));
1030 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1031 rt73usb_set_vgc(rt2x00dev, qual,
1032 max_t(u8, qual->vgc_level - 4, low_bound));
1036 * Firmware functions
1038 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1040 return FIRMWARE_RT2571;
1043 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1044 const u8 *data, const size_t len)
1046 u16 fw_crc;
1047 u16 crc;
1050 * Only support 2kb firmware files.
1052 if (len != 2048)
1053 return FW_BAD_LENGTH;
1056 * The last 2 bytes in the firmware array are the crc checksum itself,
1057 * this means that we should never pass those 2 bytes to the crc
1058 * algorithm.
1060 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1063 * Use the crc itu-t algorithm.
1065 crc = crc_itu_t(0, data, len - 2);
1066 crc = crc_itu_t_byte(crc, 0);
1067 crc = crc_itu_t_byte(crc, 0);
1069 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1072 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1073 const u8 *data, const size_t len)
1075 unsigned int i;
1076 int status;
1077 u32 reg;
1080 * Wait for stable hardware.
1082 for (i = 0; i < 100; i++) {
1083 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1084 if (reg)
1085 break;
1086 msleep(1);
1089 if (!reg) {
1090 ERROR(rt2x00dev, "Unstable hardware.\n");
1091 return -EBUSY;
1095 * Write firmware to device.
1097 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1098 USB_VENDOR_REQUEST_OUT,
1099 FIRMWARE_IMAGE_BASE,
1100 data, len,
1101 REGISTER_TIMEOUT32(len));
1104 * Send firmware request to device to load firmware,
1105 * we need to specify a long timeout time.
1107 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1108 0, USB_MODE_FIRMWARE,
1109 REGISTER_TIMEOUT_FIRMWARE);
1110 if (status < 0) {
1111 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1112 return status;
1115 return 0;
1119 * Initialization functions.
1121 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1123 u32 reg;
1125 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1126 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1127 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1128 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1129 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1131 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1132 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1133 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1134 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1135 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1136 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1137 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1138 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1139 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1140 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1143 * CCK TXD BBP registers
1145 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1146 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1147 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1148 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1149 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1150 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1151 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1152 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1153 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1154 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1157 * OFDM TXD BBP registers
1159 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1160 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1161 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1162 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1163 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1164 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1165 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1166 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1168 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1169 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1170 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1171 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1172 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1173 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1175 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1176 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1177 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1178 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1179 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1180 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1182 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1183 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1184 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1185 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1186 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1187 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1188 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1189 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1191 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1193 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1194 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1195 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1197 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1199 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1200 return -EBUSY;
1202 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1205 * Invalidate all Shared Keys (SEC_CSR0),
1206 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1208 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1209 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1210 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1212 reg = 0x000023b0;
1213 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
1214 rt2x00_rf(&rt2x00dev->chip, RF2527))
1215 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1216 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1218 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1219 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1220 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1222 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1223 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1224 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1227 * Clear all beacons
1228 * For the Beacon base registers we only need to clear
1229 * the first byte since that byte contains the VALID and OWNER
1230 * bits which (when set to 0) will invalidate the entire beacon.
1232 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1233 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1234 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1235 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1238 * We must clear the error counters.
1239 * These registers are cleared on read,
1240 * so we may pass a useless variable to store the value.
1242 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1243 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1244 rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1247 * Reset MAC and BBP registers.
1249 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1250 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1251 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1252 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1254 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1255 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1256 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1257 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1259 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1260 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1261 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1263 return 0;
1266 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1268 unsigned int i;
1269 u8 value;
1271 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1272 rt73usb_bbp_read(rt2x00dev, 0, &value);
1273 if ((value != 0xff) && (value != 0x00))
1274 return 0;
1275 udelay(REGISTER_BUSY_DELAY);
1278 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1279 return -EACCES;
1282 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1284 unsigned int i;
1285 u16 eeprom;
1286 u8 reg_id;
1287 u8 value;
1289 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1290 return -EACCES;
1292 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1293 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1294 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1295 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1296 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1297 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1298 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1299 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1300 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1301 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1302 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1303 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1304 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1305 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1306 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1307 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1308 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1309 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1310 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1311 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1312 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1313 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1314 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1315 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1316 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1318 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1319 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1321 if (eeprom != 0xffff && eeprom != 0x0000) {
1322 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1323 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1324 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1328 return 0;
1332 * Device state switch handlers.
