x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / scsi / libfc / fc_exch.c
blobc1c15748220cb4be8f7e15f42aee5a8c3df9c9d1
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * Maintained at www.Open-FCoE.org
23 * Fibre Channel exchange and sequence handling.
26 #include <linux/timer.h>
27 #include <linux/gfp.h>
28 #include <linux/err.h>
30 #include <scsi/fc/fc_fc2.h>
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
35 u16 fc_cpu_mask; /* cpu mask for possible cpus */
36 EXPORT_SYMBOL(fc_cpu_mask);
37 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
38 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
41 * Structure and function definitions for managing Fibre Channel Exchanges
42 * and Sequences.
44 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
46 * fc_exch_mgr holds the exchange state for an N port
48 * fc_exch holds state for one exchange and links to its active sequence.
50 * fc_seq holds the state for an individual sequence.
54 * Per cpu exchange pool
56 * This structure manages per cpu exchanges in array of exchange pointers.
57 * This array is allocated followed by struct fc_exch_pool memory for
58 * assigned range of exchanges to per cpu pool.
60 struct fc_exch_pool {
61 u16 next_index; /* next possible free exchange index */
62 u16 total_exches; /* total allocated exchanges */
63 spinlock_t lock; /* exch pool lock */
64 struct list_head ex_list; /* allocated exchanges list */
68 * Exchange manager.
70 * This structure is the center for creating exchanges and sequences.
71 * It manages the allocation of exchange IDs.
73 struct fc_exch_mgr {
74 enum fc_class class; /* default class for sequences */
75 struct kref kref; /* exchange mgr reference count */
76 u16 min_xid; /* min exchange ID */
77 u16 max_xid; /* max exchange ID */
78 struct list_head ex_list; /* allocated exchanges list */
79 mempool_t *ep_pool; /* reserve ep's */
80 u16 pool_max_index; /* max exch array index in exch pool */
81 struct fc_exch_pool *pool; /* per cpu exch pool */
84 * currently exchange mgr stats are updated but not used.
85 * either stats can be expose via sysfs or remove them
86 * all together if not used XXX
88 struct {
89 atomic_t no_free_exch;
90 atomic_t no_free_exch_xid;
91 atomic_t xid_not_found;
92 atomic_t xid_busy;
93 atomic_t seq_not_found;
94 atomic_t non_bls_resp;
95 } stats;
97 #define fc_seq_exch(sp) container_of(sp, struct fc_exch, seq)
99 struct fc_exch_mgr_anchor {
100 struct list_head ema_list;
101 struct fc_exch_mgr *mp;
102 bool (*match)(struct fc_frame *);
105 static void fc_exch_rrq(struct fc_exch *);
106 static void fc_seq_ls_acc(struct fc_seq *);
107 static void fc_seq_ls_rjt(struct fc_seq *, enum fc_els_rjt_reason,
108 enum fc_els_rjt_explan);
109 static void fc_exch_els_rec(struct fc_seq *, struct fc_frame *);
110 static void fc_exch_els_rrq(struct fc_seq *, struct fc_frame *);
111 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp);
114 * Internal implementation notes.
116 * The exchange manager is one by default in libfc but LLD may choose
117 * to have one per CPU. The sequence manager is one per exchange manager
118 * and currently never separated.
120 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
121 * assigned by the Sequence Initiator that shall be unique for a specific
122 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
123 * qualified by exchange ID, which one might think it would be.
124 * In practice this limits the number of open sequences and exchanges to 256
125 * per session. For most targets we could treat this limit as per exchange.
127 * The exchange and its sequence are freed when the last sequence is received.
128 * It's possible for the remote port to leave an exchange open without
129 * sending any sequences.
131 * Notes on reference counts:
133 * Exchanges are reference counted and exchange gets freed when the reference
134 * count becomes zero.
136 * Timeouts:
137 * Sequences are timed out for E_D_TOV and R_A_TOV.
139 * Sequence event handling:
141 * The following events may occur on initiator sequences:
143 * Send.
144 * For now, the whole thing is sent.
145 * Receive ACK
146 * This applies only to class F.
147 * The sequence is marked complete.
148 * ULP completion.
149 * The upper layer calls fc_exch_done() when done
150 * with exchange and sequence tuple.
151 * RX-inferred completion.
152 * When we receive the next sequence on the same exchange, we can
153 * retire the previous sequence ID. (XXX not implemented).
154 * Timeout.
155 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
156 * E_D_TOV causes abort and calls upper layer response handler
157 * with FC_EX_TIMEOUT error.
158 * Receive RJT
159 * XXX defer.
160 * Send ABTS
161 * On timeout.
163 * The following events may occur on recipient sequences:
165 * Receive
166 * Allocate sequence for first frame received.
167 * Hold during receive handler.
168 * Release when final frame received.
169 * Keep status of last N of these for the ELS RES command. XXX TBD.
170 * Receive ABTS
171 * Deallocate sequence
172 * Send RJT
173 * Deallocate
175 * For now, we neglect conditions where only part of a sequence was
176 * received or transmitted, or where out-of-order receipt is detected.
180 * Locking notes:
182 * The EM code run in a per-CPU worker thread.
184 * To protect against concurrency between a worker thread code and timers,
185 * sequence allocation and deallocation must be locked.
186 * - exchange refcnt can be done atomicly without locks.
187 * - sequence allocation must be locked by exch lock.
188 * - If the EM pool lock and ex_lock must be taken at the same time, then the
189 * EM pool lock must be taken before the ex_lock.
193 * opcode names for debugging.
195 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
197 #define FC_TABLE_SIZE(x) (sizeof(x) / sizeof(x[0]))
199 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
200 unsigned int max_index)
202 const char *name = NULL;
204 if (op < max_index)
205 name = table[op];
206 if (!name)
207 name = "unknown";
208 return name;
211 static const char *fc_exch_rctl_name(unsigned int op)
213 return fc_exch_name_lookup(op, fc_exch_rctl_names,
214 FC_TABLE_SIZE(fc_exch_rctl_names));
218 * Hold an exchange - keep it from being freed.
220 static void fc_exch_hold(struct fc_exch *ep)
222 atomic_inc(&ep->ex_refcnt);
226 * setup fc hdr by initializing few more FC header fields and sof/eof.
227 * Initialized fields by this func:
228 * - fh_ox_id, fh_rx_id, fh_seq_id, fh_seq_cnt
229 * - sof and eof
231 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
232 u32 f_ctl)
234 struct fc_frame_header *fh = fc_frame_header_get(fp);
235 u16 fill;
237 fr_sof(fp) = ep->class;
238 if (ep->seq.cnt)
239 fr_sof(fp) = fc_sof_normal(ep->class);
241 if (f_ctl & FC_FC_END_SEQ) {
242 fr_eof(fp) = FC_EOF_T;
243 if (fc_sof_needs_ack(ep->class))
244 fr_eof(fp) = FC_EOF_N;
246 * Form f_ctl.
247 * The number of fill bytes to make the length a 4-byte
248 * multiple is the low order 2-bits of the f_ctl.
249 * The fill itself will have been cleared by the frame
250 * allocation.
251 * After this, the length will be even, as expected by
252 * the transport.
254 fill = fr_len(fp) & 3;
255 if (fill) {
256 fill = 4 - fill;
257 /* TODO, this may be a problem with fragmented skb */
258 skb_put(fp_skb(fp), fill);
259 hton24(fh->fh_f_ctl, f_ctl | fill);
261 } else {
262 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
263 fr_eof(fp) = FC_EOF_N;
267 * Initialize remainig fh fields
268 * from fc_fill_fc_hdr
270 fh->fh_ox_id = htons(ep->oxid);
271 fh->fh_rx_id = htons(ep->rxid);
272 fh->fh_seq_id = ep->seq.id;
273 fh->fh_seq_cnt = htons(ep->seq.cnt);
278 * Release a reference to an exchange.
