x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / scsi / libsas / sas_expander.c
blobb3381959acce19ee167c183ccd7b2b9354203c1b
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
28 #include "sas_internal.h"
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37 u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
40 /* ---------- SMP task management ---------- */
42 static void smp_task_timedout(unsigned long _task)
44 struct sas_task *task = (void *) _task;
45 unsigned long flags;
47 spin_lock_irqsave(&task->task_state_lock, flags);
48 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
49 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
50 spin_unlock_irqrestore(&task->task_state_lock, flags);
52 complete(&task->completion);
55 static void smp_task_done(struct sas_task *task)
57 if (!del_timer(&task->timer))
58 return;
59 complete(&task->completion);
62 /* Give it some long enough timeout. In seconds. */
63 #define SMP_TIMEOUT 10
65 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
66 void *resp, int resp_size)
68 int res, retry;
69 struct sas_task *task = NULL;
70 struct sas_internal *i =
71 to_sas_internal(dev->port->ha->core.shost->transportt);
73 for (retry = 0; retry < 3; retry++) {
74 task = sas_alloc_task(GFP_KERNEL);
75 if (!task)
76 return -ENOMEM;
78 task->dev = dev;
79 task->task_proto = dev->tproto;
80 sg_init_one(&task->smp_task.smp_req, req, req_size);
81 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83 task->task_done = smp_task_done;
85 task->timer.data = (unsigned long) task;
86 task->timer.function = smp_task_timedout;
87 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
88 add_timer(&task->timer);
90 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92 if (res) {
93 del_timer(&task->timer);
94 SAS_DPRINTK("executing SMP task failed:%d\n", res);
95 goto ex_err;
98 wait_for_completion(&task->completion);
99 res = -ECOMM;
100 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
101 SAS_DPRINTK("smp task timed out or aborted\n");
102 i->dft->lldd_abort_task(task);
103 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
104 SAS_DPRINTK("SMP task aborted and not done\n");
105 goto ex_err;
108 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109 task->task_status.stat == SAM_GOOD) {
110 res = 0;
111 break;
112 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
113 task->task_status.stat == SAS_DATA_UNDERRUN) {
114 /* no error, but return the number of bytes of
115 * underrun */
116 res = task->task_status.residual;
117 break;
118 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
119 task->task_status.stat == SAS_DATA_OVERRUN) {
120 res = -EMSGSIZE;
121 break;
122 } else {
123 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
124 "status 0x%x\n", __func__,
125 SAS_ADDR(dev->sas_addr),
126 task->task_status.resp,
127 task->task_status.stat);
128 sas_free_task(task);
129 task = NULL;
132 ex_err:
133 BUG_ON(retry == 3 && task != NULL);
134 if (task != NULL) {
135 sas_free_task(task);
137 return res;
140 /* ---------- Allocations ---------- */
142 static inline void *alloc_smp_req(int size)
144 u8 *p = kzalloc(size, GFP_KERNEL);
145 if (p)
146 p[0] = SMP_REQUEST;
147 return p;
150 static inline void *alloc_smp_resp(int size)
152 return kzalloc(size, GFP_KERNEL);
155 /* ---------- Expander configuration ---------- */
157 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
158 void *disc_resp)
160 struct expander_device *ex = &dev->ex_dev;
161 struct ex_phy *phy = &ex->ex_phy[phy_id];
162 struct smp_resp *resp = disc_resp;
163 struct discover_resp *dr = &resp->disc;
164 struct sas_rphy *rphy = dev->rphy;
165 int rediscover = (phy->phy != NULL);
167 if (!rediscover) {
168 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170 /* FIXME: error_handling */
171 BUG_ON(!phy->phy);
174 switch (resp->result) {
175 case SMP_RESP_PHY_VACANT:
176 phy->phy_state = PHY_VACANT;
177 return;
178 default:
179 phy->phy_state = PHY_NOT_PRESENT;
180 return;
181 case SMP_RESP_FUNC_ACC:
182 phy->phy_state = PHY_EMPTY; /* do not know yet */
183 break;
186 phy->phy_id = phy_id;
187 phy->attached_dev_type = dr->attached_dev_type;
188 phy->linkrate = dr->linkrate;
189 phy->attached_sata_host = dr->attached_sata_host;
190 phy->attached_sata_dev = dr->attached_sata_dev;
191 phy->attached_sata_ps = dr->attached_sata_ps;
192 phy->attached_iproto = dr->iproto << 1;
193 phy->attached_tproto = dr->tproto << 1;
194 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
195 phy->attached_phy_id = dr->attached_phy_id;
196 phy->phy_change_count = dr->change_count;
197 phy->routing_attr = dr->routing_attr;
198 phy->virtual = dr->virtual;
199 phy->last_da_index = -1;
201 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
202 phy->phy->identify.target_port_protocols = phy->attached_tproto;
203 phy->phy->identify.phy_identifier = phy_id;
204 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
205 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
206 phy->phy->minimum_linkrate = dr->pmin_linkrate;
207 phy->phy->maximum_linkrate = dr->pmax_linkrate;
208 phy->phy->negotiated_linkrate = phy->linkrate;
210 if (!rediscover)
211 sas_phy_add(phy->phy);
213 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
214 SAS_ADDR(dev->sas_addr), phy->phy_id,
215 phy->routing_attr == TABLE_ROUTING ? 'T' :
216 phy->routing_attr == DIRECT_ROUTING ? 'D' :
217 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
218 SAS_ADDR(phy->attached_sas_addr));
220 return;
223 #define DISCOVER_REQ_SIZE 16
224 #define DISCOVER_RESP_SIZE 56
226 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
227 u8 *disc_resp, int single)
229 int i, res;
231 disc_req[9] = single;
232 for (i = 1 ; i < 3; i++) {
233 struct discover_resp *dr;
235 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
236 disc_resp, DISCOVER_RESP_SIZE);
237 if (res)
238 return res;
239 /* This is detecting a failure to transmit inital
240 * dev to host FIS as described in section G.5 of
241 * sas-2 r 04b */
242 dr = &((struct smp_resp *)disc_resp)->disc;
243 if (!(dr->attached_dev_type == 0 &&
244 dr->attached_sata_dev))
245 break;
246 /* In order to generate the dev to host FIS, we
247 * send a link reset to the expander port */
248 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
249 /* Wait for the reset to trigger the negotiation */
250 msleep(500);
252 sas_set_ex_phy(dev, single, disc_resp);
253 return 0;
256 static int sas_ex_phy_discover(struct domain_device *dev, int single)
258 struct expander_device *ex = &dev->ex_dev;
259 int res = 0;
260 u8 *disc_req;
261 u8 *disc_resp;
263 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
264 if (!disc_req)
265 return -ENOMEM;
267 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
268 if (!disc_resp) {
269 kfree(disc_req);
270 return -ENOMEM;
273 disc_req[1] = SMP_DISCOVER;
275 if (0 <= single && single < ex->num_phys) {
276 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
277 } else {
278 int i;
280 for (i = 0; i < ex->num_phys; i++) {