1334 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1335 enum dev_state state)
1337 u32 reg;
1339 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1340 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1341 (state == STATE_RADIO_RX_OFF) ||
1342 (state == STATE_RADIO_RX_OFF_LINK));
1343 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1346 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1349 * Initialize all registers.
1351 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1352 rt73usb_init_bbp(rt2x00dev)))
1353 return -EIO;
1355 return 0;
1358 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1360 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1363 * Disable synchronisation.
1365 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1367 rt2x00usb_disable_radio(rt2x00dev);
1370 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1372 u32 reg;
1373 unsigned int i;
1374 char put_to_sleep;
1376 put_to_sleep = (state != STATE_AWAKE);
1378 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1379 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1380 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1381 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1384 * Device is not guaranteed to be in the requested state yet.
1385 * We must wait until the register indicates that the
1386 * device has entered the correct state.
1388 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1389 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1390 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1391 if (state == !put_to_sleep)
1392 return 0;
1393 msleep(10);
1396 return -EBUSY;
1399 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1400 enum dev_state state)
1402 int retval = 0;
1404 switch (state) {
1405 case STATE_RADIO_ON:
1406 retval = rt73usb_enable_radio(rt2x00dev);
1407 break;
1408 case STATE_RADIO_OFF:
1409 rt73usb_disable_radio(rt2x00dev);
1410 break;
1411 case STATE_RADIO_RX_ON:
1412 case STATE_RADIO_RX_ON_LINK:
1413 case STATE_RADIO_RX_OFF:
1414 case STATE_RADIO_RX_OFF_LINK:
1415 rt73usb_toggle_rx(rt2x00dev, state);
1416 break;
1417 case STATE_RADIO_IRQ_ON:
1418 case STATE_RADIO_IRQ_OFF:
1419 /* No support, but no error either */
1420 break;
1421 case STATE_DEEP_SLEEP:
1422 case STATE_SLEEP:
1423 case STATE_STANDBY:
1424 case STATE_AWAKE:
1425 retval = rt73usb_set_state(rt2x00dev, state);
1426 break;
1427 default:
1428 retval = -ENOTSUPP;
1429 break;
1432 if (unlikely(retval))
1433 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1434 state, retval);
1436 return retval;
1440 * TX descriptor initialization
1442 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1443 struct sk_buff *skb,
1444 struct txentry_desc *txdesc)
1446 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1447 __le32 *txd = skbdesc->desc;
1448 u32 word;
1451 * Start writing the descriptor words.
1453 rt2x00_desc_read(txd, 1, &word);
1454 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1455 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1456 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1457 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1458 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1459 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1460 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1461 rt2x00_desc_write(txd, 1, word);
1463 rt2x00_desc_read(txd, 2, &word);
1464 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1465 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1466 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1467 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1468 rt2x00_desc_write(txd, 2, word);
1470 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1471 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1472 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1475 rt2x00_desc_read(txd, 5, &word);
1476 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1477 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1478 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1479 rt2x00_desc_write(txd, 5, word);
1481 rt2x00_desc_read(txd, 0, &word);
1482 rt2x00_set_field32(&word, TXD_W0_BURST,
1483 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1484 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1485 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1486 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1487 rt2x00_set_field32(&word, TXD_W0_ACK,
1488 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1489 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1490 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1491 rt2x00_set_field32(&word, TXD_W0_OFDM,
1492 (txdesc->rate_mode == RATE_MODE_OFDM));
1493 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1494 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1495 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1496 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1497 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1498 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1499 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1500 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1501 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1502 rt2x00_set_field32(&word, TXD_W0_BURST2,
1503 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1504 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1505 rt2x00_desc_write(txd, 0, word);
1509 * TX data initialization
1511 static void rt73usb_write_beacon(struct queue_entry *entry)
1513 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1514 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1515 unsigned int beacon_base;
1516 u32 reg;
1519 * Add the descriptor in front of the skb.
