x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / staging / altpciechdma / altpciechdma.c
blobe0c5ba4b4c2907abc0092795c35a4998bab04c41
1 /**
2 * Driver for Altera PCIe core chaining DMA reference design.
4 * Copyright (C) 2008 Leon Woestenberg <leon.woestenberg@axon.tv>
5 * Copyright (C) 2008 Nickolas Heppermann <heppermannwdt@gmail.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 * Rationale: This driver exercises the chaining DMA read and write engine
23 * in the reference design. It is meant as a complementary reference
24 * driver that can be used for testing early designs as well as a basis to
25 * write your custom driver.
27 * Status: Test results from Leon Woestenberg <leon.woestenberg@axon.tv>:
29 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
30 * Dell Precision 370 PC, x86, kernel 2.6.20 from Ubuntu 7.04.
32 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
33 * Freescale MPC8313E-RDB board, PowerPC, 2.6.24 w/ Freescale patches.
35 * Driver tests passed with PCIe Compiler 8.1. With PCIe 8.0 the DMA
36 * loopback test had reproducable compare errors. I assume a change
37 * in the compiler or reference design, but could not find evidence nor
38 * documentation on a change or fix in that direction.
40 * The reference design does not have readable locations and thus a
41 * dummy read, used to flush PCI posted writes, cannot be performed.
45 #include <linux/kernel.h>
46 #include <linux/cdev.h>
47 #include <linux/delay.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/init.h>
50 #include <linux/interrupt.h>
51 #include <linux/io.h>
52 #include <linux/jiffies.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
57 /* by default do not build the character device interface */
58 /* XXX It is non-functional yet */
59 #ifndef ALTPCIECHDMA_CDEV
60 # define ALTPCIECHDMA_CDEV 0
61 #endif
63 /* build the character device interface? */
64 #if ALTPCIECHDMA_CDEV
65 # define MAX_CHDMA_SIZE (8 * 1024 * 1024)
66 # include "mapper_user_to_sg.h"
67 #endif
69 /** driver name, mimicks Altera naming of the reference design */
70 #define DRV_NAME "altpciechdma"
71 /** number of BARs on the device */
72 #define APE_BAR_NUM (6)
73 /** BAR number where the RCSLAVE memory sits */
74 #define APE_BAR_RCSLAVE (0)
75 /** BAR number where the Descriptor Header sits */
76 #define APE_BAR_HEADER (2)
78 /** maximum size in bytes of the descriptor table, chdma logic limit */
79 #define APE_CHDMA_TABLE_SIZE (4096)
80 /* single transfer must not exceed 255 table entries. worst case this can be
81 * achieved by 255 scattered pages, with only a single byte in the head and
82 * tail pages. 253 * PAGE_SIZE is a safe upper bound for the transfer size.
84 #define APE_CHDMA_MAX_TRANSFER_LEN (253 * PAGE_SIZE)
86 /**
87 * Specifies those BARs to be mapped and the length of each mapping.
89 * Zero (0) means do not map, otherwise specifies the BAR lengths to be mapped.
90 * If the actual BAR length is less, this is considered an error; then
91 * reconfigure your PCIe core.
93 * @see ug_pci_express 8.0, table 7-2 at page 7-13.
95 static const unsigned long bar_min_len[APE_BAR_NUM] =
96 { 32768, 0, 256, 0, 32768, 0 };
98 /**
99 * Descriptor Header, controls the DMA read engine or write engine.
101 * The descriptor header is the main data structure for starting DMA transfers.
103 * It sits in End Point (FPGA) memory BAR[2] for 32-bit or BAR[3:2] for 64-bit.
104 * It references a descriptor table which exists in Root Complex (PC) memory.
105 * Writing the rclast field starts the DMA operation, thus all other structures
106 * and fields must be setup before doing so.
108 * @see ug_pci_express 8.0, tables 7-3, 7-4 and 7-5 at page 7-14.
109 * @note This header must be written in four 32-bit (PCI DWORD) writes.
111 struct ape_chdma_header {
113 * w0 consists of two 16-bit fields:
114 * lsb u16 number; number of descriptors in ape_chdma_table
115 * msb u16 control; global control flags
117 u32 w0;
118 /* bus address to ape_chdma_table in Root Complex memory */
119 u32 bdt_addr_h;
120 u32 bdt_addr_l;
122 * w3 consists of two 16-bit fields:
123 * - lsb u16 rclast; last descriptor number available in Root Complex
124 * - zero (0) means the first descriptor is ready,
125 * - one (1) means two descriptors are ready, etc.
126 * - msb u16 reserved;
128 * @note writing to this memory location starts the DMA operation!
130 u32 w3;
131 } __attribute__ ((packed));
134 * Descriptor Entry, describing a (non-scattered) single memory block transfer.
136 * There is one descriptor for each memory block involved in the transfer, a
137 * block being a contiguous address range on the bus.
139 * Multiple descriptors are chained by means of the ape_chdma_table data
140 * structure.
142 * @see ug_pci_express 8.0, tables 7-6, 7-7 and 7-8 at page 7-14 and page 7-15.
144 struct ape_chdma_desc {
146 * w0 consists of two 16-bit fields:
147 * number of DWORDS to transfer
148 * - lsb u16 length;
149 * global control
150 * - msb u16 control;
152 u32 w0;
153 /* address of memory in the End Point */
154 u32 ep_addr;
155 /* bus address of source or destination memory in the Root Complex */
156 u32 rc_addr_h;
157 u32 rc_addr_l;
158 } __attribute__ ((packed));
161 * Descriptor Table, an array of descriptors describing a chained transfer.
