x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / video / sa1100fb.c
blobcdaa873a60541f00acad18def540fd010ee05b5b
1 /*
2 * linux/drivers/video/sa1100fb.c
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
9 * more details.
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
13 * Please direct your questions and comments on this driver to the following
14 * email address:
16 * linux-arm-kernel@lists.arm.linux.org.uk
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
23 * Thank you.
25 * Known problems:
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
28 * blank the screen.
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
32 * Other notes:
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
55 * Code Status:
56 * 1999/04/01:
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
63 * guaranteed.
65 * 1999/06/17:
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 * - Big cleanup for dynamic selection of machine type at run time.
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
89 * 2000/08/29:
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 * - Freebird add
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
117 * memset.
118 * - remove allow_modeset (acornfb idea does not belong here)
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
151 * support it.
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/platform_device.h>
177 #include <linux/dma-mapping.h>
178 #include <linux/mutex.h>
179 #include <linux/io.h>
181 #include <mach/hardware.h>
182 #include <asm/mach-types.h>
183 #include <mach/assabet.h>
184 #include <mach/shannon.h>
187 * debugging?
189 #define DEBUG 0
191 * Complain if VAR is out of range.
193 #define DEBUG_VAR 1
195 #undef ASSABET_PAL_VIDEO
197 #include "sa1100fb.h"
199 extern void (*sa1100fb_backlight_power)(int on);
200 extern void (*sa1100fb_lcd_power)(int on);
202 static struct sa1100fb_rgb rgb_4 = {
203 .red = { .offset = 0, .length = 4, },
204 .green = { .offset = 0, .length = 4, },
205 .blue = { .offset = 0, .length = 4, },
206 .transp = { .offset = 0, .length = 0, },
209 static struct sa1100fb_rgb rgb_8 = {
210 .red = { .offset = 0, .length = 8, },
211 .green = { .offset = 0, .length = 8, },
212 .blue = { .offset = 0, .length = 8, },
213 .transp = { .offset = 0, .length = 0, },
216 static struct sa1100fb_rgb def_rgb_16 = {
217 .red = { .offset = 11, .length = 5, },
218 .green = { .offset = 5, .length = 6, },
219 .blue = { .offset = 0, .length = 5, },
220 .transp = { .offset = 0, .length = 0, },
223 #ifdef CONFIG_SA1100_ASSABET
224 #ifndef ASSABET_PAL_VIDEO
226 * The assabet uses a sharp LQ039Q2DS54 LCD module. It is actually
227 * takes an RGB666 signal, but we provide it with an RGB565 signal
228 * instead (def_rgb_16).
230 static struct sa1100fb_mach_info lq039q2ds54_info __initdata = {
231 .pixclock = 171521, .bpp = 16,
232 .xres = 320, .yres = 240,
234 .hsync_len = 5, .vsync_len = 1,
235 .left_margin = 61, .upper_margin = 3,
236 .right_margin = 9, .lower_margin = 0,
238 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
240 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
241 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
243 #else
244 static struct sa1100fb_mach_info pal_info __initdata = {
245 .pixclock = 67797, .bpp = 16,
246 .xres = 640, .yres = 512,
248 .hsync_len = 64, .vsync_len = 6,
249 .left_margin = 125, .upper_margin = 70,
250 .right_margin = 115, .lower_margin = 36,
252 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
253 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
255 #endif
256 #endif
258 #ifdef CONFIG_SA1100_H3600
259 static struct sa1100fb_mach_info h3600_info __initdata = {
260 .pixclock = 174757, .bpp = 16,
261 .xres = 320, .yres = 240,
263 .hsync_len = 3, .vsync_len = 3,
264 .left_margin = 12, .upper_margin = 10,
265 .right_margin = 17, .lower_margin = 1,
267 .cmap_static = 1,
269 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
270 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
273 static struct sa1100fb_rgb h3600_rgb_16 = {
274 .red = { .offset = 12, .length = 4, },
275 .green = { .offset = 7, .length = 4, },
276 .blue = { .offset = 1, .length = 4, },
277 .transp = { .offset = 0, .length = 0, },
279 #endif
281 #ifdef CONFIG_SA1100_H3100
282 static struct sa1100fb_mach_info h3100_info __initdata = {
283 .pixclock = 406977, .bpp = 4,
284 .xres = 320, .yres = 240,
286 .hsync_len = 26, .vsync_len = 41,
287 .left_margin = 4, .upper_margin = 0,
288 .right_margin = 4, .lower_margin = 0,
290 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
291 .cmap_greyscale = 1,
292 .cmap_inverse = 1,
294 .lccr0 = LCCR0_Mono | LCCR0_4PixMono | LCCR0_Sngl | LCCR0_Pas,
295 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
297 #endif
299 #ifdef CONFIG_SA1100_COLLIE
300 static struct sa1100fb_mach_info collie_info __initdata = {
301 .pixclock = 171521, .bpp = 16,
302 .xres = 320, .yres = 240,