281 res = sas_ex_phy_discover_helper(dev, disc_req,
282 disc_resp, i);
283 if (res)
284 goto out_err;
287 out_err:
288 kfree(disc_resp);
289 kfree(disc_req);
290 return res;
293 static int sas_expander_discover(struct domain_device *dev)
295 struct expander_device *ex = &dev->ex_dev;
296 int res = -ENOMEM;
298 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
299 if (!ex->ex_phy)
300 return -ENOMEM;
302 res = sas_ex_phy_discover(dev, -1);
303 if (res)
304 goto out_err;
306 return 0;
307 out_err:
308 kfree(ex->ex_phy);
309 ex->ex_phy = NULL;
310 return res;
313 #define MAX_EXPANDER_PHYS 128
315 static void ex_assign_report_general(struct domain_device *dev,
316 struct smp_resp *resp)
318 struct report_general_resp *rg = &resp->rg;
320 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
321 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
322 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
323 dev->ex_dev.conf_route_table = rg->conf_route_table;
324 dev->ex_dev.configuring = rg->configuring;
325 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
328 #define RG_REQ_SIZE 8
329 #define RG_RESP_SIZE 32
331 static int sas_ex_general(struct domain_device *dev)
333 u8 *rg_req;
334 struct smp_resp *rg_resp;
335 int res;
336 int i;
338 rg_req = alloc_smp_req(RG_REQ_SIZE);
339 if (!rg_req)
340 return -ENOMEM;
342 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
343 if (!rg_resp) {
344 kfree(rg_req);
345 return -ENOMEM;
348 rg_req[1] = SMP_REPORT_GENERAL;
350 for (i = 0; i < 5; i++) {
351 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
352 RG_RESP_SIZE);
354 if (res) {
355 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
356 SAS_ADDR(dev->sas_addr), res);
357 goto out;
358 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
359 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
360 SAS_ADDR(dev->sas_addr), rg_resp->result);
361 res = rg_resp->result;
362 goto out;
365 ex_assign_report_general(dev, rg_resp);
367 if (dev->ex_dev.configuring) {
368 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
369 SAS_ADDR(dev->sas_addr));
370 schedule_timeout_interruptible(5*HZ);
371 } else
372 break;
374 out:
375 kfree(rg_req);
376 kfree(rg_resp);
377 return res;
380 static void ex_assign_manuf_info(struct domain_device *dev, void
381 *_mi_resp)
383 u8 *mi_resp = _mi_resp;
384 struct sas_rphy *rphy = dev->rphy;
385 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
387 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
388 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
389 memcpy(edev->product_rev, mi_resp + 36,
390 SAS_EXPANDER_PRODUCT_REV_LEN);
392 if (mi_resp[8] & 1) {
393 memcpy(edev->component_vendor_id, mi_resp + 40,
394 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
395 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
396 edev->component_revision_id = mi_resp[50];
400 #define MI_REQ_SIZE 8
401 #define MI_RESP_SIZE 64
403 static int sas_ex_manuf_info(struct domain_device *dev)
405 u8 *mi_req;
406 u8 *mi_resp;
407 int res;
409 mi_req = alloc_smp_req(MI_REQ_SIZE);
410 if (!mi_req)
411 return -ENOMEM;
413 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
414 if (!mi_resp) {
415 kfree(mi_req);
416 return -ENOMEM;
419 mi_req[1] = SMP_REPORT_MANUF_INFO;
421 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
422 if (res) {
423 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
424 SAS_ADDR(dev->sas_addr), res);
425 goto out;
426 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
427 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
428 SAS_ADDR(dev->sas_addr), mi_resp[2]);
429 goto out;
432 ex_assign_manuf_info(dev, mi_resp);
433 out:
434 kfree(mi_req);
435 kfree(mi_resp);
436 return res;
439 #define PC_REQ_SIZE 44
440 #define PC_RESP_SIZE 8
442 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
443 enum phy_func phy_func,
444 struct sas_phy_linkrates *rates)
446 u8 *pc_req;
447 u8 *pc_resp;
448 int res;
450 pc_req = alloc_smp_req(PC_REQ_SIZE);
451 if (!pc_req)
452 return -ENOMEM;
454 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
455 if (!pc_resp) {
456 kfree(pc_req);
457 return -ENOMEM;
460 pc_req[1] = SMP_PHY_CONTROL;
461 pc_req[9] = phy_id;
462 pc_req[10]= phy_func;
463 if (rates) {
464 pc_req[32] = rates->minimum_linkrate << 4;
465 pc_req[33] = rates->maximum_linkrate << 4;
468 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
470 kfree(pc_resp);
471 kfree(pc_req);
472 return res;
475 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
477 struct expander_device *ex = &dev->ex_dev;
478 struct ex_phy *phy = &ex->ex_phy[phy_id];
480 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
481 phy->linkrate = SAS_PHY_DISABLED;
484 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
486 struct expander_device *ex = &dev->ex_dev;
487 int i;
489 for (i = 0; i < ex->num_phys; i++) {
490 struct ex_phy *phy = &ex->ex_phy[i];
492 if (phy->phy_state == PHY_VACANT ||
493 phy->phy_state == PHY_NOT_PRESENT)
494 continue;
496 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
497 sas_ex_disable_phy(dev, i);
501 static int sas_dev_present_in_domain(struct asd_sas_port *port,
502 u8 *sas_addr)
504 struct domain_device *dev;
506 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
507 return 1;
508 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
509 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
510 return 1;
512 return 0;
515 #define RPEL_REQ_SIZE 16
516 #define RPEL_RESP_SIZE 32
517 int sas_smp_get_phy_events(struct sas_phy *phy)
519 int res;
520 u8 *req;
521 u8 *resp;
522 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
523 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
525 req = alloc_smp_req(RPEL_REQ_SIZE);
526 if (!req)
527 return -ENOMEM;
529 resp = alloc_smp_resp(RPEL_RESP_SIZE);
530 if (!resp) {
531 kfree(req);
532 return -ENOMEM;
535 req[1] = SMP_REPORT_PHY_ERR_LOG;
536 req[9] = phy->number;
538 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
539 resp, RPEL_RESP_SIZE);
541 if (!res)
542 goto out;
544 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
545 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
546 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
547 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
549 out:
550 kfree(resp);
551 return res;
555 #ifdef CONFIG_SCSI_SAS_ATA
557 #define RPS_REQ_SIZE 16
558 #define RPS_RESP_SIZE 60
560 static int sas_get_report_phy_sata(struct domain_device *dev,
561 int phy_id,
562 struct smp_resp *rps_resp)
564 int res;
565 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
566 u8 *resp = (u8 *)rps_resp;
568 if (!rps_req)
569 return -ENOMEM;
571 rps_req[1] = SMP_REPORT_PHY_SATA;
572 rps_req[9] = phy_id;
574 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
575 rps_resp, RPS_RESP_SIZE);
577 /* 0x34 is the FIS type for the D2H fis. There's a potential
578 * standards cockup here. sas-2 explicitly specifies the FIS
579 * should be encoded so that FIS type is in resp[24].
