2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
53 #define IOAPIC_RANGE_START (0xfee00000)
54 #define IOAPIC_RANGE_END (0xfeefffff)
55 #define IOVA_START_ADDR (0x1000)
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
59 #define MAX_AGAW_WIDTH 64
61 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
67 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
70 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
75 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
76 are never going to work. */
77 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn
)
79 return dma_pfn
>> (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
82 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn
)
84 return mm_pfn
<< (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
86 static inline unsigned long page_to_dma_pfn(struct page
*pg
)
88 return mm_to_dma_pfn(page_to_pfn(pg
));
90 static inline unsigned long virt_to_dma_pfn(void *p
)
92 return page_to_dma_pfn(virt_to_page(p
));
95 /* global iommu list, set NULL for ignored DMAR units */
96 static struct intel_iommu
**g_iommus
;
98 static void __init
check_tylersburg_isoch(void);
99 static int rwbf_quirk
;
104 * 12-63: Context Ptr (12 - (haw-1))
111 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
112 static inline bool root_present(struct root_entry
*root
)
114 return (root
->val
& 1);
116 static inline void set_root_present(struct root_entry
*root
)
120 static inline void set_root_value(struct root_entry
*root
, unsigned long value
)
122 root
->val
|= value
& VTD_PAGE_MASK
;
125 static inline struct context_entry
*
126 get_context_addr_from_root(struct root_entry
*root
)
128 return (struct context_entry
*)
129 (root_present(root
)?phys_to_virt(
130 root
->val
& VTD_PAGE_MASK
) :
137 * 1: fault processing disable
138 * 2-3: translation type
139 * 12-63: address space root
145 struct context_entry
{
150 static inline bool context_present(struct context_entry
*context
)
152 return (context
->lo
& 1);
154 static inline void context_set_present(struct context_entry
*context
)
159 static inline void context_set_fault_enable(struct context_entry
*context
)
161 context
->lo
&= (((u64
)-1) << 2) | 1;
164 static inline void context_set_translation_type(struct context_entry
*context
,
167 context
->lo
&= (((u64
)-1) << 4) | 3;
168 context
->lo
|= (value
& 3) << 2;
171 static inline void context_set_address_root(struct context_entry
*context
,
174 context
->lo
|= value
& VTD_PAGE_MASK
;
177 static inline void context_set_address_width(struct context_entry
*context
,
180 context
->hi
|= value
& 7;
183 static inline void context_set_domain_id(struct context_entry
*context
,
186 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
189 static inline void context_clear_entry(struct context_entry
*context
)
202 * 12-63: Host physcial address
208 static inline void dma_clear_pte(struct dma_pte
*pte
)
213 static inline void dma_set_pte_readable(struct dma_pte
*pte
)
215 pte
->val
|= DMA_PTE_READ
;
218 static inline void dma_set_pte_writable(struct dma_pte
*pte
)
220 pte
->val
|= DMA_PTE_WRITE
;
223 static inline void dma_set_pte_snp(struct dma_pte
*pte
)
225 pte
->val
|= DMA_PTE_SNP
;
228 static inline void dma_set_pte_prot(struct dma_pte
*pte
, unsigned long prot
)
230 pte
->val
= (pte
->val
& ~3) | (prot
& 3);
233 static inline u64
dma_pte_addr(struct dma_pte
*pte
)
236 return pte
->val
& VTD_PAGE_MASK
;
238 /* Must have a full atomic 64-bit read */
239 return __cmpxchg64(pte
, 0ULL, 0ULL) & VTD_PAGE_MASK
;
243 static inline void dma_set_pte_pfn(struct dma_pte
*pte
, unsigned long pfn
)
245 pte
->val
|= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
248 static inline bool dma_pte_present(struct dma_pte
*pte
)
250 return (pte
->val
& 3) != 0;
253 static inline int first_pte_in_page(struct dma_pte
*pte
)
255 return !((unsigned long)pte
& ~VTD_PAGE_MASK
);
259 * This domain is a statically identity mapping domain.
260 * 1. This domain creats a static 1:1 mapping to all usable memory.
261 * 2. It maps to each iommu if successful.
262 * 3. Each iommu mapps to this domain if successful.
264 static struct dmar_domain
*si_domain
;
265 static int hw_pass_through
= 1;
267 /* devices under the same p2p bridge are owned in one domain */
268 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
270 /* domain represents a virtual machine, more than one devices
271 * across iommus may be owned in one domain, e.g. kvm guest.
273 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
275 /* si_domain contains mulitple devices */
276 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
279 int id
; /* domain id */
280 unsigned long iommu_bmp
; /* bitmap of iommus this domain uses*/
282 struct list_head devices
; /* all devices' list */
283 struct iova_domain iovad
; /* iova's that belong to this domain */
285 struct dma_pte
*pgd
; /* virtual address */
286 int gaw
; /* max guest address width */
288 /* adjusted guest address width, 0 is level 2 30-bit */
291 int flags
; /* flags to find out type of domain */
293 int iommu_coherency
;/* indicate coherency of iommu access */
294 int iommu_snooping
; /* indicate snooping control feature*/
295 int iommu_count
; /* reference count of iommu */
296 spinlock_t iommu_lock
; /* protect iommu set in domain */
297 u64 max_addr
; /* maximum mapped address */
300 /* PCI domain-device relationship */
301 struct device_domain_info
{
302 struct list_head link
; /* link to domain siblings */
303 struct list_head global
; /* link to global list */
304 int segment
; /* PCI domain */
305 u8 bus
; /* PCI bus number */
306 u8 devfn
; /* PCI devfn number */
307 struct pci_dev
*dev
; /* it's NULL for PCIE-to-PCI bridge */
308 struct intel_iommu
*iommu
; /* IOMMU used by this device */
309 struct dmar_domain
*domain
; /* pointer to domain */
312 static void flush_unmaps_timeout(unsigned long data
);
314 DEFINE_TIMER(unmap_timer
, flush_unmaps_timeout
, 0, 0);
316 #define HIGH_WATER_MARK 250
317 struct deferred_flush_tables
{
319 struct iova
*iova
[HIGH_WATER_MARK
];
320 struct dmar_domain
*domain
[HIGH_WATER_MARK
];
323 static struct deferred_flush_tables
*deferred_flush
;
325 /* bitmap for indexing intel_iommus */
326 static int g_num_of_iommus
;
328 static DEFINE_SPINLOCK(async_umap_flush_lock
);
329 static LIST_HEAD(unmaps_to_do
);
332 static long list_size
;
334 static void domain_remove_dev_info(struct dmar_domain
*domain
);
336 #ifdef CONFIG_DMAR_DEFAULT_ON
337 int dmar_disabled
= 0;
339 int dmar_disabled
= 1;
340 #endif /*CONFIG_DMAR_DEFAULT_ON*/
342 static int __initdata dmar_map_gfx
= 1;
343 static int dmar_forcedac
;
344 static int intel_iommu_strict
;
346 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
347 static DEFINE_SPINLOCK(device_domain_lock
);
348 static LIST_HEAD(device_domain_list
);
350 static struct iommu_ops intel_iommu_ops
;
352 static int __init
intel_iommu_setup(char *str
)
357 if (!strncmp(str
, "on", 2)) {
359 printk(KERN_INFO
"Intel-IOMMU: enabled\n");
360 } else if (!strncmp(str
, "off", 3)) {
362 printk(KERN_INFO
"Intel-IOMMU: disabled\n");
363 } else if (!strncmp(str
, "igfx_off", 8)) {
366 "Intel-IOMMU: disable GFX device mapping\n");
367 } else if (!strncmp(str
, "forcedac", 8)) {
369 "Intel-IOMMU: Forcing DAC for PCI devices\n");
371 } else if (!strncmp(str
, "strict", 6)) {
373 "Intel-IOMMU: disable batched IOTLB flush\n");
374 intel_iommu_strict
= 1;
377 str
+= strcspn(str
, ",");
383 __setup("intel_iommu=", intel_iommu_setup
);
385 static struct kmem_cache
*iommu_domain_cache
;
386 static struct kmem_cache
*iommu_devinfo_cache
;
387 static struct kmem_cache
*iommu_iova_cache
;
389 static inline void *iommu_kmem_cache_alloc(struct kmem_cache
*cachep
)
394 /* trying to avoid low memory issues */
395 flags
= current
->flags
& PF_MEMALLOC
;
396 current
->flags
|= PF_MEMALLOC
;
397 vaddr
= kmem_cache_alloc(cachep
, GFP_ATOMIC
);
398 current
->flags
&= (~PF_MEMALLOC
| flags
);
403 static inline void *alloc_pgtable_page(void)
408 /* trying to avoid low memory issues */
409 flags
= current
->flags
& PF_MEMALLOC
;
410 current
->flags
|= PF_MEMALLOC
;
411 vaddr
= (void *)get_zeroed_page(GFP_ATOMIC
);
412 current
->flags
&= (~PF_MEMALLOC
| flags
);
416 static inline void free_pgtable_page(void *vaddr
)
418 free_page((unsigned long)vaddr
);
421 static inline void *alloc_domain_mem(void)
423 return iommu_kmem_cache_alloc(iommu_domain_cache
);
426 static void free_domain_mem(void *vaddr
)
428 kmem_cache_free(iommu_domain_cache
, vaddr
);
431 static inline void * alloc_devinfo_mem(void)
433 return iommu_kmem_cache_alloc(iommu_devinfo_cache
);
436 static inline void free_devinfo_mem(void *vaddr
)
438 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
441 struct iova
*alloc_iova_mem(void)
443 return iommu_kmem_cache_alloc(iommu_iova_cache
);
446 void free_iova_mem(struct iova
*iova
)
448 kmem_cache_free(iommu_iova_cache
, iova
);
452 static inline int width_to_agaw(int width
);
454 static int __iommu_calculate_agaw(struct intel_iommu
*iommu
, int max_gaw
)
459 sagaw
= cap_sagaw(iommu
->cap
);
460 for (agaw
= width_to_agaw(max_gaw
);
462 if (test_bit(agaw
, &sagaw
))
470 * Calculate max SAGAW for each iommu.
472 int iommu_calculate_max_sagaw(struct intel_iommu
*iommu
)
474 return __iommu_calculate_agaw(iommu
, MAX_AGAW_WIDTH
);
478 * calculate agaw for each iommu.
479 * "SAGAW" may be different across iommus, use a default agaw, and
480 * get a supported less agaw for iommus that don't support the default agaw.