304 .hsync_len = 5, .vsync_len = 1,
305 .left_margin = 11, .upper_margin = 2,
306 .right_margin = 30, .lower_margin = 0,
308 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
310 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
311 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
313 #endif
315 #ifdef LART_GREY_LCD
316 static struct sa1100fb_mach_info lart_grey_info __initdata = {
317 .pixclock = 150000, .bpp = 4,
318 .xres = 320, .yres = 240,
320 .hsync_len = 1, .vsync_len = 1,
321 .left_margin = 4, .upper_margin = 0,
322 .right_margin = 2, .lower_margin = 0,
324 .cmap_greyscale = 1,
325 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
327 .lccr0 = LCCR0_Mono | LCCR0_Sngl | LCCR0_Pas | LCCR0_4PixMono,
328 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
330 #endif
331 #ifdef LART_COLOR_LCD
332 static struct sa1100fb_mach_info lart_color_info __initdata = {
333 .pixclock = 150000, .bpp = 16,
334 .xres = 320, .yres = 240,
336 .hsync_len = 2, .vsync_len = 3,
337 .left_margin = 69, .upper_margin = 14,
338 .right_margin = 8, .lower_margin = 4,
340 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
341 .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
343 #endif
344 #ifdef LART_VIDEO_OUT
345 static struct sa1100fb_mach_info lart_video_info __initdata = {
346 .pixclock = 39721, .bpp = 16,
347 .xres = 640, .yres = 480,
349 .hsync_len = 95, .vsync_len = 2,
350 .left_margin = 40, .upper_margin = 32,
351 .right_margin = 24, .lower_margin = 11,
353 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
355 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
356 .lccr3 = LCCR3_OutEnL | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
358 #endif
360 #ifdef LART_KIT01_LCD
361 static struct sa1100fb_mach_info lart_kit01_info __initdata = {
362 .pixclock = 63291, .bpp = 16,
363 .xres = 640, .yres = 480,
365 .hsync_len = 64, .vsync_len = 3,
366 .left_margin = 122, .upper_margin = 45,
367 .right_margin = 10, .lower_margin = 10,
369 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
370 .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg
372 #endif
374 #ifdef CONFIG_SA1100_SHANNON
375 static struct sa1100fb_mach_info shannon_info __initdata = {
376 .pixclock = 152500, .bpp = 8,
377 .xres = 640, .yres = 480,
379 .hsync_len = 4, .vsync_len = 3,
380 .left_margin = 2, .upper_margin = 0,
381 .right_margin = 1, .lower_margin = 0,
383 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
385 .lccr0 = LCCR0_Color | LCCR0_Dual | LCCR0_Pas,
386 .lccr3 = LCCR3_ACBsDiv(512),
388 #endif
392 static struct sa1100fb_mach_info * __init
393 sa1100fb_get_machine_info(struct sa1100fb_info *fbi)
395 struct sa1100fb_mach_info *inf = NULL;
398 * R G B T
399 * default {11,5}, { 5,6}, { 0,5}, { 0,0}
400 * h3600 {12,4}, { 7,4}, { 1,4}, { 0,0}
401 * freebird { 8,4}, { 4,4}, { 0,4}, {12,4}
403 #ifdef CONFIG_SA1100_ASSABET
404 if (machine_is_assabet()) {
405 #ifndef ASSABET_PAL_VIDEO
406 inf = &lq039q2ds54_info;
407 #else
408 inf = &pal_info;
409 #endif
411 #endif
412 #ifdef CONFIG_SA1100_H3100
413 if (machine_is_h3100()) {
414 inf = &h3100_info;
416 #endif
417 #ifdef CONFIG_SA1100_H3600
418 if (machine_is_h3600()) {
419 inf = &h3600_info;
420 fbi->rgb[RGB_16] = &h3600_rgb_16;
422 #endif
423 #ifdef CONFIG_SA1100_COLLIE
424 if (machine_is_collie()) {
425 inf = &collie_info;
427 #endif
428 #ifdef CONFIG_SA1100_LART
429 if (machine_is_lart()) {
430 #ifdef LART_GREY_LCD
431 inf = &lart_grey_info;
432 #endif
433 #ifdef LART_COLOR_LCD
434 inf = &lart_color_info;
435 #endif
436 #ifdef LART_VIDEO_OUT
437 inf = &lart_video_info;
438 #endif
439 #ifdef LART_KIT01_LCD
440 inf = &lart_kit01_info;
441 #endif
443 #endif
444 #ifdef CONFIG_SA1100_SHANNON
445 if (machine_is_shannon()) {
446 inf = &shannon_info;
448 #endif
449 return inf;
452 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
453 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
455 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
457 unsigned long flags;
459 local_irq_save(flags);
461 * We need to handle two requests being made at the same time.
462 * There are two important cases:
463 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
464 * We must perform the unblanking, which will do our REENABLE for us.
465 * 2. When we are blanking, but immediately unblank before we have
466 * blanked. We do the "REENABLE" thing here as well, just to be sure.
468 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
469 state = (u_int) -1;
470 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
471 state = C_REENABLE;
473 if (state != (u_int)-1) {
474 fbi->task_state = state;
475 schedule_work(&fbi->task);
477 local_irq_restore(flags);
480 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
482 chan &= 0xffff;
483 chan >>= 16 - bf->length;
484 return chan << bf->offset;
488 * Convert bits-per-pixel to a hardware palette PBS value.