580 * However, some expanders endian reverse this. Undo the
581 * reversal here */
582 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
583 int i;
585 for (i = 0; i < 5; i++) {
586 int j = 24 + (i*4);
587 u8 a, b;
588 a = resp[j + 0];
589 b = resp[j + 1];
590 resp[j + 0] = resp[j + 3];
591 resp[j + 1] = resp[j + 2];
592 resp[j + 2] = b;
593 resp[j + 3] = a;
597 kfree(rps_req);
598 return res;
600 #endif
602 static void sas_ex_get_linkrate(struct domain_device *parent,
603 struct domain_device *child,
604 struct ex_phy *parent_phy)
606 struct expander_device *parent_ex = &parent->ex_dev;
607 struct sas_port *port;
608 int i;
610 child->pathways = 0;
612 port = parent_phy->port;
614 for (i = 0; i < parent_ex->num_phys; i++) {
615 struct ex_phy *phy = &parent_ex->ex_phy[i];
617 if (phy->phy_state == PHY_VACANT ||
618 phy->phy_state == PHY_NOT_PRESENT)
619 continue;
621 if (SAS_ADDR(phy->attached_sas_addr) ==
622 SAS_ADDR(child->sas_addr)) {
624 child->min_linkrate = min(parent->min_linkrate,
625 phy->linkrate);
626 child->max_linkrate = max(parent->max_linkrate,
627 phy->linkrate);
628 child->pathways++;
629 sas_port_add_phy(port, phy->phy);
632 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
633 child->pathways = min(child->pathways, parent->pathways);
636 static struct domain_device *sas_ex_discover_end_dev(
637 struct domain_device *parent, int phy_id)
639 struct expander_device *parent_ex = &parent->ex_dev;
640 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
641 struct domain_device *child = NULL;
642 struct sas_rphy *rphy;
643 int res;
645 if (phy->attached_sata_host || phy->attached_sata_ps)
646 return NULL;
648 child = kzalloc(sizeof(*child), GFP_KERNEL);
649 if (!child)
650 return NULL;
652 child->parent = parent;
653 child->port = parent->port;
654 child->iproto = phy->attached_iproto;
655 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
656 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
657 if (!phy->port) {
658 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
659 if (unlikely(!phy->port))
660 goto out_err;
661 if (unlikely(sas_port_add(phy->port) != 0)) {
662 sas_port_free(phy->port);
663 goto out_err;
666 sas_ex_get_linkrate(parent, child, phy);
668 #ifdef CONFIG_SCSI_SAS_ATA
669 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
670 child->dev_type = SATA_DEV;
671 if (phy->attached_tproto & SAS_PROTOCOL_STP)
672 child->tproto = phy->attached_tproto;
673 if (phy->attached_sata_dev)
674 child->tproto |= SATA_DEV;
675 res = sas_get_report_phy_sata(parent, phy_id,
676 &child->sata_dev.rps_resp);
677 if (res) {
678 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
679 "0x%x\n", SAS_ADDR(parent->sas_addr),
680 phy_id, res);
681 goto out_free;
683 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
684 sizeof(struct dev_to_host_fis));
686 rphy = sas_end_device_alloc(phy->port);
687 if (unlikely(!rphy))
688 goto out_free;
690 sas_init_dev(child);
692 child->rphy = rphy;
694 spin_lock_irq(&parent->port->dev_list_lock);
695 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
696 spin_unlock_irq(&parent->port->dev_list_lock);
698 res = sas_discover_sata(child);
699 if (res) {
700 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
701 "%016llx:0x%x returned 0x%x\n",
702 SAS_ADDR(child->sas_addr),
703 SAS_ADDR(parent->sas_addr), phy_id, res);
704 goto out_list_del;
706 } else
707 #endif
708 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
709 child->dev_type = SAS_END_DEV;
710 rphy = sas_end_device_alloc(phy->port);
711 /* FIXME: error handling */
712 if (unlikely(!rphy))
713 goto out_free;
714 child->tproto = phy->attached_tproto;
715 sas_init_dev(child);
717 child->rphy = rphy;
718 sas_fill_in_rphy(child, rphy);
720 spin_lock_irq(&parent->port->dev_list_lock);
721 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
722 spin_unlock_irq(&parent->port->dev_list_lock);
724 res = sas_discover_end_dev(child);
725 if (res) {
726 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
727 "at %016llx:0x%x returned 0x%x\n",
728 SAS_ADDR(child->sas_addr),
729 SAS_ADDR(parent->sas_addr), phy_id, res);
730 goto out_list_del;
732 } else {
733 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
734 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
735 phy_id);
736 goto out_free;
739 list_add_tail(&child->siblings, &parent_ex->children);
740 return child;
742 out_list_del:
743 sas_rphy_free(child->rphy);
744 child->rphy = NULL;
745 list_del(&child->dev_list_node);
746 out_free:
747 sas_port_delete(phy->port);
748 out_err:
749 phy->port = NULL;
750 kfree(child);
751 return NULL;
754 /* See if this phy is part of a wide port */
755 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
757 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
758 int i;
760 for (i = 0; i < parent->ex_dev.num_phys; i++) {
761 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
763 if (ephy == phy)
764 continue;
766 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
767 SAS_ADDR_SIZE) && ephy->port) {
768 sas_port_add_phy(ephy->port, phy->phy);
769 phy->port = ephy->port;
770 phy->phy_state = PHY_DEVICE_DISCOVERED;
771 return 0;
775 return -ENODEV;
778 static struct domain_device *sas_ex_discover_expander(
779 struct domain_device *parent, int phy_id)
781 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
782 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
783 struct domain_device *child = NULL;
784 struct sas_rphy *rphy;
785 struct sas_expander_device *edev;
786 struct asd_sas_port *port;
787 int res;
789 if (phy->routing_attr == DIRECT_ROUTING) {
790 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
791 "allowed\n",
792 SAS_ADDR(parent->sas_addr), phy_id,
793 SAS_ADDR(phy->attached_sas_addr),
794 phy->attached_phy_id);
795 return NULL;
797 child = kzalloc(sizeof(*child), GFP_KERNEL);
798 if (!child)
799 return NULL;
801 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
802 /* FIXME: better error handling */
803 BUG_ON(sas_port_add(phy->port) != 0);
806 switch (phy->attached_dev_type) {
807 case EDGE_DEV:
808 rphy = sas_expander_alloc(phy->port,
809 SAS_EDGE_EXPANDER_DEVICE);
810 break;
811 case FANOUT_DEV:
812 rphy = sas_expander_alloc(phy->port,
813 SAS_FANOUT_EXPANDER_DEVICE);
814 break;
815 default:
816 rphy = NULL; /* shut gcc up */
817 BUG();
819 port = parent->port;
820 child->rphy = rphy;
821 edev = rphy_to_expander_device(rphy);
822 child->dev_type = phy->attached_dev_type;
823 child->parent = parent;
824 child->port = port;
825 child->iproto = phy->attached_iproto;
826 child->tproto = phy->attached_tproto;
827 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
828 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
829 sas_ex_get_linkrate(parent, child, phy);
830 edev->level = parent_ex->level + 1;
831 parent->port->disc.max_level = max(parent->port->disc.max_level,
832 edev->level);
833 sas_init_dev(child);
834 sas_fill_in_rphy(child, rphy);
835 sas_rphy_add(rphy);
837 spin_lock_irq(&parent->port->dev_list_lock);
838 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
839 spin_unlock_irq(&parent->port->dev_list_lock);
841 res = sas_discover_expander(child);
842 if (res) {
843 kfree(child);
844 return NULL;
846 list_add_tail(&child->siblings, &parent->ex_dev.children);
847 return child;
850 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
852 struct expander_device *ex = &dev->ex_dev;
853 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
854 struct domain_device *child = NULL;
855 int res = 0;
857 /* Phy state */
858 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
859 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
860 res = sas_ex_phy_discover(dev, phy_id);
861 if (res)
862 return res;
865 /* Parent and domain coherency */
866 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
867 SAS_ADDR(dev->port->sas_addr))) {
868 sas_add_parent_port(dev, phy_id);
869 return 0;
871 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
872 SAS_ADDR(dev->parent->sas_addr))) {
873 sas_add_parent_port(dev, phy_id);
874 if (ex_phy->routing_attr == TABLE_ROUTING)
875 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
876 return 0;
879 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
880 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
882 if (ex_phy->attached_dev_type == NO_DEVICE) {
883 if (ex_phy->routing_attr == DIRECT_ROUTING) {
884 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
885 sas_configure_routing(dev, ex_phy->attached_sas_addr);
887 return 0;
888 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
889 return 0;
891 if (ex_phy->attached_dev_type != SAS_END_DEV &&
892 ex_phy->attached_dev_type != FANOUT_DEV &&
893 ex_phy->attached_dev_type != EDGE_DEV) {
894 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
895 "phy 0x%x\n", ex_phy->attached_dev_type,
896 SAS_ADDR(dev->sas_addr),
897 phy_id);
898 return 0;
901 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
902 if (res) {
903 SAS_DPRINTK("configure routing for dev %016llx "
904 "reported 0x%x. Forgotten\n",
905 SAS_ADDR(ex_phy->attached_sas_addr), res);
906 sas_disable_routing(dev, ex_phy->attached_sas_addr);
907 return res;
910 res = sas_ex_join_wide_port(dev, phy_id);
911 if (!res) {
912 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
913 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
914 return res;
917 switch (ex_phy->attached_dev_type) {
918 case SAS_END_DEV:
919 child = sas_ex_discover_end_dev(dev, phy_id);
920 break;
921 case FANOUT_DEV:
922 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
923 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
924 "attached to ex %016llx phy 0x%x\n",
925 SAS_ADDR(ex_phy->attached_sas_addr),
926 ex_phy->attached_phy_id,
927 SAS_ADDR(dev->sas_addr),
928 phy_id);
929 sas_ex_disable_phy(dev, phy_id);
930 break;
931 } else
932 memcpy(dev->port->disc.fanout_sas_addr,
933 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
934 /* fallthrough */
935 case EDGE_DEV:
936 child = sas_ex_discover_expander(dev, phy_id);
937 break;
938 default:
939 break;
942 if (child) {
943 int i;
945 for (i = 0; i < ex->num_phys; i++) {
946 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
947 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
948 continue;
950 * Due to races, the phy might not get added to the
951 * wide port, so we add the phy to the wide port here.
953 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
954 SAS_ADDR(child->sas_addr)) {
955 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
956 res = sas_ex_join_wide_port(dev, i);
957 if (!res)
958 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
959 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
963 res = 0;
966 return res;
969 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
971 struct expander_device *ex = &dev->ex_dev;
972 int i;
974 for (i = 0; i < ex->num_phys; i++) {
975 struct ex_phy *phy = &ex->ex_phy[i];
977 if (phy->phy_state == PHY_VACANT ||
978 phy->phy_state == PHY_NOT_PRESENT)
979 continue;
981 if ((phy->attached_dev_type == EDGE_DEV ||
982 phy->attached_dev_type == FANOUT_DEV) &&
983 phy->routing_attr == SUBTRACTIVE_ROUTING) {
985 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
987 return 1;
990 return 0;
993 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
995 struct expander_device *ex = &dev->ex_dev;
996 struct domain_device *child;
997 u8 sub_addr[8] = {0, };
999 list_for_each_entry(child, &ex->children, siblings) {
1000 if (child->dev_type != EDGE_DEV &&
1001 child->dev_type != FANOUT_DEV)
1002 continue;
1003 if (sub_addr[0] == 0) {
1004 sas_find_sub_addr(child, sub_addr);
1005 continue;
1006 } else {
1007 u8 s2[8];
1009 if (sas_find_sub_addr(child, s2) &&
1010 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1012 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1013 "diverges from subtractive "
1014 "boundary %016llx\n",
1015 SAS_ADDR(dev->sas_addr),
1016 SAS_ADDR(child->sas_addr),
1017 SAS_ADDR(s2),
1018 SAS_ADDR(sub_addr));
1020 sas_ex_disable_port(child, s2);
1024 return 0;
1027 * sas_ex_discover_devices -- discover devices attached to this expander
1028 * dev: pointer to the expander domain device
1029 * single: if you want to do a single phy, else set to -1;
1031 * Configure this expander for use with its devices and register the
1032 * devices of this expander.