279 * If the refcnt goes to zero and the exchange is complete, it is freed.
281 static void fc_exch_release(struct fc_exch *ep)
283 struct fc_exch_mgr *mp;
285 if (atomic_dec_and_test(&ep->ex_refcnt)) {
286 mp = ep->em;
287 if (ep->destructor)
288 ep->destructor(&ep->seq, ep->arg);
289 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
290 mempool_free(ep, mp->ep_pool);
294 static int fc_exch_done_locked(struct fc_exch *ep)
296 int rc = 1;
299 * We must check for completion in case there are two threads
300 * tyring to complete this. But the rrq code will reuse the
301 * ep, and in that case we only clear the resp and set it as
302 * complete, so it can be reused by the timer to send the rrq.
304 ep->resp = NULL;
305 if (ep->state & FC_EX_DONE)
306 return rc;
307 ep->esb_stat |= ESB_ST_COMPLETE;
309 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
310 ep->state |= FC_EX_DONE;
311 if (cancel_delayed_work(&ep->timeout_work))
312 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
313 rc = 0;
315 return rc;
318 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
319 u16 index)
321 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
322 return exches[index];
325 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
326 struct fc_exch *ep)
328 ((struct fc_exch **)(pool + 1))[index] = ep;
331 static void fc_exch_delete(struct fc_exch *ep)
333 struct fc_exch_pool *pool;
335 pool = ep->pool;
336 spin_lock_bh(&pool->lock);
337 WARN_ON(pool->total_exches <= 0);
338 pool->total_exches--;
339 fc_exch_ptr_set(pool, (ep->xid - ep->em->min_xid) >> fc_cpu_order,
340 NULL);
341 list_del(&ep->ex_list);
342 spin_unlock_bh(&pool->lock);
343 fc_exch_release(ep); /* drop hold for exch in mp */
347 * Internal version of fc_exch_timer_set - used with lock held.
349 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
350 unsigned int timer_msec)
352 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
353 return;
355 FC_EXCH_DBG(ep, "Exchange timer armed\n");
357 if (schedule_delayed_work(&ep->timeout_work,
358 msecs_to_jiffies(timer_msec)))
359 fc_exch_hold(ep); /* hold for timer */
363 * Set timer for an exchange.
364 * The time is a minimum delay in milliseconds until the timer fires.
365 * Used for upper level protocols to time out the exchange.
366 * The timer is cancelled when it fires or when the exchange completes.
367 * Returns non-zero if a timer couldn't be allocated.
369 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
371 spin_lock_bh(&ep->ex_lock);
372 fc_exch_timer_set_locked(ep, timer_msec);
373 spin_unlock_bh(&ep->ex_lock);
376 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
378 struct fc_seq *sp;
379 struct fc_exch *ep;
380 struct fc_frame *fp;
381 int error;
383 ep = fc_seq_exch(req_sp);
385 spin_lock_bh(&ep->ex_lock);
386 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
387 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
388 spin_unlock_bh(&ep->ex_lock);
389 return -ENXIO;
393 * Send the abort on a new sequence if possible.
395 sp = fc_seq_start_next_locked(&ep->seq);
396 if (!sp) {
397 spin_unlock_bh(&ep->ex_lock);
398 return -ENOMEM;
401 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
402 if (timer_msec)
403 fc_exch_timer_set_locked(ep, timer_msec);
404 spin_unlock_bh(&ep->ex_lock);
407 * If not logged into the fabric, don't send ABTS but leave
408 * sequence active until next timeout.
410 if (!ep->sid)
411 return 0;
414 * Send an abort for the sequence that timed out.
416 fp = fc_frame_alloc(ep->lp, 0);
417 if (fp) {
418 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
419 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
420 error = fc_seq_send(ep->lp, sp, fp);
421 } else
422 error = -ENOBUFS;
423 return error;
425 EXPORT_SYMBOL(fc_seq_exch_abort);
428 * Exchange timeout - handle exchange timer expiration.
429 * The timer will have been cancelled before this is called.
431 static void fc_exch_timeout(struct work_struct *work)
433 struct fc_exch *ep = container_of(work, struct fc_exch,
434 timeout_work.work);
435 struct fc_seq *sp = &ep->seq;
436 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
437 void *arg;
438 u32 e_stat;
439 int rc = 1;
441 FC_EXCH_DBG(ep, "Exchange timed out\n");
443 spin_lock_bh(&ep->ex_lock);
444 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
445 goto unlock;
447 e_stat = ep->esb_stat;
448 if (e_stat & ESB_ST_COMPLETE) {
449 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
450 spin_unlock_bh(&ep->ex_lock);
451 if (e_stat & ESB_ST_REC_QUAL)
452 fc_exch_rrq(ep);
453 goto done;
454 } else {
455 resp = ep->resp;
456 arg = ep->arg;
457 ep->resp = NULL;
458 if (e_stat & ESB_ST_ABNORMAL)
459 rc = fc_exch_done_locked(ep);
460 spin_unlock_bh(&ep->ex_lock);
461 if (!rc)
462 fc_exch_delete(ep);
463 if (resp)
464 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
465 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
466 goto done;
468 unlock:
469 spin_unlock_bh(&ep->ex_lock);
470 done:
472 * This release matches the hold taken when the timer was set.
474 fc_exch_release(ep);
478 * Allocate a sequence.
480 * We don't support multiple originated sequences on the same exchange.
481 * By implication, any previously originated sequence on this exchange
482 * is complete, and we reallocate the same sequence.
484 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
486 struct fc_seq *sp;
488 sp = &ep->seq;
489 sp->ssb_stat = 0;
490 sp->cnt = 0;
491 sp->id = seq_id;
492 return sp;
496 * fc_exch_em_alloc() - allocate an exchange from a specified EM.
497 * @lport: ptr to the local port
498 * @mp: ptr to the exchange manager
500 * Returns pointer to allocated fc_exch with exch lock held.
502 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
503 struct fc_exch_mgr *mp)
505 struct fc_exch *ep;
506 unsigned int cpu;
507 u16 index;
508 struct fc_exch_pool *pool;
510 /* allocate memory for exchange */
511 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
512 if (!ep) {
513 atomic_inc(&mp->stats.no_free_exch);
514 goto out;
516 memset(ep, 0, sizeof(*ep));
518 cpu = smp_processor_id();
519 pool = per_cpu_ptr(mp->pool, cpu);
520 spin_lock_bh(&pool->lock);
521 index = pool->next_index;
522 /* allocate new exch from pool */
523 while (fc_exch_ptr_get(pool, index)) {
524 index = index == mp->pool_max_index ? 0 : index + 1;
525 if (index == pool->next_index)
526 goto err;
528 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
530 fc_exch_hold(ep); /* hold for exch in mp */
531 spin_lock_init(&ep->ex_lock);
533 * Hold exch lock for caller to prevent fc_exch_reset()
534 * from releasing exch while fc_exch_alloc() caller is
535 * still working on exch.
537 spin_lock_bh(&ep->ex_lock);
539 fc_exch_ptr_set(pool, index, ep);
540 list_add_tail(&ep->ex_list, &pool->ex_list);
541 fc_seq_alloc(ep, ep->seq_id++);
542 pool->total_exches++;
543 spin_unlock_bh(&pool->lock);
546 * update exchange
548 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
549 ep->em = mp;
550 ep->pool = pool;
551 ep->lp = lport;
552 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
553 ep->rxid = FC_XID_UNKNOWN;
554 ep->class = mp->class;
555 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
556 out:
557 return ep;
558 err:
559 spin_unlock_bh(&pool->lock);
560 atomic_inc(&mp->stats.no_free_exch_xid);
561 mempool_free(ep, mp->ep_pool);
562 return NULL;
566 * fc_exch_alloc() - allocate an exchange.