163 * An array of descriptors, preceded by workspace for the End Point.
164 * It exists in Root Complex memory.
166 * The End Point can update its last completed descriptor number in the
167 * eplast field if requested by setting the EPLAST_ENA bit either
168 * globally in the header's or locally in any descriptor's control field.
170 * @note this structure may not exceed 4096 bytes. This results in a
171 * maximum of 4096 / (4 * 4) - 1 = 255 descriptors per chained transfer.
173 * @see ug_pci_express 8.0, tables 7-9, 7-10 and 7-11 at page 7-17 and page 7-18.
175 struct ape_chdma_table {
176 /* workspace 0x00-0x0b, reserved */
177 u32 reserved1[3];
178 /* workspace 0x0c-0x0f, last descriptor handled by End Point */
179 u32 w3;
180 /* the actual array of descriptors
181 * 0x10-0x1f, 0x20-0x2f, ... 0xff0-0xfff (255 entries)
183 struct ape_chdma_desc desc[255];
184 } __attribute__ ((packed));
187 * Altera PCI Express ('ape') board specific book keeping data
189 * Keeps state of the PCIe core and the Chaining DMA controller
190 * application.
192 struct ape_dev {
193 /** the kernel pci device data structure provided by probe() */
194 struct pci_dev *pci_dev;
196 * kernel virtual address of the mapped BAR memory and IO regions of
197 * the End Point. Used by map_bars()/unmap_bars().
199 void * __iomem bar[APE_BAR_NUM];
200 /** kernel virtual address for Descriptor Table in Root Complex memory */
201 struct ape_chdma_table *table_virt;
203 * bus address for the Descriptor Table in Root Complex memory, in
204 * CPU-native endianess
206 dma_addr_t table_bus;
207 /* if the device regions could not be allocated, assume and remember it
208 * is in use by another driver; this driver must not disable the device.
210 int in_use;
211 /* whether this driver enabled msi for the device */
212 int msi_enabled;
213 /* whether this driver could obtain the regions */
214 int got_regions;
215 /* irq line succesfully requested by this driver, -1 otherwise */
216 int irq_line;
217 /* board revision */
218 u8 revision;
219 /* interrupt count, incremented by the interrupt handler */
220 int irq_count;
221 #if ALTPCIECHDMA_CDEV
222 /* character device */
223 dev_t cdevno;
224 struct cdev cdev;
225 /* user space scatter gather mapper */
226 struct sg_mapping_t *sgm;
227 #endif
231 * Using the subsystem vendor id and subsystem id, it is possible to
232 * distinguish between different cards bases around the same
233 * (third-party) logic core.
235 * Default Altera vendor and device ID's, and some (non-reserved)
236 * ID's are now used here that are used amongst the testers/developers.
238 static const struct pci_device_id ids[] = {
239 { PCI_DEVICE(0x1172, 0xE001), },
240 { PCI_DEVICE(0x2071, 0x2071), },
241 { 0, }
243 MODULE_DEVICE_TABLE(pci, ids);
245 #if ALTPCIECHDMA_CDEV
246 /* prototypes for character device */
247 static int sg_init(struct ape_dev *ape);
248 static void sg_exit(struct ape_dev *ape);
249 #endif
252 * altpciechdma_isr() - Interrupt handler
255 static irqreturn_t altpciechdma_isr(int irq, void *dev_id)
257 struct ape_dev *ape = (struct ape_dev *)dev_id;
258 if (!ape)
259 return IRQ_NONE;
260 ape->irq_count++;
261 return IRQ_HANDLED;
264 static int __devinit scan_bars(struct ape_dev *ape, struct pci_dev *dev)
266 int i;
267 for (i = 0; i < APE_BAR_NUM; i++) {
268 unsigned long bar_start = pci_resource_start(dev, i);
269 if (bar_start) {
270 unsigned long bar_end = pci_resource_end(dev, i);
271 unsigned long bar_flags = pci_resource_flags(dev, i);
272 printk(KERN_DEBUG "BAR%d 0x%08lx-0x%08lx flags 0x%08lx\n",
273 i, bar_start, bar_end, bar_flags);
276 return 0;
280 * Unmap the BAR regions that had been mapped earlier using map_bars()
282 static void unmap_bars(struct ape_dev *ape, struct pci_dev *dev)
284 int i;
285 for (i = 0; i < APE_BAR_NUM; i++) {
286 /* is this BAR mapped? */
287 if (ape->bar[i]) {
288 /* unmap BAR */
289 pci_iounmap(dev, ape->bar[i]);
290 ape->bar[i] = NULL;
296 * Map the device memory regions into kernel virtual address space after
297 * verifying their sizes respect the minimum sizes needed, given by the
298 * bar_min_len[] array.
