x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / scsi / qla2xxx / qla_sup.c
blob010e69b29afed1a89c89e5186798a1021c1872f4
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
14 * NVRAM support routines
17 /**
18 * qla2x00_lock_nvram_access() -
19 * @ha: HA context
21 static void
22 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 uint16_t data;
25 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
28 data = RD_REG_WORD(&reg->nvram);
29 while (data & NVR_BUSY) {
30 udelay(100);
31 data = RD_REG_WORD(&reg->nvram);
34 /* Lock resource */
35 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
36 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
37 udelay(5);
38 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
39 while ((data & BIT_0) == 0) {
40 /* Lock failed */
41 udelay(100);
42 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
43 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
44 udelay(5);
45 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
50 /**
51 * qla2x00_unlock_nvram_access() -
52 * @ha: HA context
54 static void
55 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
60 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
61 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
65 /**
66 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
67 * @ha: HA context
68 * @data: Serial interface selector
70 static void
71 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
76 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
77 NVRAM_DELAY();
78 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
79 NVR_WRT_ENABLE);
80 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
81 NVRAM_DELAY();
82 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
83 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
84 NVRAM_DELAY();
87 /**
88 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
89 * NVRAM.
90 * @ha: HA context
91 * @nv_cmd: NVRAM command
93 * Bit definitions for NVRAM command:
95 * Bit 26 = start bit
96 * Bit 25, 24 = opcode
97 * Bit 23-16 = address
98 * Bit 15-0 = write data
100 * Returns the word read from nvram @addr.
102 static uint16_t
103 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 uint8_t cnt;
106 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
107 uint16_t data = 0;
108 uint16_t reg_data;
110 /* Send command to NVRAM. */
111 nv_cmd <<= 5;
112 for (cnt = 0; cnt < 11; cnt++) {
113 if (nv_cmd & BIT_31)
114 qla2x00_nv_write(ha, NVR_DATA_OUT);
115 else
116 qla2x00_nv_write(ha, 0);
117 nv_cmd <<= 1;
120 /* Read data from NVRAM. */
121 for (cnt = 0; cnt < 16; cnt++) {
122 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
123 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
124 NVRAM_DELAY();
125 data <<= 1;
126 reg_data = RD_REG_WORD(&reg->nvram);
127 if (reg_data & NVR_DATA_IN)
128 data |= BIT_0;
129 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
131 NVRAM_DELAY();
134 /* Deselect chip. */
135 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
136 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
137 NVRAM_DELAY();
139 return data;
144 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
145 * request routine to get the word from NVRAM.
146 * @ha: HA context
147 * @addr: Address in NVRAM to read
149 * Returns the word read from nvram @addr.
151 static uint16_t
152 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 uint16_t data;
155 uint32_t nv_cmd;
157 nv_cmd = addr << 16;
158 nv_cmd |= NV_READ_OP;
159 data = qla2x00_nvram_request(ha, nv_cmd);
161 return (data);
165 * qla2x00_nv_deselect() - Deselect NVRAM operations.
166 * @ha: HA context
168 static void
169 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
174 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
175 NVRAM_DELAY();
179 * qla2x00_write_nvram_word() - Write NVRAM data.
180 * @ha: HA context
181 * @addr: Address in NVRAM to write
182 * @data: word to program
184 static void
185 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 int count;
188 uint16_t word;
189 uint32_t nv_cmd, wait_cnt;
190 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 qla2x00_nv_write(ha, NVR_DATA_OUT);
193 qla2x00_nv_write(ha, 0);
194 qla2x00_nv_write(ha, 0);
196 for (word = 0; word < 8; word++)
197 qla2x00_nv_write(ha, NVR_DATA_OUT);
199 qla2x00_nv_deselect(ha);
201 /* Write data */
202 nv_cmd = (addr << 16) | NV_WRITE_OP;
203 nv_cmd |= data;
204 nv_cmd <<= 5;
205 for (count = 0; count < 27; count++) {
206 if (nv_cmd & BIT_31)
207 qla2x00_nv_write(ha, NVR_DATA_OUT);
208 else
209 qla2x00_nv_write(ha, 0);
211 nv_cmd <<= 1;
214 qla2x00_nv_deselect(ha);
216 /* Wait for NVRAM to become ready */
217 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
218 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
219 wait_cnt = NVR_WAIT_CNT;
220 do {
221 if (!--wait_cnt) {
222 DEBUG9_10(qla_printk(KERN_WARNING, ha,
223 "NVRAM didn't go ready...\n"));
224 break;
226 NVRAM_DELAY();
227 word = RD_REG_WORD(&reg->nvram);
228 } while ((word & NVR_DATA_IN) == 0);
230 qla2x00_nv_deselect(ha);
232 /* Disable writes */
233 qla2x00_nv_write(ha, NVR_DATA_OUT);
234 for (count = 0; count < 10; count++)
235 qla2x00_nv_write(ha, 0);
237 qla2x00_nv_deselect(ha);
240 static int
241 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
242 uint16_t data, uint32_t tmo)
244 int ret, count;
245 uint16_t word;
246 uint32_t nv_cmd;
247 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
249 ret = QLA_SUCCESS;
251 qla2x00_nv_write(ha, NVR_DATA_OUT);
252 qla2x00_nv_write(ha, 0);
253 qla2x00_nv_write(ha, 0);
255 for (word = 0; word < 8; word++)
256 qla2x00_nv_write(ha, NVR_DATA_OUT);
258 qla2x00_nv_deselect(ha);
260 /* Write data */
261 nv_cmd = (addr << 16) | NV_WRITE_OP;
262 nv_cmd |= data;
263 nv_cmd <<= 5;
264 for (count = 0; count < 27; count++) {
265 if (nv_cmd & BIT_31)
266 qla2x00_nv_write(ha, NVR_DATA_OUT);
267 else
268 qla2x00_nv_write(ha, 0);
270 nv_cmd <<= 1;
273 qla2x00_nv_deselect(ha);
275 /* Wait for NVRAM to become ready */
276 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
277 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
278 do {
279 NVRAM_DELAY();
280 word = RD_REG_WORD(&reg->nvram);
281 if (!--tmo) {
282 ret = QLA_FUNCTION_FAILED;
283 break;
285 } while ((word & NVR_DATA_IN) == 0);
287 qla2x00_nv_deselect(ha);
289 /* Disable writes */
290 qla2x00_nv_write(ha, NVR_DATA_OUT);
291 for (count = 0; count < 10; count++)
292 qla2x00_nv_write(ha, 0);
294 qla2x00_nv_deselect(ha);
296 return ret;
300 * qla2x00_clear_nvram_protection() -
301 * @ha: HA context
303 static int
304 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
306 int ret, stat;
307 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
308 uint32_t word, wait_cnt;
309 uint16_t wprot, wprot_old;
311 /* Clear NVRAM write protection. */
312 ret = QLA_FUNCTION_FAILED;
314 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
315 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
316 __constant_cpu_to_le16(0x1234), 100000);
317 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 if (stat != QLA_SUCCESS || wprot != 0x1234) {
319 /* Write enable. */
320 qla2x00_nv_write(ha, NVR_DATA_OUT);
321 qla2x00_nv_write(ha, 0);
322 qla2x00_nv_write(ha, 0);
323 for (word = 0; word < 8; word++)
324 qla2x00_nv_write(ha, NVR_DATA_OUT);
326 qla2x00_nv_deselect(ha);
328 /* Enable protection register. */
329 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
330 qla2x00_nv_write(ha, NVR_PR_ENABLE);
331 qla2x00_nv_write(ha, NVR_PR_ENABLE);
332 for (word = 0; word < 8; word++)
333 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
335 qla2x00_nv_deselect(ha);
337 /* Clear protection register (ffff is cleared). */
338 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
339 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341 for (word = 0; word < 8; word++)
342 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
344 qla2x00_nv_deselect(ha);
346 /* Wait for NVRAM to become ready. */
347 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
348 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
349 wait_cnt = NVR_WAIT_CNT;
350 do {
351 if (!--wait_cnt) {
352 DEBUG9_10(qla_printk(KERN_WARNING, ha,
353 "NVRAM didn't go ready...\n"));
354 break;
356 NVRAM_DELAY();
357 word = RD_REG_WORD(&reg->nvram);
358 } while ((word & NVR_DATA_IN) == 0);
360 if (wait_cnt)
361 ret = QLA_SUCCESS;
362 } else
363 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
365 return ret;
368 static void
369 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
371 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
372 uint32_t word, wait_cnt;
374 if (stat != QLA_SUCCESS)
375 return;
377 /* Set NVRAM write protection. */
378 /* Write enable. */
379 qla2x00_nv_write(ha, NVR_DATA_OUT);
380 qla2x00_nv_write(ha, 0);
381 qla2x00_nv_write(ha, 0);
382 for (word = 0; word < 8; word++)
383 qla2x00_nv_write(ha, NVR_DATA_OUT);
385 qla2x00_nv_deselect(ha);
387 /* Enable protection register. */
388 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
389 qla2x00_nv_write(ha, NVR_PR_ENABLE);
390 qla2x00_nv_write(ha, NVR_PR_ENABLE);
391 for (word = 0; word < 8; word++)
392 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
394 qla2x00_nv_deselect(ha);
396 /* Enable protection register. */
397 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
398 qla2x00_nv_write(ha, NVR_PR_ENABLE);
399 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
400 for (word = 0; word < 8; word++)
401 qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 qla2x00_nv_deselect(ha);
405 /* Wait for NVRAM to become ready. */
406 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
407 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
