x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / usb / host / oxu210hp-hcd.c
blob50f57f468836da478f87c19e353dfb811f112b93
1 /*
2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
6 * the chip is a quasi-EHCI compatible.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/init.h>
33 #include <linux/timer.h>
34 #include <linux/list.h>
35 #include <linux/interrupt.h>
36 #include <linux/usb.h>
37 #include <linux/moduleparam.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/io.h>
41 #include "../core/hcd.h"
43 #include <asm/irq.h>
44 #include <asm/system.h>
45 #include <asm/unaligned.h>
47 #include <linux/irq.h>
48 #include <linux/platform_device.h>
50 #include "oxu210hp.h"
52 #define DRIVER_VERSION "0.0.50"
55 * Main defines
58 #define oxu_dbg(oxu, fmt, args...) \
59 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
60 #define oxu_err(oxu, fmt, args...) \
61 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
62 #define oxu_info(oxu, fmt, args...) \
63 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
65 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
67 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
70 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
72 return (struct oxu_hcd *) (hcd->hcd_priv);
76 * Debug stuff
79 #undef OXU_URB_TRACE
80 #undef OXU_VERBOSE_DEBUG
82 #ifdef OXU_VERBOSE_DEBUG
83 #define oxu_vdbg oxu_dbg
84 #else
85 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
86 #endif
88 #ifdef DEBUG
90 static int __attribute__((__unused__))
91 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
93 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
94 label, label[0] ? " " : "", status,
95 (status & STS_ASS) ? " Async" : "",
96 (status & STS_PSS) ? " Periodic" : "",
97 (status & STS_RECL) ? " Recl" : "",
98 (status & STS_HALT) ? " Halt" : "",
99 (status & STS_IAA) ? " IAA" : "",
100 (status & STS_FATAL) ? " FATAL" : "",
101 (status & STS_FLR) ? " FLR" : "",
102 (status & STS_PCD) ? " PCD" : "",
103 (status & STS_ERR) ? " ERR" : "",
104 (status & STS_INT) ? " INT" : ""
108 static int __attribute__((__unused__))
109 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
111 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
112 label, label[0] ? " " : "", enable,
113 (enable & STS_IAA) ? " IAA" : "",
114 (enable & STS_FATAL) ? " FATAL" : "",
115 (enable & STS_FLR) ? " FLR" : "",
116 (enable & STS_PCD) ? " PCD" : "",
117 (enable & STS_ERR) ? " ERR" : "",
118 (enable & STS_INT) ? " INT" : ""
122 static const char *const fls_strings[] =
123 { "1024", "512", "256", "??" };
125 static int dbg_command_buf(char *buf, unsigned len,
126 const char *label, u32 command)
128 return scnprintf(buf, len,
129 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
130 label, label[0] ? " " : "", command,
131 (command & CMD_PARK) ? "park" : "(park)",
132 CMD_PARK_CNT(command),
133 (command >> 16) & 0x3f,
134 (command & CMD_LRESET) ? " LReset" : "",
135 (command & CMD_IAAD) ? " IAAD" : "",
136 (command & CMD_ASE) ? " Async" : "",
137 (command & CMD_PSE) ? " Periodic" : "",
138 fls_strings[(command >> 2) & 0x3],
139 (command & CMD_RESET) ? " Reset" : "",
140 (command & CMD_RUN) ? "RUN" : "HALT"
144 static int dbg_port_buf(char *buf, unsigned len, const char *label,
145 int port, u32 status)
147 char *sig;
149 /* signaling state */
150 switch (status & (3 << 10)) {
151 case 0 << 10:
152 sig = "se0";
153 break;
154 case 1 << 10:
155 sig = "k"; /* low speed */
156 break;
157 case 2 << 10:
158 sig = "j";
159 break;
160 default:
161 sig = "?";
162 break;
165 return scnprintf(buf, len,
166 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
167 label, label[0] ? " " : "", port, status,
168 (status & PORT_POWER) ? " POWER" : "",
169 (status & PORT_OWNER) ? " OWNER" : "",
170 sig,
171 (status & PORT_RESET) ? " RESET" : "",
172 (status & PORT_SUSPEND) ? " SUSPEND" : "",
173 (status & PORT_RESUME) ? " RESUME" : "",
174 (status & PORT_OCC) ? " OCC" : "",
175 (status & PORT_OC) ? " OC" : "",
176 (status & PORT_PEC) ? " PEC" : "",
177 (status & PORT_PE) ? " PE" : "",
178 (status & PORT_CSC) ? " CSC" : "",
179 (status & PORT_CONNECT) ? " CONNECT" : ""
183 #else
185 static inline int __attribute__((__unused__))
186 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
187 { return 0; }
189 static inline int __attribute__((__unused__))
190 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
191 { return 0; }
193 static inline int __attribute__((__unused__))
194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195 { return 0; }
197 static inline int __attribute__((__unused__))
198 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
199 { return 0; }
201 #endif /* DEBUG */
203 /* functions have the "wrong" filename when they're output... */
204 #define dbg_status(oxu, label, status) { \
205 char _buf[80]; \
206 dbg_status_buf(_buf, sizeof _buf, label, status); \
207 oxu_dbg(oxu, "%s\n", _buf); \
210 #define dbg_cmd(oxu, label, command) { \
211 char _buf[80]; \
212 dbg_command_buf(_buf, sizeof _buf, label, command); \
213 oxu_dbg(oxu, "%s\n", _buf); \
216 #define dbg_port(oxu, label, port, status) { \
217 char _buf[80]; \
218 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
219 oxu_dbg(oxu, "%s\n", _buf); \
223 * Module parameters
226 /* Initial IRQ latency: faster than hw default */
227 static int log2_irq_thresh; /* 0 to 6 */
228 module_param(log2_irq_thresh, int, S_IRUGO);
229 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
231 /* Initial park setting: slower than hw default */
232 static unsigned park;
233 module_param(park, uint, S_IRUGO);
234 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
236 /* For flakey hardware, ignore overcurrent indicators */
237 static int ignore_oc;
238 module_param(ignore_oc, bool, S_IRUGO);
239 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
242 static void ehci_work(struct oxu_hcd *oxu);
243 static int oxu_hub_control(struct usb_hcd *hcd,
244 u16 typeReq, u16 wValue, u16 wIndex,
245 char *buf, u16 wLength);
248 * Local functions
251 /* Low level read/write registers functions */
252 static inline u32 oxu_readl(void *base, u32 reg)
254 return readl(base + reg);
257 static inline void oxu_writel(void *base, u32 reg, u32 val)
259 writel(val, base + reg);
262 static inline void timer_action_done(struct oxu_hcd *oxu,
263 enum ehci_timer_action action)
265 clear_bit(action, &oxu->actions);
268 static inline void timer_action(struct oxu_hcd *oxu,
269 enum ehci_timer_action action)
271 if (!test_and_set_bit(action, &oxu->actions)) {
272 unsigned long t;
274 switch (action) {
275 case TIMER_IAA_WATCHDOG:
276 t = EHCI_IAA_JIFFIES;
277 break;
278 case TIMER_IO_WATCHDOG:
279 t = EHCI_IO_JIFFIES;
280 break;
281 case TIMER_ASYNC_OFF:
282 t = EHCI_ASYNC_JIFFIES;
283 break;
284 case TIMER_ASYNC_SHRINK:
285 default:
286 t = EHCI_SHRINK_JIFFIES;
287 break;
289 t += jiffies;
290 /* all timings except IAA watchdog can be overridden.
291 * async queue SHRINK often precedes IAA. while it's ready
292 * to go OFF neither can matter, and afterwards the IO
293 * watchdog stops unless there's still periodic traffic.
295 if (action != TIMER_IAA_WATCHDOG
296 && t > oxu->watchdog.expires
297 && timer_pending(&oxu->watchdog))
298 return;
299 mod_timer(&oxu->watchdog, t);
304 * handshake - spin reading hc until handshake completes or fails
305 * @ptr: address of hc register to be read
306 * @mask: bits to look at in result of read
307 * @done: value of those bits when handshake succeeds
308 * @usec: timeout in microseconds
310 * Returns negative errno, or zero on success
312 * Success happens when the "mask" bits have the specified value (hardware
313 * handshake done). There are two failure modes: "usec" have passed (major
314 * hardware flakeout), or the register reads as all-ones (hardware removed).
316 * That last failure should_only happen in cases like physical cardbus eject
317 * before driver shutdown. But it also seems to be caused by bugs in cardbus
318 * bridge shutdown: shutting down the bridge before the devices using it.
320 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
321 u32 mask, u32 done, int usec)
323 u32 result;
325 do {
326 result = readl(ptr);
327 if (result == ~(u32)0) /* card removed */
328 return -ENODEV;
329 result &= mask;
330 if (result == done)
331 return 0;
332 udelay(1);
333 usec--;
334 } while (usec > 0);
335 return -ETIMEDOUT;
338 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
339 static int ehci_halt(struct oxu_hcd *oxu)
341 u32 temp = readl(&oxu->regs->status);
343 /* disable any irqs left enabled by previous code */
344 writel(0, &oxu->regs->intr_enable);
346 if ((temp & STS_HALT) != 0)
347 return 0;
349 temp = readl(&oxu->regs->command);
350 temp &= ~CMD_RUN;
351 writel(temp, &oxu->regs->command);
352 return handshake(oxu, &oxu->regs->status,
353 STS_HALT, STS_HALT, 16 * 125);
356 /* Put TDI/ARC silicon into EHCI mode */
357 static void tdi_reset(struct oxu_hcd *oxu)
359 u32 __iomem *reg_ptr;
360 u32 tmp;
362 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
363 tmp = readl(reg_ptr);
364 tmp |= 0x3;
365 writel(tmp, reg_ptr);
368 /* Reset a non-running (STS_HALT == 1) controller */
369 static int ehci_reset(struct oxu_hcd *oxu)
371 int retval;
372 u32 command = readl(&oxu->regs->command);
374 command |= CMD_RESET;
375 dbg_cmd(oxu, "reset", command);
376 writel(command, &oxu->regs->command);
377 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
378 oxu->next_statechange = jiffies;
379 retval = handshake(oxu, &oxu->regs->command,
380 CMD_RESET, 0, 250 * 1000);
382 if (retval)
383 return retval;
385 tdi_reset(oxu);
387 return retval;
390 /* Idle the controller (from running) */
391 static void ehci_quiesce(struct oxu_hcd *oxu)
393 u32 temp;
395 #ifdef DEBUG
396 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
397 BUG();
398 #endif
400 /* wait for any schedule enables/disables to take effect */
401 temp = readl(&oxu->regs->command) << 10;
402 temp &= STS_ASS | STS_PSS;
403 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
404 temp, 16 * 125) != 0) {
405 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
406 return;
409 /* then disable anything that's still active */
410 temp = readl(&oxu->regs->command);
411 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
412 writel(temp, &oxu->regs->command);
414 /* hardware can take 16 microframes to turn off ... */
415 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
416 0, 16 * 125) != 0) {
417 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
418 return;
422 static int check_reset_complete(struct oxu_hcd *oxu, int index,
423 u32 __iomem *status_reg, int port_status)
425 if (!(port_status & PORT_CONNECT)) {
426 oxu->reset_done[index] = 0;
427 return port_status;
430 /* if reset finished and it's still not enabled -- handoff */
431 if (!(port_status & PORT_PE)) {
432 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
433 index+1);
434 return port_status;
435 } else
436 oxu_dbg(oxu, "port %d high speed\n", index + 1);
438 return port_status;
441 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
442 struct usb_hub_descriptor *desc)
444 int ports = HCS_N_PORTS(oxu->hcs_params);
445 u16 temp;
447 desc->bDescriptorType = 0x29;
448 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
449 desc->bHubContrCurrent = 0;
451 desc->bNbrPorts = ports;
452 temp = 1 + (ports / 8);
453 desc->bDescLength = 7 + 2 * temp;
455 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
456 memset(&desc->bitmap[0], 0, temp);
457 memset(&desc->bitmap[temp], 0xff, temp);
459 temp = 0x0008; /* per-port overcurrent reporting */
460 if (HCS_PPC(oxu->hcs_params))
461 temp |= 0x0001; /* per-port power control */
462 else
463 temp |= 0x0002; /* no power switching */
464 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
468 /* Allocate an OXU210HP on-chip memory data buffer
470 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
471 * Each transfer descriptor has one or more on-chip memory data buffers.
473 * Data buffers are allocated from a fix sized pool of data blocks.
474 * To minimise fragmentation and give reasonable memory utlisation,
475 * data buffers are allocated with sizes the power of 2 multiples of
476 * the block size, starting on an address a multiple of the allocated size.
478 * FIXME: callers of this function require a buffer to be allocated for
479 * len=0. This is a waste of on-chip memory and should be fix. Then this
480 * function should be changed to not allocate a buffer for len=0.
