2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
29 #include "print-tree.h"
30 #include "transaction.h"
33 #include "free-space-cache.h"
35 static int update_block_group(struct btrfs_trans_handle
*trans
,
36 struct btrfs_root
*root
,
37 u64 bytenr
, u64 num_bytes
, int alloc
,
39 static int update_reserved_extents(struct btrfs_block_group_cache
*cache
,
40 u64 num_bytes
, int reserve
);
41 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
,
43 u64 bytenr
, u64 num_bytes
, u64 parent
,
44 u64 root_objectid
, u64 owner_objectid
,
45 u64 owner_offset
, int refs_to_drop
,
46 struct btrfs_delayed_extent_op
*extra_op
);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
48 struct extent_buffer
*leaf
,
49 struct btrfs_extent_item
*ei
);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
51 struct btrfs_root
*root
,
52 u64 parent
, u64 root_objectid
,
53 u64 flags
, u64 owner
, u64 offset
,
54 struct btrfs_key
*ins
, int ref_mod
);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 parent
, u64 root_objectid
,
58 u64 flags
, struct btrfs_disk_key
*key
,
59 int level
, struct btrfs_key
*ins
);
60 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
61 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
62 u64 flags
, int force
);
63 static int pin_down_bytes(struct btrfs_trans_handle
*trans
,
64 struct btrfs_root
*root
,
65 struct btrfs_path
*path
,
66 u64 bytenr
, u64 num_bytes
,
67 int is_data
, int reserved
,
68 struct extent_buffer
**must_clean
);
69 static int find_next_key(struct btrfs_path
*path
, int level
,
70 struct btrfs_key
*key
);
71 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
72 int dump_block_groups
);
75 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
78 return cache
->cached
== BTRFS_CACHE_FINISHED
;
81 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
83 return (cache
->flags
& bits
) == bits
;
87 * this adds the block group to the fs_info rb tree for the block group
90 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
91 struct btrfs_block_group_cache
*block_group
)
94 struct rb_node
*parent
= NULL
;
95 struct btrfs_block_group_cache
*cache
;
97 spin_lock(&info
->block_group_cache_lock
);
98 p
= &info
->block_group_cache_tree
.rb_node
;
102 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
104 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
106 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
109 spin_unlock(&info
->block_group_cache_lock
);
114 rb_link_node(&block_group
->cache_node
, parent
, p
);
115 rb_insert_color(&block_group
->cache_node
,
116 &info
->block_group_cache_tree
);
117 spin_unlock(&info
->block_group_cache_lock
);
123 * This will return the block group at or after bytenr if contains is 0, else
124 * it will return the block group that contains the bytenr
126 static struct btrfs_block_group_cache
*
127 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
130 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
134 spin_lock(&info
->block_group_cache_lock
);
135 n
= info
->block_group_cache_tree
.rb_node
;
138 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
140 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
141 start
= cache
->key
.objectid
;
143 if (bytenr
< start
) {
144 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
147 } else if (bytenr
> start
) {
148 if (contains
&& bytenr
<= end
) {
159 atomic_inc(&ret
->count
);
160 spin_unlock(&info
->block_group_cache_lock
);
165 static int add_excluded_extent(struct btrfs_root
*root
,
166 u64 start
, u64 num_bytes
)
168 u64 end
= start
+ num_bytes
- 1;
169 set_extent_bits(&root
->fs_info
->freed_extents
[0],
170 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
171 set_extent_bits(&root
->fs_info
->freed_extents
[1],
172 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
176 static void free_excluded_extents(struct btrfs_root
*root
,
177 struct btrfs_block_group_cache
*cache
)
181 start
= cache
->key
.objectid
;
182 end
= start
+ cache
->key
.offset
- 1;
184 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
185 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
186 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
187 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
190 static int exclude_super_stripes(struct btrfs_root
*root
,
191 struct btrfs_block_group_cache
*cache
)
198 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
199 bytenr
= btrfs_sb_offset(i
);
200 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
201 cache
->key
.objectid
, bytenr
,
202 0, &logical
, &nr
, &stripe_len
);
206 cache
->bytes_super
+= stripe_len
;
207 ret
= add_excluded_extent(root
, logical
[nr
],
217 static struct btrfs_caching_control
*
218 get_caching_control(struct btrfs_block_group_cache
*cache
)
220 struct btrfs_caching_control
*ctl
;
222 spin_lock(&cache
->lock
);
223 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
224 spin_unlock(&cache
->lock
);
228 ctl
= cache
->caching_ctl
;
229 atomic_inc(&ctl
->count
);
230 spin_unlock(&cache
->lock
);
234 static void put_caching_control(struct btrfs_caching_control
*ctl
)
236 if (atomic_dec_and_test(&ctl
->count
))
241 * this is only called by cache_block_group, since we could have freed extents
242 * we need to check the pinned_extents for any extents that can't be used yet
243 * since their free space will be released as soon as the transaction commits.
245 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
246 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
248 u64 extent_start
, extent_end
, size
, total_added
= 0;
251 while (start
< end
) {
252 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
253 &extent_start
, &extent_end
,
254 EXTENT_DIRTY
| EXTENT_UPTODATE
);
258 if (extent_start
== start
) {
259 start
= extent_end
+ 1;
260 } else if (extent_start
> start
&& extent_start
< end
) {
261 size
= extent_start
- start
;
263 ret
= btrfs_add_free_space(block_group
, start
,
266 start
= extent_end
+ 1;
275 ret
= btrfs_add_free_space(block_group
, start
, size
);
282 static int caching_kthread(void *data
)
284 struct btrfs_block_group_cache
*block_group
= data
;
285 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
286 struct btrfs_caching_control
*caching_ctl
= block_group
->caching_ctl
;
287 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
288 struct btrfs_path
*path
;
289 struct extent_buffer
*leaf
;
290 struct btrfs_key key
;
296 path
= btrfs_alloc_path();
300 exclude_super_stripes(extent_root
, block_group
);
301 spin_lock(&block_group
->space_info
->lock
);
302 block_group
->space_info
->bytes_super
+= block_group
->bytes_super
;
303 spin_unlock(&block_group
->space_info
->lock
);
305 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
308 * We don't want to deadlock with somebody trying to allocate a new
309 * extent for the extent root while also trying to search the extent
310 * root to add free space. So we skip locking and search the commit
311 * root, since its read-only
313 path
->skip_locking
= 1;
314 path
->search_commit_root
= 1;
319 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
321 mutex_lock(&caching_ctl
->mutex
);
322 /* need to make sure the commit_root doesn't disappear */
323 down_read(&fs_info
->extent_commit_sem
);
325 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
329 leaf
= path
->nodes
[0];
330 nritems
= btrfs_header_nritems(leaf
);
334 if (fs_info
->closing
> 1) {
339 if (path
->slots
[0] < nritems
) {
340 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
342 ret
= find_next_key(path
, 0, &key
);
346 caching_ctl
->progress
= last
;
347 btrfs_release_path(extent_root
, path
);
348 up_read(&fs_info
->extent_commit_sem
);