482 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
484 return __iommu_calculate_agaw(iommu
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
487 /* This functionin only returns single iommu in a domain */
488 static struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
492 /* si_domain and vm domain should not get here. */
493 BUG_ON(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
);
494 BUG_ON(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
);
496 iommu_id
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
497 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
500 return g_iommus
[iommu_id
];
503 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
507 domain
->iommu_coherency
= 1;
509 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
510 for (; i
< g_num_of_iommus
; ) {
511 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
512 domain
->iommu_coherency
= 0;
515 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
519 static void domain_update_iommu_snooping(struct dmar_domain
*domain
)
523 domain
->iommu_snooping
= 1;
525 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
526 for (; i
< g_num_of_iommus
; ) {
527 if (!ecap_sc_support(g_iommus
[i
]->ecap
)) {
528 domain
->iommu_snooping
= 0;
531 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
535 /* Some capabilities may be different across iommus */
536 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
538 domain_update_iommu_coherency(domain
);
539 domain_update_iommu_snooping(domain
);
542 static struct intel_iommu
*device_to_iommu(int segment
, u8 bus
, u8 devfn
)
544 struct dmar_drhd_unit
*drhd
= NULL
;
547 for_each_drhd_unit(drhd
) {
550 if (segment
!= drhd
->segment
)
553 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
554 if (drhd
->devices
[i
] &&
555 drhd
->devices
[i
]->bus
->number
== bus
&&
556 drhd
->devices
[i
]->devfn
== devfn
)
558 if (drhd
->devices
[i
] &&
559 drhd
->devices
[i
]->subordinate
&&
560 drhd
->devices
[i
]->subordinate
->number
<= bus
&&
561 drhd
->devices
[i
]->subordinate
->subordinate
>= bus
)
565 if (drhd
->include_all
)
572 static void domain_flush_cache(struct dmar_domain
*domain
,
573 void *addr
, int size
)
575 if (!domain
->iommu_coherency
)
576 clflush_cache_range(addr
, size
);
579 /* Gets context entry for a given bus and devfn */
580 static struct context_entry
* device_to_context_entry(struct intel_iommu
*iommu
,
583 struct root_entry
*root
;
584 struct context_entry
*context
;
585 unsigned long phy_addr
;
588 spin_lock_irqsave(&iommu
->lock
, flags
);
589 root
= &iommu
->root_entry
[bus
];
590 context
= get_context_addr_from_root(root
);
592 context
= (struct context_entry
*)alloc_pgtable_page();
594 spin_unlock_irqrestore(&iommu
->lock
, flags
);
597 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
598 phy_addr
= virt_to_phys((void *)context
);
599 set_root_value(root
, phy_addr
);
600 set_root_present(root
);
601 __iommu_flush_cache(iommu
, root
, sizeof(*root
));
603 spin_unlock_irqrestore(&iommu
->lock
, flags
);
604 return &context
[devfn
];
607 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
609 struct root_entry
*root
;
610 struct context_entry
*context
;
614 spin_lock_irqsave(&iommu
->lock
, flags
);
615 root
= &iommu
->root_entry
[bus
];
616 context
= get_context_addr_from_root(root
);
621 ret
= context_present(&context
[devfn
]);
623 spin_unlock_irqrestore(&iommu
->lock
, flags
);
627 static void clear_context_table(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
629 struct root_entry
*root
;
630 struct context_entry
*context
;
633 spin_lock_irqsave(&iommu
->lock
, flags
);
634 root
= &iommu
->root_entry
[bus
];
635 context
= get_context_addr_from_root(root
);
637 context_clear_entry(&context
[devfn
]);
638 __iommu_flush_cache(iommu
, &context
[devfn
], \
641 spin_unlock_irqrestore(&iommu
->lock
, flags
);
644 static void free_context_table(struct intel_iommu
*iommu
)
646 struct root_entry
*root
;
649 struct context_entry
*context
;
651 spin_lock_irqsave(&iommu
->lock
, flags
);
652 if (!iommu
->root_entry
) {
655 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
656 root
= &iommu
->root_entry
[i
];
657 context
= get_context_addr_from_root(root
);
659 free_pgtable_page(context
);
661 free_pgtable_page(iommu
->root_entry
);
662 iommu
->root_entry
= NULL
;
664 spin_unlock_irqrestore(&iommu
->lock
, flags
);
667 /* page table handling */
668 #define LEVEL_STRIDE (9)
669 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
671 static inline int agaw_to_level(int agaw
)
676 static inline int agaw_to_width(int agaw
)
678 return 30 + agaw
* LEVEL_STRIDE
;
682 static inline int width_to_agaw(int width
)
684 return (width
- 30) / LEVEL_STRIDE
;
687 static inline unsigned int level_to_offset_bits(int level
)
689 return (level
- 1) * LEVEL_STRIDE
;
692 static inline int pfn_level_offset(unsigned long pfn
, int level
)
694 return (pfn
>> level_to_offset_bits(level
)) & LEVEL_MASK
;
697 static inline unsigned long level_mask(int level
)
699 return -1UL << level_to_offset_bits(level
);
702 static inline unsigned long level_size(int level
)
704 return 1UL << level_to_offset_bits(level
);
707 static inline unsigned long align_to_level(unsigned long pfn
, int level
)
709 return (pfn
+ level_size(level
) - 1) & level_mask(level
);
712 static struct dma_pte
*pfn_to_dma_pte(struct dmar_domain
*domain
,
715 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
716 struct dma_pte
*parent
, *pte
= NULL
;
717 int level
= agaw_to_level(domain
->agaw
);
720 BUG_ON(!domain
->pgd
);
721 BUG_ON(addr_width
< BITS_PER_LONG
&& pfn
>> addr_width
);
722 parent
= domain
->pgd
;
727 offset
= pfn_level_offset(pfn
, level
);
728 pte
= &parent
[offset
];
732 if (!dma_pte_present(pte
)) {
735 tmp_page
= alloc_pgtable_page();
740 domain_flush_cache(domain
, tmp_page
, VTD_PAGE_SIZE
);
741 pteval
= ((uint64_t)virt_to_dma_pfn(tmp_page
) << VTD_PAGE_SHIFT
) | DMA_PTE_READ
| DMA_PTE_WRITE
;
742 if (cmpxchg64(&pte
->val
, 0ULL, pteval
)) {
743 /* Someone else set it while we were thinking; use theirs. */
744 free_pgtable_page(tmp_page
);
747 domain_flush_cache(domain
, pte
, sizeof(*pte
));
750 parent
= phys_to_virt(dma_pte_addr(pte
));
757 /* return address's pte at specific level */
758 static struct dma_pte
*dma_pfn_level_pte(struct dmar_domain
*domain
,
762 struct dma_pte
*parent
, *pte
= NULL
;
763 int total
= agaw_to_level(domain
->agaw
);
766 parent
= domain
->pgd
;
767 while (level
<= total
) {
768 offset
= pfn_level_offset(pfn
, total
);
769 pte
= &parent
[offset
];
773 if (!dma_pte_present(pte
))
775 parent
= phys_to_virt(dma_pte_addr(pte
));
781 /* clear last level pte, a tlb flush should be followed */
782 static void dma_pte_clear_range(struct dmar_domain
*domain
,
783 unsigned long start_pfn
,
784 unsigned long last_pfn
)
786 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
787 struct dma_pte
*first_pte
, *pte
;
789 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
790 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
791 BUG_ON(start_pfn
> last_pfn
);
793 /* we don't need lock here; nobody else touches the iova range */
795 first_pte
= pte
= dma_pfn_level_pte(domain
, start_pfn
, 1);
797 start_pfn
= align_to_level(start_pfn
+ 1, 2);
804 } while (start_pfn
<= last_pfn
&& !first_pte_in_page(pte
));
806 domain_flush_cache(domain
, first_pte
,
807 (void *)pte
- (void *)first_pte
);
809 } while (start_pfn
&& start_pfn
<= last_pfn
);
812 /* free page table pages. last level pte should already be cleared */
813 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
814 unsigned long start_pfn
,
815 unsigned long last_pfn
)
817 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
818 struct dma_pte
*first_pte
, *pte
;
819 int total
= agaw_to_level(domain
->agaw
);
823 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
824 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
825 BUG_ON(start_pfn
> last_pfn
);
827 /* We don't need lock here; nobody else touches the iova range */
829 while (level
<= total
) {
830 tmp
= align_to_level(start_pfn
, level
);
832 /* If we can't even clear one PTE at this level, we're done */
833 if (tmp
+ level_size(level
) - 1 > last_pfn
)
837 first_pte
= pte
= dma_pfn_level_pte(domain
, tmp
, level
);
839 tmp
= align_to_level(tmp
+ 1, level
+ 1);
843 if (dma_pte_present(pte
)) {
844 free_pgtable_page(phys_to_virt(dma_pte_addr(pte
)));
848 tmp
+= level_size(level
);
849 } while (!first_pte_in_page(pte
) &&
850 tmp
+ level_size(level
) - 1 <= last_pfn
);
852 domain_flush_cache(domain
, first_pte
,
853 (void *)pte
- (void *)first_pte
);
855 } while (tmp
&& tmp
+ level_size(level
) - 1 <= last_pfn
);
859 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
860 free_pgtable_page(domain
->pgd
);
866 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
868 struct root_entry
*root
;
871 root
= (struct root_entry
*)alloc_pgtable_page();
875 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
877 spin_lock_irqsave(&iommu
->lock
, flags
);
878 iommu
->root_entry
= root
;
879 spin_unlock_irqrestore(&iommu
->lock
, flags
);
884 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
890 addr
= iommu
->root_entry
;
892 spin_lock_irqsave(&iommu
->register_lock
, flag
);
893 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, virt_to_phys(addr
));
895 writel(iommu
->gcmd
| DMA_GCMD_SRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
897 /* Make sure hardware complete it */
898 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
899 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
901 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
904 static void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
909 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
912 spin_lock_irqsave(&iommu
->register_lock
, flag
);
913 writel(iommu
->gcmd
| DMA_GCMD_WBF
, iommu
->reg
+ DMAR_GCMD_REG
);
915 /* Make sure hardware complete it */
916 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
917 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
919 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
922 /* return value determine if we need a write buffer flush */
923 static void __iommu_flush_context(struct intel_iommu
*iommu
,
924 u16 did
, u16 source_id
, u8 function_mask
,
931 case DMA_CCMD_GLOBAL_INVL
:
932 val
= DMA_CCMD_GLOBAL_INVL
;
934 case DMA_CCMD_DOMAIN_INVL
:
935 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
937 case DMA_CCMD_DEVICE_INVL
:
938 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
939 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
946 spin_lock_irqsave(&iommu
->register_lock
, flag
);
947 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
949 /* Make sure hardware complete it */
950 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
951 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
953 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
956 /* return value determine if we need a write buffer flush */
957 static void __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
958 u64 addr
, unsigned int size_order
, u64 type
)
960 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
961 u64 val
= 0, val_iva
= 0;
965 case DMA_TLB_GLOBAL_FLUSH
:
966 /* global flush doesn't need set IVA_REG */
967 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
969 case DMA_TLB_DSI_FLUSH
:
970 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
972 case DMA_TLB_PSI_FLUSH
:
973 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
974 /* Note: always flush non-leaf currently */
975 val_iva
= size_order
| addr
;
980 /* Note: set drain read/write */
983 * This is probably to be super secure.. Looks like we can
984 * ignore it without any impact.