1521 skb_push(entry->skb, entry->queue->desc_size);
1522 memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1523 skbdesc->desc = entry->skb->data;
1526 * Disable beaconing while we are reloading the beacon data,
1527 * otherwise we might be sending out invalid data.
1529 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1530 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1531 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1534 * Write entire beacon with descriptor to register.
1536 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1537 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1538 USB_VENDOR_REQUEST_OUT, beacon_base,
1539 entry->skb->data, entry->skb->len,
1540 REGISTER_TIMEOUT32(entry->skb->len));
1543 * Clean up the beacon skb.
1545 dev_kfree_skb(entry->skb);
1546 entry->skb = NULL;
1549 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1551 int length;
1554 * The length _must_ be a multiple of 4,
1555 * but it must _not_ be a multiple of the USB packet size.
1557 length = roundup(entry->skb->len, 4);
1558 length += (4 * !(length % entry->queue->usb_maxpacket));
1560 return length;
1563 static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1564 const enum data_queue_qid queue)
1566 u32 reg;
1568 if (queue != QID_BEACON) {
1569 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1570 return;
1574 * For Wi-Fi faily generated beacons between participating stations.
1575 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1577 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1579 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1580 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1581 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1582 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1583 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1584 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1589 * RX control handlers
1591 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1593 u8 offset = rt2x00dev->lna_gain;
1594 u8 lna;
1596 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1597 switch (lna) {
1598 case 3:
1599 offset += 90;
1600 break;
1601 case 2:
1602 offset += 74;
1603 break;
1604 case 1:
1605 offset += 64;
1606 break;
1607 default:
1608 return 0;
1611 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1612 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1613 if (lna == 3 || lna == 2)
1614 offset += 10;
1615 } else {
1616 if (lna == 3)
1617 offset += 6;
1618 else if (lna == 2)
1619 offset += 8;
1623 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1626 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1627 struct rxdone_entry_desc *rxdesc)
1629 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1630 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1631 __le32 *rxd = (__le32 *)entry->skb->data;
1632 u32 word0;
1633 u32 word1;
1636 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1637 * frame data in rt2x00usb.
1639 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1640 rxd = (__le32 *)skbdesc->desc;
1643 * It is now safe to read the descriptor on all architectures.
1645 rt2x00_desc_read(rxd, 0, &word0);
1646 rt2x00_desc_read(rxd, 1, &word1);
1648 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1649 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1651 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1652 rxdesc->cipher =
1653 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1654 rxdesc->cipher_status =
1655 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1658 if (rxdesc->cipher != CIPHER_NONE) {
1659 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1660 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1661 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1663 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1664 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1667 * Hardware has stripped IV/EIV data from 802.11 frame during
1668 * decryption. It has provided the data seperately but rt2x00lib
1669 * should decide if it should be reinserted.
1671 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1674 * FIXME: Legacy driver indicates that the frame does
1675 * contain the Michael Mic. Unfortunately, in rt2x00
1676 * the MIC seems to be missing completely...
1678 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1680 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1681 rxdesc->flags |= RX_FLAG_DECRYPTED;
1682 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1683 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1687 * Obtain the status about this packet.
1688 * When frame was received with an OFDM bitrate,
1689 * the signal is the PLCP value. If it was received with
1690 * a CCK bitrate the signal is the rate in 100kbit/s.
1692 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1693 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1694 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1696 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1697 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1698 else
1699 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1700 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1701 rxdesc->dev_flags |= RXDONE_MY_BSS;
1704 * Set skb pointers, and update frame information.