349 mutex_unlock(&caching_ctl
->mutex
);
350 if (btrfs_transaction_in_commit(fs_info
))
357 if (key
.objectid
< block_group
->key
.objectid
) {
362 if (key
.objectid
>= block_group
->key
.objectid
+
363 block_group
->key
.offset
)
366 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
367 total_found
+= add_new_free_space(block_group
,
370 last
= key
.objectid
+ key
.offset
;
372 if (total_found
> (1024 * 1024 * 2)) {
374 wake_up(&caching_ctl
->wait
);
381 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
382 block_group
->key
.objectid
+
383 block_group
->key
.offset
);
384 caching_ctl
->progress
= (u64
)-1;
386 spin_lock(&block_group
->lock
);
387 block_group
->caching_ctl
= NULL
;
388 block_group
->cached
= BTRFS_CACHE_FINISHED
;
389 spin_unlock(&block_group
->lock
);
392 btrfs_free_path(path
);
393 up_read(&fs_info
->extent_commit_sem
);
395 free_excluded_extents(extent_root
, block_group
);
397 mutex_unlock(&caching_ctl
->mutex
);
398 wake_up(&caching_ctl
->wait
);
400 put_caching_control(caching_ctl
);
401 atomic_dec(&block_group
->space_info
->caching_threads
);
405 static int cache_block_group(struct btrfs_block_group_cache
*cache
)
407 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
408 struct btrfs_caching_control
*caching_ctl
;
409 struct task_struct
*tsk
;
413 if (cache
->cached
!= BTRFS_CACHE_NO
)
416 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_KERNEL
);
417 BUG_ON(!caching_ctl
);
419 INIT_LIST_HEAD(&caching_ctl
->list
);
420 mutex_init(&caching_ctl
->mutex
);
421 init_waitqueue_head(&caching_ctl
->wait
);
422 caching_ctl
->block_group
= cache
;
423 caching_ctl
->progress
= cache
->key
.objectid
;
424 /* one for caching kthread, one for caching block group list */
425 atomic_set(&caching_ctl
->count
, 2);
427 spin_lock(&cache
->lock
);
428 if (cache
->cached
!= BTRFS_CACHE_NO
) {
429 spin_unlock(&cache
->lock
);
433 cache
->caching_ctl
= caching_ctl
;
434 cache
->cached
= BTRFS_CACHE_STARTED
;
435 spin_unlock(&cache
->lock
);
437 down_write(&fs_info
->extent_commit_sem
);
438 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
439 up_write(&fs_info
->extent_commit_sem
);
441 atomic_inc(&cache
->space_info
->caching_threads
);
443 tsk
= kthread_run(caching_kthread
, cache
, "btrfs-cache-%llu\n",
444 cache
->key
.objectid
);
447 printk(KERN_ERR
"error running thread %d\n", ret
);
455 * return the block group that starts at or after bytenr
457 static struct btrfs_block_group_cache
*
458 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
460 struct btrfs_block_group_cache
*cache
;
462 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
468 * return the block group that contains the given bytenr
470 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
471 struct btrfs_fs_info
*info
,
474 struct btrfs_block_group_cache
*cache
;
476 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
481 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
483 if (atomic_dec_and_test(&cache
->count
))
487 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
490 struct list_head
*head
= &info
->space_info
;
491 struct btrfs_space_info
*found
;
494 list_for_each_entry_rcu(found
, head
, list
) {
495 if (found
->flags
== flags
) {
505 * after adding space to the filesystem, we need to clear the full flags
506 * on all the space infos.
508 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
510 struct list_head
*head
= &info
->space_info
;
511 struct btrfs_space_info
*found
;
514 list_for_each_entry_rcu(found
, head
, list
)
519 static u64
div_factor(u64 num
, int factor
)
528 u64
btrfs_find_block_group(struct btrfs_root
*root
,
529 u64 search_start
, u64 search_hint
, int owner
)
531 struct btrfs_block_group_cache
*cache
;
533 u64 last
= max(search_hint
, search_start
);
540 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
544 spin_lock(&cache
->lock
);
545 last
= cache
->key
.objectid
+ cache
->key
.offset
;
546 used
= btrfs_block_group_used(&cache
->item
);
548 if ((full_search
|| !cache
->ro
) &&
549 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
550 if (used
+ cache
->pinned
+ cache
->reserved
<
551 div_factor(cache
->key
.offset
, factor
)) {
552 group_start
= cache
->key
.objectid
;
553 spin_unlock(&cache
->lock
);
554 btrfs_put_block_group(cache
);
558 spin_unlock(&cache
->lock
);
559 btrfs_put_block_group(cache
);
567 if (!full_search
&& factor
< 10) {
577 /* simple helper to search for an existing extent at a given offset */
578 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
581 struct btrfs_key key
;
582 struct btrfs_path
*path
;
584 path
= btrfs_alloc_path();
586 key
.objectid
= start
;
588 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
589 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
591 btrfs_free_path(path
);
596 * Back reference rules. Back refs have three main goals:
598 * 1) differentiate between all holders of references to an extent so that
599 * when a reference is dropped we can make sure it was a valid reference
600 * before freeing the extent.
602 * 2) Provide enough information to quickly find the holders of an extent
603 * if we notice a given block is corrupted or bad.
605 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
606 * maintenance. This is actually the same as #2, but with a slightly
607 * different use case.
609 * There are two kinds of back refs. The implicit back refs is optimized
610 * for pointers in non-shared tree blocks. For a given pointer in a block,
611 * back refs of this kind provide information about the block's owner tree
612 * and the pointer's key. These information allow us to find the block by
613 * b-tree searching. The full back refs is for pointers in tree blocks not
614 * referenced by their owner trees. The location of tree block is recorded
615 * in the back refs. Actually the full back refs is generic, and can be
616 * used in all cases the implicit back refs is used. The major shortcoming
617 * of the full back refs is its overhead. Every time a tree block gets
618 * COWed, we have to update back refs entry for all pointers in it.
620 * For a newly allocated tree block, we use implicit back refs for
621 * pointers in it. This means most tree related operations only involve
622 * implicit back refs. For a tree block created in old transaction, the
623 * only way to drop a reference to it is COW it. So we can detect the
624 * event that tree block loses its owner tree's reference and do the
625 * back refs conversion.
627 * When a tree block is COW'd through a tree, there are four cases:
629 * The reference count of the block is one and the tree is the block's
630 * owner tree. Nothing to do in this case.
632 * The reference count of the block is one and the tree is not the
633 * block's owner tree. In this case, full back refs is used for pointers
634 * in the block. Remove these full back refs, add implicit back refs for
635 * every pointers in the new block.
637 * The reference count of the block is greater than one and the tree is
638 * the block's owner tree. In this case, implicit back refs is used for
639 * pointers in the block. Add full back refs for every pointers in the
640 * block, increase lower level extents' reference counts. The original
641 * implicit back refs are entailed to the new block.
643 * The reference count of the block is greater than one and the tree is
644 * not the block's owner tree. Add implicit back refs for every pointer in
645 * the new block, increase lower level extents' reference count.
647 * Back Reference Key composing:
649 * The key objectid corresponds to the first byte in the extent,
650 * The key type is used to differentiate between types of back refs.
