x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / staging / p9auth / p9auth.c
blob8ccfff723eecd6e7863b8d801f68b01f4ed8129b
1 /*
2 * Plan 9 style capability device implementation for the Linux Kernel
4 * Copyright 2008, 2009 Ashwin Ganti <ashwin.ganti@gmail.com>
6 * Released under the GPLv2
8 */
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/moduleparam.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/errno.h>
15 #include <linux/fcntl.h>
16 #include <linux/cdev.h>
17 #include <linux/uaccess.h>
18 #include <linux/list.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/crypto.h>
22 #include <linux/highmem.h>
23 #include <linux/scatterlist.h>
24 #include <linux/sched.h>
25 #include <linux/cred.h>
27 #ifndef CAP_MAJOR
28 #define CAP_MAJOR 0
29 #endif
31 #ifndef CAP_NR_DEVS
32 #define CAP_NR_DEVS 2 /* caphash and capuse */
33 #endif
35 #ifndef CAP_NODE_SIZE
36 #define CAP_NODE_SIZE 20
37 #endif
39 #define MAX_DIGEST_SIZE 20
41 struct cap_node {
42 char data[CAP_NODE_SIZE];
43 struct list_head list;
46 struct cap_dev {
47 struct cap_node *head;
48 int node_size;
49 unsigned long size;
50 struct semaphore sem;
51 struct cdev cdev;
54 static int cap_major = CAP_MAJOR;
55 static int cap_minor;
56 static int cap_nr_devs = CAP_NR_DEVS;
57 static int cap_node_size = CAP_NODE_SIZE;
59 module_param(cap_major, int, S_IRUGO);
60 module_param(cap_minor, int, S_IRUGO);
61 module_param(cap_nr_devs, int, S_IRUGO);
63 MODULE_AUTHOR("Ashwin Ganti");
64 MODULE_LICENSE("GPL");
66 static struct cap_dev *cap_devices;
68 static void hexdump(unsigned char *buf, unsigned int len)
70 while (len--)
71 printk("%02x", *buf++);
72 printk("\n");
75 static char *cap_hash(char *plain_text, unsigned int plain_text_size,
76 char *key, unsigned int key_size)
78 struct scatterlist sg;
79 char *result;
80 struct crypto_hash *tfm;
81 struct hash_desc desc;
82 int ret;
84 tfm = crypto_alloc_hash("hmac(sha1)", 0, CRYPTO_ALG_ASYNC);
85 if (IS_ERR(tfm)) {
86 printk(KERN_ERR
87 "failed to load transform for hmac(sha1): %ld\n",
88 PTR_ERR(tfm));
89 return NULL;
92 desc.tfm = tfm;
93 desc.flags = 0;
95 result = kzalloc(MAX_DIGEST_SIZE, GFP_KERNEL);
96 if (!result) {
97 printk(KERN_ERR "out of memory!\n");
98 goto out;
101 sg_set_buf(&sg, plain_text, plain_text_size);
103 ret = crypto_hash_setkey(tfm, key, key_size);
104 if (ret) {
105 printk(KERN_ERR "setkey() failed ret=%d\n", ret);
106 kfree(result);
107 result = NULL;
108 goto out;
111 ret = crypto_hash_digest(&desc, &sg, plain_text_size, result);
112 if (ret) {
113 printk(KERN_ERR "digest () failed ret=%d\n", ret);
114 kfree(result);
115 result = NULL;
116 goto out;
119 printk(KERN_DEBUG "crypto hash digest size %d\n",
120 crypto_hash_digestsize(tfm));
121 hexdump(result, MAX_DIGEST_SIZE);
123 out:
124 crypto_free_hash(tfm);
125 return result;
128 static int cap_trim(struct cap_dev *dev)
130 struct cap_node *tmp;
131 struct list_head *pos, *q;
132 if (dev->head != NULL) {
133 list_for_each_safe(pos, q, &(dev->head->list)) {
134 tmp = list_entry(pos, struct cap_node, list);
135 list_del(pos);
136 kfree(tmp);
139 return 0;
142 static int cap_open(struct inode *inode, struct file *filp)
144 struct cap_dev *dev;
145 dev = container_of(inode->i_cdev, struct cap_dev, cdev);