567 * @lport: ptr to the local port
568 * @fp: ptr to the FC frame
570 * This function walks the list of the exchange manager(EM)
571 * anchors to select a EM for new exchange allocation. The
572 * EM is selected having either a NULL match function pointer
573 * or call to match function returning true.
575 struct fc_exch *fc_exch_alloc(struct fc_lport *lport, struct fc_frame *fp)
577 struct fc_exch_mgr_anchor *ema;
578 struct fc_exch *ep;
580 list_for_each_entry(ema, &lport->ema_list, ema_list) {
581 if (!ema->match || ema->match(fp)) {
582 ep = fc_exch_em_alloc(lport, ema->mp);
583 if (ep)
584 return ep;
587 return NULL;
589 EXPORT_SYMBOL(fc_exch_alloc);
592 * Lookup and hold an exchange.
594 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
596 struct fc_exch_pool *pool;
597 struct fc_exch *ep = NULL;
599 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
600 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
601 spin_lock_bh(&pool->lock);
602 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
603 if (ep) {
604 fc_exch_hold(ep);
605 WARN_ON(ep->xid != xid);
607 spin_unlock_bh(&pool->lock);
609 return ep;
612 void fc_exch_done(struct fc_seq *sp)
614 struct fc_exch *ep = fc_seq_exch(sp);
615 int rc;
617 spin_lock_bh(&ep->ex_lock);
618 rc = fc_exch_done_locked(ep);
619 spin_unlock_bh(&ep->ex_lock);
620 if (!rc)
621 fc_exch_delete(ep);
623 EXPORT_SYMBOL(fc_exch_done);
626 * Allocate a new exchange as responder.
627 * Sets the responder ID in the frame header.
629 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
630 struct fc_exch_mgr *mp,
631 struct fc_frame *fp)
633 struct fc_exch *ep;
634 struct fc_frame_header *fh;
636 ep = fc_exch_alloc(lport, fp);
637 if (ep) {
638 ep->class = fc_frame_class(fp);
641 * Set EX_CTX indicating we're responding on this exchange.
643 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
644 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
645 fh = fc_frame_header_get(fp);
646 ep->sid = ntoh24(fh->fh_d_id);
647 ep->did = ntoh24(fh->fh_s_id);
648 ep->oid = ep->did;
651 * Allocated exchange has placed the XID in the
652 * originator field. Move it to the responder field,
653 * and set the originator XID from the frame.
655 ep->rxid = ep->xid;
656 ep->oxid = ntohs(fh->fh_ox_id);
657 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
658 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
659 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
661 fc_exch_hold(ep); /* hold for caller */
662 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
664 return ep;
668 * Find a sequence for receive where the other end is originating the sequence.
669 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
670 * on the ep that should be released by the caller.
672 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
673 struct fc_exch_mgr *mp,
674 struct fc_frame *fp)
676 struct fc_frame_header *fh = fc_frame_header_get(fp);
677 struct fc_exch *ep = NULL;
678 struct fc_seq *sp = NULL;
679 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
680 u32 f_ctl;
681 u16 xid;
683 f_ctl = ntoh24(fh->fh_f_ctl);
684 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
687 * Lookup or create the exchange if we will be creating the sequence.
689 if (f_ctl & FC_FC_EX_CTX) {
690 xid = ntohs(fh->fh_ox_id); /* we originated exch */
691 ep = fc_exch_find(mp, xid);
692 if (!ep) {
693 atomic_inc(&mp->stats.xid_not_found);
694 reject = FC_RJT_OX_ID;
695 goto out;
697 if (ep->rxid == FC_XID_UNKNOWN)
698 ep->rxid = ntohs(fh->fh_rx_id);
699 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
700 reject = FC_RJT_OX_ID;
701 goto rel;
703 } else {
704 xid = ntohs(fh->fh_rx_id); /* we are the responder */
707 * Special case for MDS issuing an ELS TEST with a
708 * bad rxid of 0.
709 * XXX take this out once we do the proper reject.
711 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
712 fc_frame_payload_op(fp) == ELS_TEST) {
713 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
714 xid = FC_XID_UNKNOWN;
718 * new sequence - find the exchange
720 ep = fc_exch_find(mp, xid);
721 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
722 if (ep) {
723 atomic_inc(&mp->stats.xid_busy);
724 reject = FC_RJT_RX_ID;
725 goto rel;
727 ep = fc_exch_resp(lport, mp, fp);
728 if (!ep) {
729 reject = FC_RJT_EXCH_EST; /* XXX */
730 goto out;
732 xid = ep->xid; /* get our XID */
733 } else if (!ep) {
734 atomic_inc(&mp->stats.xid_not_found);
735 reject = FC_RJT_RX_ID; /* XID not found */
736 goto out;
741 * At this point, we have the exchange held.
742 * Find or create the sequence.
744 if (fc_sof_is_init(fr_sof(fp))) {
745 sp = fc_seq_start_next(&ep->seq);
746 if (!sp) {
747 reject = FC_RJT_SEQ_XS; /* exchange shortage */
748 goto rel;
750 sp->id = fh->fh_seq_id;
751 sp->ssb_stat |= SSB_ST_RESP;
752 } else {
753 sp = &ep->seq;
754 if (sp->id != fh->fh_seq_id) {
755 atomic_inc(&mp->stats.seq_not_found);
756 reject = FC_RJT_SEQ_ID; /* sequence/exch should exist */
757 goto rel;
760 WARN_ON(ep != fc_seq_exch(sp));
762 if (f_ctl & FC_FC_SEQ_INIT)
763 ep->esb_stat |= ESB_ST_SEQ_INIT;
765 fr_seq(fp) = sp;
766 out:
767 return reject;
768 rel:
769 fc_exch_done(&ep->seq);
770 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
771 return reject;
775 * Find the sequence for a frame being received.
776 * We originated the sequence, so it should be found.
777 * We may or may not have originated the exchange.
778 * Does not hold the sequence for the caller.
780 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
781 struct fc_frame *fp)
783 struct fc_frame_header *fh = fc_frame_header_get(fp);
784 struct fc_exch *ep;
785 struct fc_seq *sp = NULL;
786 u32 f_ctl;
787 u16 xid;
789 f_ctl = ntoh24(fh->fh_f_ctl);
790 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
791 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
792 ep = fc_exch_find(mp, xid);
793 if (!ep)
794 return NULL;
795 if (ep->seq.id == fh->fh_seq_id) {
797 * Save the RX_ID if we didn't previously know it.
799 sp = &ep->seq;
800 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
801 ep->rxid == FC_XID_UNKNOWN) {
802 ep->rxid = ntohs(fh->fh_rx_id);
805 fc_exch_release(ep);
806 return sp;
810 * Set addresses for an exchange.
811 * Note this must be done before the first sequence of the exchange is sent.
813 static void fc_exch_set_addr(struct fc_exch *ep,
814 u32 orig_id, u32 resp_id)
816 ep->oid = orig_id;
817 if (ep->esb_stat & ESB_ST_RESP) {
818 ep->sid = resp_id;
819 ep->did = orig_id;
820 } else {
821 ep->sid = orig_id;
822 ep->did = resp_id;
826 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
828 struct fc_exch *ep = fc_seq_exch(sp);
830 sp = fc_seq_alloc(ep, ep->seq_id++);
831 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
832 ep->f_ctl, sp->id);
833 return sp;
836 * Allocate a new sequence on the same exchange as the supplied sequence.
837 * This will never return NULL.