651 * There are different meanings of the key offset for different types
654 * File extents can be referenced by:
656 * - multiple snapshots, subvolumes, or different generations in one subvol
657 * - different files inside a single subvolume
658 * - different offsets inside a file (bookend extents in file.c)
660 * The extent ref structure for the implicit back refs has fields for:
662 * - Objectid of the subvolume root
663 * - objectid of the file holding the reference
664 * - original offset in the file
665 * - how many bookend extents
667 * The key offset for the implicit back refs is hash of the first
670 * The extent ref structure for the full back refs has field for:
672 * - number of pointers in the tree leaf
674 * The key offset for the implicit back refs is the first byte of
677 * When a file extent is allocated, The implicit back refs is used.
678 * the fields are filled in:
680 * (root_key.objectid, inode objectid, offset in file, 1)
682 * When a file extent is removed file truncation, we find the
683 * corresponding implicit back refs and check the following fields:
685 * (btrfs_header_owner(leaf), inode objectid, offset in file)
687 * Btree extents can be referenced by:
689 * - Different subvolumes
691 * Both the implicit back refs and the full back refs for tree blocks
692 * only consist of key. The key offset for the implicit back refs is
693 * objectid of block's owner tree. The key offset for the full back refs
694 * is the first byte of parent block.
696 * When implicit back refs is used, information about the lowest key and
697 * level of the tree block are required. These information are stored in
698 * tree block info structure.
701 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
702 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
703 struct btrfs_root
*root
,
704 struct btrfs_path
*path
,
705 u64 owner
, u32 extra_size
)
707 struct btrfs_extent_item
*item
;
708 struct btrfs_extent_item_v0
*ei0
;
709 struct btrfs_extent_ref_v0
*ref0
;
710 struct btrfs_tree_block_info
*bi
;
711 struct extent_buffer
*leaf
;
712 struct btrfs_key key
;
713 struct btrfs_key found_key
;
714 u32 new_size
= sizeof(*item
);
718 leaf
= path
->nodes
[0];
719 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
721 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
722 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
723 struct btrfs_extent_item_v0
);
724 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
726 if (owner
== (u64
)-1) {
728 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
729 ret
= btrfs_next_leaf(root
, path
);
733 leaf
= path
->nodes
[0];
735 btrfs_item_key_to_cpu(leaf
, &found_key
,
737 BUG_ON(key
.objectid
!= found_key
.objectid
);
738 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
742 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
743 struct btrfs_extent_ref_v0
);
744 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
748 btrfs_release_path(root
, path
);
750 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
751 new_size
+= sizeof(*bi
);
753 new_size
-= sizeof(*ei0
);
754 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
755 new_size
+ extra_size
, 1);
760 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
763 leaf
= path
->nodes
[0];
764 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
765 btrfs_set_extent_refs(leaf
, item
, refs
);
766 /* FIXME: get real generation */
767 btrfs_set_extent_generation(leaf
, item
, 0);
768 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
769 btrfs_set_extent_flags(leaf
, item
,
770 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
771 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
772 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
773 /* FIXME: get first key of the block */
774 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
775 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
777 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
779 btrfs_mark_buffer_dirty(leaf
);
784 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
786 u32 high_crc
= ~(u32
)0;
787 u32 low_crc
= ~(u32
)0;
790 lenum
= cpu_to_le64(root_objectid
);
791 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
792 lenum
= cpu_to_le64(owner
);
793 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
794 lenum
= cpu_to_le64(offset
);
795 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
797 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
800 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
801 struct btrfs_extent_data_ref
*ref
)
803 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
804 btrfs_extent_data_ref_objectid(leaf
, ref
),
805 btrfs_extent_data_ref_offset(leaf
, ref
));
808 static int match_extent_data_ref(struct extent_buffer
*leaf
,
809 struct btrfs_extent_data_ref
*ref
,
810 u64 root_objectid
, u64 owner
, u64 offset
)
812 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
813 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
814 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
819 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
820 struct btrfs_root
*root
,
821 struct btrfs_path
*path
,
822 u64 bytenr
, u64 parent
,
824 u64 owner
, u64 offset
)
826 struct btrfs_key key
;
827 struct btrfs_extent_data_ref
*ref
;
828 struct extent_buffer
*leaf
;
834 key
.objectid
= bytenr
;
836 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
839 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
840 key
.offset
= hash_extent_data_ref(root_objectid
,
845 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
854 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
855 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
856 btrfs_release_path(root
, path
);
857 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
868 leaf
= path
->nodes
[0];
869 nritems
= btrfs_header_nritems(leaf
);
871 if (path
->slots
[0] >= nritems
) {
872 ret
= btrfs_next_leaf(root
, path
);
878 leaf
= path
->nodes
[0];
879 nritems
= btrfs_header_nritems(leaf
);
883 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
884 if (key
.objectid
!= bytenr
||
885 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
888 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
889 struct btrfs_extent_data_ref
);
891 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
894 btrfs_release_path(root
, path
);
906 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
907 struct btrfs_root
*root
,
908 struct btrfs_path
*path
,
909 u64 bytenr
, u64 parent
,
910 u64 root_objectid
, u64 owner
,
911 u64 offset
, int refs_to_add
)
913 struct btrfs_key key
;
914 struct extent_buffer
*leaf
;
919 key
.objectid
= bytenr
;
921 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
923 size
= sizeof(struct btrfs_shared_data_ref
);
925 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
926 key
.offset
= hash_extent_data_ref(root_objectid
,
928 size
= sizeof(struct btrfs_extent_data_ref
);
931 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
932 if (ret
&& ret
!= -EEXIST
)
935 leaf
= path
->nodes
[0];
937 struct btrfs_shared_data_ref
*ref
;
938 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
939 struct btrfs_shared_data_ref
);
941 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
943 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
944 num_refs
+= refs_to_add
;
945 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
948 struct btrfs_extent_data_ref
*ref
;
949 while (ret
== -EEXIST
) {
950 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
951 struct btrfs_extent_data_ref
);
952 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
955 btrfs_release_path(root
, path
);
957 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
959 if (ret
&& ret
!= -EEXIST
)
962 leaf
= path
->nodes
[0];
964 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
965 struct btrfs_extent_data_ref
);
967 btrfs_set_extent_data_ref_root(leaf
, ref
,
969 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
970 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
971 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
973 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
974 num_refs
+= refs_to_add
;
975 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
978 btrfs_mark_buffer_dirty(leaf
);
981 btrfs_release_path(root
, path
);
985 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
986 struct btrfs_root
*root
,
987 struct btrfs_path
*path
,
990 struct btrfs_key key
;
991 struct btrfs_extent_data_ref
*ref1
= NULL
;
992 struct btrfs_shared_data_ref
*ref2
= NULL
;
993 struct extent_buffer
*leaf
;
997 leaf
= path
->nodes
[0];