300 static int __devinit map_bars(struct ape_dev *ape, struct pci_dev *dev)
302 int rc;
303 int i;
304 /* iterate through all the BARs */
305 for (i = 0; i < APE_BAR_NUM; i++) {
306 unsigned long bar_start = pci_resource_start(dev, i);
307 unsigned long bar_end = pci_resource_end(dev, i);
308 unsigned long bar_length = bar_end - bar_start + 1;
309 ape->bar[i] = NULL;
310 /* do not map, and skip, BARs with length 0 */
311 if (!bar_min_len[i])
312 continue;
313 /* do not map BARs with address 0 */
314 if (!bar_start || !bar_end) {
315 printk(KERN_DEBUG "BAR #%d is not present?!\n", i);
316 rc = -1;
317 goto fail;
319 bar_length = bar_end - bar_start + 1;
320 /* BAR length is less than driver requires? */
321 if (bar_length < bar_min_len[i]) {
322 printk(KERN_DEBUG "BAR #%d length = %lu bytes but driver "
323 "requires at least %lu bytes\n",
324 i, bar_length, bar_min_len[i]);
325 rc = -1;
326 goto fail;
328 /* map the device memory or IO region into kernel virtual
329 * address space */
330 ape->bar[i] = pci_iomap(dev, i, bar_min_len[i]);
331 if (!ape->bar[i]) {
332 printk(KERN_DEBUG "Could not map BAR #%d.\n", i);
333 rc = -1;
334 goto fail;
336 printk(KERN_DEBUG "BAR[%d] mapped at 0x%p with length %lu(/%lu).\n", i,
337 ape->bar[i], bar_min_len[i], bar_length);
339 /* succesfully mapped all required BAR regions */
340 rc = 0;
341 goto success;
342 fail:
343 /* unmap any BARs that we did map */
344 unmap_bars(ape, dev);
345 success:
346 return rc;
349 #if 0 /* not yet implemented fully FIXME add opcode */
350 static void __devinit rcslave_test(struct ape_dev *ape, struct pci_dev *dev)
352 u32 *rcslave_mem = (u32 *)ape->bar[APE_BAR_RCSLAVE];
353 u32 result = 0;
354 /** this number is assumed to be different each time this test runs */
355 u32 seed = (u32)jiffies;
356 u32 value = seed;
357 int i;
359 /* write loop */
360 value = seed;
361 for (i = 1024; i < 32768 / 4 ; i++) {
362 printk(KERN_DEBUG "Writing 0x%08x to 0x%p.\n",
363 (u32)value, (void *)rcslave_mem + i);
364 iowrite32(value, rcslave_mem + i);
365 value++;
367 /* read-back loop */
368 value = seed;
369 for (i = 1024; i < 32768 / 4; i++) {
370 result = ioread32(rcslave_mem + i);
371 if (result != value) {
372 printk(KERN_DEBUG "Wrote 0x%08x to 0x%p, but read back 0x%08x.\n",
373 (u32)value, (void *)rcslave_mem + i, (u32)result);
374 break;
376 value++;
379 #endif
381 /* obtain the 32 most significant (high) bits of a 32-bit or 64-bit address */
382 #define pci_dma_h(addr) ((addr >> 16) >> 16)
383 /* obtain the 32 least significant (low) bits of a 32-bit or 64-bit address */
384 #define pci_dma_l(addr) (addr & 0xffffffffUL)
386 /* ape_fill_chdma_desc() - Fill a Altera PCI Express Chaining DMA descriptor
388 * @desc pointer to descriptor to be filled
389 * @addr root complex address
390 * @ep_addr end point address
391 * @len number of bytes, must be a multiple of 4.
393 static inline void ape_chdma_desc_set(struct ape_chdma_desc *desc, dma_addr_t addr, u32 ep_addr, int len)
395 BUG_ON(len & 3);
396 desc->w0 = cpu_to_le32(len / 4);
397 desc->ep_addr = cpu_to_le32(ep_addr);
398 desc->rc_addr_h = cpu_to_le32(pci_dma_h(addr));
399 desc->rc_addr_l = cpu_to_le32(pci_dma_l(addr));
402 #if ALTPCIECHDMA_CDEV
404 * ape_sg_to_chdma_table() - Create a device descriptor table from a scatterlist.
406 * The scatterlist must have been mapped by pci_map_sg(sgm->sgl).
408 * @sgl scatterlist.
409 * @nents Number of entries in the scatterlist.
410 * @first Start index in the scatterlist sgm->sgl.
411 * @ep_addr End Point address for the scatter/gather transfer.
412 * @desc pointer to first descriptor
414 * Returns Number of entries in the table on success, -1 on error.
416 static int ape_sg_to_chdma_table(struct scatterlist *sgl, int nents, int first, struct ape_chdma_desc *desc, u32 ep_addr)
418 int i = first, j = 0;
419 /* inspect first entry */
420 dma_addr_t addr = sg_dma_address(&sgl[i]);
421 unsigned int len = sg_dma_len(&sgl[i]);
422 /* contiguous block */
423 dma_addr_t cont_addr = addr;
424 unsigned int cont_len = len;
425 /* iterate over remaining entries */
426 for (; j < 25 && i < nents - 1; i++) {
427 /* bus address of next entry i + 1 */
428 dma_addr_t next = sg_dma_address(&sgl[i + 1]);
429 /* length of this entry i */
430 len = sg_dma_len(&sgl[i]);
431 printk(KERN_DEBUG "%04d: addr=0x%Lx length=0x%08x\n", i,
432 (unsigned long long)addr, len);
433 /* entry i + 1 is non-contiguous with entry i? */
434 if (next != addr + len) {
435 /* TODO create entry here (we could overwrite i) */
436 printk(KERN_DEBUG "%4d: cont_addr=0x%Lx cont_len=0x%08x\n", j,
437 (unsigned long long)cont_addr, cont_len);
438 /* set descriptor for contiguous transfer */
439 ape_chdma_desc_set(&desc[j], cont_addr, ep_addr, cont_len);
440 /* next end point memory address */
441 ep_addr += cont_len;
442 /* start new contiguous block */
443 cont_addr = next;
444 cont_len = 0;
445 j++;
447 /* add entry i + 1 to current contiguous block */
448 cont_len += len;
449 /* goto entry i + 1 */
450 addr = next;
452 /* TODO create entry here (we could overwrite i) */
453 printk(KERN_DEBUG "%04d: addr=0x%Lx length=0x%08x\n", i,
454 (unsigned long long)addr, len);
455 printk(KERN_DEBUG "%4d: cont_addr=0x%Lx length=0x%08x\n", j,
456 (unsigned long long)cont_addr, cont_len);
457 j++;
458 return j;
460 #endif
462 /* compare buffers */
463 static inline int compare(u32 *p, u32 *q, int len)
465 int result = -1;
466 int fail = 0;
467 int i;
468 for (i = 0; i < len / 4; i++) {
469 if (*p == *q) {
470 /* every so many u32 words, show equals */
471 if ((i & 255) == 0)
472 printk(KERN_DEBUG "[%p] = 0x%08x [%p] = 0x%08x\n", p, *p, q, *q);
473 } else {
474 fail++;
475 /* show the first few miscompares */
476 if (fail < 10)
477 printk(KERN_DEBUG "[%p] = 0x%08x != [%p] = 0x%08x ?!\n", p, *p, q, *q);
478 /* but stop after a while */
479 else if (fail == 10)
480 printk(KERN_DEBUG "---more errors follow! not printed---\n");
481 else
482 /* stop compare after this many errors */
483 break;
485 p++;
486 q++;
488 if (!fail)
489 result = 0;
490 return result;
493 /* dma_test() - Perform DMA loop back test to end point and back to root complex.