839 struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
841 struct fc_exch *ep = fc_seq_exch(sp);
843 spin_lock_bh(&ep->ex_lock);
844 sp = fc_seq_start_next_locked(sp);
845 spin_unlock_bh(&ep->ex_lock);
847 return sp;
849 EXPORT_SYMBOL(fc_seq_start_next);
851 int fc_seq_send(struct fc_lport *lp, struct fc_seq *sp, struct fc_frame *fp)
853 struct fc_exch *ep;
854 struct fc_frame_header *fh = fc_frame_header_get(fp);
855 int error;
856 u32 f_ctl;
858 ep = fc_seq_exch(sp);
859 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
861 f_ctl = ntoh24(fh->fh_f_ctl);
862 fc_exch_setup_hdr(ep, fp, f_ctl);
865 * update sequence count if this frame is carrying
866 * multiple FC frames when sequence offload is enabled
867 * by LLD.
869 if (fr_max_payload(fp))
870 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
871 fr_max_payload(fp));
872 else
873 sp->cnt++;
876 * Send the frame.
878 error = lp->tt.frame_send(lp, fp);
881 * Update the exchange and sequence flags,
882 * assuming all frames for the sequence have been sent.
883 * We can only be called to send once for each sequence.
885 spin_lock_bh(&ep->ex_lock);
886 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
887 if (f_ctl & (FC_FC_END_SEQ | FC_FC_SEQ_INIT))
888 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
889 spin_unlock_bh(&ep->ex_lock);
890 return error;
892 EXPORT_SYMBOL(fc_seq_send);
894 void fc_seq_els_rsp_send(struct fc_seq *sp, enum fc_els_cmd els_cmd,
895 struct fc_seq_els_data *els_data)
897 switch (els_cmd) {
898 case ELS_LS_RJT:
899 fc_seq_ls_rjt(sp, els_data->reason, els_data->explan);
900 break;
901 case ELS_LS_ACC:
902 fc_seq_ls_acc(sp);
903 break;
904 case ELS_RRQ:
905 fc_exch_els_rrq(sp, els_data->fp);
906 break;
907 case ELS_REC:
908 fc_exch_els_rec(sp, els_data->fp);
909 break;
910 default:
911 FC_EXCH_DBG(fc_seq_exch(sp), "Invalid ELS CMD:%x\n", els_cmd);
914 EXPORT_SYMBOL(fc_seq_els_rsp_send);
917 * Send a sequence, which is also the last sequence in the exchange.
919 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
920 enum fc_rctl rctl, enum fc_fh_type fh_type)
922 u32 f_ctl;
923 struct fc_exch *ep = fc_seq_exch(sp);
925 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
926 f_ctl |= ep->f_ctl;
927 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
928 fc_seq_send(ep->lp, sp, fp);
932 * Send ACK_1 (or equiv.) indicating we received something.
933 * The frame we're acking is supplied.
935 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
937 struct fc_frame *fp;
938 struct fc_frame_header *rx_fh;
939 struct fc_frame_header *fh;
940 struct fc_exch *ep = fc_seq_exch(sp);
941 struct fc_lport *lp = ep->lp;
942 unsigned int f_ctl;
945 * Don't send ACKs for class 3.
947 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
948 fp = fc_frame_alloc(lp, 0);
949 if (!fp)
950 return;
952 fh = fc_frame_header_get(fp);
953 fh->fh_r_ctl = FC_RCTL_ACK_1;
954 fh->fh_type = FC_TYPE_BLS;
957 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
958 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
959 * Bits 9-8 are meaningful (retransmitted or unidirectional).
960 * Last ACK uses bits 7-6 (continue sequence),
961 * bits 5-4 are meaningful (what kind of ACK to use).
963 rx_fh = fc_frame_header_get(rx_fp);
964 f_ctl = ntoh24(rx_fh->fh_f_ctl);
965 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
966 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
967 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
968 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
969 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
970 hton24(fh->fh_f_ctl, f_ctl);
972 fc_exch_setup_hdr(ep, fp, f_ctl);
973 fh->fh_seq_id = rx_fh->fh_seq_id;
974 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
975 fh->fh_parm_offset = htonl(1); /* ack single frame */
977 fr_sof(fp) = fr_sof(rx_fp);
978 if (f_ctl & FC_FC_END_SEQ)
979 fr_eof(fp) = FC_EOF_T;
980 else
981 fr_eof(fp) = FC_EOF_N;
983 (void) lp->tt.frame_send(lp, fp);
988 * Send BLS Reject.
989 * This is for rejecting BA_ABTS only.
991 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
992 enum fc_ba_rjt_reason reason,
993 enum fc_ba_rjt_explan explan)
995 struct fc_frame *fp;
996 struct fc_frame_header *rx_fh;
997 struct fc_frame_header *fh;
998 struct fc_ba_rjt *rp;
999 struct fc_lport *lp;
1000 unsigned int f_ctl;
1002 lp = fr_dev(rx_fp);
1003 fp = fc_frame_alloc(lp, sizeof(*rp));
1004 if (!fp)
1005 return;
1006 fh = fc_frame_header_get(fp);
1007 rx_fh = fc_frame_header_get(rx_fp);
1009 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1011 rp = fc_frame_payload_get(fp, sizeof(*rp));
1012 rp->br_reason = reason;
1013 rp->br_explan = explan;
1016 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1018 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1019 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1020 fh->fh_ox_id = rx_fh->fh_ox_id;
1021 fh->fh_rx_id = rx_fh->fh_rx_id;
1022 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1023 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1024 fh->fh_type = FC_TYPE_BLS;
1027 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1028 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1029 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1030 * Last ACK uses bits 7-6 (continue sequence),
1031 * bits 5-4 are meaningful (what kind of ACK to use).
1032 * Always set LAST_SEQ, END_SEQ.
1034 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1035 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1036 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1037 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1038 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1039 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1040 f_ctl &= ~FC_FC_FIRST_SEQ;
1041 hton24(fh->fh_f_ctl, f_ctl);
1043 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1044 fr_eof(fp) = FC_EOF_T;
1045 if (fc_sof_needs_ack(fr_sof(fp)))
1046 fr_eof(fp) = FC_EOF_N;
1048 (void) lp->tt.frame_send(lp, fp);
1052 * Handle an incoming ABTS. This would be for target mode usually,
1053 * but could be due to lost FCP transfer ready, confirm or RRQ.
1054 * We always handle this as an exchange abort, ignoring the parameter.
1056 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1058 struct fc_frame *fp;
1059 struct fc_ba_acc *ap;
1060 struct fc_frame_header *fh;
1061 struct fc_seq *sp;
1063 if (!ep)
1064 goto reject;
1065 spin_lock_bh(&ep->ex_lock);
1066 if (ep->esb_stat & ESB_ST_COMPLETE) {
1067 spin_unlock_bh(&ep->ex_lock);
1068 goto reject;
1070 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1071 fc_exch_hold(ep); /* hold for REC_QUAL */
1072 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1073 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1075 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1076 if (!fp) {
1077 spin_unlock_bh(&ep->ex_lock);
1078 goto free;
1080 fh = fc_frame_header_get(fp);
1081 ap = fc_frame_payload_get(fp, sizeof(*ap));
1082 memset(ap, 0, sizeof(*ap));
1083 sp = &ep->seq;
1084 ap->ba_high_seq_cnt = htons(0xffff);
1085 if (sp->ssb_stat & SSB_ST_RESP) {
1086 ap->ba_seq_id = sp->id;
1087 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1088 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1089 ap->ba_low_seq_cnt = htons(sp->cnt);
1091 sp = fc_seq_start_next_locked(sp);
1092 spin_unlock_bh(&ep->ex_lock);
1093 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1094 fc_frame_free(rx_fp);
1095 return;
1097 reject:
1098 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1099 free:
1100 fc_frame_free(rx_fp);
1104 * Handle receive where the other end is originating the sequence.