1034 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1036 struct expander_device *ex = &dev->ex_dev;
1037 int i = 0, end = ex->num_phys;
1038 int res = 0;
1040 if (0 <= single && single < end) {
1041 i = single;
1042 end = i+1;
1045 for ( ; i < end; i++) {
1046 struct ex_phy *ex_phy = &ex->ex_phy[i];
1048 if (ex_phy->phy_state == PHY_VACANT ||
1049 ex_phy->phy_state == PHY_NOT_PRESENT ||
1050 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1051 continue;
1053 switch (ex_phy->linkrate) {
1054 case SAS_PHY_DISABLED:
1055 case SAS_PHY_RESET_PROBLEM:
1056 case SAS_SATA_PORT_SELECTOR:
1057 continue;
1058 default:
1059 res = sas_ex_discover_dev(dev, i);
1060 if (res)
1061 break;
1062 continue;
1066 if (!res)
1067 sas_check_level_subtractive_boundary(dev);
1069 return res;
1072 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1074 struct expander_device *ex = &dev->ex_dev;
1075 int i;
1076 u8 *sub_sas_addr = NULL;
1078 if (dev->dev_type != EDGE_DEV)
1079 return 0;
1081 for (i = 0; i < ex->num_phys; i++) {
1082 struct ex_phy *phy = &ex->ex_phy[i];
1084 if (phy->phy_state == PHY_VACANT ||
1085 phy->phy_state == PHY_NOT_PRESENT)
1086 continue;
1088 if ((phy->attached_dev_type == FANOUT_DEV ||
1089 phy->attached_dev_type == EDGE_DEV) &&
1090 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1092 if (!sub_sas_addr)
1093 sub_sas_addr = &phy->attached_sas_addr[0];
1094 else if (SAS_ADDR(sub_sas_addr) !=
1095 SAS_ADDR(phy->attached_sas_addr)) {
1097 SAS_DPRINTK("ex %016llx phy 0x%x "
1098 "diverges(%016llx) on subtractive "
1099 "boundary(%016llx). Disabled\n",
1100 SAS_ADDR(dev->sas_addr), i,
1101 SAS_ADDR(phy->attached_sas_addr),
1102 SAS_ADDR(sub_sas_addr));
1103 sas_ex_disable_phy(dev, i);
1107 return 0;
1110 static void sas_print_parent_topology_bug(struct domain_device *child,
1111 struct ex_phy *parent_phy,
1112 struct ex_phy *child_phy)
1114 static const char ra_char[] = {
1115 [DIRECT_ROUTING] = 'D',
1116 [SUBTRACTIVE_ROUTING] = 'S',
1117 [TABLE_ROUTING] = 'T',
1119 static const char *ex_type[] = {
1120 [EDGE_DEV] = "edge",
1121 [FANOUT_DEV] = "fanout",
1123 struct domain_device *parent = child->parent;
1125 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1126 "has %c:%c routing link!\n",
1128 ex_type[parent->dev_type],
1129 SAS_ADDR(parent->sas_addr),
1130 parent_phy->phy_id,
1132 ex_type[child->dev_type],
1133 SAS_ADDR(child->sas_addr),
1134 child_phy->phy_id,
1136 ra_char[parent_phy->routing_attr],
1137 ra_char[child_phy->routing_attr]);
1140 static int sas_check_eeds(struct domain_device *child,
1141 struct ex_phy *parent_phy,
1142 struct ex_phy *child_phy)
1144 int res = 0;
1145 struct domain_device *parent = child->parent;
1147 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1148 res = -ENODEV;
1149 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1150 "phy S:0x%x, while there is a fanout ex %016llx\n",
1151 SAS_ADDR(parent->sas_addr),
1152 parent_phy->phy_id,
1153 SAS_ADDR(child->sas_addr),
1154 child_phy->phy_id,
1155 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1156 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1157 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1158 SAS_ADDR_SIZE);
1159 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1160 SAS_ADDR_SIZE);
1161 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1162 SAS_ADDR(parent->sas_addr)) ||
1163 (SAS_ADDR(parent->port->disc.eeds_a) ==
1164 SAS_ADDR(child->sas_addr)))
1166 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1167 SAS_ADDR(parent->sas_addr)) ||
1168 (SAS_ADDR(parent->port->disc.eeds_b) ==
1169 SAS_ADDR(child->sas_addr))))
1171 else {
1172 res = -ENODEV;
1173 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1174 "phy 0x%x link forms a third EEDS!\n",
1175 SAS_ADDR(parent->sas_addr),
1176 parent_phy->phy_id,
1177 SAS_ADDR(child->sas_addr),
1178 child_phy->phy_id);
1181 return res;
1184 /* Here we spill over 80 columns. It is intentional.