495 * Allocate a cache-coherent buffer in host memory, consisting of four pages.
497 * Fill the four memory pages such that each 32-bit word contains its own address.
499 * Now perform a loop back test, have the end point device copy the first buffer
500 * half to end point memory, then have it copy back into the second half.
502 * Create a descriptor table to copy the first buffer half into End Point
503 * memory. Instruct the End Point to do a DMA read using that table.
505 * Create a descriptor table to copy End Point memory to the second buffer
506 * half. Instruct the End Point to do a DMA write using that table.
508 * Compare results, fail or pass.
511 static int __devinit dma_test(struct ape_dev *ape, struct pci_dev *dev)
513 /* test result; guilty until proven innocent */
514 int result = -1;
515 /* the DMA read header sits at address 0x00 of the DMA engine BAR */
516 struct ape_chdma_header *write_header = (struct ape_chdma_header *)ape->bar[APE_BAR_HEADER];
517 /* the write DMA header sits after the read header at address 0x10 */
518 struct ape_chdma_header *read_header = write_header + 1;
519 /* virtual address of the allocated buffer */
520 u8 *buffer_virt = 0;
521 /* bus address of the allocated buffer */
522 dma_addr_t buffer_bus = 0;
523 int i, n = 0, irq_count;
525 /* temporary value used to construct 32-bit data words */
526 u32 w;
528 printk(KERN_DEBUG "bar_tests(), PAGE_SIZE = 0x%0x\n", (int)PAGE_SIZE);
529 printk(KERN_DEBUG "write_header = 0x%p.\n", write_header);
530 printk(KERN_DEBUG "read_header = 0x%p.\n", read_header);
531 printk(KERN_DEBUG "&write_header->w3 = 0x%p\n", &write_header->w3);
532 printk(KERN_DEBUG "&read_header->w3 = 0x%p\n", &read_header->w3);
533 printk(KERN_DEBUG "ape->table_virt = 0x%p.\n", ape->table_virt);
535 if (!write_header || !read_header || !ape->table_virt)
536 goto fail;
538 /* allocate and map coherently-cached memory for a DMA-able buffer */
539 /* @see Documentation/PCI/PCI-DMA-mapping.txt, near line 318 */
540 buffer_virt = (u8 *)pci_alloc_consistent(dev, PAGE_SIZE * 4, &buffer_bus);
541 if (!buffer_virt) {
542 printk(KERN_DEBUG "Could not allocate coherent DMA buffer.\n");
543 goto fail;
545 printk(KERN_DEBUG "Allocated cache-coherent DMA buffer (virtual address = %p, bus address = 0x%016llx).\n",
546 buffer_virt, (u64)buffer_bus);
548 /* fill first half of buffer with its virtual address as data */
549 for (i = 0; i < 4 * PAGE_SIZE; i += 4)
550 #if 0
551 *(u32 *)(buffer_virt + i) = i / PAGE_SIZE + 1;
552 #else
553 *(u32 *)(buffer_virt + i) = (u32)(unsigned long)(buffer_virt + i);
554 #endif
555 #if 0
556 compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
557 #endif
559 #if 0
560 /* fill second half of buffer with zeroes */
561 for (i = 2 * PAGE_SIZE; i < 4 * PAGE_SIZE; i += 4)
562 *(u32 *)(buffer_virt + i) = 0;
563 #endif
565 /* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
566 ape->table_virt->w3 = cpu_to_le32(0x0000FADE);
568 /* fill in first descriptor */
569 n = 0;
570 /* read 8192 bytes from RC buffer to EP address 4096 */
571 ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus, 4096, 2 * PAGE_SIZE);
572 #if 1
573 for (i = 0; i < 255; i++)
574 ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus, 4096, 2 * PAGE_SIZE);
575 /* index of last descriptor */
576 n = i - 1;
577 #endif
578 #if 0
579 /* fill in next descriptor */
580 n++;
581 /* read 1024 bytes from RC buffer to EP address 4096 + 1024 */
582 ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 1024, 4096 + 1024, 1024);
583 #endif
585 #if 1
586 /* enable MSI after the last descriptor is completed */
587 if (ape->msi_enabled)
588 ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
589 #endif
590 #if 0
591 /* dump descriptor table for debugging */
592 printk(KERN_DEBUG "Descriptor Table (Read, in Root Complex Memory, # = %d)\n", n + 1);
593 for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
594 u32 *p = (u32 *)ape->table_virt;
595 p += i;
596 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
597 p++;
598 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
599 p++;
600 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
601 p++;
602 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
604 #endif
605 /* set available number of descriptors in table */
606 w = (u32)(n + 1);
607 w |= (1UL << 18)/*global EPLAST_EN*/;
608 #if 0
609 if (ape->msi_enabled)
610 w |= (1UL << 17)/*global MSI*/;
611 #endif
612 printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", w, (void *)&read_header->w0);
613 iowrite32(w, &read_header->w0);
615 /* write table address (higher 32-bits) */
616 printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)((ape->table_bus >> 16) >> 16), (void *)&read_header->bdt_addr_h);
617 iowrite32(pci_dma_h(ape->table_bus), &read_header->bdt_addr_h);