1106 static void fc_exch_recv_req(struct fc_lport *lp, struct fc_exch_mgr *mp,
1107 struct fc_frame *fp)
1109 struct fc_frame_header *fh = fc_frame_header_get(fp);
1110 struct fc_seq *sp = NULL;
1111 struct fc_exch *ep = NULL;
1112 enum fc_sof sof;
1113 enum fc_eof eof;
1114 u32 f_ctl;
1115 enum fc_pf_rjt_reason reject;
1117 fr_seq(fp) = NULL;
1118 reject = fc_seq_lookup_recip(lp, mp, fp);
1119 if (reject == FC_RJT_NONE) {
1120 sp = fr_seq(fp); /* sequence will be held */
1121 ep = fc_seq_exch(sp);
1122 sof = fr_sof(fp);
1123 eof = fr_eof(fp);
1124 f_ctl = ntoh24(fh->fh_f_ctl);
1125 fc_seq_send_ack(sp, fp);
1128 * Call the receive function.
1130 * The receive function may allocate a new sequence
1131 * over the old one, so we shouldn't change the
1132 * sequence after this.
1134 * The frame will be freed by the receive function.
1135 * If new exch resp handler is valid then call that
1136 * first.
1138 if (ep->resp)
1139 ep->resp(sp, fp, ep->arg);
1140 else
1141 lp->tt.lport_recv(lp, sp, fp);
1142 fc_exch_release(ep); /* release from lookup */
1143 } else {
1144 FC_LPORT_DBG(lp, "exch/seq lookup failed: reject %x\n", reject);
1145 fc_frame_free(fp);
1150 * Handle receive where the other end is originating the sequence in
1151 * response to our exchange.
1153 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1155 struct fc_frame_header *fh = fc_frame_header_get(fp);
1156 struct fc_seq *sp;
1157 struct fc_exch *ep;
1158 enum fc_sof sof;
1159 u32 f_ctl;
1160 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1161 void *ex_resp_arg;
1162 int rc;
1164 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1165 if (!ep) {
1166 atomic_inc(&mp->stats.xid_not_found);
1167 goto out;
1169 if (ep->esb_stat & ESB_ST_COMPLETE) {
1170 atomic_inc(&mp->stats.xid_not_found);
1171 goto out;
1173 if (ep->rxid == FC_XID_UNKNOWN)
1174 ep->rxid = ntohs(fh->fh_rx_id);
1175 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1176 atomic_inc(&mp->stats.xid_not_found);
1177 goto rel;
1179 if (ep->did != ntoh24(fh->fh_s_id) &&
1180 ep->did != FC_FID_FLOGI) {
1181 atomic_inc(&mp->stats.xid_not_found);
1182 goto rel;
1184 sof = fr_sof(fp);
1185 if (fc_sof_is_init(sof)) {
1186 sp = fc_seq_start_next(&ep->seq);
1187 sp->id = fh->fh_seq_id;
1188 sp->ssb_stat |= SSB_ST_RESP;
1189 } else {
1190 sp = &ep->seq;
1191 if (sp->id != fh->fh_seq_id) {
1192 atomic_inc(&mp->stats.seq_not_found);
1193 goto rel;
1196 f_ctl = ntoh24(fh->fh_f_ctl);
1197 fr_seq(fp) = sp;
1198 if (f_ctl & FC_FC_SEQ_INIT)
1199 ep->esb_stat |= ESB_ST_SEQ_INIT;
1201 if (fc_sof_needs_ack(sof))
1202 fc_seq_send_ack(sp, fp);
1203 resp = ep->resp;
1204 ex_resp_arg = ep->arg;
1206 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1207 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1208 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1209 spin_lock_bh(&ep->ex_lock);
1210 rc = fc_exch_done_locked(ep);
1211 WARN_ON(fc_seq_exch(sp) != ep);
1212 spin_unlock_bh(&ep->ex_lock);
1213 if (!rc)
1214 fc_exch_delete(ep);
1218 * Call the receive function.
1219 * The sequence is held (has a refcnt) for us,
1220 * but not for the receive function.
1222 * The receive function may allocate a new sequence
1223 * over the old one, so we shouldn't change the
1224 * sequence after this.
1226 * The frame will be freed by the receive function.
1227 * If new exch resp handler is valid then call that
1228 * first.
1230 if (resp)
1231 resp(sp, fp, ex_resp_arg);
1232 else
1233 fc_frame_free(fp);
1234 fc_exch_release(ep);
1235 return;
1236 rel:
1237 fc_exch_release(ep);
1238 out:
1239 fc_frame_free(fp);
1243 * Handle receive for a sequence where other end is responding to our sequence.
1245 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1247 struct fc_seq *sp;
1249 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1251 if (!sp)
1252 atomic_inc(&mp->stats.xid_not_found);
1253 else
1254 atomic_inc(&mp->stats.non_bls_resp);
1256 fc_frame_free(fp);
1260 * Handle the response to an ABTS for exchange or sequence.
1261 * This can be BA_ACC or BA_RJT.
1263 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1265 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1266 void *ex_resp_arg;
1267 struct fc_frame_header *fh;
1268 struct fc_ba_acc *ap;
1269 struct fc_seq *sp;
1270 u16 low;
1271 u16 high;
1272 int rc = 1, has_rec = 0;
1274 fh = fc_frame_header_get(fp);
1275 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1276 fc_exch_rctl_name(fh->fh_r_ctl));
1278 if (cancel_delayed_work_sync(&ep->timeout_work))
1279 fc_exch_release(ep); /* release from pending timer hold */
1281 spin_lock_bh(&ep->ex_lock);
1282 switch (fh->fh_r_ctl) {
1283 case FC_RCTL_BA_ACC:
1284 ap = fc_frame_payload_get(fp, sizeof(*ap));
1285 if (!ap)
1286 break;
1289 * Decide whether to establish a Recovery Qualifier.
1290 * We do this if there is a non-empty SEQ_CNT range and
1291 * SEQ_ID is the same as the one we aborted.
1293 low = ntohs(ap->ba_low_seq_cnt);
1294 high = ntohs(ap->ba_high_seq_cnt);
1295 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1296 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1297 ap->ba_seq_id == ep->seq_id) && low != high) {
1298 ep->esb_stat |= ESB_ST_REC_QUAL;
1299 fc_exch_hold(ep); /* hold for recovery qualifier */
1300 has_rec = 1;
1302 break;
1303 case FC_RCTL_BA_RJT:
1304 break;
1305 default:
1306 break;
1309 resp = ep->resp;
1310 ex_resp_arg = ep->arg;
1312 /* do we need to do some other checks here. Can we reuse more of
1313 * fc_exch_recv_seq_resp
1315 sp = &ep->seq;
1317 * do we want to check END_SEQ as well as LAST_SEQ here?
1319 if (ep->fh_type != FC_TYPE_FCP &&
1320 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1321 rc = fc_exch_done_locked(ep);
1322 spin_unlock_bh(&ep->ex_lock);
1323 if (!rc)
1324 fc_exch_delete(ep);
1326 if (resp)
1327 resp(sp, fp, ex_resp_arg);
1328 else
1329 fc_frame_free(fp);
1331 if (has_rec)
1332 fc_exch_timer_set(ep, ep->r_a_tov);
1337 * Receive BLS sequence.
1338 * This is always a sequence initiated by the remote side.
1339 * We may be either the originator or recipient of the exchange.