986 if (cap_read_drain(iommu
->cap
))
987 val
|= DMA_TLB_READ_DRAIN
;
989 if (cap_write_drain(iommu
->cap
))
990 val
|= DMA_TLB_WRITE_DRAIN
;
992 spin_lock_irqsave(&iommu
->register_lock
, flag
);
993 /* Note: Only uses first TLB reg currently */
995 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
996 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
998 /* Make sure hardware complete it */
999 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
1000 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
1002 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1004 /* check IOTLB invalidation granularity */
1005 if (DMA_TLB_IAIG(val
) == 0)
1006 printk(KERN_ERR
"IOMMU: flush IOTLB failed\n");
1007 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
1008 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1009 (unsigned long long)DMA_TLB_IIRG(type
),
1010 (unsigned long long)DMA_TLB_IAIG(val
));
1013 static struct device_domain_info
*iommu_support_dev_iotlb(
1014 struct dmar_domain
*domain
, int segment
, u8 bus
, u8 devfn
)
1017 unsigned long flags
;
1018 struct device_domain_info
*info
;
1019 struct intel_iommu
*iommu
= device_to_iommu(segment
, bus
, devfn
);
1021 if (!ecap_dev_iotlb_support(iommu
->ecap
))
1027 spin_lock_irqsave(&device_domain_lock
, flags
);
1028 list_for_each_entry(info
, &domain
->devices
, link
)
1029 if (info
->bus
== bus
&& info
->devfn
== devfn
) {
1033 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1035 if (!found
|| !info
->dev
)
1038 if (!pci_find_ext_capability(info
->dev
, PCI_EXT_CAP_ID_ATS
))
1041 if (!dmar_find_matched_atsr_unit(info
->dev
))
1044 info
->iommu
= iommu
;
1049 static void iommu_enable_dev_iotlb(struct device_domain_info
*info
)
1054 pci_enable_ats(info
->dev
, VTD_PAGE_SHIFT
);
1057 static void iommu_disable_dev_iotlb(struct device_domain_info
*info
)
1059 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1062 pci_disable_ats(info
->dev
);
1065 static void iommu_flush_dev_iotlb(struct dmar_domain
*domain
,
1066 u64 addr
, unsigned mask
)
1069 unsigned long flags
;
1070 struct device_domain_info
*info
;
1072 spin_lock_irqsave(&device_domain_lock
, flags
);
1073 list_for_each_entry(info
, &domain
->devices
, link
) {
1074 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1077 sid
= info
->bus
<< 8 | info
->devfn
;
1078 qdep
= pci_ats_queue_depth(info
->dev
);
1079 qi_flush_dev_iotlb(info
->iommu
, sid
, qdep
, addr
, mask
);
1081 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1084 static void iommu_flush_iotlb_psi(struct intel_iommu
*iommu
, u16 did
,
1085 unsigned long pfn
, unsigned int pages
)
1087 unsigned int mask
= ilog2(__roundup_pow_of_two(pages
));
1088 uint64_t addr
= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
1093 * Fallback to domain selective flush if no PSI support or the size is
1095 * PSI requires page size to be 2 ^ x, and the base address is naturally
1096 * aligned to the size
1098 if (!cap_pgsel_inv(iommu
->cap
) || mask
> cap_max_amask_val(iommu
->cap
))
1099 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
1102 iommu
->flush
.flush_iotlb(iommu
, did
, addr
, mask
,
1106 * In caching mode, domain ID 0 is reserved for non-present to present
1107 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1109 if (!cap_caching_mode(iommu
->cap
) || did
)
1110 iommu_flush_dev_iotlb(iommu
->domains
[did
], addr
, mask
);
1113 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1116 unsigned long flags
;
1118 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1119 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1120 pmen
&= ~DMA_PMEN_EPM
;
1121 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1123 /* wait for the protected region status bit to clear */
1124 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1125 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1127 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1130 static int iommu_enable_translation(struct intel_iommu
*iommu
)
1133 unsigned long flags
;
1135 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1136 iommu
->gcmd
|= DMA_GCMD_TE
;
1137 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1139 /* Make sure hardware complete it */
1140 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1141 readl
, (sts
& DMA_GSTS_TES
), sts
);
1143 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1147 static int iommu_disable_translation(struct intel_iommu
*iommu
)
1152 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1153 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1154 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1156 /* Make sure hardware complete it */
1157 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1158 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1160 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1165 static int iommu_init_domains(struct intel_iommu
*iommu
)
1167 unsigned long ndomains
;
1168 unsigned long nlongs
;
1170 ndomains
= cap_ndoms(iommu
->cap
);
1171 pr_debug("Number of Domains supportd <%ld>\n", ndomains
);
1172 nlongs
= BITS_TO_LONGS(ndomains
);
1174 spin_lock_init(&iommu
->lock
);
1176 /* TBD: there might be 64K domains,
1177 * consider other allocation for future chip
1179 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1180 if (!iommu
->domain_ids
) {
1181 printk(KERN_ERR
"Allocating domain id array failed\n");
1184 iommu
->domains
= kcalloc(ndomains
, sizeof(struct dmar_domain
*),
1186 if (!iommu
->domains
) {
1187 printk(KERN_ERR
"Allocating domain array failed\n");
1192 * if Caching mode is set, then invalid translations are tagged
1193 * with domainid 0. Hence we need to pre-allocate it.
1195 if (cap_caching_mode(iommu
->cap
))
1196 set_bit(0, iommu
->domain_ids
);
1201 static void domain_exit(struct dmar_domain
*domain
);
1202 static void vm_domain_exit(struct dmar_domain
*domain
);
1204 void free_dmar_iommu(struct intel_iommu
*iommu
)
1206 struct dmar_domain
*domain
;
1208 unsigned long flags
;
1210 if ((iommu
->domains
) && (iommu
->domain_ids
)) {
1211 i
= find_first_bit(iommu
->domain_ids
, cap_ndoms(iommu
->cap
));
1212 for (; i
< cap_ndoms(iommu
->cap
); ) {
1213 domain
= iommu
->domains
[i
];
1214 clear_bit(i
, iommu
->domain_ids
);
1216 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1217 if (--domain
->iommu_count
== 0) {
1218 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
1219 vm_domain_exit(domain
);
1221 domain_exit(domain
);
1223 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1225 i
= find_next_bit(iommu
->domain_ids
,
1226 cap_ndoms(iommu
->cap
), i
+1);
1230 if (iommu
->gcmd
& DMA_GCMD_TE
)
1231 iommu_disable_translation(iommu
);
1234 set_irq_data(iommu
->irq
, NULL
);
1235 /* This will mask the irq */
1236 free_irq(iommu
->irq
, iommu
);
1237 destroy_irq(iommu
->irq
);
1240 kfree(iommu
->domains
);
1241 kfree(iommu
->domain_ids
);
1243 g_iommus
[iommu
->seq_id
] = NULL
;
1245 /* if all iommus are freed, free g_iommus */
1246 for (i
= 0; i
< g_num_of_iommus
; i
++) {
1251 if (i
== g_num_of_iommus
)
1254 /* free context mapping */
1255 free_context_table(iommu
);
1258 static struct dmar_domain
*alloc_domain(void)
1260 struct dmar_domain
*domain
;
1262 domain
= alloc_domain_mem();
1266 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
1272 static int iommu_attach_domain(struct dmar_domain
*domain
,
1273 struct intel_iommu
*iommu
)
1276 unsigned long ndomains
;
1277 unsigned long flags
;
1279 ndomains
= cap_ndoms(iommu
->cap
);
1281 spin_lock_irqsave(&iommu
->lock
, flags
);
1283 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1284 if (num
>= ndomains
) {
1285 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1286 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1291 set_bit(num
, iommu
->domain_ids
);
1292 set_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1293 iommu
->domains
[num
] = domain
;
1294 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1299 static void iommu_detach_domain(struct dmar_domain
*domain
,
1300 struct intel_iommu
*iommu
)
1302 unsigned long flags
;
1306 spin_lock_irqsave(&iommu
->lock
, flags
);
1307 ndomains
= cap_ndoms(iommu
->cap
);
1308 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1309 for (; num
< ndomains
; ) {
1310 if (iommu
->domains
[num
] == domain
) {
1314 num
= find_next_bit(iommu
->domain_ids
,
1315 cap_ndoms(iommu
->cap
), num
+1);
1319 clear_bit(num
, iommu
->domain_ids
);
1320 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1321 iommu
->domains
[num
] = NULL
;
1323 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1326 static struct iova_domain reserved_iova_list
;
1327 static struct lock_class_key reserved_rbtree_key
;
1329 static void dmar_init_reserved_ranges(void)
1331 struct pci_dev
*pdev
= NULL
;
1335 init_iova_domain(&reserved_iova_list
, DMA_32BIT_PFN
);
1337 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1338 &reserved_rbtree_key
);
1340 /* IOAPIC ranges shouldn't be accessed by DMA */
1341 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1342 IOVA_PFN(IOAPIC_RANGE_END
));
1344 printk(KERN_ERR
"Reserve IOAPIC range failed\n");
1346 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1347 for_each_pci_dev(pdev
) {
1350 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1351 r
= &pdev
->resource
[i
];
1352 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1354 iova
= reserve_iova(&reserved_iova_list
,
1358 printk(KERN_ERR
"Reserve iova failed\n");
1364 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1366 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1369 static inline int guestwidth_to_adjustwidth(int gaw
)
1372 int r
= (gaw
- 12) % 9;
1383 static int domain_init(struct dmar_domain
*domain
, int guest_width
)
1385 struct intel_iommu
*iommu
;
1386 int adjust_width
, agaw
;
1387 unsigned long sagaw
;
1389 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
1390 spin_lock_init(&domain
->iommu_lock
);
1392 domain_reserve_special_ranges(domain
);
1394 /* calculate AGAW */
1395 iommu
= domain_get_iommu(domain
);
1396 if (guest_width
> cap_mgaw(iommu
->cap
))
1397 guest_width
= cap_mgaw(iommu
->cap
);
1398 domain
->gaw
= guest_width
;
1399 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1400 agaw
= width_to_agaw(adjust_width
);
1401 sagaw
= cap_sagaw(iommu
->cap
);
1402 if (!test_bit(agaw
, &sagaw
)) {
1403 /* hardware doesn't support it, choose a bigger one */
1404 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw
);
1405 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1409 domain
->agaw
= agaw
;
1410 INIT_LIST_HEAD(&domain
->devices
);
1412 if (ecap_coherent(iommu
->ecap
))
1413 domain
->iommu_coherency
= 1;
1415 domain
->iommu_coherency
= 0;
1417 if (ecap_sc_support(iommu
->ecap
))
1418 domain
->iommu_snooping
= 1;
1420 domain
->iommu_snooping
= 0;
1422 domain
->iommu_count
= 1;
1424 /* always allocate the top pgd */
1425 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
1428 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1432 static void domain_exit(struct dmar_domain
*domain
)
1434 struct dmar_drhd_unit
*drhd
;
1435 struct intel_iommu
*iommu
;
1437 /* Domain 0 is reserved, so dont process it */
1441 domain_remove_dev_info(domain
);
1443 put_iova_domain(&domain
->iovad
);
1446 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1448 /* free page tables */
1449 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1451 for_each_active_iommu(iommu
, drhd
)
1452 if (test_bit(iommu
->seq_id
, &domain
->iommu_bmp
))
1453 iommu_detach_domain(domain
, iommu
);
1455 free_domain_mem(domain
);
1458 static int domain_context_mapping_one(struct dmar_domain
*domain
, int segment
,
1459 u8 bus
, u8 devfn
, int translation
)
1461 struct context_entry
*context
;
1462 unsigned long flags
;
1463 struct intel_iommu
*iommu
;
1464 struct dma_pte
*pgd
;
1466 unsigned long ndomains
;
1469 struct device_domain_info
*info
= NULL
;
1471 pr_debug("Set context mapping for %02x:%02x.%d\n",
1472 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1474 BUG_ON(!domain
->pgd
);
1475 BUG_ON(translation
!= CONTEXT_TT_PASS_THROUGH
&&
1476 translation
!= CONTEXT_TT_MULTI_LEVEL
);
1478 iommu
= device_to_iommu(segment
, bus
, devfn
);
1482 context
= device_to_context_entry(iommu
, bus
, devfn
);
1485 spin_lock_irqsave(&iommu
->lock
, flags
);
1486 if (context_present(context
)) {
1487 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1494 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
1495 domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
) {
1498 /* find an available domain id for this device in iommu */
1499 ndomains
= cap_ndoms(iommu
->cap
);
1500 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1501 for (; num
< ndomains
; ) {
1502 if (iommu
->domains
[num
] == domain
) {
1507 num
= find_next_bit(iommu
->domain_ids
,
1508 cap_ndoms(iommu
->cap
), num
+1);
1512 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1513 if (num
>= ndomains
) {
1514 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1515 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1519 set_bit(num
, iommu
->domain_ids
);
1520 iommu
->domains
[num
] = domain
;
1524 /* Skip top levels of page tables for
1525 * iommu which has less agaw than default.