619 /* write table address (lower 32-bits) */
620 printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)(ape->table_bus & 0xffffffffUL), (void *)&read_header->bdt_addr_l);
621 iowrite32(pci_dma_l(ape->table_bus), &read_header->bdt_addr_l);
623 /* memory write barrier */
624 wmb();
625 printk(KERN_DEBUG "Flush posted writes\n");
626 /** FIXME Add dummy read to flush posted writes but need a readable location! */
627 #if 0
628 (void)ioread32();
629 #endif
631 /* remember IRQ count before the transfer */
632 irq_count = ape->irq_count;
633 /* write number of descriptors - this starts the DMA */
634 printk(KERN_DEBUG "\nStart DMA read\n");
635 printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)n, (void *)&read_header->w3);
636 iowrite32(n, &read_header->w3);
637 printk(KERN_DEBUG "EPLAST = %lu\n", le32_to_cpu(*(u32 *)&ape->table_virt->w3) & 0xffffUL);
639 /** memory write barrier */
640 wmb();
641 /* dummy read to flush posted writes */
642 /* FIXME Need a readable location! */
643 #if 0
644 (void)ioread32();
645 #endif
646 printk(KERN_DEBUG "POLL FOR READ:\n");
647 /* poll for chain completion, 1000 times 1 millisecond */
648 for (i = 0; i < 100; i++) {
649 volatile u32 *p = &ape->table_virt->w3;
650 u32 eplast = le32_to_cpu(*p) & 0xffffUL;
651 printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
652 if (eplast == n) {
653 printk(KERN_DEBUG "DONE\n");
654 /* print IRQ count before the transfer */
655 printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
656 break;
658 udelay(100);
661 /* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
662 ape->table_virt->w3 = cpu_to_le32(0x0000FADE);
664 /* setup first descriptor */
665 n = 0;
666 ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
667 #if 1
668 for (i = 0; i < 255; i++)
669 ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
671 /* index of last descriptor */
672 n = i - 1;
673 #endif
674 #if 1 /* test variable, make a module option later */
675 if (ape->msi_enabled)
676 ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
677 #endif
678 #if 0
679 /* dump descriptor table for debugging */
680 printk(KERN_DEBUG "Descriptor Table (Write, in Root Complex Memory, # = %d)\n", n + 1);
681 for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
682 u32 *p = (u32 *)ape->table_virt;
683 p += i;
684 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
685 p++;
686 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
687 p++;
688 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
689 p++;
690 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
692 #endif
694 /* set number of available descriptors in the table */
695 w = (u32)(n + 1);
696 /* enable updates of eplast for each descriptor completion */
697 w |= (u32)(1UL << 18)/*global EPLAST_EN*/;
698 #if 0 /* test variable, make a module option later */
699 /* enable MSI for each descriptor completion */
700 if (ape->msi_enabled)
701 w |= (1UL << 17)/*global MSI*/;
702 #endif
703 iowrite32(w, &write_header->w0);
704 iowrite32(pci_dma_h(ape->table_bus), &write_header->bdt_addr_h);
705 iowrite32(pci_dma_l(ape->table_bus), &write_header->bdt_addr_l);
707 /** memory write barrier and flush posted writes */
708 wmb();
709 /* dummy read to flush posted writes */
710 /* FIXME Need a readable location! */
711 #if 0
712 (void)ioread32();
713 #endif
714 irq_count = ape->irq_count;
716 printk(KERN_DEBUG "\nStart DMA write\n");
717 iowrite32(n, &write_header->w3);
719 /** memory write barrier */
720 wmb();
721 /** dummy read to flush posted writes */
722 /* (void) ioread32(); */
724 printk(KERN_DEBUG "POLL FOR WRITE:\n");
725 /* poll for completion, 1000 times 1 millisecond */
726 for (i = 0; i < 100; i++) {
727 volatile u32 *p = &ape->table_virt->w3;
728 u32 eplast = le32_to_cpu(*p) & 0xffffUL;
729 printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
730 if (eplast == n) {
731 printk(KERN_DEBUG "DONE\n");
732 /* print IRQ count before the transfer */
733 printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
734 break;
736 udelay(100);
738 /* soft-reset DMA write engine */
739 iowrite32(0x0000ffffUL, &write_header->w0);
740 /* soft-reset DMA read engine */
741 iowrite32(0x0000ffffUL, &read_header->w0);
743 /** memory write barrier */
744 wmb();
745 /* dummy read to flush posted writes */
746 /* FIXME Need a readable location! */
747 #if 0
748 (void)ioread32();
749 #endif
750 /* compare first half of buffer with second half, should be identical */
751 result = compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
752 printk(KERN_DEBUG "DMA loop back test %s.\n", result ? "FAILED" : "PASSED");
754 pci_free_consistent(dev, 4 * PAGE_SIZE, buffer_virt, buffer_bus);
755 fail:
756 printk(KERN_DEBUG "bar_tests() end, result %d\n", result);
757 return result;
760 /* Called when the PCI sub system thinks we can control the given device.