490 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
492 int ret = 0;
493 switch (var->bits_per_pixel) {
494 case 4: ret = 0 << 12; break;
495 case 8: ret = 1 << 12; break;
496 case 16: ret = 2 << 12; break;
498 return ret;
501 static int
502 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
503 u_int trans, struct fb_info *info)
505 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
506 u_int val, ret = 1;
508 if (regno < fbi->palette_size) {
509 val = ((red >> 4) & 0xf00);
510 val |= ((green >> 8) & 0x0f0);
511 val |= ((blue >> 12) & 0x00f);
513 if (regno == 0)
514 val |= palette_pbs(&fbi->fb.var);
516 fbi->palette_cpu[regno] = val;
517 ret = 0;
519 return ret;
522 static int
523 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
524 u_int trans, struct fb_info *info)
526 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
527 unsigned int val;
528 int ret = 1;
531 * If inverse mode was selected, invert all the colours
532 * rather than the register number. The register number
533 * is what you poke into the framebuffer to produce the
534 * colour you requested.
536 if (fbi->cmap_inverse) {
537 red = 0xffff - red;
538 green = 0xffff - green;
539 blue = 0xffff - blue;
543 * If greyscale is true, then we convert the RGB value
544 * to greyscale no mater what visual we are using.
546 if (fbi->fb.var.grayscale)
547 red = green = blue = (19595 * red + 38470 * green +
548 7471 * blue) >> 16;
550 switch (fbi->fb.fix.visual) {
551 case FB_VISUAL_TRUECOLOR:
553 * 12 or 16-bit True Colour. We encode the RGB value
554 * according to the RGB bitfield information.
556 if (regno < 16) {
557 u32 *pal = fbi->fb.pseudo_palette;
559 val = chan_to_field(red, &fbi->fb.var.red);
560 val |= chan_to_field(green, &fbi->fb.var.green);
561 val |= chan_to_field(blue, &fbi->fb.var.blue);
563 pal[regno] = val;
564 ret = 0;
566 break;
568 case FB_VISUAL_STATIC_PSEUDOCOLOR:
569 case FB_VISUAL_PSEUDOCOLOR:
570 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
571 break;
574 return ret;
577 #ifdef CONFIG_CPU_FREQ
579 * sa1100fb_display_dma_period()
580 * Calculate the minimum period (in picoseconds) between two DMA
581 * requests for the LCD controller. If we hit this, it means we're
582 * doing nothing but LCD DMA.
584 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
587 * Period = pixclock * bits_per_byte * bytes_per_transfer
588 * / memory_bits_per_pixel;
590 return var->pixclock * 8 * 16 / var->bits_per_pixel;
592 #endif
595 * sa1100fb_check_var():
596 * Round up in the following order: bits_per_pixel, xres,
597 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
598 * bitfields, horizontal timing, vertical timing.
600 static int
601 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
603 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
604 int rgbidx;
606 if (var->xres < MIN_XRES)
607 var->xres = MIN_XRES;
608 if (var->yres < MIN_YRES)
609 var->yres = MIN_YRES;
610 if (var->xres > fbi->max_xres)
611 var->xres = fbi->max_xres;
612 if (var->yres > fbi->max_yres)
613 var->yres = fbi->max_yres;
614 var->xres_virtual = max(var->xres_virtual, var->xres);
615 var->yres_virtual = max(var->yres_virtual, var->yres);
617 DPRINTK("var->bits_per_pixel=%d\n", var->bits_per_pixel);
618 switch (var->bits_per_pixel) {
619 case 4:
620 rgbidx = RGB_4;
621 break;
622 case 8:
623 rgbidx = RGB_8;
624 break;
625 case 16:
626 rgbidx = RGB_16;
627 break;
628 default:
629 return -EINVAL;
633 * Copy the RGB parameters for this display
634 * from the machine specific parameters.
636 var->red = fbi->rgb[rgbidx]->red;
637 var->green = fbi->rgb[rgbidx]->green;
638 var->blue = fbi->rgb[rgbidx]->blue;
639 var->transp = fbi->rgb[rgbidx]->transp;
641 DPRINTK("RGBT length = %d:%d:%d:%d\n",
642 var->red.length, var->green.length, var->blue.length,
643 var->transp.length);
645 DPRINTK("RGBT offset = %d:%d:%d:%d\n",
646 var->red.offset, var->green.offset, var->blue.offset,
647 var->transp.offset);
649 #ifdef CONFIG_CPU_FREQ
650 printk(KERN_DEBUG "dma period = %d ps, clock = %d kHz\n",
651 sa1100fb_display_dma_period(var),
652 cpufreq_get(smp_processor_id()));
653 #endif
655 return 0;
658 static inline void sa1100fb_set_truecolor(u_int is_true_color)
660 if (machine_is_assabet()) {
661 #if 1 // phase 4 or newer Assabet's
662 if (is_true_color)
663 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
664 else
665 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
666 #else
667 // older Assabet's
668 if (is_true_color)
669 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
670 else
671 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
672 #endif
677 * sa1100fb_set_par():
678 * Set the user defined part of the display for the specified console
680 static int sa1100fb_set_par(struct fb_info *info)
682 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
683 struct fb_var_screeninfo *var = &info->var;
684 unsigned long palette_mem_size;
686 DPRINTK("set_par\n");
688 if (var->bits_per_pixel == 16)
689 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
690 else if (!fbi->cmap_static)
691 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
692 else {
694 * Some people have weird ideas about wanting static
695 * pseudocolor maps. I suspect their user space
696 * applications are broken.