998 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1000 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1001 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1002 struct btrfs_extent_data_ref
);
1003 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1004 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1005 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1006 struct btrfs_shared_data_ref
);
1007 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1008 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1009 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1010 struct btrfs_extent_ref_v0
*ref0
;
1011 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1012 struct btrfs_extent_ref_v0
);
1013 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1019 BUG_ON(num_refs
< refs_to_drop
);
1020 num_refs
-= refs_to_drop
;
1022 if (num_refs
== 0) {
1023 ret
= btrfs_del_item(trans
, root
, path
);
1025 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1026 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1027 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1028 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1029 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1031 struct btrfs_extent_ref_v0
*ref0
;
1032 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1033 struct btrfs_extent_ref_v0
);
1034 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1037 btrfs_mark_buffer_dirty(leaf
);
1042 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1043 struct btrfs_path
*path
,
1044 struct btrfs_extent_inline_ref
*iref
)
1046 struct btrfs_key key
;
1047 struct extent_buffer
*leaf
;
1048 struct btrfs_extent_data_ref
*ref1
;
1049 struct btrfs_shared_data_ref
*ref2
;
1052 leaf
= path
->nodes
[0];
1053 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1055 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1056 BTRFS_EXTENT_DATA_REF_KEY
) {
1057 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1058 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1060 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1061 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1063 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1064 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1065 struct btrfs_extent_data_ref
);
1066 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1067 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1068 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1069 struct btrfs_shared_data_ref
);
1070 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1071 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1072 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1073 struct btrfs_extent_ref_v0
*ref0
;
1074 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1075 struct btrfs_extent_ref_v0
);
1076 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1084 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1085 struct btrfs_root
*root
,
1086 struct btrfs_path
*path
,
1087 u64 bytenr
, u64 parent
,
1090 struct btrfs_key key
;
1093 key
.objectid
= bytenr
;
1095 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1096 key
.offset
= parent
;
1098 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1099 key
.offset
= root_objectid
;
1102 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 if (ret
== -ENOENT
&& parent
) {
1107 btrfs_release_path(root
, path
);
1108 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1109 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1117 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1118 struct btrfs_root
*root
,
1119 struct btrfs_path
*path
,
1120 u64 bytenr
, u64 parent
,
1123 struct btrfs_key key
;
1126 key
.objectid
= bytenr
;
1128 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1129 key
.offset
= parent
;
1131 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1132 key
.offset
= root_objectid
;
1135 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1136 btrfs_release_path(root
, path
);
1140 static inline int extent_ref_type(u64 parent
, u64 owner
)
1143 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1145 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1147 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1150 type
= BTRFS_SHARED_DATA_REF_KEY
;
1152 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1157 static int find_next_key(struct btrfs_path
*path
, int level
,
1158 struct btrfs_key
*key
)
1161 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1162 if (!path
->nodes
[level
])
1164 if (path
->slots
[level
] + 1 >=
1165 btrfs_header_nritems(path
->nodes
[level
]))
1168 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1169 path
->slots
[level
] + 1);
1171 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1172 path
->slots
[level
] + 1);
1179 * look for inline back ref. if back ref is found, *ref_ret is set
1180 * to the address of inline back ref, and 0 is returned.
1182 * if back ref isn't found, *ref_ret is set to the address where it
1183 * should be inserted, and -ENOENT is returned.
1185 * if insert is true and there are too many inline back refs, the path
1186 * points to the extent item, and -EAGAIN is returned.
1188 * NOTE: inline back refs are ordered in the same way that back ref
1189 * items in the tree are ordered.
1191 static noinline_for_stack
1192 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1193 struct btrfs_root
*root
,
1194 struct btrfs_path
*path
,
1195 struct btrfs_extent_inline_ref
**ref_ret
,
1196 u64 bytenr
, u64 num_bytes
,
1197 u64 parent
, u64 root_objectid
,
1198 u64 owner
, u64 offset
, int insert
)
1200 struct btrfs_key key
;
1201 struct extent_buffer
*leaf
;
1202 struct btrfs_extent_item
*ei
;
1203 struct btrfs_extent_inline_ref
*iref
;
1214 key
.objectid
= bytenr
;
1215 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1216 key
.offset
= num_bytes
;
1218 want
= extent_ref_type(parent
, owner
);
1220 extra_size
= btrfs_extent_inline_ref_size(want
);
1221 path
->keep_locks
= 1;
1224 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1231 leaf
= path
->nodes
[0];
1232 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1233 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1234 if (item_size
< sizeof(*ei
)) {
1239 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1245 leaf
= path
->nodes
[0];
1246 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1249 BUG_ON(item_size
< sizeof(*ei
));
1251 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1252 flags
= btrfs_extent_flags(leaf
, ei
);
1254 ptr
= (unsigned long)(ei
+ 1);
1255 end
= (unsigned long)ei
+ item_size
;
1257 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1258 ptr
+= sizeof(struct btrfs_tree_block_info
);
1261 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1270 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1271 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1275 ptr
+= btrfs_extent_inline_ref_size(type
);
1279 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1280 struct btrfs_extent_data_ref
*dref
;
1281 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1282 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1287 if (hash_extent_data_ref_item(leaf
, dref
) <
1288 hash_extent_data_ref(root_objectid
, owner
, offset
))
1292 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1294 if (parent
== ref_offset
) {
1298 if (ref_offset
< parent
)
1301 if (root_objectid
== ref_offset
) {
1305 if (ref_offset
< root_objectid
)
1309 ptr
+= btrfs_extent_inline_ref_size(type
);
1311 if (err
== -ENOENT
&& insert
) {
1312 if (item_size
+ extra_size
>=
1313 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1318 * To add new inline back ref, we have to make sure
1319 * there is no corresponding back ref item.
1320 * For simplicity, we just do not add new inline back
1321 * ref if there is any kind of item for this block
1323 if (find_next_key(path
, 0, &key
) == 0 &&
1324 key
.objectid
== bytenr
&&
1325 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1330 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1333 path
->keep_locks
= 0;
1334 btrfs_unlock_up_safe(path
, 1);
1340 * helper to add new inline back ref
1342 static noinline_for_stack
1343 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1344 struct btrfs_root
*root
,
1345 struct btrfs_path
*path
,
1346 struct btrfs_extent_inline_ref
*iref
,
1347 u64 parent
, u64 root_objectid
,
1348 u64 owner
, u64 offset
, int refs_to_add
,
1349 struct btrfs_delayed_extent_op
*extent_op
)
1351 struct extent_buffer
*leaf
;
1352 struct btrfs_extent_item
*ei
;
1355 unsigned long item_offset
;
1361 leaf
= path
->nodes
[0];
1362 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1363 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1365 type