761 * Inspect if we can support the device and if so take control of it.
763 * Return 0 when we have taken control of the given device.
765 * - allocate board specific bookkeeping
766 * - allocate coherently-mapped memory for the descriptor table
767 * - enable the board
768 * - verify board revision
769 * - request regions
770 * - query DMA mask
771 * - obtain and request irq
772 * - map regions into kernel address space
774 static int __devinit probe(struct pci_dev *dev, const struct pci_device_id *id)
776 int rc = 0;
777 struct ape_dev *ape = NULL;
778 u8 irq_pin, irq_line;
779 printk(KERN_DEBUG "probe(dev = 0x%p, pciid = 0x%p)\n", dev, id);
781 /* allocate memory for per-board book keeping */
782 ape = kzalloc(sizeof(struct ape_dev), GFP_KERNEL);
783 if (!ape) {
784 printk(KERN_DEBUG "Could not kzalloc()ate memory.\n");
785 goto err_ape;
787 ape->pci_dev = dev;
788 dev_set_drvdata(&dev->dev, ape);
789 printk(KERN_DEBUG "probe() ape = 0x%p\n", ape);
791 printk(KERN_DEBUG "sizeof(struct ape_chdma_table) = %d.\n",
792 (int)sizeof(struct ape_chdma_table));
793 /* the reference design has a size restriction on the table size */
794 BUG_ON(sizeof(struct ape_chdma_table) > APE_CHDMA_TABLE_SIZE);
796 /* allocate and map coherently-cached memory for a descriptor table */
797 /* @see LDD3 page 446 */
798 ape->table_virt = (struct ape_chdma_table *)pci_alloc_consistent(dev,
799 APE_CHDMA_TABLE_SIZE, &ape->table_bus);
800 /* could not allocate table? */
801 if (!ape->table_virt) {
802 printk(KERN_DEBUG "Could not dma_alloc()ate_coherent memory.\n");
803 goto err_table;
806 printk(KERN_DEBUG "table_virt = %p, table_bus = 0x%16llx.\n",
807 ape->table_virt, (u64)ape->table_bus);
809 /* enable device */
810 rc = pci_enable_device(dev);
811 if (rc) {
812 printk(KERN_DEBUG "pci_enable_device() failed\n");
813 goto err_enable;
816 /* enable bus master capability on device */
817 pci_set_master(dev);
818 /* enable message signaled interrupts */
819 rc = pci_enable_msi(dev);
820 /* could not use MSI? */
821 if (rc) {
822 /* resort to legacy interrupts */
823 printk(KERN_DEBUG "Could not enable MSI interrupting.\n");
824 ape->msi_enabled = 0;
825 /* MSI enabled, remember for cleanup */
826 } else {
827 printk(KERN_DEBUG "Enabled MSI interrupting.\n");
828 ape->msi_enabled = 1;
831 pci_read_config_byte(dev, PCI_REVISION_ID, &ape->revision);
832 #if 0 /* example */
833 /* (for example) this driver does not support revision 0x42 */
834 if (ape->revision == 0x42) {
835 printk(KERN_DEBUG "Revision 0x42 is not supported by this driver.\n");
836 rc = -ENODEV;
837 goto err_rev;
839 #endif
840 /** XXX check for native or legacy PCIe endpoint? */
842 rc = pci_request_regions(dev, DRV_NAME);
843 /* could not request all regions? */
844 if (rc) {
845 /* assume device is in use (and do not disable it later!) */
846 ape->in_use = 1;
847 goto err_regions;
849 ape->got_regions = 1;
851 #if 1 /* @todo For now, disable 64-bit, because I do not understand the implications (DAC!) */
852 /* query for DMA transfer */
853 /* @see Documentation/PCI/PCI-DMA-mapping.txt */
854 if (!pci_set_dma_mask(dev, DMA_BIT_MASK(64))) {
855 pci_set_consistent_dma_mask(dev, DMA_BIT_MASK(64));
856 /* use 64-bit DMA */
857 printk(KERN_DEBUG "Using a 64-bit DMA mask.\n");
858 } else
859 #endif
860 if (!pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
861 printk(KERN_DEBUG "Could not set 64-bit DMA mask.\n");
862 pci_set_consistent_dma_mask(dev, DMA_BIT_MASK(32));
863 /* use 32-bit DMA */
864 printk(KERN_DEBUG "Using a 32-bit DMA mask.\n");
865 } else {
866 printk(KERN_DEBUG "No suitable DMA possible.\n");
867 /** @todo Choose proper error return code */
868 rc = -1;
869 goto err_mask;
872 rc = pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq_pin);
873 /* could not read? */
874 if (rc)
875 goto err_irq;
876 printk(KERN_DEBUG "IRQ pin #%d (0=none, 1=INTA#...4=INTD#).\n", irq_pin);
878 /* @see LDD3, page 318 */
879 rc = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq_line);
880 /* could not read? */
881 if (rc) {
882 printk(KERN_DEBUG "Could not query PCI_INTERRUPT_LINE, error %d\n", rc);
883 goto err_irq;
885 printk(KERN_DEBUG "IRQ line #%d.\n", irq_line);
886 #if 1
887 irq_line = dev->irq;
888 /* @see LDD3, page 259 */