698 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
701 fbi->fb.fix.line_length = var->xres_virtual *
702 var->bits_per_pixel / 8;
703 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
705 palette_mem_size = fbi->palette_size * sizeof(u16);
707 DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size);
709 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
710 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
713 * Set (any) board control register to handle new color depth
715 sa1100fb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
716 sa1100fb_activate_var(var, fbi);
718 return 0;
721 #if 0
722 static int
723 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
724 struct fb_info *info)
726 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
729 * Make sure the user isn't doing something stupid.
731 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->cmap_static))
732 return -EINVAL;
734 return gen_set_cmap(cmap, kspc, con, info);
736 #endif
739 * Formal definition of the VESA spec:
740 * On
741 * This refers to the state of the display when it is in full operation
742 * Stand-By
743 * This defines an optional operating state of minimal power reduction with
744 * the shortest recovery time
745 * Suspend
746 * This refers to a level of power management in which substantial power
747 * reduction is achieved by the display. The display can have a longer
748 * recovery time from this state than from the Stand-by state
749 * Off
750 * This indicates that the display is consuming the lowest level of power
751 * and is non-operational. Recovery from this state may optionally require
752 * the user to manually power on the monitor
754 * Now, the fbdev driver adds an additional state, (blank), where they
755 * turn off the video (maybe by colormap tricks), but don't mess with the
756 * video itself: think of it semantically between on and Stand-By.
758 * So here's what we should do in our fbdev blank routine:
760 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
761 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
762 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
763 * VESA_POWERDOWN (mode 3) Video off, front/back light off
765 * This will match the matrox implementation.
768 * sa1100fb_blank():
769 * Blank the display by setting all palette values to zero. Note, the
770 * 12 and 16 bpp modes don't really use the palette, so this will not
771 * blank the display in all modes.
773 static int sa1100fb_blank(int blank, struct fb_info *info)
775 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
776 int i;
778 DPRINTK("sa1100fb_blank: blank=%d\n", blank);
780 switch (blank) {
781 case FB_BLANK_POWERDOWN:
782 case FB_BLANK_VSYNC_SUSPEND:
783 case FB_BLANK_HSYNC_SUSPEND:
784 case FB_BLANK_NORMAL:
785 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
786 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
787 for (i = 0; i < fbi->palette_size; i++)
788 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
789 sa1100fb_schedule_work(fbi, C_DISABLE);
790 break;
792 case FB_BLANK_UNBLANK:
793 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
794 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
795 fb_set_cmap(&fbi->fb.cmap, info);
796 sa1100fb_schedule_work(fbi, C_ENABLE);
798 return 0;
801 static int sa1100fb_mmap(struct fb_info *info,
802 struct vm_area_struct *vma)
804 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
805 unsigned long start, len, off = vma->vm_pgoff << PAGE_SHIFT;
807 if (off < info->fix.smem_len) {
808 vma->vm_pgoff += 1; /* skip over the palette */
809 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
810 fbi->map_dma, fbi->map_size);
813 start = info->fix.mmio_start;
814 len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.mmio_len);
816 if ((vma->vm_end - vma->vm_start + off) > len)
817 return -EINVAL;
819 off += start & PAGE_MASK;
820 vma->vm_pgoff = off >> PAGE_SHIFT;
821 vma->vm_flags |= VM_IO;
822 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
823 return io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
824 vma->vm_end - vma->vm_start,
825 vma->vm_page_prot);
828 static struct fb_ops sa1100fb_ops = {
829 .owner = THIS_MODULE,
830 .fb_check_var = sa1100fb_check_var,
831 .fb_set_par = sa1100fb_set_par,
832 // .fb_set_cmap = sa1100fb_set_cmap,
833 .fb_setcolreg = sa1100fb_setcolreg,
834 .fb_fillrect = cfb_fillrect,
835 .fb_copyarea = cfb_copyarea,
836 .fb_imageblit = cfb_imageblit,
837 .fb_blank = sa1100fb_blank,
838 .fb_mmap = sa1100fb_mmap,
842 * Calculate the PCD value from the clock rate (in picoseconds).
843 * We take account of the PPCR clock setting.
845 static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
847 unsigned int pcd = cpuclock / 100;
849 pcd *= pixclock;
850 pcd /= 10000000;
852 return pcd + 1; /* make up for integer math truncations */
856 * sa1100fb_activate_var():
857 * Configures LCD Controller based on entries in var parameter. Settings are
858 * only written to the controller if changes were made.