408 wait_cnt = NVR_WAIT_CNT;
409 do {
410 if (!--wait_cnt) {
411 DEBUG9_10(qla_printk(KERN_WARNING, ha,
412 "NVRAM didn't go ready...\n"));
413 break;
415 NVRAM_DELAY();
416 word = RD_REG_WORD(&reg->nvram);
417 } while ((word & NVR_DATA_IN) == 0);
421 /*****************************************************************************/
422 /* Flash Manipulation Routines */
423 /*****************************************************************************/
425 #define OPTROM_BURST_SIZE 0x1000
426 #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
428 static inline uint32_t
429 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 return ha->flash_conf_off | faddr;
434 static inline uint32_t
435 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 return ha->flash_data_off | faddr;
440 static inline uint32_t
441 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 return ha->nvram_conf_off | naddr;
446 static inline uint32_t
447 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 return ha->nvram_data_off | naddr;
452 static uint32_t
453 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 int rval;
456 uint32_t cnt, data;
457 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
460 /* Wait for READ cycle to complete. */
461 rval = QLA_SUCCESS;
462 for (cnt = 3000;
463 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
464 rval == QLA_SUCCESS; cnt--) {
465 if (cnt)
466 udelay(10);
467 else
468 rval = QLA_FUNCTION_TIMEOUT;
469 cond_resched();
472 /* TODO: What happens if we time out? */
473 data = 0xDEADDEAD;
474 if (rval == QLA_SUCCESS)
475 data = RD_REG_DWORD(&reg->flash_data);
477 return data;
480 uint32_t *
481 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
482 uint32_t dwords)
484 uint32_t i;
485 struct qla_hw_data *ha = vha->hw;
487 /* Dword reads to flash. */
488 for (i = 0; i < dwords; i++, faddr++)
489 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
490 flash_data_addr(ha, faddr)));
492 return dwptr;
495 static int
496 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 int rval;
499 uint32_t cnt;
500 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 WRT_REG_DWORD(&reg->flash_data, data);
503 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
504 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
505 /* Wait for Write cycle to complete. */
506 rval = QLA_SUCCESS;
507 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
508 rval == QLA_SUCCESS; cnt--) {
509 if (cnt)
510 udelay(10);
511 else
512 rval = QLA_FUNCTION_TIMEOUT;
513 cond_resched();
515 return rval;
518 static void
519 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
520 uint8_t *flash_id)
522 uint32_t ids;
524 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
525 *man_id = LSB(ids);
526 *flash_id = MSB(ids);
528 /* Check if man_id and flash_id are valid. */
529 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
530 /* Read information using 0x9f opcode
531 * Device ID, Mfg ID would be read in the format:
532 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
533 * Example: ATMEL 0x00 01 45 1F
534 * Extract MFG and Dev ID from last two bytes.
536 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
537 *man_id = LSB(ids);
538 *flash_id = MSB(ids);
542 static int
543 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 const char *loc, *locations[] = { "DEF", "PCI" };
546 uint32_t pcihdr, pcids;
547 uint32_t *dcode;
548 uint8_t *buf, *bcode, last_image;
549 uint16_t cnt, chksum, *wptr;
550 struct qla_flt_location *fltl;
551 struct qla_hw_data *ha = vha->hw;
552 struct req_que *req = ha->req_q_map[0];
555 * FLT-location structure resides after the last PCI region.
558 /* Begin with sane defaults. */
559 loc = locations[0];
560 *start = 0;
561 if (IS_QLA24XX_TYPE(ha))
562 *start = FA_FLASH_LAYOUT_ADDR_24;
563 else if (IS_QLA25XX(ha))
564 *start = FA_FLASH_LAYOUT_ADDR;
565 else if (IS_QLA81XX(ha))
566 *start = FA_FLASH_LAYOUT_ADDR_81;
567 /* Begin with first PCI expansion ROM header. */
568 buf = (uint8_t *)req->ring;
569 dcode = (uint32_t *)req->ring;
570 pcihdr = 0;
571 last_image = 1;
572 do {
573 /* Verify PCI expansion ROM header. */
574 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
575 bcode = buf + (pcihdr % 4);
576 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
577 goto end;
579 /* Locate PCI data structure. */
580 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
581 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
582 bcode = buf + (pcihdr % 4);
584 /* Validate signature of PCI data structure. */
585 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
586 bcode[0x2] != 'I' || bcode[0x3] != 'R')
587 goto end;
589 last_image = bcode[0x15] & BIT_7;
591 /* Locate next PCI expansion ROM. */
592 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
593 } while (!last_image);
595 /* Now verify FLT-location structure. */
596 fltl = (struct qla_flt_location *)req->ring;
597 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
598 sizeof(struct qla_flt_location) >> 2);
599 if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
600 fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
601 goto end;
603 wptr = (uint16_t *)req->ring;
604 cnt = sizeof(struct qla_flt_location) >> 1;
605 for (chksum = 0; cnt; cnt--)
606 chksum += le16_to_cpu(*wptr++);
607 if (chksum) {
608 qla_printk(KERN_ERR, ha,
609 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
610 qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
611 return QLA_FUNCTION_FAILED;
614 /* Good data. Use specified location. */
615 loc = locations[1];
616 *start = (le16_to_cpu(fltl->start_hi) << 16 |
617 le16_to_cpu(fltl->start_lo)) >> 2;
618 end:
619 DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
620 return QLA_SUCCESS;
623 static void
624 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
626 const char *loc, *locations[] = { "DEF", "FLT" };
627 const uint32_t def_fw[] =
628 { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
629 const uint32_t def_boot[] =
630 { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
631 const uint32_t def_vpd_nvram[] =
632 { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
633 const uint32_t def_vpd0[] =
634 { 0, 0, FA_VPD0_ADDR_81 };
635 const uint32_t def_vpd1[] =
636 { 0, 0, FA_VPD1_ADDR_81 };
637 const uint32_t def_nvram0[] =
638 { 0, 0, FA_NVRAM0_ADDR_81 };
639 const uint32_t def_nvram1[] =
640 { 0, 0, FA_NVRAM1_ADDR_81 };
641 const uint32_t def_fdt[] =
642 { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
643 FA_FLASH_DESCR_ADDR_81 };
644 const uint32_t def_npiv_conf0[] =
645 { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
646 FA_NPIV_CONF0_ADDR_81 };
647 const uint32_t def_npiv_conf1[] =
648 { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
649 FA_NPIV_CONF1_ADDR_81 };
650 uint32_t def;
651 uint16_t *wptr;
652 uint16_t cnt, chksum;
653 uint32_t start;
654 struct qla_flt_header *flt;
655 struct qla_flt_region *region;
656 struct qla_hw_data *ha = vha->hw;
657 struct req_que *req = ha->req_q_map[0];
659 ha->flt_region_flt = flt_addr;
660 wptr = (uint16_t *)req->ring;
661 flt = (struct qla_flt_header *)req->ring;
662 region = (struct qla_flt_region *)&flt[1];
663 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
664 flt_addr << 2, OPTROM_BURST_SIZE);
665 if (*wptr == __constant_cpu_to_le16(0xffff))
666 goto no_flash_data;
667 if (flt->version != __constant_cpu_to_le16(1)) {
668 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
669 "version=0x%x length=0x%x checksum=0x%x.\n",
670 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
671 le16_to_cpu(flt->checksum)));
672 goto no_flash_data;
675 cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
676 for (chksum = 0; cnt; cnt--)
677 chksum += le16_to_cpu(*wptr++);
678 if (chksum) {
679 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
680 "version=0x%x length=0x%x checksum=0x%x.\n",
681 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
682 chksum));
683 goto no_flash_data;
686 loc = locations[1];
687 cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
688 for ( ; cnt; cnt--, region++) {
689 /* Store addresses as DWORD offsets. */
690 start = le32_to_cpu(region->start) >> 2;
692 DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
693 "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
694 le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
696 switch (le32_to_cpu(region->code) & 0xff) {
697 case FLT_REG_FW:
698 ha->flt_region_fw = start;
699 break;
700 case FLT_REG_BOOT_CODE:
701 ha->flt_region_boot = start;
702 break;
703 case FLT_REG_VPD_0:
704 ha->flt_region_vpd_nvram = start;
705 if (ha->flags.port0)
706 ha->flt_region_vpd = start;
707 break;
708 case FLT_REG_VPD_1:
709 if (!ha->flags.port0)
710 ha->flt_region_vpd = start;
711 break;
712 case FLT_REG_NVRAM_0:
713 if (ha->flags.port0)
714 ha->flt_region_nvram = start;
715 break;
716 case FLT_REG_NVRAM_1:
717 if (!ha->flags.port0)
718 ha->flt_region_nvram = start;
719 break;
720 case FLT_REG_FDT:
721 ha->flt_region_fdt = start;
722 break;
723 case FLT_REG_NPIV_CONF_0:
724 if (ha->flags.port0)
725 ha->flt_region_npiv_conf = start;
726 break;
727 case FLT_REG_NPIV_CONF_1:
728 if (!ha->flags.port0)
729 ha->flt_region_npiv_conf = start;
730 break;
731 case FLT_REG_GOLD_FW:
732 ha->flt_region_gold_fw = start;
733 break;
736 goto done;
738 no_flash_data:
739 /* Use hardcoded defaults. */
740 loc = locations[0];
741 def = 0;
742 if (IS_QLA24XX_TYPE(ha))
743 def = 0;
744 else if (IS_QLA25XX(ha))
745 def = 1;
746 else if (IS_QLA81XX(ha))
747 def = 2;
748 ha->flt_region_fw = def_fw[def];
749 ha->flt_region_boot = def_boot[def];
750 ha->flt_region_vpd_nvram = def_vpd_nvram[def];
751 ha->flt_region_vpd = ha->flags.port0 ?