146 filp->private_data = dev;
148 /* trim to 0 the length of the device if open was write-only */
149 if ((filp->f_flags & O_ACCMODE) == O_WRONLY) {
150 if (down_interruptible(&dev->sem))
151 return -ERESTARTSYS;
152 cap_trim(dev);
153 up(&dev->sem);
155 /* initialise the head if it is NULL */
156 if (dev->head == NULL) {
157 dev->head = kmalloc(sizeof(struct cap_node), GFP_KERNEL);
158 INIT_LIST_HEAD(&(dev->head->list));
160 return 0;
163 static int cap_release(struct inode *inode, struct file *filp)
165 return 0;
168 static ssize_t cap_write(struct file *filp, const char __user *buf,
169 size_t count, loff_t *f_pos)
171 struct cap_node *node_ptr, *tmp;
172 struct list_head *pos;
173 struct cap_dev *dev = filp->private_data;
174 ssize_t retval = -ENOMEM;
175 struct cred *new;
176 int len, target_int, source_int, flag = 0;
177 char *user_buf, *user_buf_running, *source_user, *target_user,
178 *rand_str, *hash_str, *result;
180 if (down_interruptible(&dev->sem))
181 return -ERESTARTSYS;
183 user_buf_running = NULL;
184 hash_str = NULL;
185 node_ptr = kmalloc(sizeof(struct cap_node), GFP_KERNEL);
186 user_buf = kzalloc(count+1, GFP_KERNEL);
187 if (!node_ptr || !user_buf)
188 goto out;
190 if (copy_from_user(user_buf, buf, count)) {
191 retval = -EFAULT;
192 goto out;
196 * If the minor number is 0 ( /dev/caphash ) then simply add the
197 * hashed capability supplied by the user to the list of hashes
199 if (0 == iminor(filp->f_dentry->d_inode)) {
200 if (count > CAP_NODE_SIZE) {
201 retval = -EINVAL;
202 goto out;
204 printk(KERN_INFO "Capability being written to /dev/caphash : \n");
205 hexdump(user_buf, count);
206 memcpy(node_ptr->data, user_buf, count);
207 list_add(&(node_ptr->list), &(dev->head->list));
208 node_ptr = NULL;
209 } else {
210 char *tmpu;
211 if (!cap_devices[0].head ||
212 list_empty(&(cap_devices[0].head->list))) {
213 retval = -EINVAL;
214 goto out;
217 * break the supplied string into tokens with @ as the
218 * delimiter If the string is "user1@user2@randomstring" we
219 * need to split it and hash 'user1@user2' using 'randomstring'
220 * as the key.
222 tmpu = user_buf_running = kstrdup(user_buf, GFP_KERNEL);
223 source_user = strsep(&tmpu, "@");
224 target_user = strsep(&tmpu, "@");
225 rand_str = tmpu;
226 if (!source_user || !target_user || !rand_str) {
227 retval = -EINVAL;
228 goto out;
231 /* hash the string user1@user2 with rand_str as the key */
232 len = strlen(source_user) + strlen(target_user) + 1;
233 /* src, @, len, \0 */
234 hash_str = kzalloc(len+1, GFP_KERNEL);
235 strcat(hash_str, source_user);
236 strcat(hash_str, "@");
237 strcat(hash_str, target_user);
239 printk(KERN_ALERT "the source user is %s \n", source_user);
240 printk(KERN_ALERT "the target user is %s \n", target_user);
242 result = cap_hash(hash_str, len, rand_str, strlen(rand_str));
243 if (NULL == result) {
244 retval = -EFAULT;
245 goto out;
247 memcpy(node_ptr->data, result, CAP_NODE_SIZE); /* why? */
248 /* Change the process's uid if the hash is present in the
249 * list of hashes
251 list_for_each(pos, &(cap_devices->head->list)) {
253 * Change the user id of the process if the hashes
254 * match
256 if (0 ==
257 memcmp(result,