860 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
862 struct sa1100fb_lcd_reg new_regs;
863 u_int half_screen_size, yres, pcd;
864 u_long flags;
866 DPRINTK("Configuring SA1100 LCD\n");
868 DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n",
869 var->xres, var->hsync_len,
870 var->left_margin, var->right_margin);
871 DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n",
872 var->yres, var->vsync_len,
873 var->upper_margin, var->lower_margin);
875 #if DEBUG_VAR
876 if (var->xres < 16 || var->xres > 1024)
877 printk(KERN_ERR "%s: invalid xres %d\n",
878 fbi->fb.fix.id, var->xres);
879 if (var->hsync_len < 1 || var->hsync_len > 64)
880 printk(KERN_ERR "%s: invalid hsync_len %d\n",
881 fbi->fb.fix.id, var->hsync_len);
882 if (var->left_margin < 1 || var->left_margin > 255)
883 printk(KERN_ERR "%s: invalid left_margin %d\n",
884 fbi->fb.fix.id, var->left_margin);
885 if (var->right_margin < 1 || var->right_margin > 255)
886 printk(KERN_ERR "%s: invalid right_margin %d\n",
887 fbi->fb.fix.id, var->right_margin);
888 if (var->yres < 1 || var->yres > 1024)
889 printk(KERN_ERR "%s: invalid yres %d\n",
890 fbi->fb.fix.id, var->yres);
891 if (var->vsync_len < 1 || var->vsync_len > 64)
892 printk(KERN_ERR "%s: invalid vsync_len %d\n",
893 fbi->fb.fix.id, var->vsync_len);
894 if (var->upper_margin < 0 || var->upper_margin > 255)
895 printk(KERN_ERR "%s: invalid upper_margin %d\n",
896 fbi->fb.fix.id, var->upper_margin);
897 if (var->lower_margin < 0 || var->lower_margin > 255)
898 printk(KERN_ERR "%s: invalid lower_margin %d\n",
899 fbi->fb.fix.id, var->lower_margin);
900 #endif
902 new_regs.lccr0 = fbi->lccr0 |
903 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
904 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
906 new_regs.lccr1 =
907 LCCR1_DisWdth(var->xres) +
908 LCCR1_HorSnchWdth(var->hsync_len) +
909 LCCR1_BegLnDel(var->left_margin) +
910 LCCR1_EndLnDel(var->right_margin);
913 * If we have a dual scan LCD, then we need to halve
914 * the YRES parameter.
916 yres = var->yres;
917 if (fbi->lccr0 & LCCR0_Dual)
918 yres /= 2;
920 new_regs.lccr2 =
921 LCCR2_DisHght(yres) +
922 LCCR2_VrtSnchWdth(var->vsync_len) +
923 LCCR2_BegFrmDel(var->upper_margin) +
924 LCCR2_EndFrmDel(var->lower_margin);
926 pcd = get_pcd(var->pixclock, cpufreq_get(0));
927 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->lccr3 |
928 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
929 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
931 DPRINTK("nlccr0 = 0x%08lx\n", new_regs.lccr0);
932 DPRINTK("nlccr1 = 0x%08lx\n", new_regs.lccr1);
933 DPRINTK("nlccr2 = 0x%08lx\n", new_regs.lccr2);
934 DPRINTK("nlccr3 = 0x%08lx\n", new_regs.lccr3);
936 half_screen_size = var->bits_per_pixel;
937 half_screen_size = half_screen_size * var->xres * var->yres / 16;
939 /* Update shadow copy atomically */
940 local_irq_save(flags);
941 fbi->dbar1 = fbi->palette_dma;
942 fbi->dbar2 = fbi->screen_dma + half_screen_size;
944 fbi->reg_lccr0 = new_regs.lccr0;
945 fbi->reg_lccr1 = new_regs.lccr1;
946 fbi->reg_lccr2 = new_regs.lccr2;
947 fbi->reg_lccr3 = new_regs.lccr3;
948 local_irq_restore(flags);
951 * Only update the registers if the controller is enabled
952 * and something has changed.
954 if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
955 (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
956 (DBAR1 != fbi->dbar1) || (DBAR2 != fbi->dbar2))
957 sa1100fb_schedule_work(fbi, C_REENABLE);
959 return 0;
963 * NOTE! The following functions are purely helpers for set_ctrlr_state.
964 * Do not call them directly; set_ctrlr_state does the correct serialisation
965 * to ensure that things happen in the right way 100% of time time.
966 * -- rmk
968 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
970 DPRINTK("backlight o%s\n", on ? "n" : "ff");
972 if (sa1100fb_backlight_power)
973 sa1100fb_backlight_power(on);
976 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
978 DPRINTK("LCD power o%s\n", on ? "n" : "ff");
980 if (sa1100fb_lcd_power)
981 sa1100fb_lcd_power(on);
984 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
986 u_int mask = 0;
989 * Enable GPIO<9:2> for LCD use if:
990 * 1. Active display, or
991 * 2. Color Dual Passive display
993 * see table 11.8 on page 11-27 in the SA1100 manual
994 * -- Erik.
996 * SA1110 spec update nr. 25 says we can and should
997 * clear LDD15 to 12 for 4 or 8bpp modes with active
998 * panels.