1341 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1343 struct fc_frame_header *fh;
1344 struct fc_exch *ep;
1345 u32 f_ctl;
1347 fh = fc_frame_header_get(fp);
1348 f_ctl = ntoh24(fh->fh_f_ctl);
1349 fr_seq(fp) = NULL;
1351 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1352 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1353 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1354 spin_lock_bh(&ep->ex_lock);
1355 ep->esb_stat |= ESB_ST_SEQ_INIT;
1356 spin_unlock_bh(&ep->ex_lock);
1358 if (f_ctl & FC_FC_SEQ_CTX) {
1360 * A response to a sequence we initiated.
1361 * This should only be ACKs for class 2 or F.
1363 switch (fh->fh_r_ctl) {
1364 case FC_RCTL_ACK_1:
1365 case FC_RCTL_ACK_0:
1366 break;
1367 default:
1368 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1369 fh->fh_r_ctl,
1370 fc_exch_rctl_name(fh->fh_r_ctl));
1371 break;
1373 fc_frame_free(fp);
1374 } else {
1375 switch (fh->fh_r_ctl) {
1376 case FC_RCTL_BA_RJT:
1377 case FC_RCTL_BA_ACC:
1378 if (ep)
1379 fc_exch_abts_resp(ep, fp);
1380 else
1381 fc_frame_free(fp);
1382 break;
1383 case FC_RCTL_BA_ABTS:
1384 fc_exch_recv_abts(ep, fp);
1385 break;
1386 default: /* ignore junk */
1387 fc_frame_free(fp);
1388 break;
1391 if (ep)
1392 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1396 * Accept sequence with LS_ACC.
1397 * If this fails due to allocation or transmit congestion, assume the
1398 * originator will repeat the sequence.
1400 static void fc_seq_ls_acc(struct fc_seq *req_sp)
1402 struct fc_seq *sp;
1403 struct fc_els_ls_acc *acc;
1404 struct fc_frame *fp;
1406 sp = fc_seq_start_next(req_sp);
1407 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1408 if (fp) {
1409 acc = fc_frame_payload_get(fp, sizeof(*acc));
1410 memset(acc, 0, sizeof(*acc));
1411 acc->la_cmd = ELS_LS_ACC;
1412 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1417 * Reject sequence with ELS LS_RJT.
1418 * If this fails due to allocation or transmit congestion, assume the
1419 * originator will repeat the sequence.
1421 static void fc_seq_ls_rjt(struct fc_seq *req_sp, enum fc_els_rjt_reason reason,
1422 enum fc_els_rjt_explan explan)
1424 struct fc_seq *sp;
1425 struct fc_els_ls_rjt *rjt;
1426 struct fc_frame *fp;
1428 sp = fc_seq_start_next(req_sp);
1429 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*rjt));
1430 if (fp) {
1431 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1432 memset(rjt, 0, sizeof(*rjt));
1433 rjt->er_cmd = ELS_LS_RJT;
1434 rjt->er_reason = reason;
1435 rjt->er_explan = explan;
1436 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1440 static void fc_exch_reset(struct fc_exch *ep)
1442 struct fc_seq *sp;
1443 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1444 void *arg;
1445 int rc = 1;
1447 spin_lock_bh(&ep->ex_lock);
1448 ep->state |= FC_EX_RST_CLEANUP;
1450 * we really want to call del_timer_sync, but cannot due
1451 * to the lport calling with the lport lock held (some resp
1452 * functions can also grab the lport lock which could cause
1453 * a deadlock).
1455 if (cancel_delayed_work(&ep->timeout_work))
1456 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1457 resp = ep->resp;
1458 ep->resp = NULL;
1459 if (ep->esb_stat & ESB_ST_REC_QUAL)
1460 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1461 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1462 arg = ep->arg;
1463 sp = &ep->seq;
1464 rc = fc_exch_done_locked(ep);
1465 spin_unlock_bh(&ep->ex_lock);
1466 if (!rc)
1467 fc_exch_delete(ep);
1469 if (resp)
1470 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1474 * fc_exch_pool_reset() - Resets an per cpu exches pool.
1475 * @lport: ptr to the local port
1476 * @pool: ptr to the per cpu exches pool
1477 * @sid: source FC ID
1478 * @did: destination FC ID
1480 * Resets an per cpu exches pool, releasing its all sequences
1481 * and exchanges. If sid is non-zero, then reset only exchanges
1482 * we sourced from that FID. If did is non-zero, reset only
1483 * exchanges destined to that FID.
1485 static void fc_exch_pool_reset(struct fc_lport *lport,
1486 struct fc_exch_pool *pool,
1487 u32 sid, u32 did)
1489 struct fc_exch *ep;
1490 struct fc_exch *next;
1492 spin_lock_bh(&pool->lock);
1493 restart:
1494 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1495 if ((lport == ep->lp) &&
1496 (sid == 0 || sid == ep->sid) &&
1497 (did == 0 || did == ep->did)) {
1498 fc_exch_hold(ep);
1499 spin_unlock_bh(&pool->lock);
1501 fc_exch_reset(ep);
1503 fc_exch_release(ep);
1504 spin_lock_bh(&pool->lock);
1507 * must restart loop incase while lock
1508 * was down multiple eps were released.
1510 goto restart;
1513 spin_unlock_bh(&pool->lock);
1517 * fc_exch_mgr_reset() - Resets all EMs of a lport
1518 * @lport: ptr to the local port
1519 * @sid: source FC ID
1520 * @did: destination FC ID
1522 * Reset all EMs of a lport, releasing its all sequences and
1523 * exchanges. If sid is non-zero, then reset only exchanges
1524 * we sourced from that FID. If did is non-zero, reset only
1525 * exchanges destined to that FID.
1527 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1529 struct fc_exch_mgr_anchor *ema;
1530 unsigned int cpu;
1532 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1533 for_each_possible_cpu(cpu)
1534 fc_exch_pool_reset(lport,
1535 per_cpu_ptr(ema->mp->pool, cpu),
1536 sid, did);
1539 EXPORT_SYMBOL(fc_exch_mgr_reset);
1542 * Handle incoming ELS REC - Read Exchange Concise.
1543 * Note that the requesting port may be different than the S_ID in the request.
1545 static void fc_exch_els_rec(struct fc_seq *sp, struct fc_frame *rfp)
1547 struct fc_frame *fp;
1548 struct fc_exch *ep;
1549 struct fc_exch_mgr *em;
1550 struct fc_els_rec *rp;
1551 struct fc_els_rec_acc *acc;
1552 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1553 enum fc_els_rjt_explan explan;
1554 u32 sid;
1555 u16 rxid;
1556 u16 oxid;
1558 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1559 explan = ELS_EXPL_INV_LEN;
1560 if (!rp)
1561 goto reject;
1562 sid = ntoh24(rp->rec_s_id);
1563 rxid = ntohs(rp->rec_rx_id);
1564 oxid = ntohs(rp->rec_ox_id);
1567 * Currently it's hard to find the local S_ID from the exchange
1568 * manager. This will eventually be fixed, but for now it's easier
1569 * to lookup the subject exchange twice, once as if we were
1570 * the initiator, and then again if we weren't.