1527 for (agaw
= domain
->agaw
; agaw
!= iommu
->agaw
; agaw
--) {
1528 pgd
= phys_to_virt(dma_pte_addr(pgd
));
1529 if (!dma_pte_present(pgd
)) {
1530 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1536 context_set_domain_id(context
, id
);
1538 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1539 info
= iommu_support_dev_iotlb(domain
, segment
, bus
, devfn
);
1540 translation
= info
? CONTEXT_TT_DEV_IOTLB
:
1541 CONTEXT_TT_MULTI_LEVEL
;
1544 * In pass through mode, AW must be programmed to indicate the largest
1545 * AGAW value supported by hardware. And ASR is ignored by hardware.
1547 if (unlikely(translation
== CONTEXT_TT_PASS_THROUGH
))
1548 context_set_address_width(context
, iommu
->msagaw
);
1550 context_set_address_root(context
, virt_to_phys(pgd
));
1551 context_set_address_width(context
, iommu
->agaw
);
1554 context_set_translation_type(context
, translation
);
1555 context_set_fault_enable(context
);
1556 context_set_present(context
);
1557 domain_flush_cache(domain
, context
, sizeof(*context
));
1560 * It's a non-present to present mapping. If hardware doesn't cache
1561 * non-present entry we only need to flush the write-buffer. If the
1562 * _does_ cache non-present entries, then it does so in the special
1563 * domain #0, which we have to flush:
1565 if (cap_caching_mode(iommu
->cap
)) {
1566 iommu
->flush
.flush_context(iommu
, 0,
1567 (((u16
)bus
) << 8) | devfn
,
1568 DMA_CCMD_MASK_NOBIT
,
1569 DMA_CCMD_DEVICE_INVL
);
1570 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_DSI_FLUSH
);
1572 iommu_flush_write_buffer(iommu
);
1574 iommu_enable_dev_iotlb(info
);
1575 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1577 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1578 if (!test_and_set_bit(iommu
->seq_id
, &domain
->iommu_bmp
)) {
1579 domain
->iommu_count
++;
1580 domain_update_iommu_cap(domain
);
1582 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1587 domain_context_mapping(struct dmar_domain
*domain
, struct pci_dev
*pdev
,
1591 struct pci_dev
*tmp
, *parent
;
1593 ret
= domain_context_mapping_one(domain
, pci_domain_nr(pdev
->bus
),
1594 pdev
->bus
->number
, pdev
->devfn
,
1599 /* dependent device mapping */
1600 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1603 /* Secondary interface's bus number and devfn 0 */
1604 parent
= pdev
->bus
->self
;
1605 while (parent
!= tmp
) {
1606 ret
= domain_context_mapping_one(domain
,
1607 pci_domain_nr(parent
->bus
),
1608 parent
->bus
->number
,
1609 parent
->devfn
, translation
);
1612 parent
= parent
->bus
->self
;
1614 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
1615 return domain_context_mapping_one(domain
,
1616 pci_domain_nr(tmp
->subordinate
),
1617 tmp
->subordinate
->number
, 0,
1619 else /* this is a legacy PCI bridge */
1620 return domain_context_mapping_one(domain
,
1621 pci_domain_nr(tmp
->bus
),
1627 static int domain_context_mapped(struct pci_dev
*pdev
)
1630 struct pci_dev
*tmp
, *parent
;
1631 struct intel_iommu
*iommu
;
1633 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
1638 ret
= device_context_mapped(iommu
, pdev
->bus
->number
, pdev
->devfn
);
1641 /* dependent device mapping */
1642 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1645 /* Secondary interface's bus number and devfn 0 */
1646 parent
= pdev
->bus
->self
;
1647 while (parent
!= tmp
) {
1648 ret
= device_context_mapped(iommu
, parent
->bus
->number
,
1652 parent
= parent
->bus
->self
;
1655 return device_context_mapped(iommu
, tmp
->subordinate
->number
,
1658 return device_context_mapped(iommu
, tmp
->bus
->number
,
1662 /* Returns a number of VTD pages, but aligned to MM page size */
1663 static inline unsigned long aligned_nrpages(unsigned long host_addr
,
1666 host_addr
&= ~PAGE_MASK
;
1667 return PAGE_ALIGN(host_addr
+ size
) >> VTD_PAGE_SHIFT
;
1670 static int __domain_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1671 struct scatterlist
*sg
, unsigned long phys_pfn
,
1672 unsigned long nr_pages
, int prot
)
1674 struct dma_pte
*first_pte
= NULL
, *pte
= NULL
;
1675 phys_addr_t
uninitialized_var(pteval
);
1676 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
1677 unsigned long sg_res
;
1679 BUG_ON(addr_width
< BITS_PER_LONG
&& (iov_pfn
+ nr_pages
- 1) >> addr_width
);
1681 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
1684 prot
&= DMA_PTE_READ
| DMA_PTE_WRITE
| DMA_PTE_SNP
;
1689 sg_res
= nr_pages
+ 1;
1690 pteval
= ((phys_addr_t
)phys_pfn
<< VTD_PAGE_SHIFT
) | prot
;
1693 while (nr_pages
--) {
1697 sg_res
= aligned_nrpages(sg
->offset
, sg
->length
);
1698 sg
->dma_address
= ((dma_addr_t
)iov_pfn
<< VTD_PAGE_SHIFT
) + sg
->offset
;
1699 sg
->dma_length
= sg
->length
;
1700 pteval
= page_to_phys(sg_page(sg
)) | prot
;
1703 first_pte
= pte
= pfn_to_dma_pte(domain
, iov_pfn
);
1707 /* We don't need lock here, nobody else
1708 * touches the iova range
1710 tmp
= cmpxchg64_local(&pte
->val
, 0ULL, pteval
);
1712 static int dumps
= 5;
1713 printk(KERN_CRIT
"ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1714 iov_pfn
, tmp
, (unsigned long long)pteval
);
1717 debug_dma_dump_mappings(NULL
);
1722 if (!nr_pages
|| first_pte_in_page(pte
)) {
1723 domain_flush_cache(domain
, first_pte
,
1724 (void *)pte
- (void *)first_pte
);
1728 pteval
+= VTD_PAGE_SIZE
;
1736 static inline int domain_sg_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1737 struct scatterlist
*sg
, unsigned long nr_pages
,
1740 return __domain_mapping(domain
, iov_pfn
, sg
, 0, nr_pages
, prot
);
1743 static inline int domain_pfn_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1744 unsigned long phys_pfn
, unsigned long nr_pages
,
1747 return __domain_mapping(domain
, iov_pfn
, NULL
, phys_pfn
, nr_pages
, prot
);
1750 static void iommu_detach_dev(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
1755 clear_context_table(iommu
, bus
, devfn
);
1756 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
1757 DMA_CCMD_GLOBAL_INVL
);
1758 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
1761 static void domain_remove_dev_info(struct dmar_domain
*domain
)
1763 struct device_domain_info
*info
;
1764 unsigned long flags
;
1765 struct intel_iommu
*iommu
;
1767 spin_lock_irqsave(&device_domain_lock
, flags
);
1768 while (!list_empty(&domain
->devices
)) {
1769 info
= list_entry(domain
->devices
.next
,
1770 struct device_domain_info
, link
);
1771 list_del(&info
->link
);
1772 list_del(&info
->global
);
1774 info
->dev
->dev
.archdata
.iommu
= NULL
;
1775 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1777 iommu_disable_dev_iotlb(info
);
1778 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
1779 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
1780 free_devinfo_mem(info
);
1782 spin_lock_irqsave(&device_domain_lock
, flags
);
1784 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1789 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1791 static struct dmar_domain
*
1792 find_domain(struct pci_dev
*pdev
)
1794 struct device_domain_info
*info
;
1796 /* No lock here, assumes no domain exit in normal case */
1797 info
= pdev
->dev
.archdata
.iommu
;
1799 return info
->domain
;
1803 /* domain is initialized */
1804 static struct dmar_domain
*get_domain_for_dev(struct pci_dev
*pdev
, int gaw
)
1806 struct dmar_domain
*domain
, *found
= NULL
;
1807 struct intel_iommu
*iommu
;
1808 struct dmar_drhd_unit
*drhd
;
1809 struct device_domain_info
*info
, *tmp
;
1810 struct pci_dev
*dev_tmp
;
1811 unsigned long flags
;
1812 int bus
= 0, devfn
= 0;
1816 domain
= find_domain(pdev
);
1820 segment
= pci_domain_nr(pdev
->bus
);
1822 dev_tmp
= pci_find_upstream_pcie_bridge(pdev
);
1824 if (dev_tmp
->is_pcie
) {
1825 bus
= dev_tmp
->subordinate
->number
;
1828 bus
= dev_tmp
->bus
->number
;
1829 devfn
= dev_tmp
->devfn
;
1831 spin_lock_irqsave(&device_domain_lock
, flags
);
1832 list_for_each_entry(info
, &device_domain_list
, global
) {
1833 if (info
->segment
== segment
&&
1834 info
->bus
== bus
&& info
->devfn
== devfn
) {
1835 found
= info
->domain
;
1839 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1840 /* pcie-pci bridge already has a domain, uses it */
1847 domain
= alloc_domain();
1851 /* Allocate new domain for the device */
1852 drhd
= dmar_find_matched_drhd_unit(pdev
);
1854 printk(KERN_ERR
"IOMMU: can't find DMAR for device %s\n",
1858 iommu
= drhd
->iommu
;
1860 ret
= iommu_attach_domain(domain
, iommu
);
1862 domain_exit(domain
);
1866 if (domain_init(domain
, gaw
)) {
1867 domain_exit(domain
);
1871 /* register pcie-to-pci device */
1873 info
= alloc_devinfo_mem();
1875 domain_exit(domain
);
1878 info
->segment
= segment
;
1880 info
->devfn
= devfn
;
1882 info
->domain
= domain
;
1883 /* This domain is shared by devices under p2p bridge */
1884 domain
->flags
|= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES
;
1886 /* pcie-to-pci bridge already has a domain, uses it */
1888 spin_lock_irqsave(&device_domain_lock
, flags
);
1889 list_for_each_entry(tmp
, &device_domain_list
, global
) {
1890 if (tmp
->segment
== segment
&&
1891 tmp
->bus
== bus
&& tmp
->devfn
== devfn
) {
1892 found
= tmp
->domain
;
1897 free_devinfo_mem(info
);
1898 domain_exit(domain
);
1901 list_add(&info
->link
, &domain
->devices
);
1902 list_add(&info
->global
, &device_domain_list
);
1904 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1908 info
= alloc_devinfo_mem();
1911 info
->segment
= segment
;
1912 info
->bus
= pdev
->bus
->number
;
1913 info
->devfn
= pdev
->devfn
;
1915 info
->domain
= domain
;
1916 spin_lock_irqsave(&device_domain_lock
, flags
);
1917 /* somebody is fast */
1918 found
= find_domain(pdev
);
1919 if (found
!= NULL
) {