1000 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
1001 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
1002 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
1004 if (fbi->fb.var.bits_per_pixel > 8 ||
1005 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
1006 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
1010 if (mask) {
1011 GPDR |= mask;
1012 GAFR |= mask;
1016 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
1018 DPRINTK("Enabling LCD controller\n");
1021 * Make sure the mode bits are present in the first palette entry
1023 fbi->palette_cpu[0] &= 0xcfff;
1024 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
1026 /* Sequence from 11.7.10 */
1027 LCCR3 = fbi->reg_lccr3;
1028 LCCR2 = fbi->reg_lccr2;
1029 LCCR1 = fbi->reg_lccr1;
1030 LCCR0 = fbi->reg_lccr0 & ~LCCR0_LEN;
1031 DBAR1 = fbi->dbar1;
1032 DBAR2 = fbi->dbar2;
1033 LCCR0 |= LCCR0_LEN;
1035 if (machine_is_shannon()) {
1036 GPDR |= SHANNON_GPIO_DISP_EN;
1037 GPSR |= SHANNON_GPIO_DISP_EN;
1040 DPRINTK("DBAR1 = 0x%08x\n", DBAR1);
1041 DPRINTK("DBAR2 = 0x%08x\n", DBAR2);
1042 DPRINTK("LCCR0 = 0x%08x\n", LCCR0);
1043 DPRINTK("LCCR1 = 0x%08x\n", LCCR1);
1044 DPRINTK("LCCR2 = 0x%08x\n", LCCR2);
1045 DPRINTK("LCCR3 = 0x%08x\n", LCCR3);
1048 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
1050 DECLARE_WAITQUEUE(wait, current);
1052 DPRINTK("Disabling LCD controller\n");
1054 if (machine_is_shannon()) {
1055 GPCR |= SHANNON_GPIO_DISP_EN;
1058 set_current_state(TASK_UNINTERRUPTIBLE);
1059 add_wait_queue(&fbi->ctrlr_wait, &wait);
1061 LCSR = 0xffffffff; /* Clear LCD Status Register */
1062 LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
1063 LCCR0 &= ~LCCR0_LEN; /* Disable LCD Controller */
1065 schedule_timeout(20 * HZ / 1000);
1066 remove_wait_queue(&fbi->ctrlr_wait, &wait);
1070 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
1072 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
1074 struct sa1100fb_info *fbi = dev_id;
1075 unsigned int lcsr = LCSR;
1077 if (lcsr & LCSR_LDD) {
1078 LCCR0 |= LCCR0_LDM;
1079 wake_up(&fbi->ctrlr_wait);
1082 LCSR = lcsr;
1083 return IRQ_HANDLED;
1087 * This function must be called from task context only, since it will
1088 * sleep when disabling the LCD controller, or if we get two contending
1089 * processes trying to alter state.
1091 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
1093 u_int old_state;
1095 mutex_lock(&fbi->ctrlr_lock);
1097 old_state = fbi->state;
1100 * Hack around fbcon initialisation.
1102 if (old_state == C_STARTUP && state == C_REENABLE)
1103 state = C_ENABLE;
1105 switch (state) {
1106 case C_DISABLE_CLKCHANGE:
1108 * Disable controller for clock change. If the
1109 * controller is already disabled, then do nothing.
1111 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1112 fbi->state = state;
1113 sa1100fb_disable_controller(fbi);
1115 break;
1117 case C_DISABLE_PM:
1118 case C_DISABLE:
1120 * Disable controller
1122 if (old_state != C_DISABLE) {
1123 fbi->state = state;
1125 __sa1100fb_backlight_power(fbi, 0);
1126 if (old_state != C_DISABLE_CLKCHANGE)
1127 sa1100fb_disable_controller(fbi);
1128 __sa1100fb_lcd_power(fbi, 0);
1130 break;
1132 case C_ENABLE_CLKCHANGE:
1134 * Enable the controller after clock change. Only
1135 * do this if we were disabled for the clock change.
1137 if (old_state == C_DISABLE_CLKCHANGE) {
1138 fbi->state = C_ENABLE;
1139 sa1100fb_enable_controller(fbi);
1141 break;
1143 case C_REENABLE:
1145 * Re-enable the controller only if it was already
1146 * enabled. This is so we reprogram the control
1147 * registers.
1149 if (old_state == C_ENABLE) {
1150 sa1100fb_disable_controller(fbi);
1151 sa1100fb_setup_gpio(fbi);
1152 sa1100fb_enable_controller(fbi);
1154 break;
1156 case C_ENABLE_PM:
1158 * Re-enable the controller after PM. This is not
1159 * perfect - think about the case where we were doing
1160 * a clock change, and we suspended half-way through.
1162 if (old_state != C_DISABLE_PM)
1163 break;
1164 /* fall through */
1166 case C_ENABLE:
1168 * Power up the LCD screen, enable controller, and
1169 * turn on the backlight.
1171 if (old_state != C_ENABLE) {
1172 fbi->state = C_ENABLE;
1173 sa1100fb_setup_gpio(fbi);
1174 __sa1100fb_lcd_power(fbi, 1);
1175 sa1100fb_enable_controller(fbi);
1176 __sa1100fb_backlight_power(fbi, 1);
1178 break;
1180 mutex_unlock(&fbi->ctrlr_lock);
1184 * Our LCD controller task (which is called when we blank or unblank)
1185 * via keventd.
1187 static void sa1100fb_task(struct work_struct *w)
1189 struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
1190 u_int state = xchg(&fbi->task_state, -1);
1192 set_ctrlr_state(fbi, state);
1195 #ifdef CONFIG_CPU_FREQ
1197 * Calculate the minimum DMA period over all displays that we own.
1198 * This, together with the SDRAM bandwidth defines the slowest CPU
1199 * frequency that can be selected.
1201 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
1203 #if 0
1204 unsigned int min_period = (unsigned int)-1;
1205 int i;
1207 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1208 struct display *disp = &fb_display[i];
1209 unsigned int period;
1212 * Do we own this display?