889 rc = request_irq(irq_line, altpciechdma_isr, IRQF_SHARED, DRV_NAME, (void *)ape);
890 if (rc) {
891 printk(KERN_DEBUG "Could not request IRQ #%d, error %d\n", irq_line, rc);
892 ape->irq_line = -1;
893 goto err_irq;
895 /* remember which irq we allocated */
896 ape->irq_line = (int)irq_line;
897 printk(KERN_DEBUG "Succesfully requested IRQ #%d with dev_id 0x%p\n", irq_line, ape);
898 #endif
899 /* show BARs */
900 scan_bars(ape, dev);
901 /* map BARs */
902 rc = map_bars(ape, dev);
903 if (rc)
904 goto err_map;
905 #if ALTPCIECHDMA_CDEV
906 /* initialize character device */
907 rc = sg_init(ape);
908 if (rc)
909 goto err_cdev;
910 #endif
911 /* perform DMA engines loop back test */
912 rc = dma_test(ape, dev);
913 (void)rc;
914 /* succesfully took the device */
915 rc = 0;
916 printk(KERN_DEBUG "probe() successful.\n");
917 goto end;
918 #if ALTPCIECHDMA_CDEV
919 err_cdev:
920 /* unmap the BARs */
921 unmap_bars(ape, dev);
922 #endif
923 err_map:
924 /* free allocated irq */
925 if (ape->irq_line >= 0)
926 free_irq(ape->irq_line, (void *)ape);
927 err_irq:
928 if (ape->msi_enabled)
929 pci_disable_msi(dev);
930 /* disable the device iff it is not in use */
931 if (!ape->in_use)
932 pci_disable_device(dev);
933 if (ape->got_regions)
934 pci_release_regions(dev);
935 err_mask:
936 err_regions:
937 /*err_rev:*/
938 /* clean up everything before device enable() */
939 err_enable:
940 if (ape->table_virt)
941 pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);
942 /* clean up everything before allocating descriptor table */
943 err_table:
944 if (ape)
945 kfree(ape);
946 err_ape:
947 end:
948 return rc;
951 static void __devexit remove(struct pci_dev *dev)
953 struct ape_dev *ape = dev_get_drvdata(&dev->dev);
955 printk(KERN_DEBUG "remove(0x%p)\n", dev);
956 printk(KERN_DEBUG "remove(dev = 0x%p) where ape = 0x%p\n", dev, ape);
958 /* remove character device */
959 #if ALTPCIECHDMA_CDEV
960 sg_exit(ape);
961 #endif
963 if (ape->table_virt)
964 pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);
966 /* free IRQ
967 * @see LDD3 page 279
969 if (ape->irq_line >= 0) {
970 printk(KERN_DEBUG "Freeing IRQ #%d for dev_id 0x%08lx.\n",
971 ape->irq_line, (unsigned long)ape);
972 free_irq(ape->irq_line, (void *)ape);
974 /* MSI was enabled? */
975 if (ape->msi_enabled) {
976 /* Disable MSI @see Documentation/MSI-HOWTO.txt */
977 pci_disable_msi(dev);
978 ape->msi_enabled = 0;
980 /* unmap the BARs */
981 unmap_bars(ape, dev);
982 if (!ape->in_use)
983 pci_disable_device(dev);
984 if (ape->got_regions)
985 /* to be called after device disable */
986 pci_release_regions(dev);
989 #if ALTPCIECHDMA_CDEV
992 * Called when the device goes from unused to used.
994 static int sg_open(struct inode *inode, struct file *file)
996 struct ape_dev *ape;
997 printk(KERN_DEBUG DRV_NAME "_open()\n");
998 /* pointer to containing data structure of the character device inode */
999 ape = container_of(inode->i_cdev, struct ape_dev, cdev);
1000 /* create a reference to our device state in the opened file */
1001 file->private_data = ape;
1002 /* create virtual memory mapper */
1003 ape->sgm = sg_create_mapper(MAX_CHDMA_SIZE);
1004 return 0;
1008 * Called when the device goes from used to unused.
1010 static int sg_close(struct inode *inode, struct file *file)
1012 /* fetch device specific data stored earlier during open */
1013 struct ape_dev *ape = (struct ape_dev *)file->private_data;
1014 printk(KERN_DEBUG DRV_NAME "_close()\n");
1015 /* destroy virtual memory mapper */
1016 sg_destroy_mapper(ape->sgm);
1017 return 0;
1020 static ssize_t sg_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
1022 /* fetch device specific data stored earlier during open */
1023 struct ape_dev *ape = (struct ape_dev *)file->private_data;
1024 (void)ape;
1025 printk(KERN_DEBUG DRV_NAME "_read(buf=0x%p, count=%lld, pos=%llu)\n", buf, (s64)count, (u64)*pos);
1026 return count;
1029 /* sg_write() - Write to the device
1031 * @buf userspace buffer
1032 * @count number of bytes in the userspace buffer
1034 * Iterate over the userspace buffer, taking at most 255 * PAGE_SIZE bytes for
1035 * each DMA transfer.
1036 * For each transfer, get the user pages, build a sglist, map, build a
1037 * descriptor table. submit the transfer. wait for the interrupt handler
1038 * to wake us on completion.