482 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
484 int n_blocks; /* minium blocks needed to hold len */
485 int a_blocks; /* blocks allocated */
486 int i, j;
488 /* Don't allocte bigger than supported */
489 if (len > BUFFER_SIZE * BUFFER_NUM) {
490 oxu_err(oxu, "buffer too big (%d)\n", len);
491 return -ENOMEM;
494 spin_lock(&oxu->mem_lock);
496 /* Number of blocks needed to hold len */
497 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
499 /* Round the number of blocks up to the power of 2 */
500 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
503 /* Find a suitable available data buffer */
504 for (i = 0; i < BUFFER_NUM;
505 i += max(a_blocks, (int)oxu->db_used[i])) {
507 /* Check all the required blocks are available */
508 for (j = 0; j < a_blocks; j++)
509 if (oxu->db_used[i + j])
510 break;
512 if (j != a_blocks)
513 continue;
515 /* Allocate blocks found! */
516 qtd->buffer = (void *) &oxu->mem->db_pool[i];
517 qtd->buffer_dma = virt_to_phys(qtd->buffer);
519 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
520 oxu->db_used[i] = a_blocks;
522 spin_unlock(&oxu->mem_lock);
524 return 0;
527 /* Failed */
529 spin_unlock(&oxu->mem_lock);
531 return -ENOMEM;
534 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
536 int index;
538 spin_lock(&oxu->mem_lock);
540 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
541 / BUFFER_SIZE;
542 oxu->db_used[index] = 0;
543 qtd->qtd_buffer_len = 0;
544 qtd->buffer_dma = 0;
545 qtd->buffer = NULL;
547 spin_unlock(&oxu->mem_lock);
549 return;
552 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
554 memset(qtd, 0, sizeof *qtd);
555 qtd->qtd_dma = dma;
556 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
557 qtd->hw_next = EHCI_LIST_END;
558 qtd->hw_alt_next = EHCI_LIST_END;
559 INIT_LIST_HEAD(&qtd->qtd_list);
562 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
564 int index;
566 if (qtd->buffer)
567 oxu_buf_free(oxu, qtd);
569 spin_lock(&oxu->mem_lock);
571 index = qtd - &oxu->mem->qtd_pool[0];
572 oxu->qtd_used[index] = 0;
574 spin_unlock(&oxu->mem_lock);
576 return;
579 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
581 int i;
582 struct ehci_qtd *qtd = NULL;
584 spin_lock(&oxu->mem_lock);
586 for (i = 0; i < QTD_NUM; i++)
587 if (!oxu->qtd_used[i])
588 break;
590 if (i < QTD_NUM) {
591 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
592 memset(qtd, 0, sizeof *qtd);
594 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
595 qtd->hw_next = EHCI_LIST_END;
596 qtd->hw_alt_next = EHCI_LIST_END;
597 INIT_LIST_HEAD(&qtd->qtd_list);
599 qtd->qtd_dma = virt_to_phys(qtd);
601 oxu->qtd_used[i] = 1;
604 spin_unlock(&oxu->mem_lock);
606 return qtd;
609 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
611 int index;
613 spin_lock(&oxu->mem_lock);
615 index = qh - &oxu->mem->qh_pool[0];
616 oxu->qh_used[index] = 0;
618 spin_unlock(&oxu->mem_lock);
620 return;
623 static void qh_destroy(struct kref *kref)
625 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
626 struct oxu_hcd *oxu = qh->oxu;
628 /* clean qtds first, and know this is not linked */
629 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
630 oxu_dbg(oxu, "unused qh not empty!\n");
631 BUG();
633 if (qh->dummy)
634 oxu_qtd_free(oxu, qh->dummy);
635 oxu_qh_free(oxu, qh);
638 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
640 int i;
641 struct ehci_qh *qh = NULL;
643 spin_lock(&oxu->mem_lock);
645 for (i = 0; i < QHEAD_NUM; i++)
646 if (!oxu->qh_used[i])
647 break;
649 if (i < QHEAD_NUM) {
650 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
651 memset(qh, 0, sizeof *qh);
653 kref_init(&qh->kref);
654 qh->oxu = oxu;
655 qh->qh_dma = virt_to_phys(qh);
656 INIT_LIST_HEAD(&qh->qtd_list);
658 /* dummy td enables safe urb queuing */
659 qh->dummy = ehci_qtd_alloc(oxu);
660 if (qh->dummy == NULL) {
661 oxu_dbg(oxu, "no dummy td\n");
662 oxu->qh_used[i] = 0;
664 return NULL;
667 oxu->qh_used[i] = 1;
670 spin_unlock(&oxu->mem_lock);
672 return qh;
675 /* to share a qh (cpu threads, or hc) */
676 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
678 kref_get(&qh->kref);
679 return qh;
682 static inline void qh_put(struct ehci_qh *qh)
684 kref_put(&qh->kref, qh_destroy);
687 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
689 int index;
691 spin_lock(&oxu->mem_lock);
693 index = murb - &oxu->murb_pool[0];
694 oxu->murb_used[index] = 0;
696 spin_unlock(&oxu->mem_lock);
698 return;
701 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
704 int i;
705 struct oxu_murb *murb = NULL;
707 spin_lock(&oxu->mem_lock);
709 for (i = 0; i < MURB_NUM; i++)
710 if (!oxu->murb_used[i])
711 break;
713 if (i < MURB_NUM) {
714 murb = &(oxu->murb_pool)[i];
716 oxu->murb_used[i] = 1;
719 spin_unlock(&oxu->mem_lock);
721 return murb;
724 /* The queue heads and transfer descriptors are managed from pools tied
725 * to each of the "per device" structures.
726 * This is the initialisation and cleanup code.
728 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
730 kfree(oxu->murb_pool);
731 oxu->murb_pool = NULL;
733 if (oxu->async)
734 qh_put(oxu->async);
735 oxu->async = NULL;
737 del_timer(&oxu->urb_timer);
739 oxu->periodic = NULL;
741 /* shadow periodic table */
742 kfree(oxu->pshadow);
743 oxu->pshadow = NULL;
746 /* Remember to add cleanup code (above) if you add anything here.
748 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
750 int i;
752 for (i = 0; i < oxu->periodic_size; i++)
753 oxu->mem->frame_list[i] = EHCI_LIST_END;
754 for (i = 0; i < QHEAD_NUM; i++)
755 oxu->qh_used[i] = 0;
756 for (i = 0; i < QTD_NUM; i++)
757 oxu->qtd_used[i] = 0;
759 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
760 if (!oxu->murb_pool)
761 goto fail;
763 for (i = 0; i < MURB_NUM; i++)
764 oxu->murb_used[i] = 0;
766 oxu->async = oxu_qh_alloc(oxu);
767 if (!oxu->async)
768 goto fail;
770 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
771 oxu->periodic_dma = virt_to_phys(oxu->periodic);
773 for (i = 0; i < oxu->periodic_size; i++)
774 oxu->periodic[i] = EHCI_LIST_END;
776 /* software shadow of hardware table */
777 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
778 if (oxu->pshadow != NULL)
779 return 0;
781 fail:
782 oxu_dbg(oxu, "couldn't init memory\n");
783 ehci_mem_cleanup(oxu);
784 return -ENOMEM;
787 /* Fill a qtd, returning how much of the buffer we were able to queue up.
789 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
790 int token, int maxpacket)
792 int i, count;
793 u64 addr = buf;
795 /* one buffer entry per 4K ... first might be short or unaligned */
796 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
797 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
798 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
799 if (likely(len < count)) /* ... iff needed */
800 count = len;
801 else {
802 buf += 0x1000;
803 buf &= ~0x0fff;
805 /* per-qtd limit: from 16K to 20K (best alignment) */
806 for (i = 1; count < len && i < 5; i++) {
807 addr = buf;
808 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
809 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
810 buf += 0x1000;
811 if ((count + 0x1000) < len)
812 count += 0x1000;
813 else
814 count = len;
817 /* short packets may only terminate transfers */
818 if (count != len)
819 count -= (count % maxpacket);
821 qtd->hw_token = cpu_to_le32((count << 16) | token);
822 qtd->length = count;
824 return count;
827 static inline void qh_update(struct oxu_hcd *oxu,
828 struct ehci_qh *qh, struct ehci_qtd *qtd)
830 /* writes to an active overlay are unsafe */
831 BUG_ON(qh->qh_state != QH_STATE_IDLE);
833 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
834 qh->hw_alt_next = EHCI_LIST_END;
836 /* Except for control endpoints, we make hardware maintain data
837 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
838 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
839 * ever clear it.
841 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
842 unsigned is_out, epnum;
844 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
845 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
846 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
847 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
848 usb_settoggle(qh->dev, epnum, is_out, 1);
852 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
853 wmb();
854 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
857 /* If it weren't for a common silicon quirk (writing the dummy into the qh
858 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
859 * recovery (including urb dequeue) would need software changes to a QH...
861 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
863 struct ehci_qtd *qtd;
865 if (list_empty(&qh->qtd_list))
866 qtd = qh->dummy;
867 else {
868 qtd = list_entry(qh->qtd_list.next,
869 struct ehci_qtd, qtd_list);
870 /* first qtd may already be partially processed */
871 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
872 qtd = NULL;
875 if (qtd)
876 qh_update(oxu, qh, qtd);
879 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
880 size_t length, u32 token)
882 /* count IN/OUT bytes, not SETUP (even short packets) */
883 if (likely(QTD_PID(token) != 2))
884 urb->actual_length += length - QTD_LENGTH(token);
886 /* don't modify error codes */
887 if (unlikely(urb->status != -EINPROGRESS))
888 return;
890 /* force cleanup after short read; not always an error */
891 if (unlikely(IS_SHORT_READ(token)))
892 urb->status = -EREMOTEIO;
894 /* serious "can't proceed" faults reported by the hardware */
895 if (token & QTD_STS_HALT) {
896 if (token & QTD_STS_BABBLE) {
897 /* FIXME "must" disable babbling device's port too */
898 urb->status = -EOVERFLOW;
899 } else if (token & QTD_STS_MMF) {
900 /* fs/ls interrupt xfer missed the complete-split */
901 urb->status = -EPROTO;
902 } else if (token & QTD_STS_DBE) {
903 urb->status = (QTD_PID(token) == 1) /* IN ? */
904 ? -ENOSR /* hc couldn't read data */
905 : -ECOMM; /* hc couldn't write data */
906 } else if (token & QTD_STS_XACT) {
907 /* timeout, bad crc, wrong PID, etc; retried */
908 if (QTD_CERR(token))
909 urb->status = -EPIPE;
910 else {
911 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
912 urb->dev->devpath,
913 usb_pipeendpoint(urb->pipe),
914 usb_pipein(urb->pipe) ? "in" : "out");
915 urb->status = -EPROTO;
917 /* CERR nonzero + no errors + halt --> stall */
918 } else if (QTD_CERR(token))
919 urb->status = -EPIPE;
920 else /* unknown */
921 urb->status = -EPROTO;
923 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
924 usb_pipedevice(urb->pipe),
925 usb_pipeendpoint(urb->pipe),
926 usb_pipein(urb->pipe) ? "in" : "out",
927 token, urb->status);
931 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
932 __releases(oxu->lock)
933 __acquires(oxu->lock)
935 if (likely(urb->hcpriv != NULL)) {
936 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
938 /* S-mask in a QH means it's an interrupt urb */
939 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
941 /* ... update hc-wide periodic stats (for usbfs) */
942 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
944 qh_put(qh);
947 urb->hcpriv = NULL;
948 switch (urb->status) {
949 case -EINPROGRESS: /* success */
950 urb->status = 0;
951 default: /* fault */
952 break;
953 case -EREMOTEIO: /* fault or normal */
954 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
955 urb->status = 0;
956 break;
957 case -ECONNRESET: /* canceled */
958 case -ENOENT:
959 break;
962 #ifdef OXU_URB_TRACE
963 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
964 __func__, urb->dev->devpath, urb,
965 usb_pipeendpoint(urb->pipe),
966 usb_pipein(urb->pipe) ? "in" : "out",
967 urb->status,
968 urb->actual_length, urb->transfer_buffer_length);
969 #endif
971 /* complete() can reenter this HCD */
972 spin_unlock(&oxu->lock);
973 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
974 spin_lock(&oxu->lock);
977 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
978 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
980 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
981 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
983 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
985 /* Process and free completed qtds for a qh, returning URBs to drivers.
986 * Chases up to qh->hw_current. Returns number of completions called,
987 * indicating how much "real" work we did.
989 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
991 struct ehci_qtd *last = NULL, *end = qh->dummy;
992 struct list_head *entry, *tmp;
993 int stopped;
994 unsigned count = 0;
995 int do_status = 0;
996 u8 state;
997 struct oxu_murb *murb = NULL;
999 if (unlikely(list_empty(&qh->qtd_list)))
1000 return count;
1002 /* completions (or tasks on other cpus) must never clobber HALT
1003 * till we've gone through and cleaned everything up, even when
1004 * they add urbs to this qh's queue or mark them for unlinking.
1006 * NOTE: unlinking expects to be done in queue order.
1008 state = qh->qh_state;
1009 qh->qh_state = QH_STATE_COMPLETING;
1010 stopped = (state == QH_STATE_IDLE);
1012 /* remove de-activated QTDs from front of queue.
1013 * after faults (including short reads), cleanup this urb
1014 * then let the queue advance.
1015 * if queue is stopped, handles unlinks.
1017 list_for_each_safe(entry, tmp, &qh->qtd_list) {
1018 struct ehci_qtd *qtd;
1019 struct urb *urb;
1020 u32 token = 0;
1022 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1023 urb = qtd->urb;
1025 /* Clean up any state from previous QTD ...*/
1026 if (last) {
1027 if (likely(last->urb != urb)) {
1028 if (last->urb->complete == NULL) {
1029 murb = (struct oxu_murb *) last->urb;
1030 last->urb = murb->main;
1031 if (murb->last) {
1032 ehci_urb_done(oxu, last->urb);
1033 count++;
1035 oxu_murb_free(oxu, murb);
1036 } else {
1037 ehci_urb_done(oxu, last->urb);
1038 count++;
1041 oxu_qtd_free(oxu, last);
1042 last = NULL;
1045 /* ignore urbs submitted during completions we reported */
1046 if (qtd == end)
1047 break;
1049 /* hardware copies qtd out of qh overlay */
1050 rmb();
1051 token = le32_to_cpu(qtd->hw_token);
1053 /* always clean up qtds the hc de-activated */
1054 if ((token & QTD_STS_ACTIVE) == 0) {
1056 if ((token & QTD_STS_HALT) != 0) {
1057 stopped = 1;
1059 /* magic dummy for some short reads; qh won't advance.
1060 * that silicon quirk can kick in with this dummy too.
1062 } else if (IS_SHORT_READ(token) &&
1063 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1064 stopped = 1;
1065 goto halt;
1068 /* stop scanning when we reach qtds the hc is using */
1069 } else if (likely(!stopped &&
1070 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1071 break;
1073 } else {
1074 stopped = 1;
1076 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1077 urb->status = -ESHUTDOWN;
1079 /* ignore active urbs unless some previous qtd
1080 * for the urb faulted (including short read) or
1081 * its urb was canceled. we may patch qh or qtds.