1214 if (disp->fb_info != &fbi->fb)
1215 continue;
1218 * Ok, calculate its DMA period
1220 period = sa1100fb_display_dma_period(&disp->var);
1221 if (period < min_period)
1222 min_period = period;
1225 return min_period;
1226 #else
1228 * FIXME: we need to verify _all_ consoles.
1230 return sa1100fb_display_dma_period(&fbi->fb.var);
1231 #endif
1235 * CPU clock speed change handler. We need to adjust the LCD timing
1236 * parameters when the CPU clock is adjusted by the power management
1237 * subsystem.
1239 static int
1240 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1241 void *data)
1243 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1244 struct cpufreq_freqs *f = data;
1245 u_int pcd;
1247 switch (val) {
1248 case CPUFREQ_PRECHANGE:
1249 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1250 break;
1252 case CPUFREQ_POSTCHANGE:
1253 pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1254 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1255 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1256 break;
1258 return 0;
1261 static int
1262 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1263 void *data)
1265 struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1266 struct cpufreq_policy *policy = data;
1268 switch (val) {
1269 case CPUFREQ_ADJUST:
1270 case CPUFREQ_INCOMPATIBLE:
1271 printk(KERN_DEBUG "min dma period: %d ps, "
1272 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1273 policy->max);
1274 /* todo: fill in min/max values */
1275 break;
1276 case CPUFREQ_NOTIFY:
1277 do {} while(0);
1278 /* todo: panic if min/max values aren't fulfilled
1279 * [can't really happen unless there's a bug in the
1280 * CPU policy verififcation process *
1282 break;
1284 return 0;
1286 #endif
1288 #ifdef CONFIG_PM
1290 * Power management hooks. Note that we won't be called from IRQ context,
1291 * unlike the blank functions above, so we may sleep.
1293 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1295 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1297 set_ctrlr_state(fbi, C_DISABLE_PM);
1298 return 0;
1301 static int sa1100fb_resume(struct platform_device *dev)
1303 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1305 set_ctrlr_state(fbi, C_ENABLE_PM);
1306 return 0;
1308 #else
1309 #define sa1100fb_suspend NULL
1310 #define sa1100fb_resume NULL
1311 #endif
1314 * sa1100fb_map_video_memory():
1315 * Allocates the DRAM memory for the frame buffer. This buffer is
1316 * remapped into a non-cached, non-buffered, memory region to
1317 * allow palette and pixel writes to occur without flushing the
1318 * cache. Once this area is remapped, all virtual memory
1319 * access to the video memory should occur at the new region.
1321 static int __init sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1324 * We reserve one page for the palette, plus the size
1325 * of the framebuffer.
1327 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1328 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1329 &fbi->map_dma, GFP_KERNEL);
1331 if (fbi->map_cpu) {
1332 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1333 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1335 * FIXME: this is actually the wrong thing to place in
1336 * smem_start. But fbdev suffers from the problem that
1337 * it needs an API which doesn't exist (in this case,
1338 * dma_writecombine_mmap)
1340 fbi->fb.fix.smem_start = fbi->screen_dma;
1343 return fbi->map_cpu ? 0 : -ENOMEM;
1346 /* Fake monspecs to fill in fbinfo structure */
1347 static struct fb_monspecs monspecs __initdata = {
1348 .hfmin = 30000,
1349 .hfmax = 70000,
1350 .vfmin = 50,
1351 .vfmax = 65,
1355 static struct sa1100fb_info * __init sa1100fb_init_fbinfo(struct device *dev)
1357 struct sa1100fb_mach_info *inf;
1358 struct sa1100fb_info *fbi;
1360 fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1361 GFP_KERNEL);
1362 if (!fbi)
1363 return NULL;
1365 memset(fbi, 0, sizeof(struct sa1100fb_info));
1366 fbi->dev = dev;
1368 strcpy(fbi->fb.fix.id, SA1100_NAME);
1370 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1371 fbi->fb.fix.type_aux = 0;
1372 fbi->fb.fix.xpanstep = 0;
1373 fbi->fb.fix.ypanstep = 0;
1374 fbi->fb.fix.ywrapstep = 0;
1375 fbi->fb.fix.accel = FB_ACCEL_NONE;
1377 fbi->fb.var.nonstd = 0;
1378 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1379 fbi->fb.var.height = -1;
1380 fbi->fb.var.width = -1;
1381 fbi->fb.var.accel_flags = 0;
1382 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1384 fbi->fb.fbops = &sa1100fb_ops;
1385 fbi->fb.flags = FBINFO_DEFAULT;
1386 fbi->fb.monspecs = monspecs;
1387 fbi->fb.pseudo_palette = (fbi + 1);
1389 fbi->rgb[RGB_4] = &rgb_4;
1390 fbi->rgb[RGB_8] = &rgb_8;
1391 fbi->rgb[RGB_16] = &def_rgb_16;
1393 inf = sa1100fb_get_machine_info(fbi);
1396 * People just don't seem to get this. We don't support
1397 * anything but correct entries now, so panic if someone
1398 * does something stupid.