1572 em = fc_seq_exch(sp)->em;
1573 ep = fc_exch_find(em, oxid);
1574 explan = ELS_EXPL_OXID_RXID;
1575 if (ep && ep->oid == sid) {
1576 if (ep->rxid != FC_XID_UNKNOWN &&
1577 rxid != FC_XID_UNKNOWN &&
1578 ep->rxid != rxid)
1579 goto rel;
1580 } else {
1581 if (ep)
1582 fc_exch_release(ep);
1583 ep = NULL;
1584 if (rxid != FC_XID_UNKNOWN)
1585 ep = fc_exch_find(em, rxid);
1586 if (!ep)
1587 goto reject;
1590 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1591 if (!fp) {
1592 fc_exch_done(sp);
1593 goto out;
1595 sp = fc_seq_start_next(sp);
1596 acc = fc_frame_payload_get(fp, sizeof(*acc));
1597 memset(acc, 0, sizeof(*acc));
1598 acc->reca_cmd = ELS_LS_ACC;
1599 acc->reca_ox_id = rp->rec_ox_id;
1600 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1601 acc->reca_rx_id = htons(ep->rxid);
1602 if (ep->sid == ep->oid)
1603 hton24(acc->reca_rfid, ep->did);
1604 else
1605 hton24(acc->reca_rfid, ep->sid);
1606 acc->reca_fc4value = htonl(ep->seq.rec_data);
1607 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1608 ESB_ST_SEQ_INIT |
1609 ESB_ST_COMPLETE));
1610 sp = fc_seq_start_next(sp);
1611 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1612 out:
1613 fc_exch_release(ep);
1614 fc_frame_free(rfp);
1615 return;
1617 rel:
1618 fc_exch_release(ep);
1619 reject:
1620 fc_seq_ls_rjt(sp, reason, explan);
1621 fc_frame_free(rfp);
1625 * Handle response from RRQ.
1626 * Not much to do here, really.
1627 * Should report errors.
1629 * TODO: fix error handler.
1631 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1633 struct fc_exch *aborted_ep = arg;
1634 unsigned int op;
1636 if (IS_ERR(fp)) {
1637 int err = PTR_ERR(fp);
1639 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1640 goto cleanup;
1641 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1642 "frame error %d\n", err);
1643 return;
1646 op = fc_frame_payload_op(fp);
1647 fc_frame_free(fp);
1649 switch (op) {
1650 case ELS_LS_RJT:
1651 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1652 /* fall through */
1653 case ELS_LS_ACC:
1654 goto cleanup;
1655 default:
1656 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1657 "for RRQ", op);
1658 return;
1661 cleanup:
1662 fc_exch_done(&aborted_ep->seq);
1663 /* drop hold for rec qual */
1664 fc_exch_release(aborted_ep);
1668 * Send ELS RRQ - Reinstate Recovery Qualifier.
1669 * This tells the remote port to stop blocking the use of
1670 * the exchange and the seq_cnt range.
1672 static void fc_exch_rrq(struct fc_exch *ep)
1674 struct fc_lport *lp;
1675 struct fc_els_rrq *rrq;
1676 struct fc_frame *fp;
1677 u32 did;
1679 lp = ep->lp;
1681 fp = fc_frame_alloc(lp, sizeof(*rrq));
1682 if (!fp)
1683 goto retry;
1685 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
1686 memset(rrq, 0, sizeof(*rrq));
1687 rrq->rrq_cmd = ELS_RRQ;
1688 hton24(rrq->rrq_s_id, ep->sid);
1689 rrq->rrq_ox_id = htons(ep->oxid);
1690 rrq->rrq_rx_id = htons(ep->rxid);
1692 did = ep->did;
1693 if (ep->esb_stat & ESB_ST_RESP)
1694 did = ep->sid;
1696 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
1697 fc_host_port_id(lp->host), FC_TYPE_ELS,
1698 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
1700 if (fc_exch_seq_send(lp, fp, fc_exch_rrq_resp, NULL, ep, lp->e_d_tov))
1701 return;
1703 retry:
1704 spin_lock_bh(&ep->ex_lock);
1705 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
1706 spin_unlock_bh(&ep->ex_lock);
1707 /* drop hold for rec qual */
1708 fc_exch_release(ep);
1709 return;
1711 ep->esb_stat |= ESB_ST_REC_QUAL;
1712 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1713 spin_unlock_bh(&ep->ex_lock);
1718 * Handle incoming ELS RRQ - Reset Recovery Qualifier.
1720 static void fc_exch_els_rrq(struct fc_seq *sp, struct fc_frame *fp)
1722 struct fc_exch *ep; /* request or subject exchange */
1723 struct fc_els_rrq *rp;
1724 u32 sid;
1725 u16 xid;
1726 enum fc_els_rjt_explan explan;
1728 rp = fc_frame_payload_get(fp, sizeof(*rp));
1729 explan = ELS_EXPL_INV_LEN;
1730 if (!rp)
1731 goto reject;
1734 * lookup subject exchange.
1736 ep = fc_seq_exch(sp);
1737 sid = ntoh24(rp->rrq_s_id); /* subject source */
1738 xid = ep->did == sid ? ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
1739 ep = fc_exch_find(ep->em, xid);
1741 explan = ELS_EXPL_OXID_RXID;
1742 if (!ep)
1743 goto reject;
1744 spin_lock_bh(&ep->ex_lock);
1745 if (ep->oxid != ntohs(rp->rrq_ox_id))
1746 goto unlock_reject;
1747 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
1748 ep->rxid != FC_XID_UNKNOWN)
1749 goto unlock_reject;
1750 explan = ELS_EXPL_SID;
1751 if (ep->sid != sid)
1752 goto unlock_reject;
1755 * Clear Recovery Qualifier state, and cancel timer if complete.
1757 if (ep->esb_stat & ESB_ST_REC_QUAL) {
1758 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1759 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
1761 if (ep->esb_stat & ESB_ST_COMPLETE) {
1762 if (cancel_delayed_work(&ep->timeout_work))
1763 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
1766 spin_unlock_bh(&ep->ex_lock);
1769 * Send LS_ACC.
1771 fc_seq_ls_acc(sp);
1772 fc_frame_free(fp);
1773 return;
1775 unlock_reject:
1776 spin_unlock_bh(&ep->ex_lock);
1777 fc_exch_release(ep); /* drop hold from fc_exch_find */
1778 reject:
1779 fc_seq_ls_rjt(sp, ELS_RJT_LOGIC, explan);
1780 fc_frame_free(fp);
1783 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
1784 struct fc_exch_mgr *mp,
1785 bool (*match)(struct fc_frame *))
1787 struct fc_exch_mgr_anchor *ema;
1789 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
1790 if (!ema)
1791 return ema;
1793 ema->mp = mp;
1794 ema->match = match;
1795 /* add EM anchor to EM anchors list */
1796 list_add_tail(&ema->ema_list, &lport->ema_list);
1797 kref_get(&mp->kref);
1798 return ema;
1800 EXPORT_SYMBOL(fc_exch_mgr_add);
1802 static void fc_exch_mgr_destroy(struct kref *kref)
1804 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
1806 mempool_destroy(mp->ep_pool);
1807 free_percpu(mp->pool);
1808 kfree(mp);
1811 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
1813 /* remove EM anchor from EM anchors list */
1814 list_del(&ema->ema_list);
1815 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
1816 kfree(ema);
1818 EXPORT_SYMBOL(fc_exch_mgr_del);
1820 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lp,
1821 enum fc_class class,
1822 u16 min_xid, u16 max_xid,
1823 bool (*match)(struct fc_frame *))
1825 struct fc_exch_mgr *mp;
1826 u16 pool_exch_range;
1827 size_t pool_size;
1828 unsigned int cpu;
1829 struct fc_exch_pool *pool;
1831 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
1832 (min_xid & fc_cpu_mask) != 0) {
1833 FC_LPORT_DBG(lp, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
1834 min_xid, max_xid);
1835 return NULL;
1839 * allocate memory for EM
1841 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
1842 if (!mp)
1843 return NULL;
1845 mp->class = class;
1846 /* adjust em exch xid range for offload */
1847 mp->min_xid = min_xid;
1848 mp->max_xid = max_xid;
1850 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
1851 if (!mp->ep_pool)
1852 goto free_mp;
1855 * Setup per cpu exch pool with entire exchange id range equally
1856 * divided across all cpus. The exch pointers array memory is
1857 * allocated for exch range per pool.