1083 if (likely(urb->status == -EINPROGRESS))
1084 continue;
1086 /* issue status after short control reads */
1087 if (unlikely(do_status != 0)
1088 && QTD_PID(token) == 0 /* OUT */) {
1089 do_status = 0;
1090 continue;
1093 /* token in overlay may be most current */
1094 if (state == QH_STATE_IDLE
1095 && cpu_to_le32(qtd->qtd_dma)
1096 == qh->hw_current)
1097 token = le32_to_cpu(qh->hw_token);
1099 /* force halt for unlinked or blocked qh, so we'll
1100 * patch the qh later and so that completions can't
1101 * activate it while we "know" it's stopped.
1103 if ((HALT_BIT & qh->hw_token) == 0) {
1104 halt:
1105 qh->hw_token |= HALT_BIT;
1106 wmb();
1110 /* Remove it from the queue */
1111 qtd_copy_status(oxu, urb->complete ?
1112 urb : ((struct oxu_murb *) urb)->main,
1113 qtd->length, token);
1114 if ((usb_pipein(qtd->urb->pipe)) &&
1115 (NULL != qtd->transfer_buffer))
1116 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1117 do_status = (urb->status == -EREMOTEIO)
1118 && usb_pipecontrol(urb->pipe);
1120 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1121 last = list_entry(qtd->qtd_list.prev,
1122 struct ehci_qtd, qtd_list);
1123 last->hw_next = qtd->hw_next;
1125 list_del(&qtd->qtd_list);
1126 last = qtd;
1129 /* last urb's completion might still need calling */
1130 if (likely(last != NULL)) {
1131 if (last->urb->complete == NULL) {
1132 murb = (struct oxu_murb *) last->urb;
1133 last->urb = murb->main;
1134 if (murb->last) {
1135 ehci_urb_done(oxu, last->urb);
1136 count++;
1138 oxu_murb_free(oxu, murb);
1139 } else {
1140 ehci_urb_done(oxu, last->urb);
1141 count++;
1143 oxu_qtd_free(oxu, last);
1146 /* restore original state; caller must unlink or relink */
1147 qh->qh_state = state;
1149 /* be sure the hardware's done with the qh before refreshing
1150 * it after fault cleanup, or recovering from silicon wrongly
1151 * overlaying the dummy qtd (which reduces DMA chatter).
1153 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1154 switch (state) {
1155 case QH_STATE_IDLE:
1156 qh_refresh(oxu, qh);
1157 break;
1158 case QH_STATE_LINKED:
1159 /* should be rare for periodic transfers,
1160 * except maybe high bandwidth ...
1162 if ((cpu_to_le32(QH_SMASK)
1163 & qh->hw_info2) != 0) {
1164 intr_deschedule(oxu, qh);
1165 (void) qh_schedule(oxu, qh);
1166 } else
1167 unlink_async(oxu, qh);
1168 break;
1169 /* otherwise, unlink already started */
1173 return count;
1176 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1177 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1178 /* ... and packet size, for any kind of endpoint descriptor */
1179 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1181 /* Reverse of qh_urb_transaction: free a list of TDs.
1182 * used for cleanup after errors, before HC sees an URB's TDs.
1184 static void qtd_list_free(struct oxu_hcd *oxu,
1185 struct urb *urb, struct list_head *qtd_list)
1187 struct list_head *entry, *temp;
1189 list_for_each_safe(entry, temp, qtd_list) {
1190 struct ehci_qtd *qtd;
1192 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1193 list_del(&qtd->qtd_list);
1194 oxu_qtd_free(oxu, qtd);
1198 /* Create a list of filled qtds for this URB; won't link into qh.
1200 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1201 struct urb *urb,
1202 struct list_head *head,
1203 gfp_t flags)
1205 struct ehci_qtd *qtd, *qtd_prev;
1206 dma_addr_t buf;
1207 int len, maxpacket;
1208 int is_input;
1209 u32 token;
1210 void *transfer_buf = NULL;
1211 int ret;
1214 * URBs map to sequences of QTDs: one logical transaction
1216 qtd = ehci_qtd_alloc(oxu);
1217 if (unlikely(!qtd))
1218 return NULL;
1219 list_add_tail(&qtd->qtd_list, head);
1220 qtd->urb = urb;
1222 token = QTD_STS_ACTIVE;
1223 token |= (EHCI_TUNE_CERR << 10);
1224 /* for split transactions, SplitXState initialized to zero */
1226 len = urb->transfer_buffer_length;
1227 is_input = usb_pipein(urb->pipe);
1228 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1229 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1231 if (usb_pipecontrol(urb->pipe)) {
1232 /* SETUP pid */
1233 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1234 if (ret)
1235 goto cleanup;
1237 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1238 token | (2 /* "setup" */ << 8), 8);
1239 memcpy(qtd->buffer, qtd->urb->setup_packet,
1240 sizeof(struct usb_ctrlrequest));
1242 /* ... and always at least one more pid */
1243 token ^= QTD_TOGGLE;
1244 qtd_prev = qtd;
1245 qtd = ehci_qtd_alloc(oxu);
1246 if (unlikely(!qtd))
1247 goto cleanup;
1248 qtd->urb = urb;
1249 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1250 list_add_tail(&qtd->qtd_list, head);
1252 /* for zero length DATA stages, STATUS is always IN */
1253 if (len == 0)
1254 token |= (1 /* "in" */ << 8);
1258 * Data transfer stage: buffer setup
1261 ret = oxu_buf_alloc(oxu, qtd, len);
1262 if (ret)
1263 goto cleanup;
1265 buf = qtd->buffer_dma;
1266 transfer_buf = urb->transfer_buffer;
1268 if (!is_input)
1269 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1271 if (is_input)
1272 token |= (1 /* "in" */ << 8);
1273 /* else it's already initted to "out" pid (0 << 8) */
1275 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1278 * buffer gets wrapped in one or more qtds;
1279 * last one may be "short" (including zero len)
1280 * and may serve as a control status ack
1282 for (;;) {
1283 int this_qtd_len;
1285 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1286 qtd->transfer_buffer = transfer_buf;
1287 len -= this_qtd_len;
1288 buf += this_qtd_len;
1289 transfer_buf += this_qtd_len;
1290 if (is_input)
1291 qtd->hw_alt_next = oxu->async->hw_alt_next;
1293 /* qh makes control packets use qtd toggle; maybe switch it */
1294 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1295 token ^= QTD_TOGGLE;
1297 if (likely(len <= 0))
1298 break;
1300 qtd_prev = qtd;
1301 qtd = ehci_qtd_alloc(oxu);
1302 if (unlikely(!qtd))
1303 goto cleanup;
1304 if (likely(len > 0)) {
1305 ret = oxu_buf_alloc(oxu, qtd, len);
1306 if (ret)
1307 goto cleanup;
1309 qtd->urb = urb;
1310 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1311 list_add_tail(&qtd->qtd_list, head);
1314 /* unless the bulk/interrupt caller wants a chance to clean
1315 * up after short reads, hc should advance qh past this urb
1317 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1318 || usb_pipecontrol(urb->pipe)))
1319 qtd->hw_alt_next = EHCI_LIST_END;
1322 * control requests may need a terminating data "status" ack;
1323 * bulk ones may need a terminating short packet (zero length).
1325 if (likely(urb->transfer_buffer_length != 0)) {
1326 int one_more = 0;
1328 if (usb_pipecontrol(urb->pipe)) {
1329 one_more = 1;
1330 token ^= 0x0100; /* "in" <--> "out" */
1331 token |= QTD_TOGGLE; /* force DATA1 */
1332 } else if (usb_pipebulk(urb->pipe)
1333 && (urb->transfer_flags & URB_ZERO_PACKET)
1334 && !(urb->transfer_buffer_length % maxpacket)) {
1335 one_more = 1;
1337 if (one_more) {
1338 qtd_prev = qtd;
1339 qtd = ehci_qtd_alloc(oxu);
1340 if (unlikely(!qtd))
1341 goto cleanup;
1342 qtd->urb = urb;
1343 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1344 list_add_tail(&qtd->qtd_list, head);
1346 /* never any data in such packets */
1347 qtd_fill(qtd, 0, 0, token, 0);
1351 /* by default, enable interrupt on urb completion */
1352 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1353 return head;
1355 cleanup:
1356 qtd_list_free(oxu, urb, head);
1357 return NULL;
1360 /* Each QH holds a qtd list; a QH is used for everything except iso.
1362 * For interrupt urbs, the scheduler must set the microframe scheduling
1363 * mask(s) each time the QH gets scheduled. For highspeed, that's
1364 * just one microframe in the s-mask. For split interrupt transactions
1365 * there are additional complications: c-mask, maybe FSTNs.
1367 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1368 struct urb *urb, gfp_t flags)
1370 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1371 u32 info1 = 0, info2 = 0;
1372 int is_input, type;
1373 int maxp = 0;
1375 if (!qh)
1376 return qh;
1379 * init endpoint/device data for this QH
1381 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1382 info1 |= usb_pipedevice(urb->pipe) << 0;
1384 is_input = usb_pipein(urb->pipe);
1385 type = usb_pipetype(urb->pipe);
1386 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1388 /* Compute interrupt scheduling parameters just once, and save.
1389 * - allowing for high bandwidth, how many nsec/uframe are used?
1390 * - split transactions need a second CSPLIT uframe; same question
1391 * - splits also need a schedule gap (for full/low speed I/O)
1392 * - qh has a polling interval
1394 * For control/bulk requests, the HC or TT handles these.
1396 if (type == PIPE_INTERRUPT) {
1397 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1398 is_input, 0,
1399 hb_mult(maxp) * max_packet(maxp)));
1400 qh->start = NO_FRAME;
1402 if (urb->dev->speed == USB_SPEED_HIGH) {
1403 qh->c_usecs = 0;
1404 qh->gap_uf = 0;
1406 qh->period = urb->interval >> 3;
1407 if (qh->period == 0 && urb->interval != 1) {
1408 /* NOTE interval 2 or 4 uframes could work.
1409 * But interval 1 scheduling is simpler, and
1410 * includes high bandwidth.
1412 dbg("intr period %d uframes, NYET!",
1413 urb->interval);
1414 goto done;
1416 } else {
1417 struct usb_tt *tt = urb->dev->tt;
1418 int think_time;
1420 /* gap is f(FS/LS transfer times) */
1421 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1422 is_input, 0, maxp) / (125 * 1000);
1424 /* FIXME this just approximates SPLIT/CSPLIT times */
1425 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1426 qh->c_usecs = qh->usecs + HS_USECS(0);
1427 qh->usecs = HS_USECS(1);
1428 } else { /* SPLIT+DATA, gap, CSPLIT */
1429 qh->usecs += HS_USECS(1);
1430 qh->c_usecs = HS_USECS(0);
1433 think_time = tt ? tt->think_time : 0;
1434 qh->tt_usecs = NS_TO_US(think_time +
1435 usb_calc_bus_time(urb->dev->speed,
1436 is_input, 0, max_packet(maxp)));
1437 qh->period = urb->interval;
1441 /* support for tt scheduling, and access to toggles */
1442 qh->dev = urb->dev;
1444 /* using TT? */
1445 switch (urb->dev->speed) {
1446 case USB_SPEED_LOW:
1447 info1 |= (1 << 12); /* EPS "low" */
1448 /* FALL THROUGH */
1450 case USB_SPEED_FULL:
1451 /* EPS 0 means "full" */
1452 if (type != PIPE_INTERRUPT)
1453 info1 |= (EHCI_TUNE_RL_TT << 28);
1454 if (type == PIPE_CONTROL) {
1455 info1 |= (1 << 27); /* for TT */
1456 info1 |= 1 << 14; /* toggle from qtd */
1458 info1 |= maxp << 16;
1460 info2 |= (EHCI_TUNE_MULT_TT << 30);
1461 info2 |= urb->dev->ttport << 23;
1463 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1465 break;
1467 case USB_SPEED_HIGH: /* no TT involved */
1468 info1 |= (2 << 12); /* EPS "high" */
1469 if (type == PIPE_CONTROL) {
1470 info1 |= (EHCI_TUNE_RL_HS << 28);
1471 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1472 info1 |= 1 << 14; /* toggle from qtd */
1473 info2 |= (EHCI_TUNE_MULT_HS << 30);
1474 } else if (type == PIPE_BULK) {
1475 info1 |= (EHCI_TUNE_RL_HS << 28);
1476 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1477 info2 |= (EHCI_TUNE_MULT_HS << 30);
1478 } else { /* PIPE_INTERRUPT */
1479 info1 |= max_packet(maxp) << 16;
1480 info2 |= hb_mult(maxp) << 30;
1482 break;
1483 default:
1484 dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed);
1485 done:
1486 qh_put(qh);
1487 return NULL;
1490 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1492 /* init as live, toggle clear, advance to dummy */
1493 qh->qh_state = QH_STATE_IDLE;
1494 qh->hw_info1 = cpu_to_le32(info1);
1495 qh->hw_info2 = cpu_to_le32(info2);
1496 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1497 qh_refresh(oxu, qh);
1498 return qh;
1501 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1503 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1505 __le32 dma = QH_NEXT(qh->qh_dma);
1506 struct ehci_qh *head;
1508 /* (re)start the async schedule? */
1509 head = oxu->async;
1510 timer_action_done(oxu, TIMER_ASYNC_OFF);
1511 if (!head->qh_next.qh) {
1512 u32 cmd = readl(&oxu->regs->command);
1514 if (!(cmd & CMD_ASE)) {
1515 /* in case a clear of CMD_ASE didn't take yet */
1516 (void)handshake(oxu, &oxu->regs->status,
1517 STS_ASS, 0, 150);
1518 cmd |= CMD_ASE | CMD_RUN;
1519 writel(cmd, &oxu->regs->command);
1520 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1521 /* posted write need not be known to HC yet ... */
1525 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1526 if (qh->qh_state == QH_STATE_IDLE)
1527 qh_refresh(oxu, qh);
1529 /* splice right after start */
1530 qh->qh_next = head->qh_next;
1531 qh->hw_next = head->hw_next;
1532 wmb();
1534 head->qh_next.qh = qh;
1535 head->hw_next = dma;
1537 qh->qh_state = QH_STATE_LINKED;
1538 /* qtd completions reported later by interrupt */
1541 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1544 * For control/bulk/interrupt, return QH with these TDs appended.