1920 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1921 if (found
!= domain
) {
1922 domain_exit(domain
);
1925 free_devinfo_mem(info
);
1928 list_add(&info
->link
, &domain
->devices
);
1929 list_add(&info
->global
, &device_domain_list
);
1930 pdev
->dev
.archdata
.iommu
= info
;
1931 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1934 /* recheck it here, maybe others set it */
1935 return find_domain(pdev
);
1938 static int iommu_identity_mapping
;
1939 #define IDENTMAP_ALL 1
1940 #define IDENTMAP_GFX 2
1941 #define IDENTMAP_AZALIA 4
1943 static int iommu_domain_identity_map(struct dmar_domain
*domain
,
1944 unsigned long long start
,
1945 unsigned long long end
)
1947 unsigned long first_vpfn
= start
>> VTD_PAGE_SHIFT
;
1948 unsigned long last_vpfn
= end
>> VTD_PAGE_SHIFT
;
1950 if (!reserve_iova(&domain
->iovad
, dma_to_mm_pfn(first_vpfn
),
1951 dma_to_mm_pfn(last_vpfn
))) {
1952 printk(KERN_ERR
"IOMMU: reserve iova failed\n");
1956 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1957 start
, end
, domain
->id
);
1959 * RMRR range might have overlap with physical memory range,
1962 dma_pte_clear_range(domain
, first_vpfn
, last_vpfn
);
1964 return domain_pfn_mapping(domain
, first_vpfn
, first_vpfn
,
1965 last_vpfn
- first_vpfn
+ 1,
1966 DMA_PTE_READ
|DMA_PTE_WRITE
);
1969 static int iommu_prepare_identity_map(struct pci_dev
*pdev
,
1970 unsigned long long start
,
1971 unsigned long long end
)
1973 struct dmar_domain
*domain
;
1976 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
1980 /* For _hardware_ passthrough, don't bother. But for software
1981 passthrough, we do it anyway -- it may indicate a memory
1982 range which is reserved in E820, so which didn't get set
1983 up to start with in si_domain */
1984 if (domain
== si_domain
&& hw_pass_through
) {
1985 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1986 pci_name(pdev
), start
, end
);
1991 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1992 pci_name(pdev
), start
, end
);
1994 if (end
>> agaw_to_width(domain
->agaw
)) {
1995 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1996 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1997 agaw_to_width(domain
->agaw
),
1998 dmi_get_system_info(DMI_BIOS_VENDOR
),
1999 dmi_get_system_info(DMI_BIOS_VERSION
),
2000 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2005 ret
= iommu_domain_identity_map(domain
, start
, end
);
2009 /* context entry init */
2010 ret
= domain_context_mapping(domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
2017 domain_exit(domain
);
2021 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
2022 struct pci_dev
*pdev
)
2024 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2026 return iommu_prepare_identity_map(pdev
, rmrr
->base_address
,
2027 rmrr
->end_address
+ 1);
2030 #ifdef CONFIG_DMAR_FLOPPY_WA
2031 static inline void iommu_prepare_isa(void)
2033 struct pci_dev
*pdev
;
2036 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
2040 printk(KERN_INFO
"IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2041 ret
= iommu_prepare_identity_map(pdev
, 0, 16*1024*1024);
2044 printk(KERN_ERR
"IOMMU: Failed to create 0-16MiB identity map; "
2045 "floppy might not work\n");
2049 static inline void iommu_prepare_isa(void)
2053 #endif /* !CONFIG_DMAR_FLPY_WA */
2055 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
);
2057 static int __init
si_domain_work_fn(unsigned long start_pfn
,
2058 unsigned long end_pfn
, void *datax
)
2062 *ret
= iommu_domain_identity_map(si_domain
,
2063 (uint64_t)start_pfn
<< PAGE_SHIFT
,
2064 (uint64_t)end_pfn
<< PAGE_SHIFT
);
2069 static int __init
si_domain_init(int hw
)
2071 struct dmar_drhd_unit
*drhd
;
2072 struct intel_iommu
*iommu
;
2075 si_domain
= alloc_domain();
2079 pr_debug("Identity mapping domain is domain %d\n", si_domain
->id
);
2081 for_each_active_iommu(iommu
, drhd
) {
2082 ret
= iommu_attach_domain(si_domain
, iommu
);
2084 domain_exit(si_domain
);
2089 if (md_domain_init(si_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
2090 domain_exit(si_domain
);
2094 si_domain
->flags
= DOMAIN_FLAG_STATIC_IDENTITY
;
2099 for_each_online_node(nid
) {
2100 work_with_active_regions(nid
, si_domain_work_fn
, &ret
);
2108 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
2109 struct pci_dev
*pdev
);
2110 static int identity_mapping(struct pci_dev
*pdev
)
2112 struct device_domain_info
*info
;
2114 if (likely(!iommu_identity_mapping
))
2118 list_for_each_entry(info
, &si_domain
->devices
, link
)
2119 if (info
->dev
== pdev
)
2124 static int domain_add_dev_info(struct dmar_domain
*domain
,
2125 struct pci_dev
*pdev
,
2128 struct device_domain_info
*info
;
2129 unsigned long flags
;
2132 info
= alloc_devinfo_mem();
2136 ret
= domain_context_mapping(domain
, pdev
, translation
);
2138 free_devinfo_mem(info
);
2142 info
->segment
= pci_domain_nr(pdev
->bus
);
2143 info
->bus
= pdev
->bus
->number
;
2144 info
->devfn
= pdev
->devfn
;
2146 info
->domain
= domain
;
2148 spin_lock_irqsave(&device_domain_lock
, flags
);
2149 list_add(&info
->link
, &domain
->devices
);
2150 list_add(&info
->global
, &device_domain_list
);
2151 pdev
->dev
.archdata
.iommu
= info
;
2152 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2157 static int iommu_should_identity_map(struct pci_dev
*pdev
, int startup
)
2159 if ((iommu_identity_mapping
& IDENTMAP_AZALIA
) && IS_AZALIA(pdev
))
2162 if ((iommu_identity_mapping
& IDENTMAP_GFX
) && IS_GFX_DEVICE(pdev
))
2165 if (!(iommu_identity_mapping
& IDENTMAP_ALL
))
2169 * We want to start off with all devices in the 1:1 domain, and
2170 * take them out later if we find they can't access all of memory.
2172 * However, we can't do this for PCI devices behind bridges,
2173 * because all PCI devices behind the same bridge will end up
2174 * with the same source-id on their transactions.
2176 * Practically speaking, we can't change things around for these
2177 * devices at run-time, because we can't be sure there'll be no
2178 * DMA transactions in flight for any of their siblings.
2180 * So PCI devices (unless they're on the root bus) as well as
2181 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2182 * the 1:1 domain, just in _case_ one of their siblings turns out
2183 * not to be able to map all of memory.
2185 if (!pdev
->is_pcie
) {
2186 if (!pci_is_root_bus(pdev
->bus
))
2188 if (pdev
->class >> 8 == PCI_CLASS_BRIDGE_PCI
)
2190 } else if (pdev
->pcie_type
== PCI_EXP_TYPE_PCI_BRIDGE
)
2194 * At boot time, we don't yet know if devices will be 64-bit capable.
2195 * Assume that they will -- if they turn out not to be, then we can
2196 * take them out of the 1:1 domain later.
2199 return pdev
->dma_mask
> DMA_BIT_MASK(32);
2204 static int __init
iommu_prepare_static_identity_mapping(int hw
)
2206 struct pci_dev
*pdev
= NULL
;
2209 ret
= si_domain_init(hw
);
2213 for_each_pci_dev(pdev
) {
2214 if (iommu_should_identity_map(pdev
, 1)) {
2215 printk(KERN_INFO
"IOMMU: %s identity mapping for device %s\n",
2216 hw
? "hardware" : "software", pci_name(pdev
));
2218 ret
= domain_add_dev_info(si_domain
, pdev
,
2219 hw
? CONTEXT_TT_PASS_THROUGH
:
2220 CONTEXT_TT_MULTI_LEVEL
);
2229 int __init
init_dmars(void)
2231 struct dmar_drhd_unit
*drhd
;
2232 struct dmar_rmrr_unit
*rmrr
;
2233 struct pci_dev
*pdev
;
2234 struct intel_iommu
*iommu
;
2240 * initialize and program root entry to not present
2243 for_each_drhd_unit(drhd
) {
2246 * lock not needed as this is only incremented in the single
2247 * threaded kernel __init code path all other access are read
2252 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
2255 printk(KERN_ERR
"Allocating global iommu array failed\n");
2260 deferred_flush
= kzalloc(g_num_of_iommus
*
2261 sizeof(struct deferred_flush_tables
), GFP_KERNEL
);
2262 if (!deferred_flush
) {
2267 for_each_drhd_unit(drhd
) {
2271 iommu
= drhd
->iommu
;
2272 g_iommus
[iommu
->seq_id
] = iommu
;
2274 ret
= iommu_init_domains(iommu
);
2280 * we could share the same root & context tables
2281 * amoung all IOMMU's. Need to Split it later.
2283 ret
= iommu_alloc_root_entry(iommu
);
2285 printk(KERN_ERR
"IOMMU: allocate root entry failed\n");
2288 if (!ecap_pass_through(iommu
->ecap
))
2289 hw_pass_through
= 0;
2293 * Start from the sane iommu hardware state.
2295 for_each_drhd_unit(drhd
) {
2299 iommu
= drhd
->iommu
;
2302 * If the queued invalidation is already initialized by us
2303 * (for example, while enabling interrupt-remapping) then
2304 * we got the things already rolling from a sane state.
2310 * Clear any previous faults.
2312 dmar_fault(-1, iommu
);
2314 * Disable queued invalidation if supported and already enabled
2315 * before OS handover.
2317 dmar_disable_qi(iommu
);
2320 for_each_drhd_unit(drhd
) {
2324 iommu
= drhd
->iommu
;
2326 if (dmar_enable_qi(iommu
)) {
2328 * Queued Invalidate not enabled, use Register Based
2331 iommu
->flush
.flush_context
= __iommu_flush_context
;
2332 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
2333 printk(KERN_INFO
"IOMMU 0x%Lx: using Register based "
2335 (unsigned long long)drhd
->reg_base_addr
);
2337 iommu
->flush
.flush_context
= qi_flush_context
;
2338 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
2339 printk(KERN_INFO
"IOMMU 0x%Lx: using Queued "
2341 (unsigned long long)drhd
->reg_base_addr
);
2345 if (iommu_pass_through
)
2346 iommu_identity_mapping
|= IDENTMAP_ALL
;
2348 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2349 iommu_identity_mapping
|= IDENTMAP_GFX
;
2352 check_tylersburg_isoch();
2355 * If pass through is not set or not enabled, setup context entries for
2356 * identity mappings for rmrr, gfx, and isa and may fall back to static
2357 * identity mapping if iommu_identity_mapping is set.
