x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / uwb / i1480 / i1480u-wlp / rx.c
blob25a2758beb61d2d078d51de5847e30d92dd42c82
1 /*
2 * WUSB Wire Adapter: WLP interface
3 * Driver for the Linux Network stack.
5 * Copyright (C) 2005-2006 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
23 * i1480u's RX handling is simple. i1480u will send the received
24 * network packets broken up in fragments; 1 to N fragments make a
25 * packet, we assemble them together and deliver the packet with netif_rx().
27 * Beacuse each USB transfer is a *single* fragment (except when the
28 * transfer contains a first fragment), each URB called thus
29 * back contains one or two fragments. So we queue N URBs, each with its own
30 * fragment buffer. When a URB is done, we process it (adding to the
31 * current skb from the fragment buffer until complete). Once
32 * processed, we requeue the URB. There is always a bunch of URBs
33 * ready to take data, so the intergap should be minimal.
35 * An URB's transfer buffer is the data field of a socket buffer. This
36 * reduces copying as data can be passed directly to network layer. If a
37 * complete packet or 1st fragment is received the URB's transfer buffer is
38 * taken away from it and used to send data to the network layer. In this
39 * case a new transfer buffer is allocated to the URB before being requeued.
40 * If a "NEXT" or "LAST" fragment is received, the fragment contents is
41 * appended to the RX packet under construction and the transfer buffer
42 * is reused. To be able to use this buffer to assemble complete packets
43 * we set each buffer's size to that of the MAX ethernet packet that can
44 * be received. There is thus room for improvement in memory usage.
46 * When the max tx fragment size increases, we should be able to read
47 * data into the skbs directly with very simple code.
49 * ROADMAP:
51 * ENTRY POINTS:
53 * i1480u_rx_setup(): setup RX context [from i1480u_open()]
55 * i1480u_rx_release(): release RX context [from i1480u_stop()]
57 * i1480u_rx_cb(): called when the RX USB URB receives a
58 * packet. It removes the header and pushes it up
59 * the Linux netdev stack with netif_rx().
61 * i1480u_rx_buffer()
62 * i1480u_drop() and i1480u_fix()
63 * i1480u_skb_deliver
67 #include <linux/netdevice.h>
68 #include <linux/etherdevice.h>
69 #include "i1480u-wlp.h"
72 * Setup the RX context
74 * Each URB is provided with a transfer_buffer that is the data field
75 * of a new socket buffer.
77 int i1480u_rx_setup(struct i1480u *i1480u)
79 int result, cnt;
80 struct device *dev = &i1480u->usb_iface->dev;
81 struct net_device *net_dev = i1480u->net_dev;
82 struct usb_endpoint_descriptor *epd;
83 struct sk_buff *skb;
85 /* Alloc RX stuff */
86 i1480u->rx_skb = NULL; /* not in process of receiving packet */
87 result = -ENOMEM;
88 epd = &i1480u->usb_iface->cur_altsetting->endpoint[1].desc;
89 for (cnt = 0; cnt < i1480u_RX_BUFS; cnt++) {
90 struct i1480u_rx_buf *rx_buf = &i1480u->rx_buf[cnt];
91 rx_buf->i1480u = i1480u;
92 skb = dev_alloc_skb(i1480u_MAX_RX_PKT_SIZE);
93 if (!skb) {
94 dev_err(dev,
95 "RX: cannot allocate RX buffer %d\n", cnt);
96 result = -ENOMEM;
97 goto error;
99 skb->dev = net_dev;
100 skb->ip_summed = CHECKSUM_NONE;
101 skb_reserve(skb, 2);
102 rx_buf->data = skb;
103 rx_buf->urb = usb_alloc_urb(0, GFP_KERNEL);
104 if (unlikely(rx_buf->urb == NULL)) {
105 dev_err(dev, "RX: cannot allocate URB %d\n", cnt);
106 result = -ENOMEM;
107 goto error;
109 usb_fill_bulk_urb(rx_buf->urb, i1480u->usb_dev,
110 usb_rcvbulkpipe(i1480u->usb_dev, epd->bEndpointAddress),
111 rx_buf->data->data, i1480u_MAX_RX_PKT_SIZE - 2,
112 i1480u_rx_cb, rx_buf);