752 def_vpd0[def]: def_vpd1[def];
753 ha->flt_region_nvram = ha->flags.port0 ?
754 def_nvram0[def]: def_nvram1[def];
755 ha->flt_region_fdt = def_fdt[def];
756 ha->flt_region_npiv_conf = ha->flags.port0 ?
757 def_npiv_conf0[def]: def_npiv_conf1[def];
758 done:
759 DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
760 "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
761 "npiv=0x%x.\n", loc, ha->flt_region_boot, ha->flt_region_fw,
762 ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
763 ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf));
766 static void
767 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
769 #define FLASH_BLK_SIZE_4K 0x1000
770 #define FLASH_BLK_SIZE_32K 0x8000
771 #define FLASH_BLK_SIZE_64K 0x10000
772 const char *loc, *locations[] = { "MID", "FDT" };
773 uint16_t cnt, chksum;
774 uint16_t *wptr;
775 struct qla_fdt_layout *fdt;
776 uint8_t man_id, flash_id;
777 uint16_t mid, fid;
778 struct qla_hw_data *ha = vha->hw;
779 struct req_que *req = ha->req_q_map[0];
781 wptr = (uint16_t *)req->ring;
782 fdt = (struct qla_fdt_layout *)req->ring;
783 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
784 ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
785 if (*wptr == __constant_cpu_to_le16(0xffff))
786 goto no_flash_data;
787 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
788 fdt->sig[3] != 'D')
789 goto no_flash_data;
791 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
792 cnt++)
793 chksum += le16_to_cpu(*wptr++);
794 if (chksum) {
795 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
796 "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
797 le16_to_cpu(fdt->version)));
798 DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
799 goto no_flash_data;
802 loc = locations[1];
803 mid = le16_to_cpu(fdt->man_id);
804 fid = le16_to_cpu(fdt->id);
805 ha->fdt_wrt_disable = fdt->wrt_disable_bits;
806 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
807 ha->fdt_block_size = le32_to_cpu(fdt->block_size);
808 if (fdt->unprotect_sec_cmd) {
809 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
810 fdt->unprotect_sec_cmd);
811 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
812 flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
813 flash_conf_addr(ha, 0x0336);
815 goto done;
816 no_flash_data:
817 loc = locations[0];
818 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
819 mid = man_id;
820 fid = flash_id;
821 ha->fdt_wrt_disable = 0x9c;
822 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
823 switch (man_id) {
824 case 0xbf: /* STT flash. */
825 if (flash_id == 0x8e)
826 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
827 else
828 ha->fdt_block_size = FLASH_BLK_SIZE_32K;
830 if (flash_id == 0x80)
831 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
832 break;
833 case 0x13: /* ST M25P80. */
834 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
835 break;
836 case 0x1f: /* Atmel 26DF081A. */
837 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
838 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
839 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
840 ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
841 break;
842 default:
843 /* Default to 64 kb sector size. */
844 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
845 break;
847 done:
848 DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
849 "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
850 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
851 ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
852 ha->fdt_block_size));
856 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
858 int ret;
859 uint32_t flt_addr;
860 struct qla_hw_data *ha = vha->hw;
862 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
863 return QLA_SUCCESS;
865 ret = qla2xxx_find_flt_start(vha, &flt_addr);
866 if (ret != QLA_SUCCESS)
867 return ret;
869 qla2xxx_get_flt_info(vha, flt_addr);
870 qla2xxx_get_fdt_info(vha);
872 return QLA_SUCCESS;
875 void
876 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
878 #define NPIV_CONFIG_SIZE (16*1024)
879 void *data;
880 uint16_t *wptr;
881 uint16_t cnt, chksum;
882 int i;
883 struct qla_npiv_header hdr;
884 struct qla_npiv_entry *entry;
885 struct qla_hw_data *ha = vha->hw;
887 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
888 return;
890 ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
891 ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
892 if (hdr.version == __constant_cpu_to_le16(0xffff))
893 return;
894 if (hdr.version != __constant_cpu_to_le16(1)) {
895 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
896 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
897 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
898 le16_to_cpu(hdr.checksum)));
899 return;
902 data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
903 if (!data) {
904 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
905 "allocate memory.\n"));
906 return;
909 ha->isp_ops->read_optrom(vha, (uint8_t *)data,
910 ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
912 cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
913 sizeof(struct qla_npiv_entry)) >> 1;
914 for (wptr = data, chksum = 0; cnt; cnt--)
915 chksum += le16_to_cpu(*wptr++);
916 if (chksum) {
917 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
918 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
919 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
920 chksum));
921 goto done;
924 entry = data + sizeof(struct qla_npiv_header);
925 cnt = le16_to_cpu(hdr.entries);
926 for (i = 0; cnt; cnt--, entry++, i++) {
927 uint16_t flags;
928 struct fc_vport_identifiers vid;
929 struct fc_vport *vport;
931 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
933 flags = le16_to_cpu(entry->flags);
934 if (flags == 0xffff)
935 continue;
936 if ((flags & BIT_0) == 0)
937 continue;
939 memset(&vid, 0, sizeof(vid));
940 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
941 vid.vport_type = FC_PORTTYPE_NPIV;
942 vid.disable = false;
943 vid.port_name = wwn_to_u64(entry->port_name);
944 vid.node_name = wwn_to_u64(entry->node_name);
946 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx "
947 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
948 (unsigned long long)vid.port_name,
949 (unsigned long long)vid.node_name,
950 le16_to_cpu(entry->vf_id),
951 entry->q_qos, entry->f_qos));
953 if (i < QLA_PRECONFIG_VPORTS) {
954 vport = fc_vport_create(vha->host, 0, &vid);
955 if (!vport)
956 qla_printk(KERN_INFO, ha,
957 "NPIV-Config: Failed to create vport [%02x]: "
958 "wwpn=%llx wwnn=%llx.\n", cnt,
959 (unsigned long long)vid.port_name,
960 (unsigned long long)vid.node_name);
963 done:
964 kfree(data);
967 static int
968 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
970 struct qla_hw_data *ha = vha->hw;
971 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
973 if (ha->flags.fac_supported)
974 return qla81xx_fac_do_write_enable(vha, 1);
976 /* Enable flash write. */
977 WRT_REG_DWORD(&reg->ctrl_status,
978 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
979 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
981 if (!ha->fdt_wrt_disable)
982 goto done;
984 /* Disable flash write-protection, first clear SR protection bit */
985 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
986 /* Then write zero again to clear remaining SR bits.*/
987 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
988 done:
989 return QLA_SUCCESS;
992 static int
993 qla24xx_protect_flash(scsi_qla_host_t *vha)
995 uint32_t cnt;
996 struct qla_hw_data *ha = vha->hw;
997 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
999 if (ha->flags.fac_supported)
1000 return qla81xx_fac_do_write_enable(vha, 0);
1002 if (!ha->fdt_wrt_disable)
1003 goto skip_wrt_protect;
1005 /* Enable flash write-protection and wait for completion. */
1006 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1007 ha->fdt_wrt_disable);
1008 for (cnt = 300; cnt &&
1009 qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1010 cnt--) {
1011 udelay(10);
1014 skip_wrt_protect:
1015 /* Disable flash write. */
1016 WRT_REG_DWORD(&reg->ctrl_status,
1017 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1018 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1020 return QLA_SUCCESS;
1023 static int
1024 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1026 struct qla_hw_data *ha = vha->hw;
1027 uint32_t start, finish;
1029 if (ha->flags.fac_supported) {
1030 start = fdata >> 2;
1031 finish = start + (ha->fdt_block_size >> 2) - 1;
1032 return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1033 start), flash_data_addr(ha, finish));
1036 return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1037 (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1038 ((fdata >> 16) & 0xff));
1041 static int
1042 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1043 uint32_t dwords)
1045 int ret;
1046 uint32_t liter;
1047 uint32_t sec_mask, rest_addr;
1048 uint32_t fdata;
1049 dma_addr_t optrom_dma;
1050 void *optrom = NULL;
1051 struct qla_hw_data *ha = vha->hw;
1053 /* Prepare burst-capable write on supported ISPs. */
1054 if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1055 dwords > OPTROM_BURST_DWORDS) {
1056 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1057 &optrom_dma, GFP_KERNEL);
1058 if (!optrom) {
1059 qla_printk(KERN_DEBUG, ha,
1060 "Unable to allocate memory for optrom burst write "
1061 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1065 rest_addr = (ha->fdt_block_size >> 2) - 1;
1066 sec_mask = ~rest_addr;
1068 ret = qla24xx_unprotect_flash(vha);
1069 if (ret != QLA_SUCCESS) {
1070 qla_printk(KERN_WARNING, ha,
1071 "Unable to unprotect flash for update.\n");
1072 goto done;