2359 if (iommu_identity_mapping
) {
2360 ret
= iommu_prepare_static_identity_mapping(hw_pass_through
);
2362 printk(KERN_CRIT
"Failed to setup IOMMU pass-through\n");
2368 * for each dev attached to rmrr
2370 * locate drhd for dev, alloc domain for dev
2371 * allocate free domain
2372 * allocate page table entries for rmrr
2373 * if context not allocated for bus
2374 * allocate and init context
2375 * set present in root table for this bus
2376 * init context with domain, translation etc
2380 printk(KERN_INFO
"IOMMU: Setting RMRR:\n");
2381 for_each_rmrr_units(rmrr
) {
2382 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2383 pdev
= rmrr
->devices
[i
];
2385 * some BIOS lists non-exist devices in DMAR
2390 ret
= iommu_prepare_rmrr_dev(rmrr
, pdev
);
2393 "IOMMU: mapping reserved region failed\n");
2397 iommu_prepare_isa();
2402 * global invalidate context cache
2403 * global invalidate iotlb
2404 * enable translation
2406 for_each_drhd_unit(drhd
) {
2409 iommu
= drhd
->iommu
;
2411 iommu_flush_write_buffer(iommu
);
2413 ret
= dmar_set_interrupt(iommu
);
2417 iommu_set_root_entry(iommu
);
2419 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
2420 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
2422 ret
= iommu_enable_translation(iommu
);
2426 iommu_disable_protect_mem_regions(iommu
);
2431 for_each_drhd_unit(drhd
) {
2434 iommu
= drhd
->iommu
;
2441 /* This takes a number of _MM_ pages, not VTD pages */
2442 static struct iova
*intel_alloc_iova(struct device
*dev
,
2443 struct dmar_domain
*domain
,
2444 unsigned long nrpages
, uint64_t dma_mask
)
2446 struct pci_dev
*pdev
= to_pci_dev(dev
);
2447 struct iova
*iova
= NULL
;
2449 /* Restrict dma_mask to the width that the iommu can handle */
2450 dma_mask
= min_t(uint64_t, DOMAIN_MAX_ADDR(domain
->gaw
), dma_mask
);
2452 if (!dmar_forcedac
&& dma_mask
> DMA_BIT_MASK(32)) {
2454 * First try to allocate an io virtual address in
2455 * DMA_BIT_MASK(32) and if that fails then try allocating
2458 iova
= alloc_iova(&domain
->iovad
, nrpages
,
2459 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2463 iova
= alloc_iova(&domain
->iovad
, nrpages
, IOVA_PFN(dma_mask
), 1);
2464 if (unlikely(!iova
)) {
2465 printk(KERN_ERR
"Allocating %ld-page iova for %s failed",
2466 nrpages
, pci_name(pdev
));
2473 static struct dmar_domain
*__get_valid_domain_for_dev(struct pci_dev
*pdev
)
2475 struct dmar_domain
*domain
;
2478 domain
= get_domain_for_dev(pdev
,
2479 DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2482 "Allocating domain for %s failed", pci_name(pdev
));
2486 /* make sure context mapping is ok */
2487 if (unlikely(!domain_context_mapped(pdev
))) {
2488 ret
= domain_context_mapping(domain
, pdev
,
2489 CONTEXT_TT_MULTI_LEVEL
);
2492 "Domain context map for %s failed",
2501 static inline struct dmar_domain
*get_valid_domain_for_dev(struct pci_dev
*dev
)
2503 struct device_domain_info
*info
;
2505 /* No lock here, assumes no domain exit in normal case */
2506 info
= dev
->dev
.archdata
.iommu
;
2508 return info
->domain
;
2510 return __get_valid_domain_for_dev(dev
);
2513 static int iommu_dummy(struct pci_dev
*pdev
)
2515 return pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
;
2518 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2519 static int iommu_no_mapping(struct device
*dev
)
2521 struct pci_dev
*pdev
;
2524 if (unlikely(dev
->bus
!= &pci_bus_type
))
2527 pdev
= to_pci_dev(dev
);
2528 if (iommu_dummy(pdev
))
2531 if (!iommu_identity_mapping
)
2534 found
= identity_mapping(pdev
);
2536 if (iommu_should_identity_map(pdev
, 0))
2540 * 32 bit DMA is removed from si_domain and fall back
2541 * to non-identity mapping.
2543 domain_remove_one_dev_info(si_domain
, pdev
);
2544 printk(KERN_INFO
"32bit %s uses non-identity mapping\n",
2550 * In case of a detached 64 bit DMA device from vm, the device
2551 * is put into si_domain for identity mapping.
2553 if (iommu_should_identity_map(pdev
, 0)) {
2555 ret
= domain_add_dev_info(si_domain
, pdev
,
2557 CONTEXT_TT_PASS_THROUGH
:
2558 CONTEXT_TT_MULTI_LEVEL
);
2560 printk(KERN_INFO
"64bit %s uses identity mapping\n",
2570 static dma_addr_t
__intel_map_single(struct device
*hwdev
, phys_addr_t paddr
,
2571 size_t size
, int dir
, u64 dma_mask
)
2573 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2574 struct dmar_domain
*domain
;
2575 phys_addr_t start_paddr
;
2579 struct intel_iommu
*iommu
;
2580 unsigned long paddr_pfn
= paddr
>> PAGE_SHIFT
;
2582 BUG_ON(dir
== DMA_NONE
);
2584 if (iommu_no_mapping(hwdev
))
2587 domain
= get_valid_domain_for_dev(pdev
);
2591 iommu
= domain_get_iommu(domain
);
2592 size
= aligned_nrpages(paddr
, size
);
2594 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
2600 * Check if DMAR supports zero-length reads on write only
2603 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2604 !cap_zlr(iommu
->cap
))
2605 prot
|= DMA_PTE_READ
;
2606 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2607 prot
|= DMA_PTE_WRITE
;
2609 * paddr - (paddr + size) might be partial page, we should map the whole
2610 * page. Note: if two part of one page are separately mapped, we
2611 * might have two guest_addr mapping to the same host paddr, but this
2612 * is not a big problem
2614 ret
= domain_pfn_mapping(domain
, mm_to_dma_pfn(iova
->pfn_lo
),
2615 mm_to_dma_pfn(paddr_pfn
), size
, prot
);
2619 /* it's a non-present to present mapping. Only flush if caching mode */
2620 if (cap_caching_mode(iommu
->cap
))
2621 iommu_flush_iotlb_psi(iommu
, 0, mm_to_dma_pfn(iova
->pfn_lo
), size
);
2623 iommu_flush_write_buffer(iommu
);
2625 start_paddr
= (phys_addr_t
)iova
->pfn_lo
<< PAGE_SHIFT
;
2626 start_paddr
+= paddr
& ~PAGE_MASK
;
2631 __free_iova(&domain
->iovad
, iova
);
2632 printk(KERN_ERR
"Device %s request: %zx@%llx dir %d --- failed\n",
2633 pci_name(pdev
), size
, (unsigned long long)paddr
, dir
);
2637 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
2638 unsigned long offset
, size_t size
,
2639 enum dma_data_direction dir
,
2640 struct dma_attrs
*attrs
)
2642 return __intel_map_single(dev
, page_to_phys(page
) + offset
, size
,
2643 dir
, to_pci_dev(dev
)->dma_mask
);
2646 static void flush_unmaps(void)
2652 /* just flush them all */
2653 for (i
= 0; i
< g_num_of_iommus
; i
++) {
2654 struct intel_iommu
*iommu
= g_iommus
[i
];
2658 if (!deferred_flush
[i
].next
)
2661 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2662 DMA_TLB_GLOBAL_FLUSH
);
2663 for (j
= 0; j
< deferred_flush
[i
].next
; j
++) {
2665 struct iova
*iova
= deferred_flush
[i
].iova
[j
];
2667 mask
= ilog2(mm_to_dma_pfn(iova
->pfn_hi
- iova
->pfn_lo
+ 1));
2668 iommu_flush_dev_iotlb(deferred_flush
[i
].domain
[j
],
2669 (uint64_t)iova
->pfn_lo
<< PAGE_SHIFT
, mask
);
2670 __free_iova(&deferred_flush
[i
].domain
[j
]->iovad
, iova
);
2672 deferred_flush
[i
].next
= 0;
2678 static void flush_unmaps_timeout(unsigned long data
)
2680 unsigned long flags
;
2682 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2684 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2687 static void add_unmap(struct dmar_domain
*dom
, struct iova
*iova
)
2689 unsigned long flags
;
2691 struct intel_iommu
*iommu
;
2693 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2694 if (list_size
== HIGH_WATER_MARK
)
2697 iommu
= domain_get_iommu(dom
);
2698 iommu_id
= iommu
->seq_id
;
2700 next
= deferred_flush
[iommu_id
].next
;
2701 deferred_flush
[iommu_id
].domain
[next
] = dom
;
2702 deferred_flush
[iommu_id
].iova
[next
] = iova
;
2703 deferred_flush
[iommu_id
].next
++;
2706 mod_timer(&unmap_timer
, jiffies
+ msecs_to_jiffies(10));
2710 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2713 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
2714 size_t size
, enum dma_data_direction dir
,
2715 struct dma_attrs
*attrs
)
2717 struct pci_dev
*pdev
= to_pci_dev(dev
);
2718 struct dmar_domain
*domain
;
2719 unsigned long start_pfn
, last_pfn
;
2721 struct intel_iommu
*iommu
;
2723 if (iommu_no_mapping(dev
))
2726 domain
= find_domain(pdev
);
2729 iommu
= domain_get_iommu(domain
);
2731 iova
= find_iova(&domain
->iovad
, IOVA_PFN(dev_addr
));
2732 if (WARN_ONCE(!iova
, "Driver unmaps unmatched page at PFN %llx\n",
2733 (unsigned long long)dev_addr
))
2736 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2737 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2739 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2740 pci_name(pdev
), start_pfn
, last_pfn
);
2742 /* clear the whole page */
2743 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2745 /* free page tables */
2746 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2748 if (intel_iommu_strict
) {
2749 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2750 last_pfn
- start_pfn
+ 1);
2752 __free_iova(&domain
->iovad
, iova
);
2754 add_unmap(domain
, iova
);
2756 * queue up the release of the unmap to save the 1/6th of the
2757 * cpu used up by the iotlb flush operation...
2762 static void *intel_alloc_coherent(struct device
*hwdev
, size_t size
,
2763 dma_addr_t
*dma_handle
, gfp_t flags
)
2768 size
= PAGE_ALIGN(size
);
2769 order
= get_order(size
);
2770 flags
&= ~(GFP_DMA
| GFP_DMA32
);
2772 vaddr
= (void *)__get_free_pages(flags
, order
);
2775 memset(vaddr
, 0, size
);
2777 *dma_handle
= __intel_map_single(hwdev
, virt_to_bus(vaddr
), size
,
2779 hwdev
->coherent_dma_mask
);
2782 free_pages((unsigned long)vaddr
, order
);
2786 static void intel_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
2787 dma_addr_t dma_handle
)
2791 size
= PAGE_ALIGN(size
);
2792 order
= get_order(size
);
2794 intel_unmap_page(hwdev
, dma_handle
, size
, DMA_BIDIRECTIONAL
, NULL
);
2795 free_pages((unsigned long)vaddr
, order
);
2798 static void intel_unmap_sg(struct device
*hwdev
, struct scatterlist
*sglist
,
2799 int nelems
, enum dma_data_direction dir
,
2800 struct dma_attrs
*attrs
)
2802 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2803 struct dmar_domain
*domain
;
2804 unsigned long start_pfn
, last_pfn
;
2806 struct intel_iommu
*iommu
;
2808 if (iommu_no_mapping(hwdev
))
2811 domain
= find_domain(pdev
);
2814 iommu
= domain_get_iommu(domain
);
2816 iova
= find_iova(&domain
->iovad
, IOVA_PFN(sglist
[0].dma_address
));
2817 if (WARN_ONCE(!iova
, "Driver unmaps unmatched sglist at PFN %llx\n",
2818 (unsigned long long)sglist
[0].dma_address
))
2821 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2822 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2824 /* clear the whole page */
2825 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2827 /* free page tables */
2828 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2830 if (intel_iommu_strict
) {
2831 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2832 last_pfn
- start_pfn
+ 1);
2834 __free_iova(&domain
->iovad
, iova
);
2836 add_unmap(domain
, iova
);
2838 * queue up the release of the unmap to save the 1/6th of the
2839 * cpu used up by the iotlb flush operation...