1186 static int sas_check_parent_topology(struct domain_device *child)
1188 struct expander_device *child_ex = &child->ex_dev;
1189 struct expander_device *parent_ex;
1190 int i;
1191 int res = 0;
1193 if (!child->parent)
1194 return 0;
1196 if (child->parent->dev_type != EDGE_DEV &&
1197 child->parent->dev_type != FANOUT_DEV)
1198 return 0;
1200 parent_ex = &child->parent->ex_dev;
1202 for (i = 0; i < parent_ex->num_phys; i++) {
1203 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1204 struct ex_phy *child_phy;
1206 if (parent_phy->phy_state == PHY_VACANT ||
1207 parent_phy->phy_state == PHY_NOT_PRESENT)
1208 continue;
1210 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1211 continue;
1213 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1215 switch (child->parent->dev_type) {
1216 case EDGE_DEV:
1217 if (child->dev_type == FANOUT_DEV) {
1218 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1219 child_phy->routing_attr != TABLE_ROUTING) {
1220 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1221 res = -ENODEV;
1223 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1225 res = sas_check_eeds(child, parent_phy, child_phy);
1226 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1227 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1228 res = -ENODEV;
1230 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1231 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1232 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1233 res = -ENODEV;
1235 break;
1236 case FANOUT_DEV:
1237 if (parent_phy->routing_attr != TABLE_ROUTING ||
1238 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1239 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1240 res = -ENODEV;
1242 break;
1243 default:
1244 break;
1248 return res;
1251 #define RRI_REQ_SIZE 16
1252 #define RRI_RESP_SIZE 44
1254 static int sas_configure_present(struct domain_device *dev, int phy_id,
1255 u8 *sas_addr, int *index, int *present)
1257 int i, res = 0;
1258 struct expander_device *ex = &dev->ex_dev;
1259 struct ex_phy *phy = &ex->ex_phy[phy_id];
1260 u8 *rri_req;
1261 u8 *rri_resp;
1263 *present = 0;
1264 *index = 0;
1266 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1267 if (!rri_req)
1268 return -ENOMEM;
1270 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1271 if (!rri_resp) {
1272 kfree(rri_req);
1273 return -ENOMEM;
1276 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1277 rri_req[9] = phy_id;
1279 for (i = 0; i < ex->max_route_indexes ; i++) {
1280 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1281 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1282 RRI_RESP_SIZE);
1283 if (res)
1284 goto out;
1285 res = rri_resp[2];
1286 if (res == SMP_RESP_NO_INDEX) {
1287 SAS_DPRINTK("overflow of indexes: dev %016llx "
1288 "phy 0x%x index 0x%x\n",
1289 SAS_ADDR(dev->sas_addr), phy_id, i);
1290 goto out;
1291 } else if (res != SMP_RESP_FUNC_ACC) {
1292 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1293 "result 0x%x\n", __func__,
1294 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1295 goto out;
1297 if (SAS_ADDR(sas_addr) != 0) {
1298 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1299 *index = i;
1300 if ((rri_resp[12] & 0x80) == 0x80)
1301 *present = 0;
1302 else
1303 *present = 1;
1304 goto out;
1305 } else if (SAS_ADDR(rri_resp+16) == 0) {
1306 *index = i;
1307 *present = 0;
1308 goto out;
1310 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1311 phy->last_da_index < i) {
1312 phy->last_da_index = i;
1313 *index = i;
1314 *present = 0;
1315 goto out;
1318 res = -1;
1319 out:
1320 kfree(rri_req);
1321 kfree(rri_resp);
1322 return res;
1325 #define CRI_REQ_SIZE 44
1326 #define CRI_RESP_SIZE 8
1328 static int sas_configure_set(struct domain_device *dev, int phy_id,
1329 u8 *sas_addr, int index, int include)
1331 int res;
1332 u8 *cri_req;
1333 u8 *cri_resp;
1335 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1336 if (!cri_req)
1337 return -ENOMEM;
1339 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1340 if (!cri_resp) {
1341 kfree(cri_req);
1342 return -ENOMEM;
1345 cri_req[1] = SMP_CONF_ROUTE_INFO;
1346 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1347 cri_req[9] = phy_id;
1348 if (SAS_ADDR(sas_addr) == 0 || !include)
1349 cri_req[12] |= 0x80;
1350 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1352 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1353 CRI_RESP_SIZE);
1354 if (res)
1355 goto out;
1356 res = cri_resp[2];
1357 if (res == SMP_RESP_NO_INDEX) {
1358 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1359 "index 0x%x\n",
1360 SAS_ADDR(dev->sas_addr), phy_id, index);
1362 out:
1363 kfree(cri_req);
1364 kfree(cri_resp);
1365 return res;
1368 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1369 u8 *sas_addr, int include)
1371 int index;
1372 int present;
1373 int res;
1375 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1376 if (res)
1377 return res;
1378 if (include ^ present)
1379 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1381 return res;
1385 * sas_configure_parent -- configure routing table of parent
1386 * parent: parent expander
1387 * child: child expander
1388 * sas_addr: SAS port identifier of device directly attached to child
1390 static int sas_configure_parent(struct domain_device *parent,
1391 struct domain_device *child,
1392 u8 *sas_addr, int include)
1394 struct expander_device *ex_parent = &parent->ex_dev;
1395 int res = 0;
1396 int i;
1398 if (parent->parent) {
1399 res = sas_configure_parent(parent->parent, parent, sas_addr,
1400 include);
1401 if (res)
1402 return res;
1405 if (ex_parent->conf_route_table == 0) {
1406 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1407 SAS_ADDR(parent->sas_addr));
1408 return 0;
1411 for (i = 0; i < ex_parent->num_phys; i++) {
1412 struct ex_phy *phy = &ex_parent->ex_phy[i];
1414 if ((phy->routing_attr == TABLE_ROUTING) &&
1415 (SAS_ADDR(phy->attached_sas_addr) ==
1416 SAS_ADDR(child->sas_addr))) {
1417 res = sas_configure_phy(parent, i, sas_addr, include);
1418 if (res)
1419 return res;
1423 return res;
1427 * sas_configure_routing -- configure routing
1428 * dev: expander device
1429 * sas_addr: port identifier of device directly attached to the expander device
1431 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1433 if (dev->parent)
1434 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1435 return 0;
1438 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1440 if (dev->parent)
1441 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1442 return 0;
1446 * sas_discover_expander -- expander discovery
1447 * @ex: pointer to expander domain device
1449 * See comment in sas_discover_sata().