1545 * Allocates and initializes the QH if necessary.
1546 * Returns null if it can't allocate a QH it needs to.
1547 * If the QH has TDs (urbs) already, that's great.
1549 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1550 struct urb *urb, struct list_head *qtd_list,
1551 int epnum, void **ptr)
1553 struct ehci_qh *qh = NULL;
1555 qh = (struct ehci_qh *) *ptr;
1556 if (unlikely(qh == NULL)) {
1557 /* can't sleep here, we have oxu->lock... */
1558 qh = qh_make(oxu, urb, GFP_ATOMIC);
1559 *ptr = qh;
1561 if (likely(qh != NULL)) {
1562 struct ehci_qtd *qtd;
1564 if (unlikely(list_empty(qtd_list)))
1565 qtd = NULL;
1566 else
1567 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1568 qtd_list);
1570 /* control qh may need patching ... */
1571 if (unlikely(epnum == 0)) {
1573 /* usb_reset_device() briefly reverts to address 0 */
1574 if (usb_pipedevice(urb->pipe) == 0)
1575 qh->hw_info1 &= ~QH_ADDR_MASK;
1578 /* just one way to queue requests: swap with the dummy qtd.
1579 * only hc or qh_refresh() ever modify the overlay.
1581 if (likely(qtd != NULL)) {
1582 struct ehci_qtd *dummy;
1583 dma_addr_t dma;
1584 __le32 token;
1586 /* to avoid racing the HC, use the dummy td instead of
1587 * the first td of our list (becomes new dummy). both
1588 * tds stay deactivated until we're done, when the
1589 * HC is allowed to fetch the old dummy (4.10.2).
1591 token = qtd->hw_token;
1592 qtd->hw_token = HALT_BIT;
1593 wmb();
1594 dummy = qh->dummy;
1596 dma = dummy->qtd_dma;
1597 *dummy = *qtd;
1598 dummy->qtd_dma = dma;
1600 list_del(&qtd->qtd_list);
1601 list_add(&dummy->qtd_list, qtd_list);
1602 list_splice(qtd_list, qh->qtd_list.prev);
1604 ehci_qtd_init(qtd, qtd->qtd_dma);
1605 qh->dummy = qtd;
1607 /* hc must see the new dummy at list end */
1608 dma = qtd->qtd_dma;
1609 qtd = list_entry(qh->qtd_list.prev,
1610 struct ehci_qtd, qtd_list);
1611 qtd->hw_next = QTD_NEXT(dma);
1613 /* let the hc process these next qtds */
1614 dummy->hw_token = (token & ~(0x80));
1615 wmb();
1616 dummy->hw_token = token;
1618 urb->hcpriv = qh_get(qh);
1621 return qh;
1624 static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
1625 struct list_head *qtd_list, gfp_t mem_flags)
1627 struct ehci_qtd *qtd;
1628 int epnum;
1629 unsigned long flags;
1630 struct ehci_qh *qh = NULL;
1631 int rc = 0;
1633 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1634 epnum = urb->ep->desc.bEndpointAddress;
1636 #ifdef OXU_URB_TRACE
1637 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1638 __func__, urb->dev->devpath, urb,
1639 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1640 urb->transfer_buffer_length,
1641 qtd, urb->ep->hcpriv);
1642 #endif
1644 spin_lock_irqsave(&oxu->lock, flags);
1645 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1646 &oxu_to_hcd(oxu)->flags))) {
1647 rc = -ESHUTDOWN;
1648 goto done;
1651 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1652 if (unlikely(qh == NULL)) {
1653 rc = -ENOMEM;
1654 goto done;
1657 /* Control/bulk operations through TTs don't need scheduling,
1658 * the HC and TT handle it when the TT has a buffer ready.
1660 if (likely(qh->qh_state == QH_STATE_IDLE))
1661 qh_link_async(oxu, qh_get(qh));
1662 done:
1663 spin_unlock_irqrestore(&oxu->lock, flags);
1664 if (unlikely(qh == NULL))
1665 qtd_list_free(oxu, urb, qtd_list);
1666 return rc;
1669 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1671 static void end_unlink_async(struct oxu_hcd *oxu)
1673 struct ehci_qh *qh = oxu->reclaim;
1674 struct ehci_qh *next;
1676 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1678 qh->qh_state = QH_STATE_IDLE;
1679 qh->qh_next.qh = NULL;
1680 qh_put(qh); /* refcount from reclaim */
1682 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1683 next = qh->reclaim;
1684 oxu->reclaim = next;
1685 oxu->reclaim_ready = 0;
1686 qh->reclaim = NULL;
1688 qh_completions(oxu, qh);
1690 if (!list_empty(&qh->qtd_list)
1691 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1692 qh_link_async(oxu, qh);
1693 else {
1694 qh_put(qh); /* refcount from async list */
1696 /* it's not free to turn the async schedule on/off; leave it
1697 * active but idle for a while once it empties.
1699 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1700 && oxu->async->qh_next.qh == NULL)
1701 timer_action(oxu, TIMER_ASYNC_OFF);
1704 if (next) {
1705 oxu->reclaim = NULL;
1706 start_unlink_async(oxu, next);
1710 /* makes sure the async qh will become idle */
1711 /* caller must own oxu->lock */
1713 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1715 int cmd = readl(&oxu->regs->command);
1716 struct ehci_qh *prev;
1718 #ifdef DEBUG
1719 assert_spin_locked(&oxu->lock);
1720 if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1721 && qh->qh_state != QH_STATE_UNLINK_WAIT))
1722 BUG();
1723 #endif
1725 /* stop async schedule right now? */
1726 if (unlikely(qh == oxu->async)) {
1727 /* can't get here without STS_ASS set */
1728 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1729 && !oxu->reclaim) {
1730 /* ... and CMD_IAAD clear */
1731 writel(cmd & ~CMD_ASE, &oxu->regs->command);
1732 wmb();
1733 /* handshake later, if we need to */
1734 timer_action_done(oxu, TIMER_ASYNC_OFF);
1736 return;
1739 qh->qh_state = QH_STATE_UNLINK;
1740 oxu->reclaim = qh = qh_get(qh);
1742 prev = oxu->async;
1743 while (prev->qh_next.qh != qh)
1744 prev = prev->qh_next.qh;
1746 prev->hw_next = qh->hw_next;
1747 prev->qh_next = qh->qh_next;
1748 wmb();
1750 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1751 /* if (unlikely(qh->reclaim != 0))
1752 * this will recurse, probably not much
1754 end_unlink_async(oxu);
1755 return;
1758 oxu->reclaim_ready = 0;
1759 cmd |= CMD_IAAD;
1760 writel(cmd, &oxu->regs->command);
1761 (void) readl(&oxu->regs->command);
1762 timer_action(oxu, TIMER_IAA_WATCHDOG);
1765 static void scan_async(struct oxu_hcd *oxu)
1767 struct ehci_qh *qh;
1768 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1770 if (!++(oxu->stamp))
1771 oxu->stamp++;
1772 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1773 rescan:
1774 qh = oxu->async->qh_next.qh;
1775 if (likely(qh != NULL)) {
1776 do {
1777 /* clean any finished work for this qh */
1778 if (!list_empty(&qh->qtd_list)
1779 && qh->stamp != oxu->stamp) {
1780 int temp;
1782 /* unlinks could happen here; completion
1783 * reporting drops the lock. rescan using
1784 * the latest schedule, but don't rescan
1785 * qhs we already finished (no looping).
1787 qh = qh_get(qh);
1788 qh->stamp = oxu->stamp;
1789 temp = qh_completions(oxu, qh);
1790 qh_put(qh);
1791 if (temp != 0)
1792 goto rescan;
1795 /* unlink idle entries, reducing HC PCI usage as well
1796 * as HCD schedule-scanning costs. delay for any qh
1797 * we just scanned, there's a not-unusual case that it
1798 * doesn't stay idle for long.
1799 * (plus, avoids some kind of re-activation race.)
1801 if (list_empty(&qh->qtd_list)) {
1802 if (qh->stamp == oxu->stamp)
1803 action = TIMER_ASYNC_SHRINK;
1804 else if (!oxu->reclaim
1805 && qh->qh_state == QH_STATE_LINKED)
1806 start_unlink_async(oxu, qh);
1809 qh = qh->qh_next.qh;
1810 } while (qh);
1812 if (action == TIMER_ASYNC_SHRINK)
1813 timer_action(oxu, TIMER_ASYNC_SHRINK);
1817 * periodic_next_shadow - return "next" pointer on shadow list
1818 * @periodic: host pointer to qh/itd/sitd
1819 * @tag: hardware tag for type of this record
1821 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1822 __le32 tag)
1824 switch (tag) {
1825 default:
1826 case Q_TYPE_QH:
1827 return &periodic->qh->qh_next;
1831 /* caller must hold oxu->lock */
1832 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1834 union ehci_shadow *prev_p = &oxu->pshadow[frame];
1835 __le32 *hw_p = &oxu->periodic[frame];
1836 union ehci_shadow here = *prev_p;
1838 /* find predecessor of "ptr"; hw and shadow lists are in sync */
1839 while (here.ptr && here.ptr != ptr) {
1840 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1841 hw_p = here.hw_next;
1842 here = *prev_p;
1844 /* an interrupt entry (at list end) could have been shared */
1845 if (!here.ptr)
1846 return;
1848 /* update shadow and hardware lists ... the old "next" pointers
1849 * from ptr may still be in use, the caller updates them.
1851 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1852 *hw_p = *here.hw_next;
1855 /* how many of the uframe's 125 usecs are allocated? */
1856 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1857 unsigned frame, unsigned uframe)
1859 __le32 *hw_p = &oxu->periodic[frame];
1860 union ehci_shadow *q = &oxu->pshadow[frame];
1861 unsigned usecs = 0;
1863 while (q->ptr) {
1864 switch (Q_NEXT_TYPE(*hw_p)) {
1865 case Q_TYPE_QH:
1866 default:
1867 /* is it in the S-mask? */
1868 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1869 usecs += q->qh->usecs;
1870 /* ... or C-mask? */
1871 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1872 usecs += q->qh->c_usecs;
1873 hw_p = &q->qh->hw_next;
1874 q = &q->qh->qh_next;
1875 break;
1878 #ifdef DEBUG
1879 if (usecs > 100)
1880 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1881 frame * 8 + uframe, usecs);
1882 #endif
1883 return usecs;
1886 static int enable_periodic(struct oxu_hcd *oxu)
1888 u32 cmd;
1889 int status;
1891 /* did clearing PSE did take effect yet?
1892 * takes effect only at frame boundaries...
1894 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1895 if (status != 0) {
1896 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1897 return status;
1900 cmd = readl(&oxu->regs->command) | CMD_PSE;
1901 writel(cmd, &oxu->regs->command);
1902 /* posted write ... PSS happens later */
1903 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1905 /* make sure ehci_work scans these */
1906 oxu->next_uframe = readl(&oxu->regs->frame_index)
1907 % (oxu->periodic_size << 3);
1908 return 0;
1911 static int disable_periodic(struct oxu_hcd *oxu)
1913 u32 cmd;
1914 int status;
1916 /* did setting PSE not take effect yet?
1917 * takes effect only at frame boundaries...
1919 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1920 if (status != 0) {
1921 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1922 return status;
1925 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1926 writel(cmd, &oxu->regs->command);
1927 /* posted write ... */
1929 oxu->next_uframe = -1;
1930 return 0;
1933 /* periodic schedule slots have iso tds (normal or split) first, then a
1934 * sparse tree for active interrupt transfers.
1936 * this just links in a qh; caller guarantees uframe masks are set right.
1937 * no FSTN support (yet; oxu 0.96+)
1939 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1941 unsigned i;
1942 unsigned period = qh->period;
1944 dev_dbg(&qh->dev->dev,
1945 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1946 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1947 qh, qh->start, qh->usecs, qh->c_usecs);
1949 /* high bandwidth, or otherwise every microframe */
1950 if (period == 0)
1951 period = 1;
1953 for (i = qh->start; i < oxu->periodic_size; i += period) {
1954 union ehci_shadow *prev = &oxu->pshadow[i];
1955 __le32 *hw_p = &oxu->periodic[i];
1956 union ehci_shadow here = *prev;
1957 __le32 type = 0;
1959 /* skip the iso nodes at list head */
1960 while (here.ptr) {
1961 type = Q_NEXT_TYPE(*hw_p);
1962 if (type == Q_TYPE_QH)
1963 break;
1964 prev = periodic_next_shadow(prev, type);
1965 hw_p = &here.qh->hw_next;
1966 here = *prev;
1969 /* sorting each branch by period (slow-->fast)
1970 * enables sharing interior tree nodes
1972 while (here.ptr && qh != here.qh) {
1973 if (qh->period > here.qh->period)
1974 break;
1975 prev = &here.qh->qh_next;
1976 hw_p = &here.qh->hw_next;
1977 here = *prev;
1979 /* link in this qh, unless some earlier pass did that */
1980 if (qh != here.qh) {
1981 qh->qh_next = here;
1982 if (here.qh)
1983 qh->hw_next = *hw_p;
1984 wmb();
1985 prev->qh = qh;
1986 *hw_p = QH_NEXT(qh->qh_dma);
1989 qh->qh_state = QH_STATE_LINKED;
1990 qh_get(qh);
1992 /* update per-qh bandwidth for usbfs */
1993 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1994 ? ((qh->usecs + qh->c_usecs) / qh->period)
1995 : (qh->usecs * 8);
1997 /* maybe enable periodic schedule processing */
1998 if (!oxu->periodic_sched++)
1999 return enable_periodic(oxu);
2001 return 0;
2004 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2006 unsigned i;
2007 unsigned period;
2009 /* FIXME:
2010 * IF this isn't high speed
2011 * and this qh is active in the current uframe
2012 * (and overlay token SplitXstate is false?)