1075 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1076 fdata = (faddr & sec_mask) << 2;
1078 /* Are we at the beginning of a sector? */
1079 if ((faddr & rest_addr) == 0) {
1080 /* Do sector unprotect. */
1081 if (ha->fdt_unprotect_sec_cmd)
1082 qla24xx_write_flash_dword(ha,
1083 ha->fdt_unprotect_sec_cmd,
1084 (fdata & 0xff00) | ((fdata << 16) &
1085 0xff0000) | ((fdata >> 16) & 0xff));
1086 ret = qla24xx_erase_sector(vha, fdata);
1087 if (ret != QLA_SUCCESS) {
1088 DEBUG9(qla_printk(KERN_WARNING, ha,
1089 "Unable to erase sector: address=%x.\n",
1090 faddr));
1091 break;
1095 /* Go with burst-write. */
1096 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1097 /* Copy data to DMA'ble buffer. */
1098 memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1100 ret = qla2x00_load_ram(vha, optrom_dma,
1101 flash_data_addr(ha, faddr),
1102 OPTROM_BURST_DWORDS);
1103 if (ret != QLA_SUCCESS) {
1104 qla_printk(KERN_WARNING, ha,
1105 "Unable to burst-write optrom segment "
1106 "(%x/%x/%llx).\n", ret,
1107 flash_data_addr(ha, faddr),
1108 (unsigned long long)optrom_dma);
1109 qla_printk(KERN_WARNING, ha,
1110 "Reverting to slow-write.\n");
1112 dma_free_coherent(&ha->pdev->dev,
1113 OPTROM_BURST_SIZE, optrom, optrom_dma);
1114 optrom = NULL;
1115 } else {
1116 liter += OPTROM_BURST_DWORDS - 1;
1117 faddr += OPTROM_BURST_DWORDS - 1;
1118 dwptr += OPTROM_BURST_DWORDS - 1;
1119 continue;
1123 ret = qla24xx_write_flash_dword(ha,
1124 flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1125 if (ret != QLA_SUCCESS) {
1126 DEBUG9(printk("%s(%ld) Unable to program flash "
1127 "address=%x data=%x.\n", __func__,
1128 vha->host_no, faddr, *dwptr));
1129 break;
1132 /* Do sector protect. */
1133 if (ha->fdt_unprotect_sec_cmd &&
1134 ((faddr & rest_addr) == rest_addr))
1135 qla24xx_write_flash_dword(ha,
1136 ha->fdt_protect_sec_cmd,
1137 (fdata & 0xff00) | ((fdata << 16) &
1138 0xff0000) | ((fdata >> 16) & 0xff));
1141 ret = qla24xx_protect_flash(vha);
1142 if (ret != QLA_SUCCESS)
1143 qla_printk(KERN_WARNING, ha,
1144 "Unable to protect flash after update.\n");
1145 done:
1146 if (optrom)
1147 dma_free_coherent(&ha->pdev->dev,
1148 OPTROM_BURST_SIZE, optrom, optrom_dma);
1150 return ret;
1153 uint8_t *
1154 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1155 uint32_t bytes)
1157 uint32_t i;
1158 uint16_t *wptr;
1159 struct qla_hw_data *ha = vha->hw;
1161 /* Word reads to NVRAM via registers. */
1162 wptr = (uint16_t *)buf;
1163 qla2x00_lock_nvram_access(ha);
1164 for (i = 0; i < bytes >> 1; i++, naddr++)
1165 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1166 naddr));
1167 qla2x00_unlock_nvram_access(ha);
1169 return buf;
1172 uint8_t *
1173 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1174 uint32_t bytes)
1176 uint32_t i;
1177 uint32_t *dwptr;
1178 struct qla_hw_data *ha = vha->hw;
1180 /* Dword reads to flash. */
1181 dwptr = (uint32_t *)buf;
1182 for (i = 0; i < bytes >> 2; i++, naddr++)
1183 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1184 nvram_data_addr(ha, naddr)));
1186 return buf;
1190 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1191 uint32_t bytes)
1193 int ret, stat;
1194 uint32_t i;
1195 uint16_t *wptr;
1196 unsigned long flags;
1197 struct qla_hw_data *ha = vha->hw;
1199 ret = QLA_SUCCESS;
1201 spin_lock_irqsave(&ha->hardware_lock, flags);
1202 qla2x00_lock_nvram_access(ha);
1204 /* Disable NVRAM write-protection. */
1205 stat = qla2x00_clear_nvram_protection(ha);
1207 wptr = (uint16_t *)buf;
1208 for (i = 0; i < bytes >> 1; i++, naddr++) {
1209 qla2x00_write_nvram_word(ha, naddr,
1210 cpu_to_le16(*wptr));
1211 wptr++;
1214 /* Enable NVRAM write-protection. */
1215 qla2x00_set_nvram_protection(ha, stat);
1217 qla2x00_unlock_nvram_access(ha);
1218 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1220 return ret;
1224 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1225 uint32_t bytes)
1227 int ret;
1228 uint32_t i;
1229 uint32_t *dwptr;
1230 struct qla_hw_data *ha = vha->hw;
1231 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1233 ret = QLA_SUCCESS;
1235 /* Enable flash write. */
1236 WRT_REG_DWORD(&reg->ctrl_status,
1237 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1238 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1240 /* Disable NVRAM write-protection. */
1241 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1242 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1244 /* Dword writes to flash. */
1245 dwptr = (uint32_t *)buf;
1246 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1247 ret = qla24xx_write_flash_dword(ha,
1248 nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1249 if (ret != QLA_SUCCESS) {
1250 DEBUG9(qla_printk(KERN_WARNING, ha,
1251 "Unable to program nvram address=%x data=%x.\n",
1252 naddr, *dwptr));
1253 break;
1257 /* Enable NVRAM write-protection. */
1258 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1260 /* Disable flash write. */
1261 WRT_REG_DWORD(&reg->ctrl_status,
1262 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1263 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1265 return ret;
1268 uint8_t *
1269 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1270 uint32_t bytes)
1272 uint32_t i;
1273 uint32_t *dwptr;
1274 struct qla_hw_data *ha = vha->hw;
1276 /* Dword reads to flash. */
1277 dwptr = (uint32_t *)buf;
1278 for (i = 0; i < bytes >> 2; i++, naddr++)
1279 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1280 flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1282 return buf;
1286 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1287 uint32_t bytes)
1289 struct qla_hw_data *ha = vha->hw;
1290 #define RMW_BUFFER_SIZE (64 * 1024)
1291 uint8_t *dbuf;
1293 dbuf = vmalloc(RMW_BUFFER_SIZE);
1294 if (!dbuf)
1295 return QLA_MEMORY_ALLOC_FAILED;
1296 ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1297 RMW_BUFFER_SIZE);
1298 memcpy(dbuf + (naddr << 2), buf, bytes);
1299 ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1300 RMW_BUFFER_SIZE);
1301 vfree(dbuf);
1303 return QLA_SUCCESS;
1306 static inline void
1307 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1309 if (IS_QLA2322(ha)) {
1310 /* Flip all colors. */
1311 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1312 /* Turn off. */
1313 ha->beacon_color_state = 0;
1314 *pflags = GPIO_LED_ALL_OFF;
1315 } else {
1316 /* Turn on. */
1317 ha->beacon_color_state = QLA_LED_ALL_ON;
1318 *pflags = GPIO_LED_RGA_ON;
1320 } else {
1321 /* Flip green led only. */
1322 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1323 /* Turn off. */
1324 ha->beacon_color_state = 0;
1325 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1326 } else {
1327 /* Turn on. */
1328 ha->beacon_color_state = QLA_LED_GRN_ON;
1329 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1334 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1336 void
1337 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1339 uint16_t gpio_enable;
1340 uint16_t gpio_data;
1341 uint16_t led_color = 0;
1342 unsigned long flags;
1343 struct qla_hw_data *ha = vha->hw;
1344 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1346 spin_lock_irqsave(&ha->hardware_lock, flags);
1348 /* Save the Original GPIOE. */
1349 if (ha->pio_address) {
1350 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1351 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1352 } else {
1353 gpio_enable = RD_REG_WORD(&reg->gpioe);
1354 gpio_data = RD_REG_WORD(&reg->gpiod);
1357 /* Set the modified gpio_enable values */
1358 gpio_enable |= GPIO_LED_MASK;
1360 if (ha->pio_address) {
1361 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1362 } else {
1363 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1364 RD_REG_WORD(&reg->gpioe);
1367 qla2x00_flip_colors(ha, &led_color);
1369 /* Clear out any previously set LED color. */
1370 gpio_data &= ~GPIO_LED_MASK;
1372 /* Set the new input LED color to GPIOD. */
1373 gpio_data |= led_color;
1375 /* Set the modified gpio_data values */
1376 if (ha->pio_address) {
1377 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1378 } else {
1379 WRT_REG_WORD(&reg->gpiod, gpio_data);
1380 RD_REG_WORD(&reg->gpiod);
1383 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1387 qla2x00_beacon_on(struct scsi_qla_host *vha)
1389 uint16_t gpio_enable;
1390 uint16_t gpio_data;
1391 unsigned long flags;
1392 struct qla_hw_data *ha = vha->hw;
1393 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1395 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1396 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1398 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1399 qla_printk(KERN_WARNING, ha,
1400 "Unable to update fw options (beacon on).\n");
1401 return QLA_FUNCTION_FAILED;
1404 /* Turn off LEDs. */
1405 spin_lock_irqsave(&ha->hardware_lock, flags);
1406 if (ha->pio_address) {
1407 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1408 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1409 } else {
1410 gpio_enable = RD_REG_WORD(&reg->gpioe);
1411 gpio_data = RD_REG_WORD(&reg->gpiod);
1413 gpio_enable |= GPIO_LED_MASK;
1415 /* Set the modified gpio_enable values. */
1416 if (ha->pio_address) {
1417 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1418 } else {
1419 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1420 RD_REG_WORD(&reg->gpioe);
1423 /* Clear out previously set LED colour. */
1424 gpio_data &= ~GPIO_LED_MASK;
1425 if (ha->pio_address) {
1426 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1427 } else {
1428 WRT_REG_WORD(&reg->gpiod, gpio_data);
1429 RD_REG_WORD(&reg->gpiod);
1431 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1434 * Let the per HBA timer kick off the blinking process based on
1435 * the following flags. No need to do anything else now.