2844 static int intel_nontranslate_map_sg(struct device
*hddev
,
2845 struct scatterlist
*sglist
, int nelems
, int dir
)
2848 struct scatterlist
*sg
;
2850 for_each_sg(sglist
, sg
, nelems
, i
) {
2851 BUG_ON(!sg_page(sg
));
2852 sg
->dma_address
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2853 sg
->dma_length
= sg
->length
;
2858 static int intel_map_sg(struct device
*hwdev
, struct scatterlist
*sglist
, int nelems
,
2859 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2862 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2863 struct dmar_domain
*domain
;
2866 size_t offset_pfn
= 0;
2867 struct iova
*iova
= NULL
;
2869 struct scatterlist
*sg
;
2870 unsigned long start_vpfn
;
2871 struct intel_iommu
*iommu
;
2873 BUG_ON(dir
== DMA_NONE
);
2874 if (iommu_no_mapping(hwdev
))
2875 return intel_nontranslate_map_sg(hwdev
, sglist
, nelems
, dir
);
2877 domain
= get_valid_domain_for_dev(pdev
);
2881 iommu
= domain_get_iommu(domain
);
2883 for_each_sg(sglist
, sg
, nelems
, i
)
2884 size
+= aligned_nrpages(sg
->offset
, sg
->length
);
2886 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
2889 sglist
->dma_length
= 0;
2894 * Check if DMAR supports zero-length reads on write only
2897 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2898 !cap_zlr(iommu
->cap
))
2899 prot
|= DMA_PTE_READ
;
2900 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2901 prot
|= DMA_PTE_WRITE
;
2903 start_vpfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2905 ret
= domain_sg_mapping(domain
, start_vpfn
, sglist
, size
, prot
);
2906 if (unlikely(ret
)) {
2907 /* clear the page */
2908 dma_pte_clear_range(domain
, start_vpfn
,
2909 start_vpfn
+ size
- 1);
2910 /* free page tables */
2911 dma_pte_free_pagetable(domain
, start_vpfn
,
2912 start_vpfn
+ size
- 1);
2914 __free_iova(&domain
->iovad
, iova
);
2918 /* it's a non-present to present mapping. Only flush if caching mode */
2919 if (cap_caching_mode(iommu
->cap
))
2920 iommu_flush_iotlb_psi(iommu
, 0, start_vpfn
, offset_pfn
);
2922 iommu_flush_write_buffer(iommu
);
2927 static int intel_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2932 struct dma_map_ops intel_dma_ops
= {
2933 .alloc_coherent
= intel_alloc_coherent
,
2934 .free_coherent
= intel_free_coherent
,
2935 .map_sg
= intel_map_sg
,
2936 .unmap_sg
= intel_unmap_sg
,
2937 .map_page
= intel_map_page
,
2938 .unmap_page
= intel_unmap_page
,
2939 .mapping_error
= intel_mapping_error
,
2942 static inline int iommu_domain_cache_init(void)
2946 iommu_domain_cache
= kmem_cache_create("iommu_domain",
2947 sizeof(struct dmar_domain
),
2952 if (!iommu_domain_cache
) {
2953 printk(KERN_ERR
"Couldn't create iommu_domain cache\n");
2960 static inline int iommu_devinfo_cache_init(void)
2964 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
2965 sizeof(struct device_domain_info
),
2969 if (!iommu_devinfo_cache
) {
2970 printk(KERN_ERR
"Couldn't create devinfo cache\n");
2977 static inline int iommu_iova_cache_init(void)
2981 iommu_iova_cache
= kmem_cache_create("iommu_iova",
2982 sizeof(struct iova
),
2986 if (!iommu_iova_cache
) {
2987 printk(KERN_ERR
"Couldn't create iova cache\n");
2994 static int __init
iommu_init_mempool(void)
2997 ret
= iommu_iova_cache_init();
3001 ret
= iommu_domain_cache_init();
3005 ret
= iommu_devinfo_cache_init();
3009 kmem_cache_destroy(iommu_domain_cache
);
3011 kmem_cache_destroy(iommu_iova_cache
);
3016 static void __init
iommu_exit_mempool(void)
3018 kmem_cache_destroy(iommu_devinfo_cache
);
3019 kmem_cache_destroy(iommu_domain_cache
);
3020 kmem_cache_destroy(iommu_iova_cache
);
3024 static void __init
init_no_remapping_devices(void)
3026 struct dmar_drhd_unit
*drhd
;
3028 for_each_drhd_unit(drhd
) {
3029 if (!drhd
->include_all
) {
3031 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3032 if (drhd
->devices
[i
] != NULL
)
3034 /* ignore DMAR unit if no pci devices exist */
3035 if (i
== drhd
->devices_cnt
)
3043 for_each_drhd_unit(drhd
) {
3045 if (drhd
->ignored
|| drhd
->include_all
)
3048 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3049 if (drhd
->devices
[i
] &&
3050 !IS_GFX_DEVICE(drhd
->devices
[i
]))
3053 if (i
< drhd
->devices_cnt
)
3056 /* bypass IOMMU if it is just for gfx devices */
3058 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
3059 if (!drhd
->devices
[i
])
3061 drhd
->devices
[i
]->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3066 #ifdef CONFIG_SUSPEND
3067 static int init_iommu_hw(void)
3069 struct dmar_drhd_unit
*drhd
;
3070 struct intel_iommu
*iommu
= NULL
;
3072 for_each_active_iommu(iommu
, drhd
)
3074 dmar_reenable_qi(iommu
);
3076 for_each_active_iommu(iommu
, drhd
) {
3077 iommu_flush_write_buffer(iommu
);
3079 iommu_set_root_entry(iommu
);
3081 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3082 DMA_CCMD_GLOBAL_INVL
);
3083 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3084 DMA_TLB_GLOBAL_FLUSH
);
3085 iommu_enable_translation(iommu
);
3086 iommu_disable_protect_mem_regions(iommu
);
3092 static void iommu_flush_all(void)
3094 struct dmar_drhd_unit
*drhd
;
3095 struct intel_iommu
*iommu
;
3097 for_each_active_iommu(iommu
, drhd
) {
3098 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3099 DMA_CCMD_GLOBAL_INVL
);
3100 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3101 DMA_TLB_GLOBAL_FLUSH
);
3105 static int iommu_suspend(struct sys_device
*dev
, pm_message_t state
)
3107 struct dmar_drhd_unit
*drhd
;
3108 struct intel_iommu
*iommu
= NULL
;
3111 for_each_active_iommu(iommu
, drhd
) {
3112 iommu
->iommu_state
= kzalloc(sizeof(u32
) * MAX_SR_DMAR_REGS
,
3114 if (!iommu
->iommu_state
)
3120 for_each_active_iommu(iommu
, drhd
) {
3121 iommu_disable_translation(iommu
);
3123 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3125 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
3126 readl(iommu
->reg
+ DMAR_FECTL_REG
);
3127 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
3128 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
3129 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
3130 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
3131 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
3132 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
3134 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3139 for_each_active_iommu(iommu
, drhd
)
3140 kfree(iommu
->iommu_state
);
3145 static int iommu_resume(struct sys_device
*dev
)
3147 struct dmar_drhd_unit
*drhd
;
3148 struct intel_iommu
*iommu
= NULL
;
3151 if (init_iommu_hw()) {
3152 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3156 for_each_active_iommu(iommu
, drhd
) {
3158 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3160 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
3161 iommu
->reg
+ DMAR_FECTL_REG
);
3162 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
3163 iommu
->reg
+ DMAR_FEDATA_REG
);
3164 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
3165 iommu
->reg
+ DMAR_FEADDR_REG
);
3166 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
3167 iommu
->reg
+ DMAR_FEUADDR_REG
);
3169 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3172 for_each_active_iommu(iommu
, drhd
)
3173 kfree(iommu
->iommu_state
);
3178 static struct sysdev_class iommu_sysclass
= {
3180 .resume
= iommu_resume
,
3181 .suspend
= iommu_suspend
,
3184 static struct sys_device device_iommu
= {
3185 .cls
= &iommu_sysclass
,
3188 static int __init
init_iommu_sysfs(void)
3192 error
= sysdev_class_register(&iommu_sysclass
);
3196 error
= sysdev_register(&device_iommu
);
3198 sysdev_class_unregister(&iommu_sysclass
);
3204 static int __init
init_iommu_sysfs(void)
3208 #endif /* CONFIG_PM */
3210 int __init
intel_iommu_init(void)
3215 /* VT-d is required for a TXT/tboot launch, so enforce that */
3216 force_on
= tboot_force_iommu();
3218 if (dmar_table_init()) {
3220 panic("tboot: Failed to initialize DMAR table\n");
3224 if (dmar_dev_scope_init()) {
3226 panic("tboot: Failed to initialize DMAR device scope\n");
3231 * Check the need for DMA-remapping initialization now.
3232 * Above initialization will also be used by Interrupt-remapping.