1451 static int sas_discover_expander(struct domain_device *dev)
1453 int res;
1455 res = sas_notify_lldd_dev_found(dev);
1456 if (res)
1457 return res;
1459 res = sas_ex_general(dev);
1460 if (res)
1461 goto out_err;
1462 res = sas_ex_manuf_info(dev);
1463 if (res)
1464 goto out_err;
1466 res = sas_expander_discover(dev);
1467 if (res) {
1468 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1469 SAS_ADDR(dev->sas_addr), res);
1470 goto out_err;
1473 sas_check_ex_subtractive_boundary(dev);
1474 res = sas_check_parent_topology(dev);
1475 if (res)
1476 goto out_err;
1477 return 0;
1478 out_err:
1479 sas_notify_lldd_dev_gone(dev);
1480 return res;
1483 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1485 int res = 0;
1486 struct domain_device *dev;
1488 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1489 if (dev->dev_type == EDGE_DEV ||
1490 dev->dev_type == FANOUT_DEV) {
1491 struct sas_expander_device *ex =
1492 rphy_to_expander_device(dev->rphy);
1494 if (level == ex->level)
1495 res = sas_ex_discover_devices(dev, -1);
1496 else if (level > 0)
1497 res = sas_ex_discover_devices(port->port_dev, -1);
1502 return res;
1505 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1507 int res;
1508 int level;
1510 do {
1511 level = port->disc.max_level;
1512 res = sas_ex_level_discovery(port, level);
1513 mb();
1514 } while (level < port->disc.max_level);
1516 return res;
1519 int sas_discover_root_expander(struct domain_device *dev)
1521 int res;
1522 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1524 res = sas_rphy_add(dev->rphy);
1525 if (res)
1526 goto out_err;
1528 ex->level = dev->port->disc.max_level; /* 0 */
1529 res = sas_discover_expander(dev);
1530 if (res)
1531 goto out_err2;
1533 sas_ex_bfs_disc(dev->port);
1535 return res;
1537 out_err2:
1538 sas_rphy_remove(dev->rphy);
1539 out_err:
1540 return res;
1543 /* ---------- Domain revalidation ---------- */
1545 static int sas_get_phy_discover(struct domain_device *dev,
1546 int phy_id, struct smp_resp *disc_resp)
1548 int res;
1549 u8 *disc_req;
1551 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1552 if (!disc_req)
1553 return -ENOMEM;
1555 disc_req[1] = SMP_DISCOVER;
1556 disc_req[9] = phy_id;
1558 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1559 disc_resp, DISCOVER_RESP_SIZE);
1560 if (res)
1561 goto out;
1562 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1563 res = disc_resp->result;
1564 goto out;
1566 out:
1567 kfree(disc_req);
1568 return res;
1571 static int sas_get_phy_change_count(struct domain_device *dev,
1572 int phy_id, int *pcc)
1574 int res;
1575 struct smp_resp *disc_resp;
1577 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1578 if (!disc_resp)
1579 return -ENOMEM;
1581 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1582 if (!res)
1583 *pcc = disc_resp->disc.change_count;
1585 kfree(disc_resp);
1586 return res;
1589 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1590 int phy_id, u8 *attached_sas_addr)
1592 int res;
1593 struct smp_resp *disc_resp;
1594 struct discover_resp *dr;
1596 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1597 if (!disc_resp)
1598 return -ENOMEM;
1599 dr = &disc_resp->disc;
1601 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1602 if (!res) {
1603 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1604 if (dr->attached_dev_type == 0)
1605 memset(attached_sas_addr, 0, 8);
1607 kfree(disc_resp);
1608 return res;
1611 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1612 int from_phy, bool update)
1614 struct expander_device *ex = &dev->ex_dev;
1615 int res = 0;
1616 int i;
1618 for (i = from_phy; i < ex->num_phys; i++) {
1619 int phy_change_count = 0;
1621 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1622 if (res)
1623 goto out;
1624 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1625 if (update)
1626 ex->ex_phy[i].phy_change_count =
1627 phy_change_count;
1628 *phy_id = i;
1629 return 0;
1632 out:
1633 return res;
1636 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1638 int res;
1639 u8 *rg_req;
1640 struct smp_resp *rg_resp;
1642 rg_req = alloc_smp_req(RG_REQ_SIZE);
1643 if (!rg_req)
1644 return -ENOMEM;
1646 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1647 if (!rg_resp) {
1648 kfree(rg_req);
1649 return -ENOMEM;
1652 rg_req[1] = SMP_REPORT_GENERAL;
1654 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1655 RG_RESP_SIZE);
1656 if (res)
1657 goto out;
1658 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1659 res = rg_resp->result;
1660 goto out;
1663 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1664 out:
1665 kfree(rg_resp);
1666 kfree(rg_req);
1667 return res;
1670 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1671 * @dev:domain device to be detect.
1672 * @src_dev: the device which originated BROADCAST(CHANGE).
1674 * Add self-configuration expander suport. Suppose two expander cascading,
1675 * when the first level expander is self-configuring, hotplug the disks in
1676 * second level expander, BROADCAST(CHANGE) will not only be originated
1677 * in the second level expander, but also be originated in the first level
1678 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1679 * expander changed count in two level expanders will all increment at least
1680 * once, but the phy which chang count has changed is the source device which
1681 * we concerned.
1684 static int sas_find_bcast_dev(struct domain_device *dev,
1685 struct domain_device **src_dev)
1687 struct expander_device *ex = &dev->ex_dev;
1688 int ex_change_count = -1;
1689 int phy_id = -1;
1690 int res;
1691 struct domain_device *ch;
1693 res = sas_get_ex_change_count(dev, &ex_change_count);
1694 if (res)
1695 goto out;
1696 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1697 /* Just detect if this expander phys phy change count changed,
1698 * in order to determine if this expander originate BROADCAST,
1699 * and do not update phy change count field in our structure.
1701 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1702 if (phy_id != -1) {
1703 *src_dev = dev;
1704 ex->ex_change_count = ex_change_count;
1705 SAS_DPRINTK("Expander phy change count has changed\n");
1706 return res;
1707 } else
1708 SAS_DPRINTK("Expander phys DID NOT change\n");
1710 list_for_each_entry(ch, &ex->children, siblings) {
1711 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1712 res = sas_find_bcast_dev(ch, src_dev);
1713 if (src_dev)
1714 return res;
1717 out:
1718 return res;
1721 static void sas_unregister_ex_tree(struct domain_device *dev)
1723 struct expander_device *ex = &dev->ex_dev;
1724 struct domain_device *child, *n;
1726 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1727 if (child->dev_type == EDGE_DEV ||
1728 child->dev_type == FANOUT_DEV)
1729 sas_unregister_ex_tree(child);
1730 else
1731 sas_unregister_dev(child);
1733 sas_unregister_dev(dev);
1736 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1737 int phy_id, bool last)
1739 struct expander_device *ex_dev = &parent->ex_dev;
1740 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1741 struct domain_device *child, *n;
1742 if (last) {
1743 list_for_each_entry_safe(child, n,
1744 &ex_dev->children, siblings) {
1745 if (SAS_ADDR(child->sas_addr) ==
1746 SAS_ADDR(phy->attached_sas_addr)) {
1747 if (child->dev_type == EDGE_DEV ||
1748 child->dev_type == FANOUT_DEV)