113 result = usb_submit_urb(rx_buf->urb, GFP_NOIO);
114 if (unlikely(result < 0)) {
115 dev_err(dev, "RX: cannot submit URB %d: %d\n",
116 cnt, result);
117 goto error;
120 return 0;
122 error:
123 i1480u_rx_release(i1480u);
124 return result;
128 /* Release resources associated to the rx context */
129 void i1480u_rx_release(struct i1480u *i1480u)
131 int cnt;
132 for (cnt = 0; cnt < i1480u_RX_BUFS; cnt++) {
133 if (i1480u->rx_buf[cnt].data)
134 dev_kfree_skb(i1480u->rx_buf[cnt].data);
135 if (i1480u->rx_buf[cnt].urb) {
136 usb_kill_urb(i1480u->rx_buf[cnt].urb);
137 usb_free_urb(i1480u->rx_buf[cnt].urb);
140 if (i1480u->rx_skb != NULL)
141 dev_kfree_skb(i1480u->rx_skb);
144 static
145 void i1480u_rx_unlink_urbs(struct i1480u *i1480u)
147 int cnt;
148 for (cnt = 0; cnt < i1480u_RX_BUFS; cnt++) {
149 if (i1480u->rx_buf[cnt].urb)
150 usb_unlink_urb(i1480u->rx_buf[cnt].urb);
154 /* Fix an out-of-sequence packet */
155 #define i1480u_fix(i1480u, msg...) \
156 do { \
157 if (printk_ratelimit()) \
158 dev_err(&i1480u->usb_iface->dev, msg); \
159 dev_kfree_skb_irq(i1480u->rx_skb); \
160 i1480u->rx_skb = NULL; \
161 i1480u->rx_untd_pkt_size = 0; \
162 } while (0)
165 /* Drop an out-of-sequence packet */
166 #define i1480u_drop(i1480u, msg...) \
167 do { \
168 if (printk_ratelimit()) \
169 dev_err(&i1480u->usb_iface->dev, msg); \
170 i1480u->net_dev->stats.rx_dropped++; \
171 } while (0)
176 /* Finalizes setting up the SKB and delivers it
178 * We first pass the incoming frame to WLP substack for verification. It
179 * may also be a WLP association frame in which case WLP will take over the
180 * processing. If WLP does not take it over it will still verify it, if the
181 * frame is invalid the skb will be freed by WLP and we will not continue
182 * parsing.
183 * */
184 static
185 void i1480u_skb_deliver(struct i1480u *i1480u)
187 int should_parse;
188 struct net_device *net_dev = i1480u->net_dev;
189 struct device *dev = &i1480u->usb_iface->dev;
191 should_parse = wlp_receive_frame(dev, &i1480u->wlp, i1480u->rx_skb,
192 &i1480u->rx_srcaddr);
193 if (!should_parse)
194 goto out;
195 i1480u->rx_skb->protocol = eth_type_trans(i1480u->rx_skb, net_dev);
196 net_dev->stats.rx_packets++;
197 net_dev->stats.rx_bytes += i1480u->rx_untd_pkt_size;
199 netif_rx(i1480u->rx_skb); /* deliver */
200 out:
201 i1480u->rx_skb = NULL;
202 i1480u->rx_untd_pkt_size = 0;
207 * Process a buffer of data received from the USB RX endpoint
209 * First fragment arrives with next or last fragment. All other fragments
210 * arrive alone.
212 * /me hates long functions.
214 static
215 void i1480u_rx_buffer(struct i1480u_rx_buf *rx_buf)
217 unsigned pkt_completed = 0; /* !0 when we got all pkt fragments */
218 size_t untd_hdr_size, untd_frg_size;
219 size_t i1480u_hdr_size;
220 struct wlp_rx_hdr *i1480u_hdr = NULL;
222 struct i1480u *i1480u = rx_buf->i1480u;
223 struct sk_buff *skb = rx_buf->data;
224 int size_left = rx_buf->urb->actual_length;
225 void *ptr = rx_buf->urb->transfer_buffer; /* also rx_buf->data->data */
226 struct untd_hdr *untd_hdr;
228 struct net_device *net_dev = i1480u->net_dev;
229 struct device *dev = &i1480u->usb_iface->dev;
230 struct sk_buff *new_skb;
232 #if 0
233 dev_fnstart(dev,
234 "(i1480u %p ptr %p size_left %zu)\n", i1480u, ptr, size_left);
235 dev_err(dev, "RX packet, %zu bytes\n", size_left);
236 dump_bytes(dev, ptr, size_left);
237 #endif
238 i1480u_hdr_size = sizeof(struct wlp_rx_hdr);
240 while (size_left > 0) {
241 if (pkt_completed) {
242 i1480u_drop(i1480u, "RX: fragment follows completed"
243 "packet in same buffer. Dropping\n");
244 break;
246 untd_hdr = ptr;
247 if (size_left < sizeof(*untd_hdr)) { /* Check the UNTD header */