3234 if (no_iommu
|| dmar_disabled
)
3237 iommu_init_mempool();
3238 dmar_init_reserved_ranges();
3240 init_no_remapping_devices();
3245 panic("tboot: Failed to initialize DMARs\n");
3246 printk(KERN_ERR
"IOMMU: dmar init failed\n");
3247 put_iova_domain(&reserved_iova_list
);
3248 iommu_exit_mempool();
3252 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3254 init_timer(&unmap_timer
);
3255 #ifdef CONFIG_SWIOTLB
3258 dma_ops
= &intel_dma_ops
;
3262 register_iommu(&intel_iommu_ops
);
3267 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
3268 struct pci_dev
*pdev
)
3270 struct pci_dev
*tmp
, *parent
;
3272 if (!iommu
|| !pdev
)
3275 /* dependent device detach */
3276 tmp
= pci_find_upstream_pcie_bridge(pdev
);
3277 /* Secondary interface's bus number and devfn 0 */
3279 parent
= pdev
->bus
->self
;
3280 while (parent
!= tmp
) {
3281 iommu_detach_dev(iommu
, parent
->bus
->number
,
3283 parent
= parent
->bus
->self
;
3285 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
3286 iommu_detach_dev(iommu
,
3287 tmp
->subordinate
->number
, 0);
3288 else /* this is a legacy PCI bridge */
3289 iommu_detach_dev(iommu
, tmp
->bus
->number
,
3294 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
3295 struct pci_dev
*pdev
)
3297 struct device_domain_info
*info
;
3298 struct intel_iommu
*iommu
;
3299 unsigned long flags
;
3301 struct list_head
*entry
, *tmp
;
3303 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3308 spin_lock_irqsave(&device_domain_lock
, flags
);
3309 list_for_each_safe(entry
, tmp
, &domain
->devices
) {
3310 info
= list_entry(entry
, struct device_domain_info
, link
);
3311 /* No need to compare PCI domain; it has to be the same */
3312 if (info
->bus
== pdev
->bus
->number
&&
3313 info
->devfn
== pdev
->devfn
) {
3314 list_del(&info
->link
);
3315 list_del(&info
->global
);
3317 info
->dev
->dev
.archdata
.iommu
= NULL
;
3318 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3320 iommu_disable_dev_iotlb(info
);
3321 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3322 iommu_detach_dependent_devices(iommu
, pdev
);
3323 free_devinfo_mem(info
);
3325 spin_lock_irqsave(&device_domain_lock
, flags
);
3333 /* if there is no other devices under the same iommu
3334 * owned by this domain, clear this iommu in iommu_bmp
3335 * update iommu count and coherency
3337 if (iommu
== device_to_iommu(info
->segment
, info
->bus
,
3343 unsigned long tmp_flags
;
3344 spin_lock_irqsave(&domain
->iommu_lock
, tmp_flags
);
3345 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
3346 domain
->iommu_count
--;
3347 domain_update_iommu_cap(domain
);
3348 spin_unlock_irqrestore(&domain
->iommu_lock
, tmp_flags
);
3351 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3354 static void vm_domain_remove_all_dev_info(struct dmar_domain
*domain
)
3356 struct device_domain_info
*info
;
3357 struct intel_iommu
*iommu
;
3358 unsigned long flags1
, flags2
;
3360 spin_lock_irqsave(&device_domain_lock
, flags1
);
3361 while (!list_empty(&domain
->devices
)) {
3362 info
= list_entry(domain
->devices
.next
,
3363 struct device_domain_info
, link
);
3364 list_del(&info
->link
);
3365 list_del(&info
->global
);
3367 info
->dev
->dev
.archdata
.iommu
= NULL
;
3369 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3371 iommu_disable_dev_iotlb(info
);
3372 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
3373 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3374 iommu_detach_dependent_devices(iommu
, info
->dev
);
3376 /* clear this iommu in iommu_bmp, update iommu count
3379 spin_lock_irqsave(&domain
->iommu_lock
, flags2
);
3380 if (test_and_clear_bit(iommu
->seq_id
,
3381 &domain
->iommu_bmp
)) {
3382 domain
->iommu_count
--;
3383 domain_update_iommu_cap(domain
);
3385 spin_unlock_irqrestore(&domain
->iommu_lock
, flags2
);
3387 free_devinfo_mem(info
);
3388 spin_lock_irqsave(&device_domain_lock
, flags1
);
3390 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3393 /* domain id for virtual machine, it won't be set in context */
3394 static unsigned long vm_domid
;
3396 static int vm_domain_min_agaw(struct dmar_domain
*domain
)
3399 int min_agaw
= domain
->agaw
;
3401 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
3402 for (; i
< g_num_of_iommus
; ) {
3403 if (min_agaw
> g_iommus
[i
]->agaw
)
3404 min_agaw
= g_iommus
[i
]->agaw
;
3406 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
3412 static struct dmar_domain
*iommu_alloc_vm_domain(void)
3414 struct dmar_domain
*domain
;
3416 domain
= alloc_domain_mem();
3420 domain
->id
= vm_domid
++;
3421 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
3422 domain
->flags
= DOMAIN_FLAG_VIRTUAL_MACHINE
;
3427 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
)
3431 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
3432 spin_lock_init(&domain
->iommu_lock
);
3434 domain_reserve_special_ranges(domain
);
3436 /* calculate AGAW */
3437 domain
->gaw
= guest_width
;
3438 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
3439 domain
->agaw
= width_to_agaw(adjust_width
);
3441 INIT_LIST_HEAD(&domain
->devices
);
3443 domain
->iommu_count
= 0;
3444 domain
->iommu_coherency
= 0;
3445 domain
->iommu_snooping
= 0;
3446 domain
->max_addr
= 0;
3448 /* always allocate the top pgd */
3449 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
3452 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
3456 static void iommu_free_vm_domain(struct dmar_domain
*domain
)
3458 unsigned long flags
;
3459 struct dmar_drhd_unit
*drhd
;
3460 struct intel_iommu
*iommu
;
3462 unsigned long ndomains
;
3464 for_each_drhd_unit(drhd
) {
3467 iommu
= drhd
->iommu
;
3469 ndomains
= cap_ndoms(iommu
->cap
);
3470 i
= find_first_bit(iommu
->domain_ids
, ndomains
);
3471 for (; i
< ndomains
; ) {
3472 if (iommu
->domains
[i
] == domain
) {
3473 spin_lock_irqsave(&iommu
->lock
, flags
);
3474 clear_bit(i
, iommu
->domain_ids
);
3475 iommu
->domains
[i
] = NULL
;
3476 spin_unlock_irqrestore(&iommu
->lock
, flags
);
3479 i
= find_next_bit(iommu
->domain_ids
, ndomains
, i
+1);
3484 static void vm_domain_exit(struct dmar_domain
*domain
)
3486 /* Domain 0 is reserved, so dont process it */
3490 vm_domain_remove_all_dev_info(domain
);
3492 put_iova_domain(&domain
->iovad
);
3495 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3497 /* free page tables */
3498 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3500 iommu_free_vm_domain(domain
);
3501 free_domain_mem(domain
);
3504 static int intel_iommu_domain_init(struct iommu_domain
*domain
)
3506 struct dmar_domain
*dmar_domain
;
3508 dmar_domain
= iommu_alloc_vm_domain();
3511 "intel_iommu_domain_init: dmar_domain == NULL\n");
3514 if (md_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
3516 "intel_iommu_domain_init() failed\n");
3517 vm_domain_exit(dmar_domain
);
3520 domain
->priv
= dmar_domain
;
3525 static void intel_iommu_domain_destroy(struct iommu_domain
*domain
)
3527 struct dmar_domain
*dmar_domain
= domain
->priv
;
3529 domain
->priv
= NULL
;
3530 vm_domain_exit(dmar_domain
);
3533 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
3536 struct dmar_domain
*dmar_domain
= domain
->priv
;
3537 struct pci_dev
*pdev
= to_pci_dev(dev
);
3538 struct intel_iommu
*iommu
;
3542 /* normally pdev is not mapped */
3543 if (unlikely(domain_context_mapped(pdev
))) {
3544 struct dmar_domain
*old_domain
;
3546 old_domain
= find_domain(pdev
);
3548 if (dmar_domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
3549 dmar_domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
)
3550 domain_remove_one_dev_info(old_domain
, pdev
);
3552 domain_remove_dev_info(old_domain
);
3556 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3561 /* check if this iommu agaw is sufficient for max mapped address */
3562 addr_width
= agaw_to_width(iommu
->agaw
);
3563 end
= DOMAIN_MAX_ADDR(addr_width
);
3564 end
= end
& VTD_PAGE_MASK
;
3565 if (end
< dmar_domain
->max_addr
) {
3566 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3567 "sufficient for the mapped address (%llx)\n",
3568 __func__
, iommu
->agaw
, dmar_domain
->max_addr
);
3572 return domain_add_dev_info(dmar_domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
3575 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
3578 struct dmar_domain
*dmar_domain
= domain
->priv
;
3579 struct pci_dev
*pdev
= to_pci_dev(dev
);
3581 domain_remove_one_dev_info(dmar_domain
, pdev
);
3584 static int intel_iommu_map_range(struct iommu_domain
*domain
,
3585 unsigned long iova
, phys_addr_t hpa
,
3586 size_t size
, int iommu_prot
)
3588 struct dmar_domain
*dmar_domain
= domain
->priv
;
3594 if (iommu_prot
& IOMMU_READ
)
3595 prot
|= DMA_PTE_READ
;
3596 if (iommu_prot
& IOMMU_WRITE
)
3597 prot
|= DMA_PTE_WRITE
;
3598 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
3599 prot
|= DMA_PTE_SNP
;
3601 max_addr
= iova
+ size
;
3602 if (dmar_domain
->max_addr
< max_addr
) {
3606 /* check if minimum agaw is sufficient for mapped address */
3607 min_agaw
= vm_domain_min_agaw(dmar_domain
);
3608 addr_width
= agaw_to_width(min_agaw
);
3609 end
= DOMAIN_MAX_ADDR(addr_width
);
3610 end
= end
& VTD_PAGE_MASK
;
3611 if (end
< max_addr
) {
3612 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3613 "sufficient for the mapped address (%llx)\n",
3614 __func__
, min_agaw
, max_addr
);
3617 dmar_domain
->max_addr
= max_addr
;
3619 /* Round up size to next multiple of PAGE_SIZE, if it and
3620 the low bits of hpa would take us onto the next page */
3621 size
= aligned_nrpages(hpa
, size
);
3622 ret
= domain_pfn_mapping(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
3623 hpa
>> VTD_PAGE_SHIFT
, size
, prot
);
3627 static void intel_iommu_unmap_range(struct iommu_domain
*domain
,
3628 unsigned long iova
, size_t size
)
3630 struct dmar_domain
*dmar_domain
= domain
->priv
;
3635 dma_pte_clear_range(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
3636 (iova
+ size
- 1) >> VTD_PAGE_SHIFT
);
3638 if (dmar_domain
->max_addr
== iova
+ size
)
3639 dmar_domain
->max_addr
= iova
;
3642 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
3645 struct dmar_domain
*dmar_domain
= domain
->priv
;
3646 struct dma_pte
*pte
;
3649 pte
= pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
);
3651 phys
= dma_pte_addr(pte
);
3656 static int intel_iommu_domain_has_cap(struct iommu_domain
*domain
,
3659 struct dmar_domain
*dmar_domain
= domain
->priv
;
3661 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
3662 return dmar_domain
->iommu_snooping
;
3667 static struct iommu_ops intel_iommu_ops
= {
3668 .domain_init
= intel_iommu_domain_init
,
3669 .domain_destroy
= intel_iommu_domain_destroy
,
3670 .attach_dev
= intel_iommu_attach_device
,
3671 .detach_dev
= intel_iommu_detach_device
,
3672 .map
= intel_iommu_map_range
,
3673 .unmap
= intel_iommu_unmap_range
,
3674 .iova_to_phys
= intel_iommu_iova_to_phys
,
3675 .domain_has_cap
= intel_iommu_domain_has_cap
,
3678 static void __devinit
quirk_iommu_rwbf(struct pci_dev
*dev
)
3681 * Mobile 4 Series Chipset neglects to set RWBF capability,
3684 printk(KERN_INFO
"DMAR: Forcing write-buffer flush capability\n");
3688 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);
3690 /* On Tylersburg chipsets, some BIOSes have been known to enable the
3691 ISOCH DMAR unit for the Azalia sound device, but not give it any
3692 TLB entries, which causes it to deadlock. Check for that. We do
3693 this in a function called from init_dmars(), instead of in a PCI
3694 quirk, because we don't want to print the obnoxious "BIOS broken"
3695 message if VT-d is actually disabled.
3697 static void __init
check_tylersburg_isoch(void)
3699 struct pci_dev
*pdev
;
3700 uint32_t vtisochctrl
;
3702 /* If there's no Azalia in the system anyway, forget it. */
3703 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x3a3e, NULL
);
3708 /* System Management Registers. Might be hidden, in which case
3709 we can't do the sanity check. But that's OK, because the
3710 known-broken BIOSes _don't_ actually hide it, so far. */
3711 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x342e, NULL
);
3715 if (pci_read_config_dword(pdev
, 0x188, &vtisochctrl
)) {
3722 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
3723 if (vtisochctrl
& 1)
3726 /* Drop all bits other than the number of TLB entries */
3727 vtisochctrl
&= 0x1c;
3729 /* If we have the recommended number of TLB entries (16), fine. */
3730 if (vtisochctrl
== 0x10)
3733 /* Zero TLB entries? You get to ride the short bus to school. */
3735 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
3736 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
3737 dmi_get_system_info(DMI_BIOS_VENDOR
),
3738 dmi_get_system_info(DMI_BIOS_VERSION
),
3739 dmi_get_system_info(DMI_PRODUCT_VERSION
));
3740 iommu_identity_mapping
|= IDENTMAP_AZALIA
;
3744 printk(KERN_WARNING
"DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",