2013 * THEN
2014 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2017 /* high bandwidth, or otherwise part of every microframe */
2018 period = qh->period;
2019 if (period == 0)
2020 period = 1;
2022 for (i = qh->start; i < oxu->periodic_size; i += period)
2023 periodic_unlink(oxu, i, qh);
2025 /* update per-qh bandwidth for usbfs */
2026 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2027 ? ((qh->usecs + qh->c_usecs) / qh->period)
2028 : (qh->usecs * 8);
2030 dev_dbg(&qh->dev->dev,
2031 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2032 qh->period,
2033 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2034 qh, qh->start, qh->usecs, qh->c_usecs);
2036 /* qh->qh_next still "live" to HC */
2037 qh->qh_state = QH_STATE_UNLINK;
2038 qh->qh_next.ptr = NULL;
2039 qh_put(qh);
2041 /* maybe turn off periodic schedule */
2042 oxu->periodic_sched--;
2043 if (!oxu->periodic_sched)
2044 (void) disable_periodic(oxu);
2047 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2049 unsigned wait;
2051 qh_unlink_periodic(oxu, qh);
2053 /* simple/paranoid: always delay, expecting the HC needs to read
2054 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2055 * expect khubd to clean up after any CSPLITs we won't issue.
2056 * active high speed queues may need bigger delays...
2058 if (list_empty(&qh->qtd_list)
2059 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2060 wait = 2;
2061 else
2062 wait = 55; /* worst case: 3 * 1024 */
2064 udelay(wait);
2065 qh->qh_state = QH_STATE_IDLE;
2066 qh->hw_next = EHCI_LIST_END;
2067 wmb();
2070 static int check_period(struct oxu_hcd *oxu,
2071 unsigned frame, unsigned uframe,
2072 unsigned period, unsigned usecs)
2074 int claimed;
2076 /* complete split running into next frame?
2077 * given FSTN support, we could sometimes check...
2079 if (uframe >= 8)
2080 return 0;
2083 * 80% periodic == 100 usec/uframe available
2084 * convert "usecs we need" to "max already claimed"
2086 usecs = 100 - usecs;
2088 /* we "know" 2 and 4 uframe intervals were rejected; so
2089 * for period 0, check _every_ microframe in the schedule.
2091 if (unlikely(period == 0)) {
2092 do {
2093 for (uframe = 0; uframe < 7; uframe++) {
2094 claimed = periodic_usecs(oxu, frame, uframe);
2095 if (claimed > usecs)
2096 return 0;
2098 } while ((frame += 1) < oxu->periodic_size);
2100 /* just check the specified uframe, at that period */
2101 } else {
2102 do {
2103 claimed = periodic_usecs(oxu, frame, uframe);
2104 if (claimed > usecs)
2105 return 0;
2106 } while ((frame += period) < oxu->periodic_size);
2109 return 1;
2112 static int check_intr_schedule(struct oxu_hcd *oxu,
2113 unsigned frame, unsigned uframe,
2114 const struct ehci_qh *qh, __le32 *c_maskp)
2116 int retval = -ENOSPC;
2118 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2119 goto done;
2121 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2122 goto done;
2123 if (!qh->c_usecs) {
2124 retval = 0;
2125 *c_maskp = 0;
2126 goto done;
2129 done:
2130 return retval;
2133 /* "first fit" scheduling policy used the first time through,
2134 * or when the previous schedule slot can't be re-used.
2136 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2138 int status;
2139 unsigned uframe;
2140 __le32 c_mask;
2141 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2143 qh_refresh(oxu, qh);
2144 qh->hw_next = EHCI_LIST_END;
2145 frame = qh->start;
2147 /* reuse the previous schedule slots, if we can */
2148 if (frame < qh->period) {
2149 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2150 status = check_intr_schedule(oxu, frame, --uframe,
2151 qh, &c_mask);
2152 } else {
2153 uframe = 0;
2154 c_mask = 0;
2155 status = -ENOSPC;
2158 /* else scan the schedule to find a group of slots such that all
2159 * uframes have enough periodic bandwidth available.
2161 if (status) {
2162 /* "normal" case, uframing flexible except with splits */
2163 if (qh->period) {
2164 frame = qh->period - 1;
2165 do {
2166 for (uframe = 0; uframe < 8; uframe++) {
2167 status = check_intr_schedule(oxu,
2168 frame, uframe, qh,
2169 &c_mask);
2170 if (status == 0)
2171 break;
2173 } while (status && frame--);
2175 /* qh->period == 0 means every uframe */
2176 } else {
2177 frame = 0;
2178 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2180 if (status)
2181 goto done;
2182 qh->start = frame;
2184 /* reset S-frame and (maybe) C-frame masks */
2185 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2186 qh->hw_info2 |= qh->period
2187 ? cpu_to_le32(1 << uframe)
2188 : cpu_to_le32(QH_SMASK);
2189 qh->hw_info2 |= c_mask;
2190 } else
2191 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2193 /* stuff into the periodic schedule */
2194 status = qh_link_periodic(oxu, qh);
2195 done:
2196 return status;
2199 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2200 struct list_head *qtd_list, gfp_t mem_flags)
2202 unsigned epnum;
2203 unsigned long flags;
2204 struct ehci_qh *qh;
2205 int status = 0;
2206 struct list_head empty;
2208 /* get endpoint and transfer/schedule data */
2209 epnum = urb->ep->desc.bEndpointAddress;
2211 spin_lock_irqsave(&oxu->lock, flags);
2213 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2214 &oxu_to_hcd(oxu)->flags))) {
2215 status = -ESHUTDOWN;
2216 goto done;
2219 /* get qh and force any scheduling errors */
2220 INIT_LIST_HEAD(&empty);
2221 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2222 if (qh == NULL) {
2223 status = -ENOMEM;
2224 goto done;
2226 if (qh->qh_state == QH_STATE_IDLE) {
2227 status = qh_schedule(oxu, qh);
2228 if (status != 0)
2229 goto done;
2232 /* then queue the urb's tds to the qh */
2233 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2234 BUG_ON(qh == NULL);
2236 /* ... update usbfs periodic stats */
2237 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2239 done:
2240 spin_unlock_irqrestore(&oxu->lock, flags);
2241 if (status)
2242 qtd_list_free(oxu, urb, qtd_list);
2244 return status;
2247 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2248 gfp_t mem_flags)
2250 oxu_dbg(oxu, "iso support is missing!\n");
2251 return -ENOSYS;
2254 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2255 gfp_t mem_flags)
2257 oxu_dbg(oxu, "split iso support is missing!\n");
2258 return -ENOSYS;
2261 static void scan_periodic(struct oxu_hcd *oxu)
2263 unsigned frame, clock, now_uframe, mod;
2264 unsigned modified;
2266 mod = oxu->periodic_size << 3;
2269 * When running, scan from last scan point up to "now"
2270 * else clean up by scanning everything that's left.
2271 * Touches as few pages as possible: cache-friendly.
2273 now_uframe = oxu->next_uframe;
2274 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2275 clock = readl(&oxu->regs->frame_index);
2276 else
2277 clock = now_uframe + mod - 1;
2278 clock %= mod;
2280 for (;;) {
2281 union ehci_shadow q, *q_p;
2282 __le32 type, *hw_p;
2283 unsigned uframes;
2285 /* don't scan past the live uframe */
2286 frame = now_uframe >> 3;
2287 if (frame == (clock >> 3))
2288 uframes = now_uframe & 0x07;
2289 else {
2290 /* safe to scan the whole frame at once */
2291 now_uframe |= 0x07;
2292 uframes = 8;
2295 restart:
2296 /* scan each element in frame's queue for completions */
2297 q_p = &oxu->pshadow[frame];
2298 hw_p = &oxu->periodic[frame];
2299 q.ptr = q_p->ptr;
2300 type = Q_NEXT_TYPE(*hw_p);
2301 modified = 0;
2303 while (q.ptr != NULL) {
2304 union ehci_shadow temp;
2305 int live;
2307 live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2308 switch (type) {
2309 case Q_TYPE_QH:
2310 /* handle any completions */
2311 temp.qh = qh_get(q.qh);
2312 type = Q_NEXT_TYPE(q.qh->hw_next);
2313 q = q.qh->qh_next;
2314 modified = qh_completions(oxu, temp.qh);
2315 if (unlikely(list_empty(&temp.qh->qtd_list)))
2316 intr_deschedule(oxu, temp.qh);
2317 qh_put(temp.qh);
2318 break;
2319 default:
2320 dbg("corrupt type %d frame %d shadow %p",
2321 type, frame, q.ptr);
2322 q.ptr = NULL;
2325 /* assume completion callbacks modify the queue */
2326 if (unlikely(modified))
2327 goto restart;
2330 /* Stop when we catch up to the HC */
2332 /* FIXME: this assumes we won't get lapped when
2333 * latencies climb; that should be rare, but...
2334 * detect it, and just go all the way around.
2335 * FLR might help detect this case, so long as latencies
2336 * don't exceed periodic_size msec (default 1.024 sec).
2339 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2341 if (now_uframe == clock) {
2342 unsigned now;
2344 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2345 break;
2346 oxu->next_uframe = now_uframe;
2347 now = readl(&oxu->regs->frame_index) % mod;
2348 if (now_uframe == now)
2349 break;
2351 /* rescan the rest of this frame, then ... */
2352 clock = now;
2353 } else {
2354 now_uframe++;
2355 now_uframe %= mod;
2360 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2361 * The firmware seems to think that powering off is a wakeup event!
2362 * This routine turns off remote wakeup and everything else, on all ports.
2364 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2366 int port = HCS_N_PORTS(oxu->hcs_params);
2368 while (port--)
2369 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2372 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2374 unsigned port;
2376 if (!HCS_PPC(oxu->hcs_params))
2377 return;
2379 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2380 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2381 (void) oxu_hub_control(oxu_to_hcd(oxu),
2382 is_on ? SetPortFeature : ClearPortFeature,
2383 USB_PORT_FEAT_POWER,
2384 port--, NULL, 0);
2385 msleep(20);
2388 /* Called from some interrupts, timers, and so on.
2389 * It calls driver completion functions, after dropping oxu->lock.
2391 static void ehci_work(struct oxu_hcd *oxu)
2393 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2394 if (oxu->reclaim_ready)
2395 end_unlink_async(oxu);
2397 /* another CPU may drop oxu->lock during a schedule scan while
2398 * it reports urb completions. this flag guards against bogus
2399 * attempts at re-entrant schedule scanning.
2401 if (oxu->scanning)
2402 return;
2403 oxu->scanning = 1;
2404 scan_async(oxu);
2405 if (oxu->next_uframe != -1)
2406 scan_periodic(oxu);
2407 oxu->scanning = 0;
2409 /* the IO watchdog guards against hardware or driver bugs that
2410 * misplace IRQs, and should let us run completely without IRQs.
2411 * such lossage has been observed on both VT6202 and VT8235.
2413 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2414 (oxu->async->qh_next.ptr != NULL ||
2415 oxu->periodic_sched != 0))
2416 timer_action(oxu, TIMER_IO_WATCHDOG);
2419 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2421 /* if we need to use IAA and it's busy, defer */
2422 if (qh->qh_state == QH_STATE_LINKED
2423 && oxu->reclaim
2424 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2425 struct ehci_qh *last;
2427 for (last = oxu->reclaim;
2428 last->reclaim;
2429 last = last->reclaim)
2430 continue;
2431 qh->qh_state = QH_STATE_UNLINK_WAIT;
2432 last->reclaim = qh;
2434 /* bypass IAA if the hc can't care */
2435 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2436 end_unlink_async(oxu);
2438 /* something else might have unlinked the qh by now */
2439 if (qh->qh_state == QH_STATE_LINKED)
2440 start_unlink_async(oxu, qh);
2444 * USB host controller methods
2447 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2449 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2450 u32 status, pcd_status = 0;
2451 int bh;
2453 spin_lock(&oxu->lock);
2455 status = readl(&oxu->regs->status);
2457 /* e.g. cardbus physical eject */
2458 if (status == ~(u32) 0) {
2459 oxu_dbg(oxu, "device removed\n");
2460 goto dead;
2463 status &= INTR_MASK;
2464 if (!status) { /* irq sharing? */
2465 spin_unlock(&oxu->lock);
2466 return IRQ_NONE;
2469 /* clear (just) interrupts */
2470 writel(status, &oxu->regs->status);
2471 readl(&oxu->regs->command); /* unblock posted write */
2472 bh = 0;
2474 #ifdef OXU_VERBOSE_DEBUG
2475 /* unrequested/ignored: Frame List Rollover */
2476 dbg_status(oxu, "irq", status);
2477 #endif
2479 /* INT, ERR, and IAA interrupt rates can be throttled */
2481 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2482 if (likely((status & (STS_INT|STS_ERR)) != 0))
2483 bh = 1;
2485 /* complete the unlinking of some qh [4.15.2.3] */
2486 if (status & STS_IAA) {
2487 oxu->reclaim_ready = 1;
2488 bh = 1;
2491 /* remote wakeup [4.3.1] */
2492 if (status & STS_PCD) {
2493 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2494 pcd_status = status;
2496 /* resume root hub? */
2497 if (!(readl(&oxu->regs->command) & CMD_RUN))
2498 usb_hcd_resume_root_hub(hcd);
2500 while (i--) {
2501 int pstatus = readl(&oxu->regs->port_status[i]);
2503 if (pstatus & PORT_OWNER)
2504 continue;
2505 if (!(pstatus & PORT_RESUME)
2506 || oxu->reset_done[i] != 0)
2507 continue;
2509 /* start 20 msec resume signaling from this port,
2510 * and make khubd collect PORT_STAT_C_SUSPEND to
2511 * stop that signaling.