1706 skb_pull(entry->skb, entry->queue->desc_size);
1707 skb_trim(entry->skb, rxdesc->size);
1711 * Device probe functions.
1713 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1715 u16 word;
1716 u8 *mac;
1717 s8 value;
1719 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1722 * Start validation of the data that has been read.
1724 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1725 if (!is_valid_ether_addr(mac)) {
1726 random_ether_addr(mac);
1727 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1730 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1731 if (word == 0xffff) {
1732 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1733 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1734 ANTENNA_B);
1735 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1736 ANTENNA_B);
1737 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1738 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1739 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1740 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1741 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1742 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1745 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1746 if (word == 0xffff) {
1747 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1748 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1749 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1752 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1753 if (word == 0xffff) {
1754 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1755 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1756 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1757 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1758 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1759 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1760 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1761 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1762 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1763 LED_MODE_DEFAULT);
1764 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1765 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1768 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1769 if (word == 0xffff) {
1770 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1771 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1772 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1773 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1776 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1777 if (word == 0xffff) {
1778 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1779 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1780 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1781 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1782 } else {
1783 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1784 if (value < -10 || value > 10)
1785 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1786 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1787 if (value < -10 || value > 10)
1788 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1789 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1792 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1793 if (word == 0xffff) {
1794 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1795 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1796 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1797 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1798 } else {
1799 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1800 if (value < -10 || value > 10)
1801 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1802 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1803 if (value < -10 || value > 10)
1804 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1805 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1808 return 0;
1811 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1813 u32 reg;
1814 u16 value;
1815 u16 eeprom;
1818 * Read EEPROM word for configuration.
1820 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1823 * Identify RF chipset.
1825 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1826 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1827 rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
1829 if (!rt2x00_check_rev(&rt2x00dev->chip, 0x000ffff0, 0x25730) ||
1830 rt2x00_check_rev(&rt2x00dev->chip, 0x0000000f, 0)) {
1831 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1832 return -ENODEV;
1835 if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
1836 !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
1837 !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1838 !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
1839 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1840 return -ENODEV;
1844 * Identify default antenna configuration.
1846 rt2x00dev->default_ant.tx =
1847 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1848 rt2x00dev->default_ant.rx =
1849 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1852 * Read the Frame type.
1854 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1855 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1858 * Detect if this device has an hardware controlled radio.
1860 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1861 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1864 * Read frequency offset.
1866 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1867 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1870 * Read external LNA informations.
1872 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1874 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1875 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1876 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1880 * Store led settings, for correct led behaviour.
1882 #ifdef CONFIG_RT2X00_LIB_LEDS
1883 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1885 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1886 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1887 if (value == LED_MODE_SIGNAL_STRENGTH)
1888 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1889 LED_TYPE_QUALITY);
1891 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1892 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1893 rt2x00_get_field16(eeprom,
1894 EEPROM_LED_POLARITY_GPIO_0));
1895 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1896 rt2x00_get_field16(eeprom,
1897 EEPROM_LED_POLARITY_GPIO_1));
1898 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1899 rt2x00_get_field16(eeprom,
1900 EEPROM_LED_POLARITY_GPIO_2));
1901 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1902 rt2x00_get_field16(eeprom,
1903 EEPROM_LED_POLARITY_GPIO_3));
1904 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1905 rt2x00_get_field16(eeprom,
1906 EEPROM_LED_POLARITY_GPIO_4));
1907 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1908 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1909 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1910 rt2x00_get_field16(eeprom,
1911 EEPROM_LED_POLARITY_RDY_G));
1912 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1913 rt2x00_get_field16(eeprom,
1914 EEPROM_LED_POLARITY_RDY_A));
1915 #endif /* CONFIG_RT2X00_LIB_LEDS */
1917 return 0;
1921 * RF value list for RF2528
1922 * Supports: 2.4 GHz
1924 static const struct rf_channel rf_vals_bg_2528[] = {
1925 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1926 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1927 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1928 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1929 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1930 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1931 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1932 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1933 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1934 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1935 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1936 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1937 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1938 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1942 * RF value list for RF5226