1859 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
1860 mp->pool_max_index = pool_exch_range - 1;
1863 * Allocate and initialize per cpu exch pool
1865 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
1866 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
1867 if (!mp->pool)
1868 goto free_mempool;
1869 for_each_possible_cpu(cpu) {
1870 pool = per_cpu_ptr(mp->pool, cpu);
1871 spin_lock_init(&pool->lock);
1872 INIT_LIST_HEAD(&pool->ex_list);
1875 kref_init(&mp->kref);
1876 if (!fc_exch_mgr_add(lp, mp, match)) {
1877 free_percpu(mp->pool);
1878 goto free_mempool;
1882 * Above kref_init() sets mp->kref to 1 and then
1883 * call to fc_exch_mgr_add incremented mp->kref again,
1884 * so adjust that extra increment.
1886 kref_put(&mp->kref, fc_exch_mgr_destroy);
1887 return mp;
1889 free_mempool:
1890 mempool_destroy(mp->ep_pool);
1891 free_mp:
1892 kfree(mp);
1893 return NULL;
1895 EXPORT_SYMBOL(fc_exch_mgr_alloc);
1897 void fc_exch_mgr_free(struct fc_lport *lport)
1899 struct fc_exch_mgr_anchor *ema, *next;
1901 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
1902 fc_exch_mgr_del(ema);
1904 EXPORT_SYMBOL(fc_exch_mgr_free);
1907 struct fc_seq *fc_exch_seq_send(struct fc_lport *lp,
1908 struct fc_frame *fp,
1909 void (*resp)(struct fc_seq *,
1910 struct fc_frame *fp,
1911 void *arg),
1912 void (*destructor)(struct fc_seq *, void *),
1913 void *arg, u32 timer_msec)
1915 struct fc_exch *ep;
1916 struct fc_seq *sp = NULL;
1917 struct fc_frame_header *fh;
1918 int rc = 1;
1920 ep = fc_exch_alloc(lp, fp);
1921 if (!ep) {
1922 fc_frame_free(fp);
1923 return NULL;
1925 ep->esb_stat |= ESB_ST_SEQ_INIT;
1926 fh = fc_frame_header_get(fp);
1927 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1928 ep->resp = resp;
1929 ep->destructor = destructor;
1930 ep->arg = arg;
1931 ep->r_a_tov = FC_DEF_R_A_TOV;
1932 ep->lp = lp;
1933 sp = &ep->seq;
1935 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1936 ep->f_ctl = ntoh24(fh->fh_f_ctl);
1937 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1938 sp->cnt++;
1940 if (ep->xid <= lp->lro_xid)
1941 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1943 if (unlikely(lp->tt.frame_send(lp, fp)))
1944 goto err;
1946 if (timer_msec)
1947 fc_exch_timer_set_locked(ep, timer_msec);
1948 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
1950 if (ep->f_ctl & FC_FC_SEQ_INIT)
1951 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1952 spin_unlock_bh(&ep->ex_lock);
1953 return sp;
1954 err:
1955 rc = fc_exch_done_locked(ep);
1956 spin_unlock_bh(&ep->ex_lock);
1957 if (!rc)
1958 fc_exch_delete(ep);
1959 return NULL;
1961 EXPORT_SYMBOL(fc_exch_seq_send);
1964 * Receive a frame
1966 void fc_exch_recv(struct fc_lport *lp, struct fc_frame *fp)
1968 struct fc_frame_header *fh = fc_frame_header_get(fp);
1969 struct fc_exch_mgr_anchor *ema;
1970 u32 f_ctl, found = 0;
1971 u16 oxid;
1973 /* lport lock ? */
1974 if (!lp || lp->state == LPORT_ST_DISABLED) {
1975 FC_LPORT_DBG(lp, "Receiving frames for an lport that "
1976 "has not been initialized correctly\n");
1977 fc_frame_free(fp);
1978 return;
1981 f_ctl = ntoh24(fh->fh_f_ctl);
1982 oxid = ntohs(fh->fh_ox_id);
1983 if (f_ctl & FC_FC_EX_CTX) {
1984 list_for_each_entry(ema, &lp->ema_list, ema_list) {
1985 if ((oxid >= ema->mp->min_xid) &&
1986 (oxid <= ema->mp->max_xid)) {
1987 found = 1;
1988 break;
1992 if (!found) {
1993 FC_LPORT_DBG(lp, "Received response for out "
1994 "of range oxid:%hx\n", oxid);
1995 fc_frame_free(fp);
1996 return;
1998 } else
1999 ema = list_entry(lp->ema_list.prev, typeof(*ema), ema_list);
2002 * If frame is marked invalid, just drop it.
2004 switch (fr_eof(fp)) {
2005 case FC_EOF_T:
2006 if (f_ctl & FC_FC_END_SEQ)
2007 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2008 /* fall through */
2009 case FC_EOF_N:
2010 if (fh->fh_type == FC_TYPE_BLS)
2011 fc_exch_recv_bls(ema->mp, fp);
2012 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2013 FC_FC_EX_CTX)
2014 fc_exch_recv_seq_resp(ema->mp, fp);
2015 else if (f_ctl & FC_FC_SEQ_CTX)
2016 fc_exch_recv_resp(ema->mp, fp);
2017 else
2018 fc_exch_recv_req(lp, ema->mp, fp);
2019 break;
2020 default:
2021 FC_LPORT_DBG(lp, "dropping invalid frame (eof %x)", fr_eof(fp));
2022 fc_frame_free(fp);
2025 EXPORT_SYMBOL(fc_exch_recv);
2027 int fc_exch_init(struct fc_lport *lp)
2029 if (!lp->tt.seq_start_next)
2030 lp->tt.seq_start_next = fc_seq_start_next;
2032 if (!lp->tt.exch_seq_send)
2033 lp->tt.exch_seq_send = fc_exch_seq_send;
2035 if (!lp->tt.seq_send)
2036 lp->tt.seq_send = fc_seq_send;
2038 if (!lp->tt.seq_els_rsp_send)
2039 lp->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2041 if (!lp->tt.exch_done)
2042 lp->tt.exch_done = fc_exch_done;
2044 if (!lp->tt.exch_mgr_reset)
2045 lp->tt.exch_mgr_reset = fc_exch_mgr_reset;
2047 if (!lp->tt.seq_exch_abort)
2048 lp->tt.seq_exch_abort = fc_seq_exch_abort;
2051 * Initialize fc_cpu_mask and fc_cpu_order. The
2052 * fc_cpu_mask is set for nr_cpu_ids rounded up
2053 * to order of 2's * power and order is stored
2054 * in fc_cpu_order as this is later required in
2055 * mapping between an exch id and exch array index
2056 * in per cpu exch pool.
2058 * This round up is required to align fc_cpu_mask
2059 * to exchange id's lower bits such that all incoming
2060 * frames of an exchange gets delivered to the same
2061 * cpu on which exchange originated by simple bitwise
2062 * AND operation between fc_cpu_mask and exchange id.
2064 fc_cpu_mask = 1;
2065 fc_cpu_order = 0;
2066 while (fc_cpu_mask < nr_cpu_ids) {
2067 fc_cpu_mask <<= 1;
2068 fc_cpu_order++;
2070 fc_cpu_mask--;
2072 return 0;
2074 EXPORT_SYMBOL(fc_exch_init);
2076 int fc_setup_exch_mgr(void)
2078 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2079 0, SLAB_HWCACHE_ALIGN, NULL);
2080 if (!fc_em_cachep)
2081 return -ENOMEM;
2082 return 0;
2085 void fc_destroy_exch_mgr(void)
2087 kmem_cache_destroy(fc_em_cachep);