1437 ha->beacon_blink_led = 1;
1438 ha->beacon_color_state = 0;
1440 return QLA_SUCCESS;
1444 qla2x00_beacon_off(struct scsi_qla_host *vha)
1446 int rval = QLA_SUCCESS;
1447 struct qla_hw_data *ha = vha->hw;
1449 ha->beacon_blink_led = 0;
1451 /* Set the on flag so when it gets flipped it will be off. */
1452 if (IS_QLA2322(ha))
1453 ha->beacon_color_state = QLA_LED_ALL_ON;
1454 else
1455 ha->beacon_color_state = QLA_LED_GRN_ON;
1457 ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1459 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1460 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1462 rval = qla2x00_set_fw_options(vha, ha->fw_options);
1463 if (rval != QLA_SUCCESS)
1464 qla_printk(KERN_WARNING, ha,
1465 "Unable to update fw options (beacon off).\n");
1466 return rval;
1470 static inline void
1471 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1473 /* Flip all colors. */
1474 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1475 /* Turn off. */
1476 ha->beacon_color_state = 0;
1477 *pflags = 0;
1478 } else {
1479 /* Turn on. */
1480 ha->beacon_color_state = QLA_LED_ALL_ON;
1481 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1485 void
1486 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1488 uint16_t led_color = 0;
1489 uint32_t gpio_data;
1490 unsigned long flags;
1491 struct qla_hw_data *ha = vha->hw;
1492 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1494 /* Save the Original GPIOD. */
1495 spin_lock_irqsave(&ha->hardware_lock, flags);
1496 gpio_data = RD_REG_DWORD(&reg->gpiod);
1498 /* Enable the gpio_data reg for update. */
1499 gpio_data |= GPDX_LED_UPDATE_MASK;
1501 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1502 gpio_data = RD_REG_DWORD(&reg->gpiod);
1504 /* Set the color bits. */
1505 qla24xx_flip_colors(ha, &led_color);
1507 /* Clear out any previously set LED color. */
1508 gpio_data &= ~GPDX_LED_COLOR_MASK;
1510 /* Set the new input LED color to GPIOD. */
1511 gpio_data |= led_color;
1513 /* Set the modified gpio_data values. */
1514 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1515 gpio_data = RD_REG_DWORD(&reg->gpiod);
1516 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1520 qla24xx_beacon_on(struct scsi_qla_host *vha)
1522 uint32_t gpio_data;
1523 unsigned long flags;
1524 struct qla_hw_data *ha = vha->hw;
1525 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1527 if (ha->beacon_blink_led == 0) {
1528 /* Enable firmware for update */
1529 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1531 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1532 return QLA_FUNCTION_FAILED;
1534 if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1535 QLA_SUCCESS) {
1536 qla_printk(KERN_WARNING, ha,
1537 "Unable to update fw options (beacon on).\n");
1538 return QLA_FUNCTION_FAILED;
1541 spin_lock_irqsave(&ha->hardware_lock, flags);
1542 gpio_data = RD_REG_DWORD(&reg->gpiod);
1544 /* Enable the gpio_data reg for update. */
1545 gpio_data |= GPDX_LED_UPDATE_MASK;
1546 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1547 RD_REG_DWORD(&reg->gpiod);
1549 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1552 /* So all colors blink together. */
1553 ha->beacon_color_state = 0;
1555 /* Let the per HBA timer kick off the blinking process. */
1556 ha->beacon_blink_led = 1;
1558 return QLA_SUCCESS;
1562 qla24xx_beacon_off(struct scsi_qla_host *vha)
1564 uint32_t gpio_data;
1565 unsigned long flags;
1566 struct qla_hw_data *ha = vha->hw;
1567 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1569 ha->beacon_blink_led = 0;
1570 ha->beacon_color_state = QLA_LED_ALL_ON;
1572 ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1574 /* Give control back to firmware. */
1575 spin_lock_irqsave(&ha->hardware_lock, flags);
1576 gpio_data = RD_REG_DWORD(&reg->gpiod);
1578 /* Disable the gpio_data reg for update. */
1579 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1580 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1581 RD_REG_DWORD(&reg->gpiod);
1582 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1584 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1586 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1587 qla_printk(KERN_WARNING, ha,
1588 "Unable to update fw options (beacon off).\n");
1589 return QLA_FUNCTION_FAILED;
1592 if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1593 qla_printk(KERN_WARNING, ha,
1594 "Unable to get fw options (beacon off).\n");
1595 return QLA_FUNCTION_FAILED;
1598 return QLA_SUCCESS;
1603 * Flash support routines
1607 * qla2x00_flash_enable() - Setup flash for reading and writing.
1608 * @ha: HA context
1610 static void
1611 qla2x00_flash_enable(struct qla_hw_data *ha)
1613 uint16_t data;
1614 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1616 data = RD_REG_WORD(&reg->ctrl_status);
1617 data |= CSR_FLASH_ENABLE;
1618 WRT_REG_WORD(&reg->ctrl_status, data);
1619 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1623 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1624 * @ha: HA context
1626 static void
1627 qla2x00_flash_disable(struct qla_hw_data *ha)
1629 uint16_t data;
1630 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1632 data = RD_REG_WORD(&reg->ctrl_status);
1633 data &= ~(CSR_FLASH_ENABLE);
1634 WRT_REG_WORD(&reg->ctrl_status, data);
1635 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1639 * qla2x00_read_flash_byte() - Reads a byte from flash
1640 * @ha: HA context
1641 * @addr: Address in flash to read
1643 * A word is read from the chip, but, only the lower byte is valid.
1645 * Returns the byte read from flash @addr.