1943 * Supports: 2.4 GHz & 5.2 GHz
1945 static const struct rf_channel rf_vals_5226[] = {
1946 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1947 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1948 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1949 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1950 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1951 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1952 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1953 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1954 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1955 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1956 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1957 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1958 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1959 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1961 /* 802.11 UNI / HyperLan 2 */
1962 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1963 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1964 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1965 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1966 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1967 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1968 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1969 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1971 /* 802.11 HyperLan 2 */
1972 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1973 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1974 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1975 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1976 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1977 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1978 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1979 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1980 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1981 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1983 /* 802.11 UNII */
1984 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
1985 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
1986 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
1987 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
1988 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
1989 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
1991 /* MMAC(Japan)J52 ch 34,38,42,46 */
1992 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
1993 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
1994 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
1995 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
1999 * RF value list for RF5225 & RF2527
2000 * Supports: 2.4 GHz & 5.2 GHz
2002 static const struct rf_channel rf_vals_5225_2527[] = {
2003 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2004 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2005 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2006 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2007 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2008 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2009 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2010 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2011 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2012 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2013 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2014 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2015 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2016 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2018 /* 802.11 UNI / HyperLan 2 */
2019 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2020 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2021 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2022 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2023 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2024 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2025 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2026 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2028 /* 802.11 HyperLan 2 */
2029 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2030 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2031 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2032 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2033 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2034 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2035 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2036 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2037 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2038 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2040 /* 802.11 UNII */
2041 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2042 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2043 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2044 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2045 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2046 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2048 /* MMAC(Japan)J52 ch 34,38,42,46 */
2049 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2050 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2051 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2052 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2056 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2058 struct hw_mode_spec *spec = &rt2x00dev->spec;
2059 struct channel_info *info;
2060 char *tx_power;
2061 unsigned int i;
2064 * Initialize all hw fields.
2066 rt2x00dev->hw->flags =
2067 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2068 IEEE80211_HW_SIGNAL_DBM |
2069 IEEE80211_HW_SUPPORTS_PS |
2070 IEEE80211_HW_PS_NULLFUNC_STACK;
2071 rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
2073 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2074 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2075 rt2x00_eeprom_addr(rt2x00dev,
2076 EEPROM_MAC_ADDR_0));
2079 * Initialize hw_mode information.
2081 spec->supported_bands = SUPPORT_BAND_2GHZ;
2082 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2084 if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
2085 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2086 spec->channels = rf_vals_bg_2528;
2087 } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
2088 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2089 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2090 spec->channels = rf_vals_5226;
2091 } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
2092 spec->num_channels = 14;
2093 spec->channels = rf_vals_5225_2527;
2094 } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
2095 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2096 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2097 spec->channels = rf_vals_5225_2527;
2101 * Create channel information array
2103 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2104 if (!info)
2105 return -ENOMEM;
2107 spec->channels_info = info;
2109 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2110 for (i = 0; i < 14; i++)
2111 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2113 if (spec->num_channels > 14) {
2114 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2115 for (i = 14; i < spec->num_channels; i++)
2116 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2119 return 0;
2122 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2124 int retval;
2127 * Allocate eeprom data.
2129 retval = rt73usb_validate_eeprom(rt2x00dev);
2130 if (retval)
2131 return retval;
2133 retval = rt73usb_init_eeprom(rt2x00dev);
2134 if (retval)
2135 return retval;
2138 * Initialize hw specifications.
2140 retval = rt73usb_probe_hw_mode(rt2x00dev);
2141 if (retval)
2142 return retval;
2145 * This device has multiple filters for control frames,
2146 * but has no a separate filter for PS Poll frames.
2148 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2151 * This device requires firmware.