= extent_ref_type(parent
, owner
);
1366 size
= btrfs_extent_inline_ref_size(type
);
1368 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1371 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1372 refs
= btrfs_extent_refs(leaf
, ei
);
1373 refs
+= refs_to_add
;
1374 btrfs_set_extent_refs(leaf
, ei
, refs
);
1376 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1378 ptr
= (unsigned long)ei
+ item_offset
;
1379 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1380 if (ptr
< end
- size
)
1381 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1384 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1385 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1386 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1387 struct btrfs_extent_data_ref
*dref
;
1388 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1389 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1390 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1391 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1392 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1393 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1394 struct btrfs_shared_data_ref
*sref
;
1395 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1396 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1397 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1398 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1399 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1401 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1403 btrfs_mark_buffer_dirty(leaf
);
1407 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1408 struct btrfs_root
*root
,
1409 struct btrfs_path
*path
,
1410 struct btrfs_extent_inline_ref
**ref_ret
,
1411 u64 bytenr
, u64 num_bytes
, u64 parent
,
1412 u64 root_objectid
, u64 owner
, u64 offset
)
1416 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1417 bytenr
, num_bytes
, parent
,
1418 root_objectid
, owner
, offset
, 0);
1422 btrfs_release_path(root
, path
);
1425 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1426 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1429 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1430 root_objectid
, owner
, offset
);
1436 * helper to update/remove inline back ref
1438 static noinline_for_stack
1439 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1440 struct btrfs_root
*root
,
1441 struct btrfs_path
*path
,
1442 struct btrfs_extent_inline_ref
*iref
,
1444 struct btrfs_delayed_extent_op
*extent_op
)
1446 struct extent_buffer
*leaf
;
1447 struct btrfs_extent_item
*ei
;
1448 struct btrfs_extent_data_ref
*dref
= NULL
;
1449 struct btrfs_shared_data_ref
*sref
= NULL
;
1458 leaf
= path
->nodes
[0];
1459 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1460 refs
= btrfs_extent_refs(leaf
, ei
);
1461 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1462 refs
+= refs_to_mod
;
1463 btrfs_set_extent_refs(leaf
, ei
, refs
);
1465 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1467 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1469 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1470 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1471 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1472 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1473 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1474 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1477 BUG_ON(refs_to_mod
!= -1);
1480 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1481 refs
+= refs_to_mod
;
1484 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1485 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1487 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1489 size
= btrfs_extent_inline_ref_size(type
);
1490 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1491 ptr
= (unsigned long)iref
;
1492 end
= (unsigned long)ei
+ item_size
;
1493 if (ptr
+ size
< end
)
1494 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1497 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1500 btrfs_mark_buffer_dirty(leaf
);
1504 static noinline_for_stack
1505 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1506 struct btrfs_root
*root
,
1507 struct btrfs_path
*path
,
1508 u64 bytenr
, u64 num_bytes
, u64 parent
,
1509 u64 root_objectid
, u64 owner
,
1510 u64 offset
, int refs_to_add
,
1511 struct btrfs_delayed_extent_op
*extent_op
)
1513 struct btrfs_extent_inline_ref
*iref
;
1516 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1517 bytenr
, num_bytes
, parent
,
1518 root_objectid
, owner
, offset
, 1);
1520 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1521 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1522 refs_to_add
, extent_op
);
1523 } else if (ret
== -ENOENT
) {
1524 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1525 parent
, root_objectid
,
1526 owner
, offset
, refs_to_add
,
1532 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1533 struct btrfs_root
*root
,
1534 struct btrfs_path
*path
,
1535 u64 bytenr
, u64 parent
, u64 root_objectid
,
1536 u64 owner
, u64 offset
, int refs_to_add
)
1539 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1540 BUG_ON(refs_to_add
!= 1);
1541 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1542 parent
, root_objectid
);
1544 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1545 parent
, root_objectid
,
1546 owner
, offset
, refs_to_add
);
1551 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1552 struct btrfs_root
*root
,
1553 struct btrfs_path
*path
,
1554 struct btrfs_extent_inline_ref
*iref
,
1555 int refs_to_drop
, int is_data
)
1559 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1561 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1562 -refs_to_drop
, NULL
);
1563 } else if (is_data
) {
1564 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1566 ret
= btrfs_del_item(trans
, root
, path
);
1571 static void btrfs_issue_discard(struct block_device
*bdev
,
1574 blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_KERNEL
,
1575 DISCARD_FL_BARRIER
);
1578 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1582 u64 map_length
= num_bytes
;
1583 struct btrfs_multi_bio
*multi
= NULL
;
1585 if (!btrfs_test_opt(root
, DISCARD
))
1588 /* Tell the block device(s) that the sectors can be discarded */
1589 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, READ
,
1590 bytenr
, &map_length
, &multi
, 0);
1592 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1595 if (map_length
> num_bytes
)
1596 map_length
= num_bytes
;
1598 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1599 btrfs_issue_discard(stripe
->dev
->bdev
,
1609 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1610 struct btrfs_root
*root
,
1611 u64 bytenr
, u64 num_bytes
, u64 parent
,
1612 u64 root_objectid
, u64 owner
, u64 offset
)
1615 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1616 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1618 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1619 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1620 parent
, root_objectid
, (int)owner
,
1621 BTRFS_ADD_DELAYED_REF
, NULL
);
1623 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1624 parent
, root_objectid
, owner
, offset
,
1625 BTRFS_ADD_DELAYED_REF
, NULL
);
1630 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1631 struct btrfs_root
*root
,
1632 u64 bytenr
, u64 num_bytes
,
1633 u64 parent
, u64 root_objectid
,
1634 u64 owner
, u64 offset
, int refs_to_add
,
1635 struct btrfs_delayed_extent_op
*extent_op
)
1637 struct btrfs_path
*path
;
1638 struct extent_buffer
*leaf
;
1639 struct btrfs_extent_item
*item
;
1644 path
= btrfs_alloc_path();
1649 path
->leave_spinning
= 1;
1650 /* this will setup the path even if it fails to insert the back ref */
1651 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1652 path
, bytenr
, num_bytes
, parent
,
1653 root_objectid
, owner
, offset
,
1654 refs_to_add
, extent_op
);
1658 if (ret
!= -EAGAIN
) {
1663 leaf
= path
->nodes
[0];
1664 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1665 refs
= btrfs_extent_refs(leaf
, item
);
1666 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1668 __run_delayed_extent_op(extent_op
, leaf
, item
);
1670 btrfs_mark_buffer_dirty(leaf
);
1671 btrfs_release_path(root
->fs_info
->extent_root
, path
);
1674 path
->leave_spinning
= 1;
1676 /* now insert the actual backref */
1677 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1678 path
, bytenr
, parent
, root_objectid
,
1679 owner
, offset
, refs_to_add
);
1682 btrfs_free_path(path
);
1686 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1687 struct btrfs_root
*root
,
1688 struct btrfs_delayed_ref_node
*node
,