1647 static uint8_t
1648 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1650 uint16_t data;
1651 uint16_t bank_select;
1652 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1654 bank_select = RD_REG_WORD(&reg->ctrl_status);
1656 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1657 /* Specify 64K address range: */
1658 /* clear out Module Select and Flash Address bits [19:16]. */
1659 bank_select &= ~0xf8;
1660 bank_select |= addr >> 12 & 0xf0;
1661 bank_select |= CSR_FLASH_64K_BANK;
1662 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1663 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1665 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1666 data = RD_REG_WORD(&reg->flash_data);
1668 return (uint8_t)data;
1671 /* Setup bit 16 of flash address. */
1672 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1673 bank_select |= CSR_FLASH_64K_BANK;
1674 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1675 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1676 } else if (((addr & BIT_16) == 0) &&
1677 (bank_select & CSR_FLASH_64K_BANK)) {
1678 bank_select &= ~(CSR_FLASH_64K_BANK);
1679 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1680 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1683 /* Always perform IO mapped accesses to the FLASH registers. */
1684 if (ha->pio_address) {
1685 uint16_t data2;
1687 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1688 do {
1689 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1690 barrier();
1691 cpu_relax();
1692 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1693 } while (data != data2);
1694 } else {
1695 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1696 data = qla2x00_debounce_register(&reg->flash_data);
1699 return (uint8_t)data;
1703 * qla2x00_write_flash_byte() - Write a byte to flash
1704 * @ha: HA context
1705 * @addr: Address in flash to write
1706 * @data: Data to write
1708 static void
1709 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1711 uint16_t bank_select;
1712 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1714 bank_select = RD_REG_WORD(&reg->ctrl_status);
1715 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1716 /* Specify 64K address range: */
1717 /* clear out Module Select and Flash Address bits [19:16]. */
1718 bank_select &= ~0xf8;
1719 bank_select |= addr >> 12 & 0xf0;
1720 bank_select |= CSR_FLASH_64K_BANK;
1721 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1722 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1724 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1725 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1726 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1727 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1729 return;
1732 /* Setup bit 16 of flash address. */
1733 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1734 bank_select |= CSR_FLASH_64K_BANK;
1735 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1736 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1737 } else if (((addr & BIT_16) == 0) &&
1738 (bank_select & CSR_FLASH_64K_BANK)) {
1739 bank_select &= ~(CSR_FLASH_64K_BANK);
1740 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1741 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1744 /* Always perform IO mapped accesses to the FLASH registers. */
1745 if (ha->pio_address) {
1746 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1747 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1748 } else {
1749 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1750 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1751 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1752 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1757 * qla2x00_poll_flash() - Polls flash for completion.
1758 * @ha: HA context
1759 * @addr: Address in flash to poll
1760 * @poll_data: Data to be polled
1761 * @man_id: Flash manufacturer ID
1762 * @flash_id: Flash ID
1764 * This function polls the device until bit 7 of what is read matches data
1765 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1766 * out (a fatal error). The flash book recommeds reading bit 7 again after
1767 * reading bit 5 as a 1.
1769 * Returns 0 on success, else non-zero.
1771 static int
1772 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1773 uint8_t man_id, uint8_t flash_id)
1775 int status;
1776 uint8_t flash_data;
1777 uint32_t cnt;
1779 status = 1;
1781 /* Wait for 30 seconds for command to finish. */
1782 poll_data &= BIT_7;
1783 for (cnt = 3000000; cnt; cnt--) {
1784 flash_data = qla2x00_read_flash_byte(ha, addr);
1785 if ((flash_data & BIT_7) == poll_data) {
1786 status = 0;
1787 break;
1790 if (man_id != 0x40 && man_id != 0xda) {
1791 if ((flash_data & BIT_5) && cnt > 2)
1792 cnt = 2;
1794 udelay(10);
1795 barrier();
1796 cond_resched();
1798 return status;
1802 * qla2x00_program_flash_address() - Programs a flash address
1803 * @ha: HA context
1804 * @addr: Address in flash to program
1805 * @data: Data to be written in flash
1806 * @man_id: Flash manufacturer ID
1807 * @flash_id: Flash ID
1809 * Returns 0 on success, else non-zero.
1811 static int
1812 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1813 uint8_t data, uint8_t man_id, uint8_t flash_id)
1815 /* Write Program Command Sequence. */
1816 if (IS_OEM_001(ha)) {
1817 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1818 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1819 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1820 qla2x00_write_flash_byte(ha, addr, data);
1821 } else {
1822 if (man_id == 0xda && flash_id == 0xc1) {
1823 qla2x00_write_flash_byte(ha, addr, data);
1824 if (addr & 0x7e)
1825 return 0;
1826 } else {
1827 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1828 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1829 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1830 qla2x00_write_flash_byte(ha, addr, data);
1834 udelay(150);
1836 /* Wait for write to complete. */
1837 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1841 * qla2x00_erase_flash() - Erase the flash.
1842 * @ha: HA context
1843 * @man_id: Flash manufacturer ID
1844 * @flash_id: Flash ID
1846 * Returns 0 on success, else non-zero.
1848 static int
1849 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1851 /* Individual Sector Erase Command Sequence */
1852 if (IS_OEM_001(ha)) {
1853 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1854 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1855 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1856 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1857 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1858 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1859 } else {
1860 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1861 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1862 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1863 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1864 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1865 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1868 udelay(150);
1870 /* Wait for erase to complete. */
1871 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1875 * qla2x00_erase_flash_sector() - Erase a flash sector.
1876 * @ha: HA context
1877 * @addr: Flash sector to erase
1878 * @sec_mask: Sector address mask
1879 * @man_id: Flash manufacturer ID
1880 * @flash_id: Flash ID
1882 * Returns 0 on success, else non-zero.
1884 static int
1885 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1886 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1888 /* Individual Sector Erase Command Sequence */
1889 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1890 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1891 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1892 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1893 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1894 if (man_id == 0x1f && flash_id == 0x13)
1895 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1896 else
1897 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1899 udelay(150);
1901 /* Wait for erase to complete. */
1902 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1906 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1907 * @man_id: Flash manufacturer ID
1908 * @flash_id: Flash ID
1910 static void
1911 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1912 uint8_t *flash_id)
1914 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1915 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1916 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1917 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
1918 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1919 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1920 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1921 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1924 static void
1925 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
1926 uint32_t saddr, uint32_t length)
1928 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1929 uint32_t midpoint, ilength;
1930 uint8_t data;
1932 midpoint = length / 2;
1934 WRT_REG_WORD(&reg->nvram, 0);
1935 RD_REG_WORD(&reg->nvram);
1936 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1937 if (ilength == midpoint) {
1938 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1939 RD_REG_WORD(&reg->nvram);
1941 data = qla2x00_read_flash_byte(ha, saddr);
1942 if (saddr % 100)
1943 udelay(10);
1944 *tmp_buf = data;
1945 cond_resched();
1949 static inline void
1950 qla2x00_suspend_hba(struct scsi_qla_host *vha)
1952 int cnt;
1953 unsigned long flags;
1954 struct qla_hw_data *ha = vha->hw;
1955 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1957 /* Suspend HBA. */
1958 scsi_block_requests(vha->host);
1959 ha->isp_ops->disable_intrs(ha);
1960 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1962 /* Pause RISC. */
1963 spin_lock_irqsave(&ha->hardware_lock, flags);
1964 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1965 RD_REG_WORD(&reg->hccr);
1966 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1967 for (cnt = 0; cnt < 30000; cnt++) {
1968 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1969 break;
1970 udelay(100);
1972 } else {
1973 udelay(10);
1975 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1978 static inline void
1979 qla2x00_resume_hba(struct scsi_qla_host *vha)
1981 struct qla_hw_data *ha = vha->hw;
1983 /* Resume HBA. */
1984 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1985 set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
1986 qla2xxx_wake_dpc(vha);
1987 qla2x00_wait_for_chip_reset(vha);
1988 scsi_unblock_requests(vha->host);
1991 uint8_t *
1992 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1993 uint32_t offset, uint32_t length)
1995 uint32_t addr, midpoint;
1996 uint8_t *data;
1997 struct qla_hw_data *ha = vha->hw;
1998 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2000 /* Suspend HBA. */
2001 qla2x00_suspend_hba(vha);
2003 /* Go with read. */
2004 midpoint = ha->optrom_size / 2;
2006 qla2x00_flash_enable(ha);
2007 WRT_REG_WORD(&reg->nvram, 0);
2008 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2009 for (addr = offset, data = buf; addr < length; addr++, data++) {
2010 if (addr == midpoint) {
2011 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2012 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2015 *data = qla2x00_read_flash_byte(ha, addr);
2017 qla2x00_flash_disable(ha);
2019 /* Resume HBA. */
2020 qla2x00_resume_hba(vha);
2022 return buf;
2026 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2027 uint32_t offset, uint32_t length)
2030 int rval;
2031 uint8_t man_id, flash_id, sec_number, data;
2032 uint16_t wd;
2033 uint32_t addr, liter, sec_mask, rest_addr;
2034 struct qla_hw_data *ha = vha->hw;
2035 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2037 /* Suspend HBA. */
2038 qla2x00_suspend_hba(vha);
2040 rval = QLA_SUCCESS;
2041 sec_number = 0;
2043 /* Reset ISP chip. */
2044 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2045 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2047 /* Go with write. */
2048 qla2x00_flash_enable(ha);
2049 do { /* Loop once to provide quick error exit */
2050 /* Structure of flash memory based on manufacturer */
2051 if (IS_OEM_001(ha)) {
2052 /* OEM variant with special flash part. */
2053 man_id = flash_id = 0;
2054 rest_addr = 0xffff;
2055 sec_mask = 0x10000;
2056 goto update_flash;
2058 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2059 switch (man_id) {
2060 case 0x20: /* ST flash. */
2061 if (flash_id == 0xd2 || flash_id == 0xe3) {
2063 * ST m29w008at part - 64kb sector size with
2064 * 32kb,8kb,8kb,16kb sectors at memory address
2065 * 0xf0000.