2153 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2154 if (!modparam_nohwcrypt)
2155 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2158 * Set the rssi offset.
2160 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2162 return 0;
2166 * IEEE80211 stack callback functions.
2168 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2169 const struct ieee80211_tx_queue_params *params)
2171 struct rt2x00_dev *rt2x00dev = hw->priv;
2172 struct data_queue *queue;
2173 struct rt2x00_field32 field;
2174 int retval;
2175 u32 reg;
2176 u32 offset;
2179 * First pass the configuration through rt2x00lib, that will
2180 * update the queue settings and validate the input. After that
2181 * we are free to update the registers based on the value
2182 * in the queue parameter.
2184 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2185 if (retval)
2186 return retval;
2189 * We only need to perform additional register initialization
2190 * for WMM queues/
2192 if (queue_idx >= 4)
2193 return 0;
2195 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2197 /* Update WMM TXOP register */
2198 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2199 field.bit_offset = (queue_idx & 1) * 16;
2200 field.bit_mask = 0xffff << field.bit_offset;
2202 rt2x00usb_register_read(rt2x00dev, offset, &reg);
2203 rt2x00_set_field32(&reg, field, queue->txop);
2204 rt2x00usb_register_write(rt2x00dev, offset, reg);
2206 /* Update WMM registers */
2207 field.bit_offset = queue_idx * 4;
2208 field.bit_mask = 0xf << field.bit_offset;
2210 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2211 rt2x00_set_field32(&reg, field, queue->aifs);
2212 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2214 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2215 rt2x00_set_field32(&reg, field, queue->cw_min);
2216 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2218 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2219 rt2x00_set_field32(&reg, field, queue->cw_max);
2220 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2222 return 0;
2225 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2227 struct rt2x00_dev *rt2x00dev = hw->priv;
2228 u64 tsf;
2229 u32 reg;
2231 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2232 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2233 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2234 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2236 return tsf;
2239 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2240 .tx = rt2x00mac_tx,
2241 .start = rt2x00mac_start,
2242 .stop = rt2x00mac_stop,
2243 .add_interface = rt2x00mac_add_interface,
2244 .remove_interface = rt2x00mac_remove_interface,
2245 .config = rt2x00mac_config,
2246 .configure_filter = rt2x00mac_configure_filter,
2247 .set_tim = rt2x00mac_set_tim,
2248 .set_key = rt2x00mac_set_key,
2249 .get_stats = rt2x00mac_get_stats,
2250 .bss_info_changed = rt2x00mac_bss_info_changed,
2251 .conf_tx = rt73usb_conf_tx,
2252 .get_tx_stats = rt2x00mac_get_tx_stats,
2253 .get_tsf = rt73usb_get_tsf,
2254 .rfkill_poll = rt2x00mac_rfkill_poll,
2257 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2258 .probe_hw = rt73usb_probe_hw,
2259 .get_firmware_name = rt73usb_get_firmware_name,
2260 .check_firmware = rt73usb_check_firmware,
2261 .load_firmware = rt73usb_load_firmware,
2262 .initialize = rt2x00usb_initialize,
2263 .uninitialize = rt2x00usb_uninitialize,
2264 .clear_entry = rt2x00usb_clear_entry,
2265 .set_device_state = rt73usb_set_device_state,
2266 .rfkill_poll = rt73usb_rfkill_poll,
2267 .link_stats = rt73usb_link_stats,
2268 .reset_tuner = rt73usb_reset_tuner,
2269 .link_tuner = rt73usb_link_tuner,
2270 .write_tx_desc = rt73usb_write_tx_desc,
2271 .write_tx_data = rt2x00usb_write_tx_data,
2272 .write_beacon = rt73usb_write_beacon,