248 i1480u_drop(i1480u, "RX: short UNTD header! Dropping\n");
249 goto out;
251 if (unlikely(untd_hdr_rx_tx(untd_hdr) == 0)) { /* Paranoia: TX set? */
252 i1480u_drop(i1480u, "RX: TX bit set! Dropping\n");
253 goto out;
255 switch (untd_hdr_type(untd_hdr)) { /* Check the UNTD header type */
256 case i1480u_PKT_FRAG_1ST: {
257 struct untd_hdr_1st *untd_hdr_1st = (void *) untd_hdr;
258 dev_dbg(dev, "1st fragment\n");
259 untd_hdr_size = sizeof(struct untd_hdr_1st);
260 if (i1480u->rx_skb != NULL)
261 i1480u_fix(i1480u, "RX: 1st fragment out of "
262 "sequence! Fixing\n");
263 if (size_left < untd_hdr_size + i1480u_hdr_size) {
264 i1480u_drop(i1480u, "RX: short 1st fragment! "
265 "Dropping\n");
266 goto out;
268 i1480u->rx_untd_pkt_size = le16_to_cpu(untd_hdr->len)
269 - i1480u_hdr_size;
270 untd_frg_size = le16_to_cpu(untd_hdr_1st->fragment_len);
271 if (size_left < untd_hdr_size + untd_frg_size) {
272 i1480u_drop(i1480u,
273 "RX: short payload! Dropping\n");
274 goto out;
276 i1480u->rx_skb = skb;
277 i1480u_hdr = (void *) untd_hdr_1st + untd_hdr_size;
278 i1480u->rx_srcaddr = i1480u_hdr->srcaddr;
279 skb_put(i1480u->rx_skb, untd_hdr_size + untd_frg_size);
280 skb_pull(i1480u->rx_skb, untd_hdr_size + i1480u_hdr_size);
281 stats_add_sample(&i1480u->lqe_stats, (s8) i1480u_hdr->LQI - 7);
282 stats_add_sample(&i1480u->rssi_stats, i1480u_hdr->RSSI + 18);
283 rx_buf->data = NULL; /* need to create new buffer */
284 break;
286 case i1480u_PKT_FRAG_NXT: {
287 dev_dbg(dev, "nxt fragment\n");
288 untd_hdr_size = sizeof(struct untd_hdr_rst);
289 if (i1480u->rx_skb == NULL) {
290 i1480u_drop(i1480u, "RX: next fragment out of "
291 "sequence! Dropping\n");
292 goto out;
294 if (size_left < untd_hdr_size) {
295 i1480u_drop(i1480u, "RX: short NXT fragment! "
296 "Dropping\n");
297 goto out;
299 untd_frg_size = le16_to_cpu(untd_hdr->len);
300 if (size_left < untd_hdr_size + untd_frg_size) {
301 i1480u_drop(i1480u,
302 "RX: short payload! Dropping\n");
303 goto out;
305 memmove(skb_put(i1480u->rx_skb, untd_frg_size),
306 ptr + untd_hdr_size, untd_frg_size);
307 break;
309 case i1480u_PKT_FRAG_LST: {
310 dev_dbg(dev, "Lst fragment\n");
311 untd_hdr_size = sizeof(struct untd_hdr_rst);
312 if (i1480u->rx_skb == NULL) {
313 i1480u_drop(i1480u, "RX: last fragment out of "
314 "sequence! Dropping\n");
315 goto out;
317 if (size_left < untd_hdr_size) {
318 i1480u_drop(i1480u, "RX: short LST fragment! "
319 "Dropping\n");
320 goto out;
322 untd_frg_size = le16_to_cpu(untd_hdr->len);
323 if (size_left < untd_frg_size + untd_hdr_size) {
324 i1480u_drop(i1480u,
325 "RX: short payload! Dropping\n");
326 goto out;
328 memmove(skb_put(i1480u->rx_skb, untd_frg_size),
329 ptr + untd_hdr_size, untd_frg_size);
330 pkt_completed = 1;
331 break;
333 case i1480u_PKT_FRAG_CMP: {
334 dev_dbg(dev, "cmp fragment\n");
335 untd_hdr_size = sizeof(struct untd_hdr_cmp);
336 if (i1480u->rx_skb != NULL)
337 i1480u_fix(i1480u, "RX: fix out-of-sequence CMP"
338 " fragment!\n");
339 if (size_left < untd_hdr_size + i1480u_hdr_size) {
340 i1480u_drop(i1480u, "RX: short CMP fragment! "
341 "Dropping\n");
342 goto out;
344 i1480u->rx_untd_pkt_size = le16_to_cpu(untd_hdr->len);
345 untd_frg_size = i1480u->rx_untd_pkt_size;
346 if (size_left < i1480u->rx_untd_pkt_size + untd_hdr_size) {
347 i1480u_drop(i1480u,
348 "RX: short payload! Dropping\n");
349 goto out;
351 i1480u->rx_skb = skb;
352 i1480u_hdr = (void *) untd_hdr + untd_hdr_size;
353 i1480u->rx_srcaddr = i1480u_hdr->srcaddr;
354 stats_add_sample(&i1480u->lqe_stats, (s8) i1480u_hdr->LQI - 7);
355 stats_add_sample(&i1480u->rssi_stats, i1480u_hdr->RSSI + 18);
356 skb_put(i1480u->rx_skb, untd_hdr_size + i1480u->rx_untd_pkt_size);