2067 rest_addr = 0xffff;
2068 sec_mask = 0x10000;
2069 break;
2072 * ST m29w010b part - 16kb sector size
2073 * Default to 16kb sectors
2075 rest_addr = 0x3fff;
2076 sec_mask = 0x1c000;
2077 break;
2078 case 0x40: /* Mostel flash. */
2079 /* Mostel v29c51001 part - 512 byte sector size. */
2080 rest_addr = 0x1ff;
2081 sec_mask = 0x1fe00;
2082 break;
2083 case 0xbf: /* SST flash. */
2084 /* SST39sf10 part - 4kb sector size. */
2085 rest_addr = 0xfff;
2086 sec_mask = 0x1f000;
2087 break;
2088 case 0xda: /* Winbond flash. */
2089 /* Winbond W29EE011 part - 256 byte sector size. */
2090 rest_addr = 0x7f;
2091 sec_mask = 0x1ff80;
2092 break;
2093 case 0xc2: /* Macronix flash. */
2094 /* 64k sector size. */
2095 if (flash_id == 0x38 || flash_id == 0x4f) {
2096 rest_addr = 0xffff;
2097 sec_mask = 0x10000;
2098 break;
2100 /* Fall through... */
2102 case 0x1f: /* Atmel flash. */
2103 /* 512k sector size. */
2104 if (flash_id == 0x13) {
2105 rest_addr = 0x7fffffff;
2106 sec_mask = 0x80000000;
2107 break;
2109 /* Fall through... */
2111 case 0x01: /* AMD flash. */
2112 if (flash_id == 0x38 || flash_id == 0x40 ||
2113 flash_id == 0x4f) {
2114 /* Am29LV081 part - 64kb sector size. */
2115 /* Am29LV002BT part - 64kb sector size. */
2116 rest_addr = 0xffff;
2117 sec_mask = 0x10000;
2118 break;
2119 } else if (flash_id == 0x3e) {
2121 * Am29LV008b part - 64kb sector size with
2122 * 32kb,8kb,8kb,16kb sector at memory address
2123 * h0xf0000.
2125 rest_addr = 0xffff;
2126 sec_mask = 0x10000;
2127 break;
2128 } else if (flash_id == 0x20 || flash_id == 0x6e) {
2130 * Am29LV010 part or AM29f010 - 16kb sector
2131 * size.
2133 rest_addr = 0x3fff;
2134 sec_mask = 0x1c000;
2135 break;
2136 } else if (flash_id == 0x6d) {
2137 /* Am29LV001 part - 8kb sector size. */
2138 rest_addr = 0x1fff;
2139 sec_mask = 0x1e000;
2140 break;
2142 default:
2143 /* Default to 16 kb sector size. */
2144 rest_addr = 0x3fff;
2145 sec_mask = 0x1c000;
2146 break;
2149 update_flash:
2150 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2151 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2152 rval = QLA_FUNCTION_FAILED;
2153 break;
2157 for (addr = offset, liter = 0; liter < length; liter++,
2158 addr++) {
2159 data = buf[liter];
2160 /* Are we at the beginning of a sector? */
2161 if ((addr & rest_addr) == 0) {
2162 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2163 if (addr >= 0x10000UL) {
2164 if (((addr >> 12) & 0xf0) &&
2165 ((man_id == 0x01 &&
2166 flash_id == 0x3e) ||
2167 (man_id == 0x20 &&
2168 flash_id == 0xd2))) {
2169 sec_number++;
2170 if (sec_number == 1) {
2171 rest_addr =
2172 0x7fff;
2173 sec_mask =
2174 0x18000;
2175 } else if (
2176 sec_number == 2 ||
2177 sec_number == 3) {
2178 rest_addr =
2179 0x1fff;
2180 sec_mask =
2181 0x1e000;
2182 } else if (
2183 sec_number == 4) {
2184 rest_addr =
2185 0x3fff;
2186 sec_mask =
2187 0x1c000;
2191 } else if (addr == ha->optrom_size / 2) {
2192 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2193 RD_REG_WORD(&reg->nvram);
2196 if (flash_id == 0xda && man_id == 0xc1) {
2197 qla2x00_write_flash_byte(ha, 0x5555,
2198 0xaa);
2199 qla2x00_write_flash_byte(ha, 0x2aaa,
2200 0x55);
2201 qla2x00_write_flash_byte(ha, 0x5555,
2202 0xa0);
2203 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2204 /* Then erase it */
2205 if (qla2x00_erase_flash_sector(ha,
2206 addr, sec_mask, man_id,
2207 flash_id)) {
2208 rval = QLA_FUNCTION_FAILED;
2209 break;
2211 if (man_id == 0x01 && flash_id == 0x6d)
2212 sec_number++;
2216 if (man_id == 0x01 && flash_id == 0x6d) {
2217 if (sec_number == 1 &&
2218 addr == (rest_addr - 1)) {
2219 rest_addr = 0x0fff;
2220 sec_mask = 0x1f000;
2221 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2222 rest_addr = 0x3fff;
2223 sec_mask = 0x1c000;
2227 if (qla2x00_program_flash_address(ha, addr, data,
2228 man_id, flash_id)) {
2229 rval = QLA_FUNCTION_FAILED;
2230 break;
2232 cond_resched();
2234 } while (0);
2235 qla2x00_flash_disable(ha);
2237 /* Resume HBA. */
2238 qla2x00_resume_hba(vha);
2240 return rval;
2243 uint8_t *
2244 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2245 uint32_t offset, uint32_t length)
2247 struct qla_hw_data *ha = vha->hw;
2249 /* Suspend HBA. */
2250 scsi_block_requests(vha->host);
2251 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2253 /* Go with read. */
2254 qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2256 /* Resume HBA. */
2257 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2258 scsi_unblock_requests(vha->host);
2260 return buf;
2264 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2265 uint32_t offset, uint32_t length)
2267 int rval;
2268 struct qla_hw_data *ha = vha->hw;
2270 /* Suspend HBA. */
2271 scsi_block_requests(vha->host);
2272 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2274 /* Go with write. */
2275 rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2276 length >> 2);
2278 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2279 scsi_unblock_requests(vha->host);
2281 return rval;
2284 uint8_t *
2285 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2286 uint32_t offset, uint32_t length)
2288 int rval;
2289 dma_addr_t optrom_dma;
2290 void *optrom;
2291 uint8_t *pbuf;
2292 uint32_t faddr, left, burst;
2293 struct qla_hw_data *ha = vha->hw;
2295 if (offset & 0xfff)
2296 goto slow_read;
2297 if (length < OPTROM_BURST_SIZE)
2298 goto slow_read;
2300 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2301 &optrom_dma, GFP_KERNEL);
2302 if (!optrom) {
2303 qla_printk(KERN_DEBUG, ha,
2304 "Unable to allocate memory for optrom burst read "
2305 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2307 goto slow_read;
2310 pbuf = buf;
2311 faddr = offset >> 2;
2312 left = length >> 2;
2313 burst = OPTROM_BURST_DWORDS;
2314 while (left != 0) {
2315 if (burst > left)
2316 burst = left;
2318 rval = qla2x00_dump_ram(vha, optrom_dma,
2319 flash_data_addr(ha, faddr), burst);
2320 if (rval) {
2321 qla_printk(KERN_WARNING, ha,
2322 "Unable to burst-read optrom segment "
2323 "(%x/%x/%llx).\n", rval,
2324 flash_data_addr(ha, faddr),
2325 (unsigned long long)optrom_dma);
2326 qla_printk(KERN_WARNING, ha,
2327 "Reverting to slow-read.\n");
2329 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2330 optrom, optrom_dma);
2331 goto slow_read;
2334 memcpy(pbuf, optrom, burst * 4);
2336 left -= burst;
2337 faddr += burst;
2338 pbuf += burst * 4;
2341 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2342 optrom_dma);
2344 return buf;
2346 slow_read:
2347 return qla24xx_read_optrom_data(vha, buf, offset, length);
2351 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2352 * @ha: HA context
2353 * @pcids: Pointer to the FCODE PCI data structure
2355 * The process of retrieving the FCODE version information is at best
2356 * described as interesting.
2358 * Within the first 100h bytes of the image an ASCII string is present
2359 * which contains several pieces of information including the FCODE
2360 * version. Unfortunately it seems the only reliable way to retrieve
2361 * the version is by scanning for another sentinel within the string,
2362 * the FCODE build date:
2364 * ... 2.00.02 10/17/02 ...
2366 * Returns QLA_SUCCESS on successful retrieval of version.