2273 .get_tx_data_len = rt73usb_get_tx_data_len,
2274 .kick_tx_queue = rt73usb_kick_tx_queue,
2275 .kill_tx_queue = rt2x00usb_kill_tx_queue,
2276 .fill_rxdone = rt73usb_fill_rxdone,
2277 .config_shared_key = rt73usb_config_shared_key,
2278 .config_pairwise_key = rt73usb_config_pairwise_key,
2279 .config_filter = rt73usb_config_filter,
2280 .config_intf = rt73usb_config_intf,
2281 .config_erp = rt73usb_config_erp,
2282 .config_ant = rt73usb_config_ant,
2283 .config = rt73usb_config,
2286 static const struct data_queue_desc rt73usb_queue_rx = {
2287 .entry_num = RX_ENTRIES,
2288 .data_size = DATA_FRAME_SIZE,
2289 .desc_size = RXD_DESC_SIZE,
2290 .priv_size = sizeof(struct queue_entry_priv_usb),
2293 static const struct data_queue_desc rt73usb_queue_tx = {
2294 .entry_num = TX_ENTRIES,
2295 .data_size = DATA_FRAME_SIZE,
2296 .desc_size = TXD_DESC_SIZE,
2297 .priv_size = sizeof(struct queue_entry_priv_usb),
2300 static const struct data_queue_desc rt73usb_queue_bcn = {
2301 .entry_num = 4 * BEACON_ENTRIES,
2302 .data_size = MGMT_FRAME_SIZE,
2303 .desc_size = TXINFO_SIZE,
2304 .priv_size = sizeof(struct queue_entry_priv_usb),
2307 static const struct rt2x00_ops rt73usb_ops = {
2308 .name = KBUILD_MODNAME,
2309 .max_sta_intf = 1,
2310 .max_ap_intf = 4,
2311 .eeprom_size = EEPROM_SIZE,
2312 .rf_size = RF_SIZE,
2313 .tx_queues = NUM_TX_QUEUES,
2314 .rx = &rt73usb_queue_rx,
2315 .tx = &rt73usb_queue_tx,
2316 .bcn = &rt73usb_queue_bcn,
2317 .lib = &rt73usb_rt2x00_ops,
2318 .hw = &rt73usb_mac80211_ops,
2319 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2320 .debugfs = &rt73usb_rt2x00debug,
2321 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2325 * rt73usb module information.
2327 static struct usb_device_id rt73usb_device_table[] = {
2328 /* AboCom */
2329 { USB_DEVICE(0x07b8, 0xb21b), USB_DEVICE_DATA(&rt73usb_ops) },
2330 { USB_DEVICE(0x07b8, 0xb21c), USB_DEVICE_DATA(&rt73usb_ops) },
2331 { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2332 { USB_DEVICE(0x07b8, 0xb21e), USB_DEVICE_DATA(&rt73usb_ops) },
2333 { USB_DEVICE(0x07b8, 0xb21f), USB_DEVICE_DATA(&rt73usb_ops) },
2334 /* AL */
2335 { USB_DEVICE(0x14b2, 0x3c10), USB_DEVICE_DATA(&rt73usb_ops) },
2336 /* Amigo */
2337 { USB_DEVICE(0x148f, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2338 { USB_DEVICE(0x0eb0, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2339 /* AMIT */
2340 { USB_DEVICE(0x18c5, 0x0002), USB_DEVICE_DATA(&rt73usb_ops) },
2341 /* Askey */
2342 { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2343 /* ASUS */
2344 { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2345 { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2346 /* Belkin */
2347 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2348 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2349 { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2350 { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2351 /* Billionton */
2352 { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2353 { USB_DEVICE(0x08dd, 0x0120), USB_DEVICE_DATA(&rt73usb_ops) },
2354 /* Buffalo */
2355 { USB_DEVICE(0x0411, 0x00d8), USB_DEVICE_DATA(&rt73usb_ops) },
2356 { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2357 { USB_DEVICE(0x0411, 0x0116), USB_DEVICE_DATA(&rt73usb_ops) },
2358 { USB_DEVICE(0x0411, 0x0119), USB_DEVICE_DATA(&rt73usb_ops) },
2359 /* CNet */
2360 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2361 { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2362 /* Conceptronic */
2363 { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2364 /* Corega */
2365 { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2366 /* D-Link */
2367 { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2368 { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2369 { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2370 { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2371 /* Edimax */