1400 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1401 inf->pixclock == 0)
1402 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1403 "pixclock.");
1405 fbi->max_xres = inf->xres;
1406 fbi->fb.var.xres = inf->xres;
1407 fbi->fb.var.xres_virtual = inf->xres;
1408 fbi->max_yres = inf->yres;
1409 fbi->fb.var.yres = inf->yres;
1410 fbi->fb.var.yres_virtual = inf->yres;
1411 fbi->max_bpp = inf->bpp;
1412 fbi->fb.var.bits_per_pixel = inf->bpp;
1413 fbi->fb.var.pixclock = inf->pixclock;
1414 fbi->fb.var.hsync_len = inf->hsync_len;
1415 fbi->fb.var.left_margin = inf->left_margin;
1416 fbi->fb.var.right_margin = inf->right_margin;
1417 fbi->fb.var.vsync_len = inf->vsync_len;
1418 fbi->fb.var.upper_margin = inf->upper_margin;
1419 fbi->fb.var.lower_margin = inf->lower_margin;
1420 fbi->fb.var.sync = inf->sync;
1421 fbi->fb.var.grayscale = inf->cmap_greyscale;
1422 fbi->cmap_inverse = inf->cmap_inverse;
1423 fbi->cmap_static = inf->cmap_static;
1424 fbi->lccr0 = inf->lccr0;
1425 fbi->lccr3 = inf->lccr3;
1426 fbi->state = C_STARTUP;
1427 fbi->task_state = (u_char)-1;
1428 fbi->fb.fix.smem_len = fbi->max_xres * fbi->max_yres *
1429 fbi->max_bpp / 8;
1431 init_waitqueue_head(&fbi->ctrlr_wait);
1432 INIT_WORK(&fbi->task, sa1100fb_task);
1433 mutex_init(&fbi->ctrlr_lock);
1435 return fbi;
1438 static int __init sa1100fb_probe(struct platform_device *pdev)
1440 struct sa1100fb_info *fbi;
1441 int ret, irq;
1443 irq = platform_get_irq(pdev, 0);
1444 if (irq < 0)
1445 return -EINVAL;
1447 if (!request_mem_region(0xb0100000, 0x10000, "LCD"))
1448 return -EBUSY;
1450 fbi = sa1100fb_init_fbinfo(&pdev->dev);
1451 ret = -ENOMEM;
1452 if (!fbi)
1453 goto failed;
1455 /* Initialize video memory */
1456 ret = sa1100fb_map_video_memory(fbi);
1457 if (ret)
1458 goto failed;
1460 ret = request_irq(irq, sa1100fb_handle_irq, IRQF_DISABLED,
1461 "LCD", fbi);
1462 if (ret) {
1463 printk(KERN_ERR "sa1100fb: request_irq failed: %d\n", ret);
1464 goto failed;
1467 #ifdef ASSABET_PAL_VIDEO
1468 if (machine_is_assabet())
1469 ASSABET_BCR_clear(ASSABET_BCR_LCD_ON);
1470 #endif
1473 * This makes sure that our colour bitfield
1474 * descriptors are correctly initialised.
1476 sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1478 platform_set_drvdata(pdev, fbi);
1480 ret = register_framebuffer(&fbi->fb);
1481 if (ret < 0)
1482 goto err_free_irq;
1484 #ifdef CONFIG_CPU_FREQ
1485 fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1486 fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1487 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1488 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1489 #endif
1491 /* This driver cannot be unloaded at the moment */
1492 return 0;
1494 err_free_irq:
1495 free_irq(irq, fbi);
1496 failed:
1497 platform_set_drvdata(pdev, NULL);
1498 kfree(fbi);
1499 release_mem_region(0xb0100000, 0x10000);
1500 return ret;
1503 static struct platform_driver sa1100fb_driver = {
1504 .probe = sa1100fb_probe,
1505 .suspend = sa1100fb_suspend,
1506 .resume = sa1100fb_resume,
1507 .driver = {
1508 .name = "sa11x0-fb",
1512 int __init sa1100fb_init(void)
1514 if (fb_get_options("sa1100fb", NULL))
1515 return -ENODEV;
1517 return platform_driver_register(&sa1100fb_driver);
1520 int __init sa1100fb_setup(char *options)
1522 #if 0
1523 char *this_opt;
1525 if (!options || !*options)
1526 return 0;
1528 while ((this_opt = strsep(&options, ",")) != NULL) {
1530 if (!strncmp(this_opt, "bpp:", 4))
1531 current_par.max_bpp =
1532 simple_strtoul(this_opt + 4, NULL, 0);
1534 if (!strncmp(this_opt, "lccr0:", 6))
1535 lcd_shadow.lccr0 =
1536 simple_strtoul(this_opt + 6, NULL, 0);
1537 if (!strncmp(this_opt, "lccr1:", 6)) {
1538 lcd_shadow.lccr1 =
1539 simple_strtoul(this_opt + 6, NULL, 0);
1540 current_par.max_xres =
1541 (lcd_shadow.lccr1 & 0x3ff) + 16;
1543 if (!strncmp(this_opt, "lccr2:", 6)) {
1544 lcd_shadow.lccr2 =
1545 simple_strtoul(this_opt + 6, NULL, 0);
1546 current_par.max_yres =
1547 (lcd_shadow.
1548 lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1549 lccr2 & 0x3ff) +
1550 1) *
1551 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1553 if (!strncmp(this_opt, "lccr3:", 6))
1554 lcd_shadow.lccr3 =
1555 simple_strtoul(this_opt + 6, NULL, 0);
1557 #endif
1558 return 0;
1561 module_init(sa1100fb_init);
1562 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1563 MODULE_LICENSE("GPL");