1689 struct btrfs_delayed_extent_op
*extent_op
,
1690 int insert_reserved
)
1693 struct btrfs_delayed_data_ref
*ref
;
1694 struct btrfs_key ins
;
1699 ins
.objectid
= node
->bytenr
;
1700 ins
.offset
= node
->num_bytes
;
1701 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1703 ref
= btrfs_delayed_node_to_data_ref(node
);
1704 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1705 parent
= ref
->parent
;
1707 ref_root
= ref
->root
;
1709 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1711 BUG_ON(extent_op
->update_key
);
1712 flags
|= extent_op
->flags_to_set
;
1714 ret
= alloc_reserved_file_extent(trans
, root
,
1715 parent
, ref_root
, flags
,
1716 ref
->objectid
, ref
->offset
,
1717 &ins
, node
->ref_mod
);
1718 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1719 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1720 node
->num_bytes
, parent
,
1721 ref_root
, ref
->objectid
,
1722 ref
->offset
, node
->ref_mod
,
1724 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1725 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1726 node
->num_bytes
, parent
,
1727 ref_root
, ref
->objectid
,
1728 ref
->offset
, node
->ref_mod
,
1736 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1737 struct extent_buffer
*leaf
,
1738 struct btrfs_extent_item
*ei
)
1740 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1741 if (extent_op
->update_flags
) {
1742 flags
|= extent_op
->flags_to_set
;
1743 btrfs_set_extent_flags(leaf
, ei
, flags
);
1746 if (extent_op
->update_key
) {
1747 struct btrfs_tree_block_info
*bi
;
1748 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1749 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1750 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1754 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1755 struct btrfs_root
*root
,
1756 struct btrfs_delayed_ref_node
*node
,
1757 struct btrfs_delayed_extent_op
*extent_op
)
1759 struct btrfs_key key
;
1760 struct btrfs_path
*path
;
1761 struct btrfs_extent_item
*ei
;
1762 struct extent_buffer
*leaf
;
1767 path
= btrfs_alloc_path();
1771 key
.objectid
= node
->bytenr
;
1772 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1773 key
.offset
= node
->num_bytes
;
1776 path
->leave_spinning
= 1;
1777 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1788 leaf
= path
->nodes
[0];
1789 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1790 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1791 if (item_size
< sizeof(*ei
)) {
1792 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
1798 leaf
= path
->nodes
[0];
1799 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1802 BUG_ON(item_size
< sizeof(*ei
));
1803 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1804 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1806 btrfs_mark_buffer_dirty(leaf
);
1808 btrfs_free_path(path
);
1812 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1813 struct btrfs_root
*root
,
1814 struct btrfs_delayed_ref_node
*node
,
1815 struct btrfs_delayed_extent_op
*extent_op
,
1816 int insert_reserved
)
1819 struct btrfs_delayed_tree_ref
*ref
;
1820 struct btrfs_key ins
;
1824 ins
.objectid
= node
->bytenr
;
1825 ins
.offset
= node
->num_bytes
;
1826 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1828 ref
= btrfs_delayed_node_to_tree_ref(node
);
1829 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1830 parent
= ref
->parent
;
1832 ref_root
= ref
->root
;
1834 BUG_ON(node
->ref_mod
!= 1);
1835 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1836 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
1837 !extent_op
->update_key
);
1838 ret
= alloc_reserved_tree_block(trans
, root
,
1840 extent_op
->flags_to_set
,
1843 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1844 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1845 node
->num_bytes
, parent
, ref_root
,
1846 ref
->level
, 0, 1, extent_op
);
1847 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1848 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1849 node
->num_bytes
, parent
, ref_root
,
1850 ref
->level
, 0, 1, extent_op
);
1858 /* helper function to actually process a single delayed ref entry */
1859 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
1860 struct btrfs_root
*root
,
1861 struct btrfs_delayed_ref_node
*node
,
1862 struct btrfs_delayed_extent_op
*extent_op
,
1863 int insert_reserved
)
1866 if (btrfs_delayed_ref_is_head(node
)) {
1867 struct btrfs_delayed_ref_head
*head
;
1869 * we've hit the end of the chain and we were supposed
1870 * to insert this extent into the tree. But, it got
1871 * deleted before we ever needed to insert it, so all
1872 * we have to do is clean up the accounting
1875 head
= btrfs_delayed_node_to_head(node
);
1876 if (insert_reserved
) {
1878 struct extent_buffer
*must_clean
= NULL
;
1880 ret
= pin_down_bytes(trans
, root
, NULL
,
1881 node
->bytenr
, node
->num_bytes
,
1882 head
->is_data
, 1, &must_clean
);
1887 clean_tree_block(NULL
, root
, must_clean
);
1888 btrfs_tree_unlock(must_clean
);
1889 free_extent_buffer(must_clean
);
1891 if (head
->is_data
) {
1892 ret
= btrfs_del_csums(trans
, root
,
1898 ret
= btrfs_free_reserved_extent(root
,
1904 mutex_unlock(&head
->mutex
);
1908 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
1909 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1910 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
1912 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
1913 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1914 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
1921 static noinline
struct btrfs_delayed_ref_node
*
1922 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
1924 struct rb_node
*node
;
1925 struct btrfs_delayed_ref_node
*ref
;
1926 int action
= BTRFS_ADD_DELAYED_REF
;
1929 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
1930 * this prevents ref count from going down to zero when
1931 * there still are pending delayed ref.
1933 node
= rb_prev(&head
->node
.rb_node
);
1937 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
1939 if (ref
->bytenr
!= head
->node
.bytenr
)
1941 if (ref
->action
== action
)
1943 node
= rb_prev(node
);
1945 if (action
== BTRFS_ADD_DELAYED_REF
) {
1946 action
= BTRFS_DROP_DELAYED_REF
;
1952 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
1953 struct btrfs_root
*root
,
1954 struct list_head
*cluster
)
1956 struct btrfs_delayed_ref_root
*delayed_refs
;
1957 struct btrfs_delayed_ref_node
*ref
;
1958 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
1959 struct btrfs_delayed_extent_op
*extent_op
;
1962 int must_insert_reserved
= 0;
1964 delayed_refs
= &trans
->transaction
->delayed_refs
;
1967 /* pick a new head ref from the cluster list */
1968 if (list_empty(cluster
))
1971 locked_ref
= list_entry(cluster
->next
,
1972 struct btrfs_delayed_ref_head
, cluster
);
1974 /* grab the lock that says we are going to process
1975 * all the refs for this head */
1976 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
1979 * we may have dropped the spin lock to get the head
1980 * mutex lock, and that might have given someone else
1981 * time to free the head. If that's true, it has been
1982 * removed from our list and we can move on.
1984 if (ret
== -EAGAIN
) {
1992 * record the must insert reserved flag before we
1993 * drop the spin lock.
1995 must_insert_reserved
= locked_ref
->must_insert_reserved
;
1996 locked_ref
->must_insert_reserved
= 0;
1998 extent_op
= locked_ref
->extent_op
;
1999 locked_ref
->extent_op
= NULL
;
2002 * locked_ref is the head node, so we have to go one
2003 * node back for any delayed ref updates
2005 ref
= select_delayed_ref(locked_ref
);
2007 /* All delayed refs have been processed, Go ahead
2008 * and send the head node to run_one_delayed_ref,
2009 * so that any accounting fixes can happen
2011 ref
= &locked_ref
->node
;
2013 if (extent_op
&& must_insert_reserved
) {
2019 spin_unlock(&delayed_refs
->lock
);
2021 ret
= run_delayed_extent_op(trans
, root
,
2027 spin_lock(&delayed_refs
->lock
);
2031 list_del_init(&locked_ref
->cluster
);
2036 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2037 delayed_refs
->num_entries
--;
2039 spin_unlock(&delayed_refs
->lock
);
2041 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2042 must_insert_reserved
);
2045 btrfs_put_delayed_ref(ref
);
2050 spin_lock(&delayed_refs
->lock
);
2056 * this starts processing the delayed reference count updates and
2057 * extent insertions we have queued up so far. count can be
2058 * 0, which means to process everything in the tree at the start
2059 * of the run (but not newly added entries), or it can be some target
2060 * number you'd like to process.