2372 { USB_DEVICE(0x7392, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2373 { USB_DEVICE(0x7392, 0x7618), USB_DEVICE_DATA(&rt73usb_ops) },
2374 /* EnGenius */
2375 { USB_DEVICE(0x1740, 0x3701), USB_DEVICE_DATA(&rt73usb_ops) },
2376 /* Gemtek */
2377 { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2378 /* Gigabyte */
2379 { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2380 { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2381 /* Huawei-3Com */
2382 { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2383 /* Hercules */
2384 { USB_DEVICE(0x06f8, 0xe002), USB_DEVICE_DATA(&rt73usb_ops) },
2385 { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2386 { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2387 /* Linksys */
2388 { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2389 { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2390 { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2391 /* MSI */
2392 { USB_DEVICE(0x0db0, 0x4600), USB_DEVICE_DATA(&rt73usb_ops) },
2393 { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2394 { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2395 { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2396 { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2397 /* Ovislink */
2398 { USB_DEVICE(0x1b75, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2399 /* Ralink */
2400 { USB_DEVICE(0x04bb, 0x093d), USB_DEVICE_DATA(&rt73usb_ops) },
2401 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2402 { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2403 /* Qcom */
2404 { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2405 { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2406 { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2407 /* Samsung */
2408 { USB_DEVICE(0x04e8, 0x4471), USB_DEVICE_DATA(&rt73usb_ops) },
2409 /* Senao */
2410 { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2411 /* Sitecom */
2412 { USB_DEVICE(0x0df6, 0x0024), USB_DEVICE_DATA(&rt73usb_ops) },
2413 { USB_DEVICE(0x0df6, 0x0027), USB_DEVICE_DATA(&rt73usb_ops) },
2414 { USB_DEVICE(0x0df6, 0x002f), USB_DEVICE_DATA(&rt73usb_ops) },
2415 { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2416 { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2417 /* Surecom */
2418 { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2419 /* Tilgin */
2420 { USB_DEVICE(0x6933, 0x5001), USB_DEVICE_DATA(&rt73usb_ops) },
2421 /* Philips */
2422 { USB_DEVICE(0x0471, 0x200a), USB_DEVICE_DATA(&rt73usb_ops) },
2423 /* Planex */
2424 { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2425 { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2426 /* WideTell */
2427 { USB_DEVICE(0x7167, 0x3840), USB_DEVICE_DATA(&rt73usb_ops) },
2428 /* Zcom */
2429 { USB_DEVICE(0x0cde, 0x001c), USB_DEVICE_DATA(&rt73usb_ops) },
2430 /* ZyXEL */
2431 { USB_DEVICE(0x0586, 0x3415), USB_DEVICE_DATA(&rt73usb_ops) },
2432 { 0, }
2435 MODULE_AUTHOR(DRV_PROJECT);
2436 MODULE_VERSION(DRV_VERSION);
2437 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2438 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2439 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2440 MODULE_FIRMWARE(FIRMWARE_RT2571);
2441 MODULE_LICENSE("GPL");
2443 static struct usb_driver rt73usb_driver = {
2444 .name = KBUILD_MODNAME,
2445 .id_table = rt73usb_device_table,
2446 .probe = rt2x00usb_probe,
2447 .disconnect = rt2x00usb_disconnect,
2448 .suspend = rt2x00usb_suspend,
2449 .resume = rt2x00usb_resume,
2452 static int __init rt73usb_init(void)
2454 return usb_register(&rt73usb_driver);
2457 static void __exit rt73usb_exit(void)
2459 usb_deregister(&rt73usb_driver);
2462 module_init(rt73usb_init);
2463 module_exit(rt73usb_exit);