2368 static void
2369 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2371 int ret = QLA_FUNCTION_FAILED;
2372 uint32_t istart, iend, iter, vend;
2373 uint8_t do_next, rbyte, *vbyte;
2375 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2377 /* Skip the PCI data structure. */
2378 istart = pcids +
2379 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2380 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2381 iend = istart + 0x100;
2382 do {
2383 /* Scan for the sentinel date string...eeewww. */
2384 do_next = 0;
2385 iter = istart;
2386 while ((iter < iend) && !do_next) {
2387 iter++;
2388 if (qla2x00_read_flash_byte(ha, iter) == '/') {
2389 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2390 '/')
2391 do_next++;
2392 else if (qla2x00_read_flash_byte(ha,
2393 iter + 3) == '/')
2394 do_next++;
2397 if (!do_next)
2398 break;
2400 /* Backtrack to previous ' ' (space). */
2401 do_next = 0;
2402 while ((iter > istart) && !do_next) {
2403 iter--;
2404 if (qla2x00_read_flash_byte(ha, iter) == ' ')
2405 do_next++;
2407 if (!do_next)
2408 break;
2411 * Mark end of version tag, and find previous ' ' (space) or
2412 * string length (recent FCODE images -- major hack ahead!!!).
2414 vend = iter - 1;
2415 do_next = 0;
2416 while ((iter > istart) && !do_next) {
2417 iter--;
2418 rbyte = qla2x00_read_flash_byte(ha, iter);
2419 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2420 do_next++;
2422 if (!do_next)
2423 break;
2425 /* Mark beginning of version tag, and copy data. */
2426 iter++;
2427 if ((vend - iter) &&
2428 ((vend - iter) < sizeof(ha->fcode_revision))) {
2429 vbyte = ha->fcode_revision;
2430 while (iter <= vend) {
2431 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2432 iter++;
2434 ret = QLA_SUCCESS;
2436 } while (0);
2438 if (ret != QLA_SUCCESS)
2439 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2443 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2445 int ret = QLA_SUCCESS;
2446 uint8_t code_type, last_image;
2447 uint32_t pcihdr, pcids;
2448 uint8_t *dbyte;
2449 uint16_t *dcode;
2450 struct qla_hw_data *ha = vha->hw;
2452 if (!ha->pio_address || !mbuf)
2453 return QLA_FUNCTION_FAILED;
2455 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2456 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2457 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2458 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2460 qla2x00_flash_enable(ha);
2462 /* Begin with first PCI expansion ROM header. */
2463 pcihdr = 0;
2464 last_image = 1;
2465 do {
2466 /* Verify PCI expansion ROM header. */
2467 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2468 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2469 /* No signature */
2470 DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2471 "signature.\n"));
2472 ret = QLA_FUNCTION_FAILED;
2473 break;
2476 /* Locate PCI data structure. */
2477 pcids = pcihdr +
2478 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2479 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2481 /* Validate signature of PCI data structure. */
2482 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2483 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2484 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2485 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2486 /* Incorrect header. */
2487 DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2488 "found pcir_adr=%x.\n", pcids));
2489 ret = QLA_FUNCTION_FAILED;
2490 break;
2493 /* Read version */
2494 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2495 switch (code_type) {
2496 case ROM_CODE_TYPE_BIOS:
2497 /* Intel x86, PC-AT compatible. */
2498 ha->bios_revision[0] =
2499 qla2x00_read_flash_byte(ha, pcids + 0x12);
2500 ha->bios_revision[1] =
2501 qla2x00_read_flash_byte(ha, pcids + 0x13);
2502 DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2503 ha->bios_revision[1], ha->bios_revision[0]));
2504 break;
2505 case ROM_CODE_TYPE_FCODE:
2506 /* Open Firmware standard for PCI (FCode). */
2507 /* Eeeewww... */
2508 qla2x00_get_fcode_version(ha, pcids);
2509 break;
2510 case ROM_CODE_TYPE_EFI:
2511 /* Extensible Firmware Interface (EFI). */
2512 ha->efi_revision[0] =
2513 qla2x00_read_flash_byte(ha, pcids + 0x12);
2514 ha->efi_revision[1] =
2515 qla2x00_read_flash_byte(ha, pcids + 0x13);
2516 DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2517 ha->efi_revision[1], ha->efi_revision[0]));
2518 break;
2519 default:
2520 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2521 "type %x at pcids %x.\n", code_type, pcids));
2522 break;
2525 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2527 /* Locate next PCI expansion ROM. */
2528 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2529 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2530 } while (!last_image);
2532 if (IS_QLA2322(ha)) {
2533 /* Read firmware image information. */
2534 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2535 dbyte = mbuf;
2536 memset(dbyte, 0, 8);
2537 dcode = (uint16_t *)dbyte;
2539 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2541 DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2542 "flash:\n"));
2543 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2545 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2546 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2547 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2548 dcode[3] == 0)) {
2549 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2550 "revision at %x.\n", ha->flt_region_fw * 4));
2551 } else {
2552 /* values are in big endian */
2553 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2554 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2555 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2559 qla2x00_flash_disable(ha);
2561 return ret;
2565 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2567 int ret = QLA_SUCCESS;
2568 uint32_t pcihdr, pcids;
2569 uint32_t *dcode;
2570 uint8_t *bcode;
2571 uint8_t code_type, last_image;
2572 int i;
2573 struct qla_hw_data *ha = vha->hw;
2575 if (!mbuf)
2576 return QLA_FUNCTION_FAILED;
2578 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2579 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2580 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2581 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2583 dcode = mbuf;
2585 /* Begin with first PCI expansion ROM header. */
2586 pcihdr = ha->flt_region_boot << 2;
2587 last_image = 1;
2588 do {
2589 /* Verify PCI expansion ROM header. */
2590 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2591 bcode = mbuf + (pcihdr % 4);
2592 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2593 /* No signature */
2594 DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2595 "signature.\n"));
2596 ret = QLA_FUNCTION_FAILED;
2597 break;
2600 /* Locate PCI data structure. */
2601 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2603 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2604 bcode = mbuf + (pcihdr % 4);
2606 /* Validate signature of PCI data structure. */
2607 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2608 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2609 /* Incorrect header. */
2610 DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2611 "found pcir_adr=%x.\n", pcids));
2612 ret = QLA_FUNCTION_FAILED;
2613 break;
2616 /* Read version */
2617 code_type = bcode[0x14];
2618 switch (code_type) {
2619 case ROM_CODE_TYPE_BIOS:
2620 /* Intel x86, PC-AT compatible. */
2621 ha->bios_revision[0] = bcode[0x12];
2622 ha->bios_revision[1] = bcode[0x13];
2623 DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2624 ha->bios_revision[1], ha->bios_revision[0]));
2625 break;
2626 case ROM_CODE_TYPE_FCODE:
2627 /* Open Firmware standard for PCI (FCode). */
2628 ha->fcode_revision[0] = bcode[0x12];
2629 ha->fcode_revision[1] = bcode[0x13];
2630 DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2631 ha->fcode_revision[1], ha->fcode_revision[0]));
2632 break;
2633 case ROM_CODE_TYPE_EFI:
2634 /* Extensible Firmware Interface (EFI). */
2635 ha->efi_revision[0] = bcode[0x12];
2636 ha->efi_revision[1] = bcode[0x13];
2637 DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2638 ha->efi_revision[1], ha->efi_revision[0]));
2639 break;
2640 default:
2641 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2642 "type %x at pcids %x.\n", code_type, pcids));
2643 break;
2646 last_image = bcode[0x15] & BIT_7;
2648 /* Locate next PCI expansion ROM. */
2649 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2650 } while (!last_image);
2652 /* Read firmware image information. */
2653 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2654 dcode = mbuf;
2656 qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2657 for (i = 0; i < 4; i++)
2658 dcode[i] = be32_to_cpu(dcode[i]);
2660 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2661 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2662 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2663 dcode[3] == 0)) {
2664 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2665 "revision at %x.\n", ha->flt_region_fw * 4));
2666 } else {
2667 ha->fw_revision[0] = dcode[0];
2668 ha->fw_revision[1] = dcode[1];
2669 ha->fw_revision[2] = dcode[2];
2670 ha->fw_revision[3] = dcode[3];
2673 return ret;
2676 static int
2677 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2679 if (pos >= end || *pos != 0x82)
2680 return 0;
2682 pos += 3 + pos[1];
2683 if (pos >= end || *pos != 0x90)
2684 return 0;
2686 pos += 3 + pos[1];
2687 if (pos >= end || *pos != 0x78)
2688 return 0;
2690 return 1;
2694 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2696 struct qla_hw_data *ha = vha->hw;
2697 uint8_t *pos = ha->vpd;
2698 uint8_t *end = pos + ha->vpd_size;
2699 int len = 0;
2701 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2702 return 0;
2704 while (pos < end && *pos != 0x78) {
2705 len = (*pos == 0x82) ? pos[1] : pos[2];
2707 if (!strncmp(pos, key, strlen(key)))
2708 break;
2710 if (*pos != 0x90 && *pos != 0x91)
2711 pos += len;
2713 pos += 3;
2716 if (pos < end - len && *pos != 0x78)
2717 return snprintf(str, size, "%.*s", len, pos + 3);
2719 return 0;