2062 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2063 struct btrfs_root
*root
, unsigned long count
)
2065 struct rb_node
*node
;
2066 struct btrfs_delayed_ref_root
*delayed_refs
;
2067 struct btrfs_delayed_ref_node
*ref
;
2068 struct list_head cluster
;
2070 int run_all
= count
== (unsigned long)-1;
2073 if (root
== root
->fs_info
->extent_root
)
2074 root
= root
->fs_info
->tree_root
;
2076 delayed_refs
= &trans
->transaction
->delayed_refs
;
2077 INIT_LIST_HEAD(&cluster
);
2079 spin_lock(&delayed_refs
->lock
);
2081 count
= delayed_refs
->num_entries
* 2;
2085 if (!(run_all
|| run_most
) &&
2086 delayed_refs
->num_heads_ready
< 64)
2090 * go find something we can process in the rbtree. We start at
2091 * the beginning of the tree, and then build a cluster
2092 * of refs to process starting at the first one we are able to
2095 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2096 delayed_refs
->run_delayed_start
);
2100 ret
= run_clustered_refs(trans
, root
, &cluster
);
2103 count
-= min_t(unsigned long, ret
, count
);
2110 node
= rb_first(&delayed_refs
->root
);
2113 count
= (unsigned long)-1;
2116 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2118 if (btrfs_delayed_ref_is_head(ref
)) {
2119 struct btrfs_delayed_ref_head
*head
;
2121 head
= btrfs_delayed_node_to_head(ref
);
2122 atomic_inc(&ref
->refs
);
2124 spin_unlock(&delayed_refs
->lock
);
2125 mutex_lock(&head
->mutex
);
2126 mutex_unlock(&head
->mutex
);
2128 btrfs_put_delayed_ref(ref
);
2132 node
= rb_next(node
);
2134 spin_unlock(&delayed_refs
->lock
);
2135 schedule_timeout(1);
2139 spin_unlock(&delayed_refs
->lock
);
2143 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2144 struct btrfs_root
*root
,
2145 u64 bytenr
, u64 num_bytes
, u64 flags
,
2148 struct btrfs_delayed_extent_op
*extent_op
;
2151 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2155 extent_op
->flags_to_set
= flags
;
2156 extent_op
->update_flags
= 1;
2157 extent_op
->update_key
= 0;
2158 extent_op
->is_data
= is_data
? 1 : 0;
2160 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2166 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2167 struct btrfs_root
*root
,
2168 struct btrfs_path
*path
,
2169 u64 objectid
, u64 offset
, u64 bytenr
)
2171 struct btrfs_delayed_ref_head
*head
;
2172 struct btrfs_delayed_ref_node
*ref
;
2173 struct btrfs_delayed_data_ref
*data_ref
;
2174 struct btrfs_delayed_ref_root
*delayed_refs
;
2175 struct rb_node
*node
;
2179 delayed_refs
= &trans
->transaction
->delayed_refs
;
2180 spin_lock(&delayed_refs
->lock
);
2181 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2185 if (!mutex_trylock(&head
->mutex
)) {
2186 atomic_inc(&head
->node
.refs
);
2187 spin_unlock(&delayed_refs
->lock
);
2189 btrfs_release_path(root
->fs_info
->extent_root
, path
);
2191 mutex_lock(&head
->mutex
);
2192 mutex_unlock(&head
->mutex
);
2193 btrfs_put_delayed_ref(&head
->node
);
2197 node
= rb_prev(&head
->node
.rb_node
);
2201 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2203 if (ref
->bytenr
!= bytenr
)
2207 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2210 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2212 node
= rb_prev(node
);
2214 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2215 if (ref
->bytenr
== bytenr
)
2219 if (data_ref
->root
!= root
->root_key
.objectid
||
2220 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2225 mutex_unlock(&head
->mutex
);
2227 spin_unlock(&delayed_refs
->lock
);
2231 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2232 struct btrfs_root
*root
,
2233 struct btrfs_path
*path
,
2234 u64 objectid
, u64 offset
, u64 bytenr
)
2236 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2237 struct extent_buffer
*leaf
;
2238 struct btrfs_extent_data_ref
*ref
;
2239 struct btrfs_extent_inline_ref
*iref
;
2240 struct btrfs_extent_item
*ei
;
2241 struct btrfs_key key
;
2245 key
.objectid
= bytenr
;
2246 key
.offset
= (u64
)-1;
2247 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2249 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2255 if (path
->slots
[0] == 0)
2259 leaf
= path
->nodes
[0];
2260 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2262 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2266 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2267 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2268 if (item_size
< sizeof(*ei
)) {
2269 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2273 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2275 if (item_size
!= sizeof(*ei
) +
2276 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2279 if (btrfs_extent_generation(leaf
, ei
) <=
2280 btrfs_root_last_snapshot(&root
->root_item
))
2283 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2284 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2285 BTRFS_EXTENT_DATA_REF_KEY
)
2288 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2289 if (btrfs_extent_refs(leaf
, ei
) !=
2290 btrfs_extent_data_ref_count(leaf
, ref
) ||
2291 btrfs_extent_data_ref_root(leaf
, ref
) !=
2292 root
->root_key
.objectid
||
2293 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2294 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2302 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2303 struct btrfs_root
*root
,
2304 u64 objectid
, u64 offset
, u64 bytenr
)
2306 struct btrfs_path
*path
;
2310 path
= btrfs_alloc_path();
2315 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2317 if (ret
&& ret
!= -ENOENT
)
2320 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2322 } while (ret2
== -EAGAIN
);
2324 if (ret2
&& ret2
!= -ENOENT
) {
2329 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2332 btrfs_free_path(path
);
2337 int btrfs_cache_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2338 struct extent_buffer
*buf
, u32 nr_extents
)
2340 struct btrfs_key key
;
2341 struct btrfs_file_extent_item
*fi
;
2349 if (!root
->ref_cows
)
2352 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
2354 root_gen
= root
->root_key
.offset
;
2357 root_gen
= trans
->transid
- 1;
2360 level
= btrfs_header_level(buf
);
2361 nritems
= btrfs_header_nritems(buf
);
2364 struct btrfs_leaf_ref
*ref
;
2365 struct btrfs_extent_info
*info
;
2367 ref
= btrfs_alloc_leaf_ref(root
, nr_extents
);
2373 ref
->root_gen
= root_gen
;
2374 ref
->bytenr
= buf
->start
;
2375 ref
->owner
= btrfs_header_owner(buf
);
2376 ref
->generation
= btrfs_header_generation(buf
);
2377 ref
->nritems
= nr_extents
;
2378 info
= ref
->extents
;
2380 for (i
= 0; nr_extents
> 0 && i
< nritems
; i
++) {
2382 btrfs_item_key_to_cpu(buf
, &key
, i
);
2383 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2385 fi
= btrfs_item_ptr(buf
, i
,
2386 struct btrfs_file_extent_item
);
2387 if (btrfs_file_extent_type(buf
, fi
) ==
2388 BTRFS_FILE_EXTENT_INLINE
)
2390 disk_bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2391 if (disk_bytenr
== 0)
2394 info
->bytenr
= disk_bytenr
;
2396 btrfs_file_extent_disk_num_bytes(buf
, fi
);
2397 info
->objectid
= key
.objectid
;
2398 info
->offset
= key
.offset
;
2402 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2403 if (ret
== -EEXIST
&& shared
) {
2404 struct btrfs_leaf_ref
*old
;
2405 old
= btrfs_lookup_leaf_ref(root
, ref
->bytenr
);
2407 btrfs_remove_leaf_ref(root
, old
);
2408 btrfs_free_leaf_ref(root
, old
);
2409 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2412 btrfs_free_leaf_ref(root
, ref
);
2418 /* when a block goes through cow, we update the reference counts of
2419 * everything that block points to. The internal pointers of the block
2420 * can be in just about any order, and it is likely to have clusters of
2421 * things that are close together and clusters of things that are not.