1749 sas_unregister_ex_tree(child);
1750 else
1751 sas_unregister_dev(child);
1752 break;
1755 sas_disable_routing(parent, phy->attached_sas_addr);
1757 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1758 sas_port_delete_phy(phy->port, phy->phy);
1759 if (phy->port->num_phys == 0)
1760 sas_port_delete(phy->port);
1761 phy->port = NULL;
1764 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1765 const int level)
1767 struct expander_device *ex_root = &root->ex_dev;
1768 struct domain_device *child;
1769 int res = 0;
1771 list_for_each_entry(child, &ex_root->children, siblings) {
1772 if (child->dev_type == EDGE_DEV ||
1773 child->dev_type == FANOUT_DEV) {
1774 struct sas_expander_device *ex =
1775 rphy_to_expander_device(child->rphy);
1777 if (level > ex->level)
1778 res = sas_discover_bfs_by_root_level(child,
1779 level);
1780 else if (level == ex->level)
1781 res = sas_ex_discover_devices(child, -1);
1784 return res;
1787 static int sas_discover_bfs_by_root(struct domain_device *dev)
1789 int res;
1790 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1791 int level = ex->level+1;
1793 res = sas_ex_discover_devices(dev, -1);
1794 if (res)
1795 goto out;
1796 do {
1797 res = sas_discover_bfs_by_root_level(dev, level);
1798 mb();
1799 level += 1;
1800 } while (level <= dev->port->disc.max_level);
1801 out:
1802 return res;
1805 static int sas_discover_new(struct domain_device *dev, int phy_id)
1807 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1808 struct domain_device *child;
1809 bool found = false;
1810 int res, i;
1812 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1813 SAS_ADDR(dev->sas_addr), phy_id);
1814 res = sas_ex_phy_discover(dev, phy_id);
1815 if (res)
1816 goto out;
1817 /* to support the wide port inserted */
1818 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1819 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1820 if (i == phy_id)
1821 continue;
1822 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1823 SAS_ADDR(ex_phy->attached_sas_addr)) {
1824 found = true;
1825 break;
1828 if (found) {
1829 sas_ex_join_wide_port(dev, phy_id);
1830 return 0;
1832 res = sas_ex_discover_devices(dev, phy_id);
1833 if (!res)
1834 goto out;
1835 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1836 if (SAS_ADDR(child->sas_addr) ==
1837 SAS_ADDR(ex_phy->attached_sas_addr)) {
1838 if (child->dev_type == EDGE_DEV ||
1839 child->dev_type == FANOUT_DEV)
1840 res = sas_discover_bfs_by_root(child);
1841 break;
1844 out:
1845 return res;
1848 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1850 struct expander_device *ex = &dev->ex_dev;
1851 struct ex_phy *phy = &ex->ex_phy[phy_id];
1852 u8 attached_sas_addr[8];
1853 int res;
1855 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1856 switch (res) {
1857 case SMP_RESP_NO_PHY:
1858 phy->phy_state = PHY_NOT_PRESENT;
1859 sas_unregister_devs_sas_addr(dev, phy_id, last);
1860 goto out; break;
1861 case SMP_RESP_PHY_VACANT:
1862 phy->phy_state = PHY_VACANT;
1863 sas_unregister_devs_sas_addr(dev, phy_id, last);
1864 goto out; break;
1865 case SMP_RESP_FUNC_ACC:
1866 break;
1869 if (SAS_ADDR(attached_sas_addr) == 0) {
1870 phy->phy_state = PHY_EMPTY;
1871 sas_unregister_devs_sas_addr(dev, phy_id, last);
1872 } else if (SAS_ADDR(attached_sas_addr) ==
1873 SAS_ADDR(phy->attached_sas_addr)) {
1874 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1875 SAS_ADDR(dev->sas_addr), phy_id);
1876 sas_ex_phy_discover(dev, phy_id);
1877 } else
1878 res = sas_discover_new(dev, phy_id);
1879 out:
1880 return res;
1884 * sas_rediscover - revalidate the domain.
1885 * @dev:domain device to be detect.
1886 * @phy_id: the phy id will be detected.
1888 * NOTE: this process _must_ quit (return) as soon as any connection
1889 * errors are encountered. Connection recovery is done elsewhere.
1890 * Discover process only interrogates devices in order to discover the
1891 * domain.For plugging out, we un-register the device only when it is
1892 * the last phy in the port, for other phys in this port, we just delete it
1893 * from the port.For inserting, we do discovery when it is the
1894 * first phy,for other phys in this port, we add it to the port to
1895 * forming the wide-port.
1897 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1899 struct expander_device *ex = &dev->ex_dev;
1900 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1901 int res = 0;
1902 int i;
1903 bool last = true; /* is this the last phy of the port */
1905 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1906 SAS_ADDR(dev->sas_addr), phy_id);
1908 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1909 for (i = 0; i < ex->num_phys; i++) {
1910 struct ex_phy *phy = &ex->ex_phy[i];
1912 if (i == phy_id)
1913 continue;
1914 if (SAS_ADDR(phy->attached_sas_addr) ==
1915 SAS_ADDR(changed_phy->attached_sas_addr)) {
1916 SAS_DPRINTK("phy%d part of wide port with "
1917 "phy%d\n", phy_id, i);
1918 last = false;
1919 break;
1922 res = sas_rediscover_dev(dev, phy_id, last);
1923 } else
1924 res = sas_discover_new(dev, phy_id);
1925 return res;
1929 * sas_revalidate_domain -- revalidate the domain
1930 * @port: port to the domain of interest
1932 * NOTE: this process _must_ quit (return) as soon as any connection
1933 * errors are encountered. Connection recovery is done elsewhere.
1934 * Discover process only interrogates devices in order to discover the
1935 * domain.
1937 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1939 int res;
1940 struct domain_device *dev = NULL;
1942 res = sas_find_bcast_dev(port_dev, &dev);
1943 if (res)
1944 goto out;
1945 if (dev) {
1946 struct expander_device *ex = &dev->ex_dev;
1947 int i = 0, phy_id;
1949 do {
1950 phy_id = -1;
1951 res = sas_find_bcast_phy(dev, &phy_id, i, true);
1952 if (phy_id == -1)
1953 break;
1954 res = sas_rediscover(dev, phy_id);
1955 i = phy_id + 1;
1956 } while (i < ex->num_phys);
1958 out:
1959 return res;
1962 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1963 struct request *req)
1965 struct domain_device *dev;
1966 int ret, type;
1967 struct request *rsp = req->next_rq;
1969 if (!rsp) {
1970 printk("%s: space for a smp response is missing\n",
1971 __func__);
1972 return -EINVAL;
1975 /* no rphy means no smp target support (ie aic94xx host) */
1976 if (!rphy)
1977 return sas_smp_host_handler(shost, req, rsp);
1979 type = rphy->identify.device_type;
1981 if (type != SAS_EDGE_EXPANDER_DEVICE &&
1982 type != SAS_FANOUT_EXPANDER_DEVICE) {
1983 printk("%s: can we send a smp request to a device?\n",
1984 __func__);
1985 return -EINVAL;
1988 dev = sas_find_dev_by_rphy(rphy);
1989 if (!dev) {
1990 printk("%s: fail to find a domain_device?\n", __func__);
1991 return -EINVAL;
1994 /* do we need to support multiple segments? */
1995 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1996 printk("%s: multiple segments req %u %u, rsp %u %u\n",
1997 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
1998 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
1999 return -EINVAL;
2002 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2003 bio_data(rsp->bio), blk_rq_bytes(rsp));
2004 if (ret > 0) {
2005 /* positive number is the untransferred residual */
2006 rsp->resid_len = ret;
2007 req->resid_len = 0;
2008 ret = 0;
2009 } else if (ret == 0) {
2010 rsp->resid_len = 0;
2011 req->resid_len = 0;
2014 return ret;