357 skb_pull(i1480u->rx_skb, untd_hdr_size + i1480u_hdr_size);
358 rx_buf->data = NULL; /* for hand off skb to network stack */
359 pkt_completed = 1;
360 i1480u->rx_untd_pkt_size -= i1480u_hdr_size; /* accurate stat */
361 break;
363 default:
364 i1480u_drop(i1480u, "RX: unknown packet type %u! "
365 "Dropping\n", untd_hdr_type(untd_hdr));
366 goto out;
368 size_left -= untd_hdr_size + untd_frg_size;
369 if (size_left > 0)
370 ptr += untd_hdr_size + untd_frg_size;
372 if (pkt_completed)
373 i1480u_skb_deliver(i1480u);
374 out:
375 /* recreate needed RX buffers*/
376 if (rx_buf->data == NULL) {
377 /* buffer is being used to receive packet, create new */
378 new_skb = dev_alloc_skb(i1480u_MAX_RX_PKT_SIZE);
379 if (!new_skb) {
380 if (printk_ratelimit())
381 dev_err(dev,
382 "RX: cannot allocate RX buffer\n");
383 } else {
384 new_skb->dev = net_dev;
385 new_skb->ip_summed = CHECKSUM_NONE;
386 skb_reserve(new_skb, 2);
387 rx_buf->data = new_skb;
390 return;
395 * Called when an RX URB has finished receiving or has found some kind
396 * of error condition.
398 * LIMITATIONS:
400 * - We read USB-transfers, each transfer contains a SINGLE fragment
401 * (can contain a complete packet, or a 1st, next, or last fragment
402 * of a packet).
403 * Looks like a transfer can contain more than one fragment (07/18/06)
405 * - Each transfer buffer is the size of the maximum packet size (minus
406 * headroom), i1480u_MAX_PKT_SIZE - 2
408 * - We always read the full USB-transfer, no partials.
410 * - Each transfer is read directly into a skb. This skb will be used to
411 * send data to the upper layers if it is the first fragment or a complete
412 * packet. In the other cases the data will be copied from the skb to
413 * another skb that is being prepared for the upper layers from a prev
414 * first fragment.
416 * It is simply too much of a pain. Gosh, there should be a unified
417 * SG infrastructure for *everything* [so that I could declare a SG
418 * buffer, pass it to USB for receiving, append some space to it if
419 * I wish, receive more until I have the whole chunk, adapt
420 * pointers on each fragment to remove hardware headers and then
421 * attach that to an skbuff and netif_rx()].
423 void i1480u_rx_cb(struct urb *urb)
425 int result;
426 int do_parse_buffer = 1;
427 struct i1480u_rx_buf *rx_buf = urb->context;
428 struct i1480u *i1480u = rx_buf->i1480u;
429 struct device *dev = &i1480u->usb_iface->dev;
430 unsigned long flags;
431 u8 rx_buf_idx = rx_buf - i1480u->rx_buf;
433 switch (urb->status) {
434 case 0:
435 break;
436 case -ECONNRESET: /* Not an error, but a controlled situation; */
437 case -ENOENT: /* (we killed the URB)...so, no broadcast */
438 case -ESHUTDOWN: /* going away! */
439 dev_err(dev, "RX URB[%u]: goind down %d\n",
440 rx_buf_idx, urb->status);
441 goto error;
442 default:
443 dev_err(dev, "RX URB[%u]: unknown status %d\n",
444 rx_buf_idx, urb->status);
445 if (edc_inc(&i1480u->rx_errors, EDC_MAX_ERRORS,
446 EDC_ERROR_TIMEFRAME)) {
447 dev_err(dev, "RX: max acceptable errors exceeded,"
448 " resetting device.\n");
449 i1480u_rx_unlink_urbs(i1480u);
450 wlp_reset_all(&i1480u->wlp);
451 goto error;
453 do_parse_buffer = 0;
454 break;
456 spin_lock_irqsave(&i1480u->lock, flags);
457 /* chew the data fragments, extract network packets */
458 if (do_parse_buffer) {
459 i1480u_rx_buffer(rx_buf);
460 if (rx_buf->data) {
461 rx_buf->urb->transfer_buffer = rx_buf->data->data;
462 result = usb_submit_urb(rx_buf->urb, GFP_ATOMIC);
463 if (result < 0) {
464 dev_err(dev, "RX URB[%u]: cannot submit %d\n",
465 rx_buf_idx, result);
469 spin_unlock_irqrestore(&i1480u->lock, flags);
470 error:
471 return;