1040 static ssize_t sg_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
1042 int hwnents, tents;
1043 size_t transfer_len, remaining = count, done = 0;
1044 u64 transfer_addr = (u64)buf;
1045 /* fetch device specific data stored earlier during open */
1046 struct ape_dev *ape = (struct ape_dev *)file->private_data;
1047 printk(KERN_DEBUG DRV_NAME "_write(buf=0x%p, count=%lld, pos=%llu)\n",
1048 buf, (s64)count, (u64)*pos);
1049 /* TODO transfer boundaries at PAGE_SIZE granularity */
1050 while (remaining > 0) {
1051 /* limit DMA transfer size */
1052 transfer_len = (remaining < APE_CHDMA_MAX_TRANSFER_LEN) ? remaining :
1053 APE_CHDMA_MAX_TRANSFER_LEN;
1054 /* get all user space buffer pages and create a scattergather list */
1055 sgm_map_user_pages(ape->sgm, transfer_addr, transfer_len, 0/*read from userspace*/);
1056 printk(KERN_DEBUG DRV_NAME "mapped_pages=%d\n", ape->sgm->mapped_pages);
1057 /* map all entries in the scattergather list */
1058 hwnents = pci_map_sg(ape->pci_dev, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
1059 printk(KERN_DEBUG DRV_NAME "hwnents=%d\n", hwnents);
1060 /* build device descriptor tables and submit them to the DMA engine */
1061 tents = ape_sg_to_chdma_table(ape->sgm->sgl, hwnents, 0, &ape->table_virt->desc[0], 4096);
1062 printk(KERN_DEBUG DRV_NAME "tents=%d\n", hwnents);
1063 #if 0
1064 while (tables) {
1065 /* TODO build table */
1066 /* TODO submit table to the device */
1067 /* if engine stopped and unfinished work then start engine */
1069 put ourselves on wait queue
1070 #endif
1072 dma_unmap_sg(NULL, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
1073 /* dirty and free the pages */
1074 sgm_unmap_user_pages(ape->sgm, 1/*dirtied*/);
1075 /* book keeping */
1076 transfer_addr += transfer_len;
1077 remaining -= transfer_len;
1078 done += transfer_len;
1080 return done;
1084 * character device file operations
1086 static const struct file_operations sg_fops = {
1087 .owner = THIS_MODULE,
1088 .open = sg_open,
1089 .release = sg_close,
1090 .read = sg_read,
1091 .write = sg_write,
1094 /* sg_init() - Initialize character device
1096 * XXX Should ideally be tied to the device, on device probe, not module init.
1098 static int sg_init(struct ape_dev *ape)
1100 int rc;
1101 printk(KERN_DEBUG DRV_NAME " sg_init()\n");
1102 /* allocate a dynamically allocated character device node */
1103 rc = alloc_chrdev_region(&ape->cdevno, 0/*requested minor*/, 1/*count*/, DRV_NAME);
1104 /* allocation failed? */
1105 if (rc < 0) {
1106 printk("alloc_chrdev_region() = %d\n", rc);
1107 goto fail_alloc;
1109 /* couple the device file operations to the character device */
1110 cdev_init(&ape->cdev, &sg_fops);
1111 ape->cdev.owner = THIS_MODULE;
1112 /* bring character device live */
1113 rc = cdev_add(&ape->cdev, ape->cdevno, 1/*count*/);
1114 if (rc < 0) {
1115 printk("cdev_add() = %d\n", rc);
1116 goto fail_add;
1118 printk(KERN_DEBUG "altpciechdma = %d:%d\n", MAJOR(ape->cdevno), MINOR(ape->cdevno));
1119 return 0;
1120 fail_add:
1121 /* free the dynamically allocated character device node */
1122 unregister_chrdev_region(ape->cdevno, 1/*count*/);
1123 fail_alloc:
1124 return -1;
1127 /* sg_exit() - Cleanup character device
1129 * XXX Should ideally be tied to the device, on device remove, not module exit.
1132 static void sg_exit(struct ape_dev *ape)
1134 printk(KERN_DEBUG DRV_NAME " sg_exit()\n");
1135 /* remove the character device */
1136 cdev_del(&ape->cdev);
1137 /* free the dynamically allocated character device node */
1138 unregister_chrdev_region(ape->cdevno, 1/*count*/);
1141 #endif /* ALTPCIECHDMA_CDEV */
1143 /* used to register the driver with the PCI kernel sub system
1144 * @see LDD3 page 311
1146 static struct pci_driver pci_driver = {
1147 .name = DRV_NAME,
1148 .id_table = ids,
1149 .probe = probe,
1150 .remove = __devexit_p(remove),
1151 /* resume, suspend are optional */
1155 * alterapciechdma_init() - Module initialization, registers devices.
1157 static int __init alterapciechdma_init(void)
1159 int rc = 0;
1160 printk(KERN_DEBUG DRV_NAME " init(), built at " __DATE__ " " __TIME__ "\n");
1161 /* register this driver with the PCI bus driver */
1162 rc = pci_register_driver(&pci_driver);
1163 if (rc < 0)
1164 return rc;
1165 return 0;
1169 * alterapciechdma_init() - Module cleanup, unregisters devices.
1171 static void __exit alterapciechdma_exit(void)
1173 printk(KERN_DEBUG DRV_NAME " exit(), built at " __DATE__ " " __TIME__ "\n");
1174 /* unregister this driver from the PCI bus driver */
1175 pci_unregister_driver(&pci_driver);
1178 MODULE_LICENSE("GPL");
1180 module_init(alterapciechdma_init);
1181 module_exit(alterapciechdma_exit);