2513 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
2514 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2515 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2519 /* PCI errors [4.15.2.4] */
2520 if (unlikely((status & STS_FATAL) != 0)) {
2521 /* bogus "fatal" IRQs appear on some chips... why? */
2522 status = readl(&oxu->regs->status);
2523 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2524 dbg_status(oxu, "fatal", status);
2525 if (status & STS_HALT) {
2526 oxu_err(oxu, "fatal error\n");
2527 dead:
2528 ehci_reset(oxu);
2529 writel(0, &oxu->regs->configured_flag);
2530 /* generic layer kills/unlinks all urbs, then
2531 * uses oxu_stop to clean up the rest
2533 bh = 1;
2537 if (bh)
2538 ehci_work(oxu);
2539 spin_unlock(&oxu->lock);
2540 if (pcd_status & STS_PCD)
2541 usb_hcd_poll_rh_status(hcd);
2542 return IRQ_HANDLED;
2545 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2547 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2548 int ret = IRQ_HANDLED;
2550 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2551 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2553 /* Disable all interrupt */
2554 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2556 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2557 (!oxu->is_otg && (status & OXU_USBSPHI)))
2558 oxu210_hcd_irq(hcd);
2559 else
2560 ret = IRQ_NONE;
2562 /* Enable all interrupt back */
2563 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2565 return ret;
2568 static void oxu_watchdog(unsigned long param)
2570 struct oxu_hcd *oxu = (struct oxu_hcd *) param;
2571 unsigned long flags;
2573 spin_lock_irqsave(&oxu->lock, flags);
2575 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2576 if (oxu->reclaim) {
2577 u32 status = readl(&oxu->regs->status);
2578 if (status & STS_IAA) {
2579 oxu_vdbg(oxu, "lost IAA\n");
2580 writel(STS_IAA, &oxu->regs->status);
2581 oxu->reclaim_ready = 1;
2585 /* stop async processing after it's idled a bit */
2586 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2587 start_unlink_async(oxu, oxu->async);
2589 /* oxu could run by timer, without IRQs ... */
2590 ehci_work(oxu);
2592 spin_unlock_irqrestore(&oxu->lock, flags);
2595 /* One-time init, only for memory state.
2597 static int oxu_hcd_init(struct usb_hcd *hcd)
2599 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2600 u32 temp;
2601 int retval;
2602 u32 hcc_params;
2604 spin_lock_init(&oxu->lock);
2606 init_timer(&oxu->watchdog);
2607 oxu->watchdog.function = oxu_watchdog;
2608 oxu->watchdog.data = (unsigned long) oxu;
2611 * hw default: 1K periodic list heads, one per frame.
2612 * periodic_size can shrink by USBCMD update if hcc_params allows.
2614 oxu->periodic_size = DEFAULT_I_TDPS;
2615 retval = ehci_mem_init(oxu, GFP_KERNEL);
2616 if (retval < 0)
2617 return retval;
2619 /* controllers may cache some of the periodic schedule ... */
2620 hcc_params = readl(&oxu->caps->hcc_params);
2621 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
2622 oxu->i_thresh = 8;
2623 else /* N microframes cached */
2624 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2626 oxu->reclaim = NULL;
2627 oxu->reclaim_ready = 0;
2628 oxu->next_uframe = -1;
2631 * dedicate a qh for the async ring head, since we couldn't unlink
2632 * a 'real' qh without stopping the async schedule [4.8]. use it
2633 * as the 'reclamation list head' too.
2634 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2635 * from automatically advancing to the next td after short reads.
2637 oxu->async->qh_next.qh = NULL;
2638 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2639 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2640 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2641 oxu->async->hw_qtd_next = EHCI_LIST_END;
2642 oxu->async->qh_state = QH_STATE_LINKED;
2643 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2645 /* clear interrupt enables, set irq latency */
2646 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2647 log2_irq_thresh = 0;
2648 temp = 1 << (16 + log2_irq_thresh);
2649 if (HCC_CANPARK(hcc_params)) {
2650 /* HW default park == 3, on hardware that supports it (like
2651 * NVidia and ALI silicon), maximizes throughput on the async
2652 * schedule by avoiding QH fetches between transfers.
2654 * With fast usb storage devices and NForce2, "park" seems to
2655 * make problems: throughput reduction (!), data errors...
2657 if (park) {
2658 park = min(park, (unsigned) 3);
2659 temp |= CMD_PARK;
2660 temp |= park << 8;
2662 oxu_dbg(oxu, "park %d\n", park);
2664 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2665 /* periodic schedule size can be smaller than default */
2666 temp &= ~(3 << 2);
2667 temp |= (EHCI_TUNE_FLS << 2);
2669 oxu->command = temp;
2671 return 0;
2674 /* Called during probe() after chip reset completes.
2676 static int oxu_reset(struct usb_hcd *hcd)
2678 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2679 int ret;
2681 spin_lock_init(&oxu->mem_lock);
2682 INIT_LIST_HEAD(&oxu->urb_list);
2683 oxu->urb_len = 0;
2685 /* FIMXE */
2686 hcd->self.controller->dma_mask = NULL;
2688 if (oxu->is_otg) {
2689 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2690 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2691 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2693 oxu->mem = hcd->regs + OXU_SPH_MEM;
2694 } else {
2695 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2696 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2697 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2699 oxu->mem = hcd->regs + OXU_OTG_MEM;
2702 oxu->hcs_params = readl(&oxu->caps->hcs_params);
2703 oxu->sbrn = 0x20;
2705 ret = oxu_hcd_init(hcd);
2706 if (ret)
2707 return ret;
2709 return 0;
2712 static int oxu_run(struct usb_hcd *hcd)
2714 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2715 int retval;
2716 u32 temp, hcc_params;
2718 hcd->uses_new_polling = 1;
2719 hcd->poll_rh = 0;
2721 /* EHCI spec section 4.1 */
2722 retval = ehci_reset(oxu);
2723 if (retval != 0) {
2724 ehci_mem_cleanup(oxu);
2725 return retval;
2727 writel(oxu->periodic_dma, &oxu->regs->frame_list);
2728 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2730 /* hcc_params controls whether oxu->regs->segment must (!!!)
2731 * be used; it constrains QH/ITD/SITD and QTD locations.
2732 * pci_pool consistent memory always uses segment zero.
2733 * streaming mappings for I/O buffers, like pci_map_single(),
2734 * can return segments above 4GB, if the device allows.
2736 * NOTE: the dma mask is visible through dma_supported(), so
2737 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2738 * Scsi_Host.highmem_io, and so forth. It's readonly to all
2739 * host side drivers though.
2741 hcc_params = readl(&oxu->caps->hcc_params);
2742 if (HCC_64BIT_ADDR(hcc_params))
2743 writel(0, &oxu->regs->segment);
2745 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2746 CMD_ASE | CMD_RESET);
2747 oxu->command |= CMD_RUN;
2748 writel(oxu->command, &oxu->regs->command);
2749 dbg_cmd(oxu, "init", oxu->command);
2752 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2753 * are explicitly handed to companion controller(s), so no TT is
2754 * involved with the root hub. (Except where one is integrated,
2755 * and there's no companion controller unless maybe for USB OTG.)
2757 hcd->state = HC_STATE_RUNNING;
2758 writel(FLAG_CF, &oxu->regs->configured_flag);
2759 readl(&oxu->regs->command); /* unblock posted writes */
2761 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2762 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2763 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2764 temp >> 8, temp & 0xff, DRIVER_VERSION,
2765 ignore_oc ? ", overcurrent ignored" : "");
2767 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2769 return 0;
2772 static void oxu_stop(struct usb_hcd *hcd)
2774 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2776 /* Turn off port power on all root hub ports. */
2777 ehci_port_power(oxu, 0);
2779 /* no more interrupts ... */
2780 del_timer_sync(&oxu->watchdog);
2782 spin_lock_irq(&oxu->lock);
2783 if (HC_IS_RUNNING(hcd->state))
2784 ehci_quiesce(oxu);
2786 ehci_reset(oxu);
2787 writel(0, &oxu->regs->intr_enable);
2788 spin_unlock_irq(&oxu->lock);
2790 /* let companion controllers work when we aren't */
2791 writel(0, &oxu->regs->configured_flag);
2793 /* root hub is shut down separately (first, when possible) */
2794 spin_lock_irq(&oxu->lock);
2795 if (oxu->async)
2796 ehci_work(oxu);
2797 spin_unlock_irq(&oxu->lock);
2798 ehci_mem_cleanup(oxu);
2800 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2803 /* Kick in for silicon on any bus (not just pci, etc).
2804 * This forcibly disables dma and IRQs, helping kexec and other cases
2805 * where the next system software may expect clean state.
2807 static void oxu_shutdown(struct usb_hcd *hcd)
2809 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2811 (void) ehci_halt(oxu);
2812 ehci_turn_off_all_ports(oxu);
2814 /* make BIOS/etc use companion controller during reboot */
2815 writel(0, &oxu->regs->configured_flag);
2817 /* unblock posted writes */
2818 readl(&oxu->regs->configured_flag);
2821 /* Non-error returns are a promise to giveback() the urb later
2822 * we drop ownership so next owner (or urb unlink) can get it
2824 * urb + dev is in hcd.self.controller.urb_list
2825 * we're queueing TDs onto software and hardware lists
2827 * hcd-specific init for hcpriv hasn't been done yet
2829 * NOTE: control, bulk, and interrupt share the same code to append TDs
2830 * to a (possibly active) QH, and the same QH scanning code.
2832 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2833 gfp_t mem_flags)
2835 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2836 struct list_head qtd_list;
2838 INIT_LIST_HEAD(&qtd_list);
2840 switch (usb_pipetype(urb->pipe)) {
2841 case PIPE_CONTROL:
2842 case PIPE_BULK:
2843 default:
2844 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2845 return -ENOMEM;
2846 return submit_async(oxu, urb, &qtd_list, mem_flags);
2848 case PIPE_INTERRUPT:
2849 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2850 return -ENOMEM;
2851 return intr_submit(oxu, urb, &qtd_list, mem_flags);
2853 case PIPE_ISOCHRONOUS:
2854 if (urb->dev->speed == USB_SPEED_HIGH)
2855 return itd_submit(oxu, urb, mem_flags);
2856 else
2857 return sitd_submit(oxu, urb, mem_flags);
2861 /* This function is responsible for breaking URBs with big data size
2862 * into smaller size and processing small urbs in sequence.
2864 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2865 gfp_t mem_flags)
2867 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2868 int num, rem;
2869 int transfer_buffer_length;
2870 void *transfer_buffer;
2871 struct urb *murb;
2872 int i, ret;
2874 /* If not bulk pipe just enqueue the URB */
2875 if (!usb_pipebulk(urb->pipe))
2876 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2878 /* Otherwise we should verify the USB transfer buffer size! */
2879 transfer_buffer = urb->transfer_buffer;
2880 transfer_buffer_length = urb->transfer_buffer_length;
2882 num = urb->transfer_buffer_length / 4096;
2883 rem = urb->transfer_buffer_length % 4096;
2884 if (rem != 0)
2885 num++;
2887 /* If URB is smaller than 4096 bytes just enqueue it! */
2888 if (num == 1)
2889 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2891 /* Ok, we have more job to do! :) */
2893 for (i = 0; i < num - 1; i++) {
2894 /* Get free micro URB poll till a free urb is recieved */
2896 do {
2897 murb = (struct urb *) oxu_murb_alloc(oxu);
2898 if (!murb)
2899 schedule();
2900 } while (!murb);
2902 /* Coping the urb */
2903 memcpy(murb, urb, sizeof(struct urb));
2905 murb->transfer_buffer_length = 4096;
2906 murb->transfer_buffer = transfer_buffer + i * 4096;
2908 /* Null pointer for the encodes that this is a micro urb */
2909 murb->complete = NULL;
2911 ((struct oxu_murb *) murb)->main = urb;
2912 ((struct oxu_murb *) murb)->last = 0;
2914 /* This loop is to guarantee urb to be processed when there's
2915 * not enough resources at a particular time by retrying.
2917 do {
2918 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2919 if (ret)
2920 schedule();
2921 } while (ret);
2924 /* Last urb requires special handling */
2926 /* Get free micro URB poll till a free urb is recieved */
2927 do {
2928 murb = (struct urb *) oxu_murb_alloc(oxu);
2929 if (!murb)
2930 schedule();
2931 } while (!murb);
2933 /* Coping the urb */
2934 memcpy(murb, urb, sizeof(struct urb));
2936 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2937 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2939 /* Null pointer for the encodes that this is a micro urb */
2940 murb->complete = NULL;
2942 ((struct oxu_murb *) murb)->main = urb;
2943 ((struct oxu_murb *) murb)->last = 1;
2945 do {
2946 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2947 if (ret)
2948 schedule();
2949 } while (ret);
2951 return ret;
2954 /* Remove from hardware lists.
2955 * Completions normally happen asynchronously
2957 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2959 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2960 struct ehci_qh *qh;
2961 unsigned long flags;
2963 spin_lock_irqsave(&oxu->lock, flags);
2964 switch (usb_pipetype(urb->pipe)) {
2965 case PIPE_CONTROL:
2966 case PIPE_BULK:
2967 default:
2968 qh = (struct ehci_qh *) urb->hcpriv;
2969 if (!qh)
2970 break;
2971 unlink_async(oxu, qh);
2972 break;
2974 case PIPE_INTERRUPT:
2975 qh = (struct ehci_qh *) urb->hcpriv;
2976 if (!qh)
2977 break;
2978 switch (qh->qh_state) {
2979 case QH_STATE_LINKED:
2980 intr_deschedule(oxu, qh);
2981 /* FALL THROUGH */
2982 case QH_STATE_IDLE:
2983 qh_completions(oxu, qh);
2984 break;
2985 default:
2986 oxu_dbg(oxu, "bogus qh %p state %d\n",
2987 qh, qh->qh_state);
2988 goto done;
2991 /* reschedule QH iff another request is queued */
2992 if (!list_empty(&qh->qtd_list)
2993 && HC_IS_RUNNING(hcd->state)) {
2994 int status;
2996 status = qh_schedule(oxu, qh);
2997 spin_unlock_irqrestore(&oxu->lock, flags);
2999 if (status != 0) {
3000 /* shouldn't happen often, but ...