258 list_entry(pos, struct cap_node,
259 list)->data,
260 CAP_NODE_SIZE)) {
261 target_int = (unsigned int)
262 simple_strtol(target_user, NULL, 0);
263 source_int = (unsigned int)
264 simple_strtol(source_user, NULL, 0);
265 flag = 1;
268 * Check whether the process writing to capuse
269 * is actually owned by the source owner
271 if (source_int != current_uid()) {
272 printk(KERN_ALERT
273 "Process is not owned by the source user of the capability.\n");
274 retval = -EFAULT;
275 goto out;
278 * What all id's need to be changed here? uid,
279 * euid, fsid, savedids ?? Currently I am
280 * changing the effective user id since most of
281 * the authorisation decisions are based on it
283 new = prepare_creds();
284 if (!new) {
285 retval = -ENOMEM;
286 goto out;
288 new->uid = (uid_t) target_int;
289 new->euid = (uid_t) target_int;
290 retval = commit_creds(new);
291 if (retval)
292 goto out;
295 * Remove the capability from the list and
296 * break
298 tmp = list_entry(pos, struct cap_node, list);
299 list_del(pos);
300 kfree(tmp);
301 break;
304 if (0 == flag) {
306 * The capability is not present in the list of the
307 * hashes stored, hence return failure
309 printk(KERN_ALERT
310 "Invalid capabiliy written to /dev/capuse \n");
311 retval = -EFAULT;
312 goto out;
315 *f_pos += count;
316 retval = count;
317 /* update the size */
318 if (dev->size < *f_pos)
319 dev->size = *f_pos;
321 out:
322 kfree(node_ptr);
323 kfree(user_buf);
324 kfree(user_buf_running);
325 kfree(hash_str);
326 up(&dev->sem);
327 return retval;
330 static const struct file_operations cap_fops = {
331 .owner = THIS_MODULE,
332 .write = cap_write,
333 .open = cap_open,
334 .release = cap_release,
337 static void cap_cleanup_module(void)
339 int i;
340 dev_t devno = MKDEV(cap_major, cap_minor);
341 if (cap_devices) {
342 for (i = 0; i < cap_nr_devs; i++) {
343 cap_trim(cap_devices + i);
344 cdev_del(&cap_devices[i].cdev);
346 kfree(cap_devices);
348 unregister_chrdev_region(devno, cap_nr_devs);
352 static void cap_setup_cdev(struct cap_dev *dev, int index)
354 int err, devno = MKDEV(cap_major, cap_minor + index);
355 cdev_init(&dev->cdev, &cap_fops);
356 dev->cdev.owner = THIS_MODULE;
357 dev->cdev.ops = &cap_fops;
358 err = cdev_add(&dev->cdev, devno, 1);
359 if (err)
360 printk(KERN_NOTICE "Error %d adding cap%d", err, index);
363 static int cap_init_module(void)
365 int result, i;
366 dev_t dev = 0;
368 if (cap_major) {
369 dev = MKDEV(cap_major, cap_minor);
370 result = register_chrdev_region(dev, cap_nr_devs, "cap");
371 } else {
372 result = alloc_chrdev_region(&dev, cap_minor, cap_nr_devs,
373 "cap");
374 cap_major = MAJOR(dev);
377 if (result < 0) {
378 printk(KERN_WARNING "cap: can't get major %d\n",
379 cap_major);
380 return result;
383 cap_devices = kzalloc(cap_nr_devs * sizeof(struct cap_dev),
384 GFP_KERNEL);
385 if (!cap_devices) {
386 result = -ENOMEM;
387 goto fail;
390 /* Initialize each device. */
391 for (i = 0; i < cap_nr_devs; i++) {
392 cap_devices[i].node_size = cap_node_size;
393 init_MUTEX(&cap_devices[i].sem);
394 cap_setup_cdev(&cap_devices[i], i);
397 return 0;
399 fail:
400 cap_cleanup_module();
401 return result;
404 module_init(cap_init_module);
405 module_exit(cap_cleanup_module);