3001 * FIXME kill those tds' urbs
3003 err("can't reschedule qh %p, err %d",
3004 qh, status);
3006 return status;
3008 break;
3010 done:
3011 spin_unlock_irqrestore(&oxu->lock, flags);
3012 return 0;
3015 /* Bulk qh holds the data toggle */
3016 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3017 struct usb_host_endpoint *ep)
3019 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3020 unsigned long flags;
3021 struct ehci_qh *qh, *tmp;
3023 /* ASSERT: any requests/urbs are being unlinked */
3024 /* ASSERT: nobody can be submitting urbs for this any more */
3026 rescan:
3027 spin_lock_irqsave(&oxu->lock, flags);
3028 qh = ep->hcpriv;
3029 if (!qh)
3030 goto done;
3032 /* endpoints can be iso streams. for now, we don't
3033 * accelerate iso completions ... so spin a while.
3035 if (qh->hw_info1 == 0) {
3036 oxu_vdbg(oxu, "iso delay\n");
3037 goto idle_timeout;
3040 if (!HC_IS_RUNNING(hcd->state))
3041 qh->qh_state = QH_STATE_IDLE;
3042 switch (qh->qh_state) {
3043 case QH_STATE_LINKED:
3044 for (tmp = oxu->async->qh_next.qh;
3045 tmp && tmp != qh;
3046 tmp = tmp->qh_next.qh)
3047 continue;
3048 /* periodic qh self-unlinks on empty */
3049 if (!tmp)
3050 goto nogood;
3051 unlink_async(oxu, qh);
3052 /* FALL THROUGH */
3053 case QH_STATE_UNLINK: /* wait for hw to finish? */
3054 idle_timeout:
3055 spin_unlock_irqrestore(&oxu->lock, flags);
3056 schedule_timeout_uninterruptible(1);
3057 goto rescan;
3058 case QH_STATE_IDLE: /* fully unlinked */
3059 if (list_empty(&qh->qtd_list)) {
3060 qh_put(qh);
3061 break;
3063 /* else FALL THROUGH */
3064 default:
3065 nogood:
3066 /* caller was supposed to have unlinked any requests;
3067 * that's not our job. just leak this memory.
3069 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3070 qh, ep->desc.bEndpointAddress, qh->qh_state,
3071 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3072 break;
3074 ep->hcpriv = NULL;
3075 done:
3076 spin_unlock_irqrestore(&oxu->lock, flags);
3077 return;
3080 static int oxu_get_frame(struct usb_hcd *hcd)
3082 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3084 return (readl(&oxu->regs->frame_index) >> 3) %
3085 oxu->periodic_size;
3088 /* Build "status change" packet (one or two bytes) from HC registers */
3089 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3091 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3092 u32 temp, mask, status = 0;
3093 int ports, i, retval = 1;
3094 unsigned long flags;
3096 /* if !USB_SUSPEND, root hub timers won't get shut down ... */
3097 if (!HC_IS_RUNNING(hcd->state))
3098 return 0;
3100 /* init status to no-changes */
3101 buf[0] = 0;
3102 ports = HCS_N_PORTS(oxu->hcs_params);
3103 if (ports > 7) {
3104 buf[1] = 0;
3105 retval++;
3108 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3109 * causing massive log spam unless we completely ignore them. It
3110 * may be relevant that VIA VT8235 controlers, where PORT_POWER is
3111 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3112 * PORT_POWER; that's surprising, but maybe within-spec.
3114 if (!ignore_oc)
3115 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3116 else
3117 mask = PORT_CSC | PORT_PEC;
3119 /* no hub change reports (bit 0) for now (power, ...) */
3121 /* port N changes (bit N)? */
3122 spin_lock_irqsave(&oxu->lock, flags);
3123 for (i = 0; i < ports; i++) {
3124 temp = readl(&oxu->regs->port_status[i]);
3127 * Return status information even for ports with OWNER set.
3128 * Otherwise khubd wouldn't see the disconnect event when a
3129 * high-speed device is switched over to the companion
3130 * controller by the user.
3133 if (!(temp & PORT_CONNECT))
3134 oxu->reset_done[i] = 0;
3135 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3136 time_after_eq(jiffies, oxu->reset_done[i]))) {
3137 if (i < 7)
3138 buf[0] |= 1 << (i + 1);
3139 else
3140 buf[1] |= 1 << (i - 7);
3141 status = STS_PCD;
3144 /* FIXME autosuspend idle root hubs */
3145 spin_unlock_irqrestore(&oxu->lock, flags);
3146 return status ? retval : 0;
3149 /* Returns the speed of a device attached to a port on the root hub. */
3150 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3151 unsigned int portsc)
3153 switch ((portsc >> 26) & 3) {
3154 case 0:
3155 return 0;
3156 case 1:
3157 return 1 << USB_PORT_FEAT_LOWSPEED;
3158 case 2:
3159 default:
3160 return 1 << USB_PORT_FEAT_HIGHSPEED;
3164 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3165 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3166 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3168 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3169 int ports = HCS_N_PORTS(oxu->hcs_params);
3170 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3171 u32 temp, status;
3172 unsigned long flags;
3173 int retval = 0;
3174 unsigned selector;
3177 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3178 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3179 * (track current state ourselves) ... blink for diagnostics,
3180 * power, "this is the one", etc. EHCI spec supports this.
3183 spin_lock_irqsave(&oxu->lock, flags);
3184 switch (typeReq) {
3185 case ClearHubFeature:
3186 switch (wValue) {
3187 case C_HUB_LOCAL_POWER:
3188 case C_HUB_OVER_CURRENT:
3189 /* no hub-wide feature/status flags */
3190 break;
3191 default:
3192 goto error;
3194 break;
3195 case ClearPortFeature:
3196 if (!wIndex || wIndex > ports)
3197 goto error;
3198 wIndex--;
3199 temp = readl(status_reg);
3202 * Even if OWNER is set, so the port is owned by the
3203 * companion controller, khubd needs to be able to clear
3204 * the port-change status bits (especially
3205 * USB_PORT_FEAT_C_CONNECTION).
3208 switch (wValue) {
3209 case USB_PORT_FEAT_ENABLE:
3210 writel(temp & ~PORT_PE, status_reg);
3211 break;
3212 case USB_PORT_FEAT_C_ENABLE:
3213 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3214 break;
3215 case USB_PORT_FEAT_SUSPEND:
3216 if (temp & PORT_RESET)
3217 goto error;
3218 if (temp & PORT_SUSPEND) {
3219 if ((temp & PORT_PE) == 0)
3220 goto error;
3221 /* resume signaling for 20 msec */
3222 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3223 writel(temp | PORT_RESUME, status_reg);
3224 oxu->reset_done[wIndex] = jiffies
3225 + msecs_to_jiffies(20);
3227 break;
3228 case USB_PORT_FEAT_C_SUSPEND:
3229 /* we auto-clear this feature */
3230 break;
3231 case USB_PORT_FEAT_POWER:
3232 if (HCS_PPC(oxu->hcs_params))
3233 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3234 status_reg);
3235 break;
3236 case USB_PORT_FEAT_C_CONNECTION:
3237 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3238 break;
3239 case USB_PORT_FEAT_C_OVER_CURRENT:
3240 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3241 break;
3242 case USB_PORT_FEAT_C_RESET:
3243 /* GetPortStatus clears reset */
3244 break;
3245 default:
3246 goto error;
3248 readl(&oxu->regs->command); /* unblock posted write */
3249 break;
3250 case GetHubDescriptor:
3251 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3252 buf);
3253 break;
3254 case GetHubStatus:
3255 /* no hub-wide feature/status flags */
3256 memset(buf, 0, 4);
3257 break;
3258 case GetPortStatus:
3259 if (!wIndex || wIndex > ports)
3260 goto error;
3261 wIndex--;
3262 status = 0;
3263 temp = readl(status_reg);
3265 /* wPortChange bits */
3266 if (temp & PORT_CSC)
3267 status |= 1 << USB_PORT_FEAT_C_CONNECTION;
3268 if (temp & PORT_PEC)
3269 status |= 1 << USB_PORT_FEAT_C_ENABLE;
3270 if ((temp & PORT_OCC) && !ignore_oc)
3271 status |= 1 << USB_PORT_FEAT_C_OVER_CURRENT;
3273 /* whoever resumes must GetPortStatus to complete it!! */
3274 if (temp & PORT_RESUME) {
3276 /* Remote Wakeup received? */
3277 if (!oxu->reset_done[wIndex]) {
3278 /* resume signaling for 20 msec */
3279 oxu->reset_done[wIndex] = jiffies
3280 + msecs_to_jiffies(20);
3281 /* check the port again */
3282 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3283 oxu->reset_done[wIndex]);
3286 /* resume completed? */
3287 else if (time_after_eq(jiffies,
3288 oxu->reset_done[wIndex])) {
3289 status |= 1 << USB_PORT_FEAT_C_SUSPEND;
3290 oxu->reset_done[wIndex] = 0;
3292 /* stop resume signaling */
3293 temp = readl(status_reg);
3294 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3295 status_reg);
3296 retval = handshake(oxu, status_reg,
3297 PORT_RESUME, 0, 2000 /* 2msec */);
3298 if (retval != 0) {
3299 oxu_err(oxu,
3300 "port %d resume error %d\n",
3301 wIndex + 1, retval);
3302 goto error;
3304 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3308 /* whoever resets must GetPortStatus to complete it!! */
3309 if ((temp & PORT_RESET)
3310 && time_after_eq(jiffies,
3311 oxu->reset_done[wIndex])) {
3312 status |= 1 << USB_PORT_FEAT_C_RESET;
3313 oxu->reset_done[wIndex] = 0;
3315 /* force reset to complete */
3316 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3317 status_reg);
3318 /* REVISIT: some hardware needs 550+ usec to clear
3319 * this bit; seems too long to spin routinely...
3321 retval = handshake(oxu, status_reg,
3322 PORT_RESET, 0, 750);
3323 if (retval != 0) {
3324 oxu_err(oxu, "port %d reset error %d\n",
3325 wIndex + 1, retval);
3326 goto error;
3329 /* see what we found out */
3330 temp = check_reset_complete(oxu, wIndex, status_reg,
3331 readl(status_reg));
3334 /* transfer dedicated ports to the companion hc */
3335 if ((temp & PORT_CONNECT) &&
3336 test_bit(wIndex, &oxu->companion_ports)) {
3337 temp &= ~PORT_RWC_BITS;
3338 temp |= PORT_OWNER;
3339 writel(temp, status_reg);
3340 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3341 temp = readl(status_reg);
3345 * Even if OWNER is set, there's no harm letting khubd
3346 * see the wPortStatus values (they should all be 0 except
3347 * for PORT_POWER anyway).
3350 if (temp & PORT_CONNECT) {
3351 status |= 1 << USB_PORT_FEAT_CONNECTION;
3352 /* status may be from integrated TT */
3353 status |= oxu_port_speed(oxu, temp);
3355 if (temp & PORT_PE)
3356 status |= 1 << USB_PORT_FEAT_ENABLE;
3357 if (temp & (PORT_SUSPEND|PORT_RESUME))
3358 status |= 1 << USB_PORT_FEAT_SUSPEND;
3359 if (temp & PORT_OC)
3360 status |= 1 << USB_PORT_FEAT_OVER_CURRENT;
3361 if (temp & PORT_RESET)
3362 status |= 1 << USB_PORT_FEAT_RESET;
3363 if (temp & PORT_POWER)
3364 status |= 1 << USB_PORT_FEAT_POWER;
3366 #ifndef OXU_VERBOSE_DEBUG
3367 if (status & ~0xffff) /* only if wPortChange is interesting */
3368 #endif
3369 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3370 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3371 break;
3372 case SetHubFeature:
3373 switch (wValue) {
3374 case C_HUB_LOCAL_POWER:
3375 case C_HUB_OVER_CURRENT:
3376 /* no hub-wide feature/status flags */
3377 break;
3378 default:
3379 goto error;
3381 break;
3382 case SetPortFeature:
3383 selector = wIndex >> 8;
3384 wIndex &= 0xff;
3385 if (!wIndex || wIndex > ports)
3386 goto error;
3387 wIndex--;
3388 temp = readl(status_reg);
3389 if (temp & PORT_OWNER)
3390 break;
3392 temp &= ~PORT_RWC_BITS;
3393 switch (wValue) {
3394 case USB_PORT_FEAT_SUSPEND:
3395 if ((temp & PORT_PE) == 0
3396 || (temp & PORT_RESET) != 0)
3397 goto error;
3398 if (device_may_wakeup(&hcd->self.root_hub->dev))
3399 temp |= PORT_WAKE_BITS;
3400 writel(temp | PORT_SUSPEND, status_reg);
3401 break;
3402 case USB_PORT_FEAT_POWER:
3403 if (HCS_PPC(oxu->hcs_params))
3404 writel(temp | PORT_POWER, status_reg);
3405 break;
3406 case USB_PORT_FEAT_RESET:
3407 if (temp & PORT_RESUME)
3408 goto error;
3409 /* line status bits may report this as low speed,
3410 * which can be fine if this root hub has a
3411 * transaction translator built in.
3413 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3414 temp |= PORT_RESET;
3415 temp &= ~PORT_PE;
3418 * caller must wait, then call GetPortStatus
3419 * usb 2.0 spec says 50 ms resets on root
3421 oxu->reset_done[wIndex] = jiffies
3422 + msecs_to_jiffies(50);
3423 writel(temp, status_reg);
3424 break;
3426 /* For downstream facing ports (these): one hub port is put
3427 * into test mode according to USB2 11.24.2.13, then the hub
3428 * must be reset (which for root hub now means rmmod+modprobe,
3429 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3430 * about the EHCI-specific stuff.
3432 case USB_PORT_FEAT_TEST:
3433 if (!selector || selector > 5)
3434 goto error;
3435 ehci_quiesce(oxu);
3436 ehci_halt(oxu);
3437 temp |= selector << 16;
3438 writel(temp, status_reg);
3439 break;
3441 default:
3442 goto error;
3444 readl(&oxu->regs->command); /* unblock posted writes */
3445 break;
3447 default:
3448 error:
3449 /* "stall" on error */
3450 retval = -EPIPE;
3452 spin_unlock_irqrestore(&oxu->lock, flags);
3453 return retval;
3456 #ifdef CONFIG_PM
3458 static int oxu_bus_suspend(struct usb_hcd *hcd)
3460 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3461 int port;
3462 int mask;
3464 oxu_dbg(oxu, "suspend root hub\n");
3466 if (time_before(jiffies, oxu->next_statechange))
3467 msleep(5);
3469 port = HCS_N_PORTS(oxu->hcs_params);
3470 spin_lock_irq(&oxu->lock);
3472 /* stop schedules, clean any completed work */
3473 if (HC_IS_RUNNING(hcd->state)) {
3474 ehci_quiesce(oxu);
3475 hcd->state = HC_STATE_QUIESCING;
3477 oxu->command = readl(&oxu->regs->command);
3478 if (oxu->reclaim)
3479 oxu->reclaim_ready = 1;
3480 ehci_work(oxu);
3482 /* Unlike other USB host controller types, EHCI doesn't have
3483 * any notion of "global" or bus-wide suspend. The driver has
3484 * to manually suspend all the active unsuspended ports, and
3485 * then manually resume them in the bus_resume() routine.
3487 oxu->bus_suspended = 0;
3488 while (port--) {
3489 u32 __iomem *reg = &oxu->regs->port_status[port];
3490 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3491 u32 t2 = t1;
3493 /* keep track of which ports we suspend */
3494 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3495 !(t1 & PORT_SUSPEND)) {
3496 t2 |= PORT_SUSPEND;
3497 set_bit(port, &oxu->bus_suspended);
3500 /* enable remote wakeup on all ports */
3501 if (device_may_wakeup(&hcd->self.root_hub->dev))
3502 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3503 else
3504 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3506 if (t1 != t2) {
3507 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3508 port + 1, t1, t2);
3509 writel(t2, reg);
3513 /* turn off now-idle HC */
3514 del_timer_sync(&oxu->watchdog);
3515 ehci_halt(oxu);
3516 hcd->state = HC_STATE_SUSPENDED;
3518 /* allow remote wakeup */
3519 mask = INTR_MASK;
3520 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3521 mask &= ~STS_PCD;
3522 writel(mask, &oxu->regs->intr_enable);
3523 readl(&oxu->regs->intr_enable);
3525 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3526 spin_unlock_irq(&oxu->lock);
3527 return 0;
3530 /* Caller has locked the root hub, and should reset/reinit on error */
3531 static int oxu_bus_resume(struct usb_hcd *hcd)
3533 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3534 u32 temp;
3535 int i;
3537 if (time_before(jiffies, oxu->next_statechange))
3538 msleep(5);
3539 spin_lock_irq(&oxu->lock);
3541 /* Ideally and we've got a real resume here, and no port's power
3542 * was lost. (For PCI, that means Vaux was maintained.) But we
3543 * could instead be restoring a swsusp snapshot -- so that BIOS was
3544 * the last user of the controller, not reset/pm hardware keeping
3545 * state we gave to it.
3547 temp = readl(&oxu->regs->intr_enable);
3548 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3550 /* at least some APM implementations will try to deliver
3551 * IRQs right away, so delay them until we're ready.
3553 writel(0, &oxu->regs->intr_enable);
3555 /* re-init operational registers */
3556 writel(0, &oxu->regs->segment);
3557 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3558 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3560 /* restore CMD_RUN, framelist size, and irq threshold */
3561 writel(oxu->command, &oxu->regs->command);
3563 /* Some controller/firmware combinations need a delay during which
3564 * they set up the port statuses. See Bugzilla #8190. */
3565 mdelay(8);
3567 /* manually resume the ports we suspended during bus_suspend() */
3568 i = HCS_N_PORTS(oxu->hcs_params);
3569 while (i--) {
3570 temp = readl(&oxu->regs->port_status[i]);
3571 temp &= ~(PORT_RWC_BITS
3572 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3573 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3574 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3575 temp |= PORT_RESUME;
3577 writel(temp, &oxu->regs->port_status[i]);
3579 i = HCS_N_PORTS(oxu->hcs_params);
3580 mdelay(20);
3581 while (i--) {
3582 temp = readl(&oxu->regs->port_status[i]);
3583 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3584 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3585 writel(temp, &oxu->regs->port_status[i]);
3586 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3589 (void) readl(&oxu->regs->command);
3591 /* maybe re-activate the schedule(s) */
3592 temp = 0;
3593 if (oxu->async->qh_next.qh)
3594 temp |= CMD_ASE;
3595 if (oxu->periodic_sched)
3596 temp |= CMD_PSE;
3597 if (temp) {
3598 oxu->command |= temp;
3599 writel(oxu->command, &oxu->regs->command);
3602 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3603 hcd->state = HC_STATE_RUNNING;
3605 /* Now we can safely re-enable irqs */
3606 writel(INTR_MASK, &oxu->regs->intr_enable);
3608 spin_unlock_irq(&oxu->lock);
3609 return 0;
3612 #else
3614 static int oxu_bus_suspend(struct usb_hcd *hcd)
3616 return 0;
3619 static int oxu_bus_resume(struct usb_hcd *hcd)
3621 return 0;
3624 #endif /* CONFIG_PM */
3626 static const struct hc_driver oxu_hc_driver = {
3627 .description = "oxu210hp_hcd",
3628 .product_desc = "oxu210hp HCD",
3629 .hcd_priv_size = sizeof(struct oxu_hcd),
3632 * Generic hardware linkage
3634 .irq = oxu_irq,
3635 .flags = HCD_MEMORY | HCD_USB2,
3638 * Basic lifecycle operations
3640 .reset = oxu_reset,
3641 .start = oxu_run,
3642 .stop = oxu_stop,
3643 .shutdown = oxu_shutdown,
3646 * Managing i/o requests and associated device resources
3648 .urb_enqueue = oxu_urb_enqueue,
3649 .urb_dequeue = oxu_urb_dequeue,
3650 .endpoint_disable = oxu_endpoint_disable,
3653 * Scheduling support
3655 .get_frame_number = oxu_get_frame,
3658 * Root hub support
3660 .hub_status_data = oxu_hub_status_data,
3661 .hub_control = oxu_hub_control,
3662 .bus_suspend = oxu_bus_suspend,
3663 .bus_resume = oxu_bus_resume,
3667 * Module stuff
3670 static void oxu_configuration(struct platform_device *pdev, void *base)
3672 u32 tmp;
3674 /* Initialize top level registers.
3675 * First write ever
3677 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3678 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3679 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3681 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3682 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3684 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3685 OXU_COMPARATOR | OXU_ASO_OP);
3687 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3688 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3690 /* Clear all top interrupt enable */
3691 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3693 /* Clear all top interrupt status */
3694 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3696 /* Enable all needed top interrupt except OTG SPH core */
3697 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3700 static int oxu_verify_id(struct platform_device *pdev, void *base)
3702 u32 id;
3703 char *bo[] = {
3704 "reserved",
3705 "128-pin LQFP",
3706 "84-pin TFBGA",
3707 "reserved",
3710 /* Read controller signature register to find a match */
3711 id = oxu_readl(base, OXU_DEVICEID);
3712 dev_info(&pdev->dev, "device ID %x\n", id);
3713 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3714 return -1;
3716 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3717 id >> OXU_REV_SHIFT,
3718 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3719 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3720 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3722 return 0;
3725 static const struct hc_driver oxu_hc_driver;
3726 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3727 unsigned long memstart, unsigned long memlen,
3728 void *base, int irq, int otg)
3730 struct device *dev = &pdev->dev;
3732 struct usb_hcd *hcd;
3733 struct oxu_hcd *oxu;
3734 int ret;
3736 /* Set endian mode and host mode */
3737 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3738 OXU_USBMODE,
3739 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3741 hcd = usb_create_hcd(&oxu_hc_driver, dev,
3742 otg ? "oxu210hp_otg" : "oxu210hp_sph");
3743 if (!hcd)
3744 return ERR_PTR(-ENOMEM);
3746 hcd->rsrc_start = memstart;
3747 hcd->rsrc_len = memlen;
3748 hcd->regs = base;
3749 hcd->irq = irq;
3750 hcd->state = HC_STATE_HALT;
3752 oxu = hcd_to_oxu(hcd);
3753 oxu->is_otg = otg;
3755 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3756 if (ret < 0)
3757 return ERR_PTR(ret);
3759 return hcd;
3762 static int oxu_init(struct platform_device *pdev,
3763 unsigned long memstart, unsigned long memlen,
3764 void *base, int irq)
3766 struct oxu_info *info = platform_get_drvdata(pdev);
3767 struct usb_hcd *hcd;
3768 int ret;
3770 /* First time configuration at start up */
3771 oxu_configuration(pdev, base);
3773 ret = oxu_verify_id(pdev, base);
3774 if (ret) {
3775 dev_err(&pdev->dev, "no devices found!\n");
3776 return -ENODEV;
3779 /* Create the OTG controller */
3780 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3781 if (IS_ERR(hcd)) {
3782 dev_err(&pdev->dev, "cannot create OTG controller!\n");
3783 ret = PTR_ERR(hcd);
3784 goto error_create_otg;
3786 info->hcd[0] = hcd;
3788 /* Create the SPH host controller */
3789 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3790 if (IS_ERR(hcd)) {
3791 dev_err(&pdev->dev, "cannot create SPH controller!\n");
3792 ret = PTR_ERR(hcd);
3793 goto error_create_sph;
3795 info->hcd[1] = hcd;
3797 oxu_writel(base, OXU_CHIPIRQEN_SET,
3798 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3800 return 0;
3802 error_create_sph:
3803 usb_remove_hcd(info->hcd[0]);
3804 usb_put_hcd(info->hcd[0]);
3806 error_create_otg:
3807 return ret;
3810 static int oxu_drv_probe(struct platform_device *pdev)
3812 struct resource *res;
3813 void *base;
3814 unsigned long memstart, memlen;
3815 int irq, ret;
3816 struct oxu_info *info;
3818 if (usb_disabled())
3819 return -ENODEV;
3822 * Get the platform resources
3824 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3825 if (!res) {
3826 dev_err(&pdev->dev,
3827 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3828 return -ENODEV;
3830 irq = res->start;
3831 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3833 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3834 if (!res) {
3835 dev_err(&pdev->dev, "no registers address! Check %s setup!\n",
3836 dev_name(&pdev->dev));
3837 return -ENODEV;
3839 memstart = res->start;
3840 memlen = res->end - res->start + 1;
3841 dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen);
3842 if (!request_mem_region(memstart, memlen,
3843 oxu_hc_driver.description)) {
3844 dev_dbg(&pdev->dev, "memory area already in use\n");
3845 return -EBUSY;
3848 ret = set_irq_type(irq, IRQF_TRIGGER_FALLING);
3849 if (ret) {
3850 dev_err(&pdev->dev, "error setting irq type\n");
3851 ret = -EFAULT;
3852 goto error_set_irq_type;
3855 base = ioremap(memstart, memlen);
3856 if (!base) {
3857 dev_dbg(&pdev->dev, "error mapping memory\n");
3858 ret = -EFAULT;
3859 goto error_ioremap;
3862 /* Allocate a driver data struct to hold useful info for both
3863 * SPH & OTG devices
3865 info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL);
3866 if (!info) {
3867 dev_dbg(&pdev->dev, "error allocating memory\n");
3868 ret = -EFAULT;
3869 goto error_alloc;
3871 platform_set_drvdata(pdev, info);
3873 ret = oxu_init(pdev, memstart, memlen, base, irq);
3874 if (ret < 0) {
3875 dev_dbg(&pdev->dev, "cannot init USB devices\n");
3876 goto error_init;
3879 dev_info(&pdev->dev, "devices enabled and running\n");
3880 platform_set_drvdata(pdev, info);
3882 return 0;
3884 error_init:
3885 kfree(info);
3886 platform_set_drvdata(pdev, NULL);
3888 error_alloc:
3889 iounmap(base);
3891 error_set_irq_type:
3892 error_ioremap:
3893 release_mem_region(memstart, memlen);
3895 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3896 return ret;
3899 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3901 usb_remove_hcd(hcd);
3902 usb_put_hcd(hcd);
3905 static int oxu_drv_remove(struct platform_device *pdev)
3907 struct oxu_info *info = platform_get_drvdata(pdev);
3908 unsigned long memstart = info->hcd[0]->rsrc_start,
3909 memlen = info->hcd[0]->rsrc_len;
3910 void *base = info->hcd[0]->regs;
3912 oxu_remove(pdev, info->hcd[0]);
3913 oxu_remove(pdev, info->hcd[1]);
3915 iounmap(base);
3916 release_mem_region(memstart, memlen);
3918 kfree(info);
3919 platform_set_drvdata(pdev, NULL);
3921 return 0;
3924 static void oxu_drv_shutdown(struct platform_device *pdev)
3926 oxu_drv_remove(pdev);
3929 #if 0
3930 /* FIXME: TODO */
3931 static int oxu_drv_suspend(struct device *dev)
3933 struct platform_device *pdev = to_platform_device(dev);
3934 struct usb_hcd *hcd = dev_get_drvdata(dev);
3936 return 0;
3939 static int oxu_drv_resume(struct device *dev)
3941 struct platform_device *pdev = to_platform_device(dev);
3942 struct usb_hcd *hcd = dev_get_drvdata(dev);
3944 return 0;
3946 #else
3947 #define oxu_drv_suspend NULL
3948 #define oxu_drv_resume NULL
3949 #endif
3951 static struct platform_driver oxu_driver = {
3952 .probe = oxu_drv_probe,
3953 .remove = oxu_drv_remove,
3954 .shutdown = oxu_drv_shutdown,
3955 .suspend = oxu_drv_suspend,
3956 .resume = oxu_drv_resume,
3957 .driver = {
3958 .name = "oxu210hp-hcd",
3959 .bus = &platform_bus_type
3963 static int __init oxu_module_init(void)
3965 int retval = 0;
3967 retval = platform_driver_register(&oxu_driver);
3968 if (retval < 0)
3969 return retval;
3971 return retval;
3974 static void __exit oxu_module_cleanup(void)
3976 platform_driver_unregister(&oxu_driver);
3979 module_init(oxu_module_init);
3980 module_exit(oxu_module_cleanup);
3982 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3983 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3984 MODULE_LICENSE("GPL");