2423 * To help reduce the seeks that come with updating all of these reference
2424 * counts, sort them by byte number before actual updates are done.
2426 * struct refsort is used to match byte number to slot in the btree block.
2427 * we sort based on the byte number and then use the slot to actually
2430 * struct refsort is smaller than strcut btrfs_item and smaller than
2431 * struct btrfs_key_ptr. Since we're currently limited to the page size
2432 * for a btree block, there's no way for a kmalloc of refsorts for a
2433 * single node to be bigger than a page.
2441 * for passing into sort()
2443 static int refsort_cmp(const void *a_void
, const void *b_void
)
2445 const struct refsort
*a
= a_void
;
2446 const struct refsort
*b
= b_void
;
2448 if (a
->bytenr
< b
->bytenr
)
2450 if (a
->bytenr
> b
->bytenr
)
2456 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2457 struct btrfs_root
*root
,
2458 struct extent_buffer
*buf
,
2459 int full_backref
, int inc
)
2466 struct btrfs_key key
;
2467 struct btrfs_file_extent_item
*fi
;
2471 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2472 u64
, u64
, u64
, u64
, u64
, u64
);
2474 ref_root
= btrfs_header_owner(buf
);
2475 nritems
= btrfs_header_nritems(buf
);
2476 level
= btrfs_header_level(buf
);
2478 if (!root
->ref_cows
&& level
== 0)
2482 process_func
= btrfs_inc_extent_ref
;
2484 process_func
= btrfs_free_extent
;
2487 parent
= buf
->start
;
2491 for (i
= 0; i
< nritems
; i
++) {
2493 btrfs_item_key_to_cpu(buf
, &key
, i
);
2494 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2496 fi
= btrfs_item_ptr(buf
, i
,
2497 struct btrfs_file_extent_item
);
2498 if (btrfs_file_extent_type(buf
, fi
) ==
2499 BTRFS_FILE_EXTENT_INLINE
)
2501 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2505 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2506 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2507 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2508 parent
, ref_root
, key
.objectid
,
2513 bytenr
= btrfs_node_blockptr(buf
, i
);
2514 num_bytes
= btrfs_level_size(root
, level
- 1);
2515 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2516 parent
, ref_root
, level
- 1, 0);
2527 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2528 struct extent_buffer
*buf
, int full_backref
)
2530 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2533 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2534 struct extent_buffer
*buf
, int full_backref
)
2536 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2539 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2540 struct btrfs_root
*root
,
2541 struct btrfs_path
*path
,
2542 struct btrfs_block_group_cache
*cache
)
2545 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2547 struct extent_buffer
*leaf
;
2549 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2554 leaf
= path
->nodes
[0];
2555 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2556 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2557 btrfs_mark_buffer_dirty(leaf
);
2558 btrfs_release_path(extent_root
, path
);
2566 static struct btrfs_block_group_cache
*
2567 next_block_group(struct btrfs_root
*root
,
2568 struct btrfs_block_group_cache
*cache
)
2570 struct rb_node
*node
;
2571 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2572 node
= rb_next(&cache
->cache_node
);
2573 btrfs_put_block_group(cache
);
2575 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2577 atomic_inc(&cache
->count
);
2580 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2584 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2585 struct btrfs_root
*root
)
2587 struct btrfs_block_group_cache
*cache
;
2589 struct btrfs_path
*path
;
2592 path
= btrfs_alloc_path();
2598 err
= btrfs_run_delayed_refs(trans
, root
,
2603 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2607 cache
= next_block_group(root
, cache
);
2617 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2619 err
= write_one_cache_group(trans
, root
, path
, cache
);
2621 btrfs_put_block_group(cache
);
2624 btrfs_free_path(path
);
2628 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2630 struct btrfs_block_group_cache
*block_group
;
2633 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2634 if (!block_group
|| block_group
->ro
)
2637 btrfs_put_block_group(block_group
);
2641 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2642 u64 total_bytes
, u64 bytes_used
,
2643 struct btrfs_space_info
**space_info
)
2645 struct btrfs_space_info
*found
;
2647 found
= __find_space_info(info
, flags
);
2649 spin_lock(&found
->lock
);
2650 found
->total_bytes
+= total_bytes
;
2651 found
->bytes_used
+= bytes_used
;
2653 spin_unlock(&found
->lock
);
2654 *space_info
= found
;
2657 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
2661 INIT_LIST_HEAD(&found
->block_groups
);
2662 init_rwsem(&found
->groups_sem
);
2663 spin_lock_init(&found
->lock
);
2664 found
->flags
= flags
;
2665 found
->total_bytes
= total_bytes
;
2666 found
->bytes_used
= bytes_used
;
2667 found
->bytes_pinned
= 0;
2668 found
->bytes_reserved
= 0;
2669 found
->bytes_readonly
= 0;
2670 found
->bytes_delalloc
= 0;
2672 found
->force_alloc
= 0;
2673 *space_info
= found
;
2674 list_add_rcu(&found
->list
, &info
->space_info
);
2675 atomic_set(&found
->caching_threads
, 0);
2679 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
2681 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
2682 BTRFS_BLOCK_GROUP_RAID1
|
2683 BTRFS_BLOCK_GROUP_RAID10
|
2684 BTRFS_BLOCK_GROUP_DUP
);
2686 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2687 fs_info
->avail_data_alloc_bits
|= extra_flags
;
2688 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
2689 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
2690 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2691 fs_info
->avail_system_alloc_bits
|= extra_flags
;
2695 static void set_block_group_readonly(struct btrfs_block_group_cache
*cache
)
2697 spin_lock(&cache
->space_info
->lock
);
2698 spin_lock(&cache
->lock
);
2700 cache
->space_info
->bytes_readonly
+= cache
->key
.offset
-
2701 btrfs_block_group_used(&cache
->item
);
2704 spin_unlock(&cache
->lock
);
2705 spin_unlock(&cache
->space_info
->lock
);
2708 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
2710 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
2712 if (num_devices
== 1)
2713 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
2714 if (num_devices
< 4)
2715 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
2717 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
2718 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
2719 BTRFS_BLOCK_GROUP_RAID10
))) {
2720 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
2723 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
2724 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
2725 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
2728 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
2729 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
2730 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
2731 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
2732 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
2736 static u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, u64 data
)
2738 struct btrfs_fs_info
*info
= root
->fs_info
;
2742 alloc_profile
= info
->avail_data_alloc_bits
&
2743 info
->data_alloc_profile
;
2744 data
= BTRFS_BLOCK_GROUP_DATA
| alloc_profile
;
2745 } else if (root
== root
->fs_info
->chunk_root
) {
2746 alloc_profile
= info
->avail_system_alloc_bits
&
2747 info
->system_alloc_profile
;
2748 data
= BTRFS_BLOCK_GROUP_SYSTEM
| alloc_profile
;
2750 alloc_profile
= info
->avail_metadata_alloc_bits
&
2751 info
->metadata_alloc_profile
;
2752 data
= BTRFS_BLOCK_GROUP_METADATA
| alloc_profile
;
2755 return btrfs_reduce_alloc_profile(root
, data
);
2758 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
2762 alloc_target
= btrfs_get_alloc_profile(root
, 1);
2763 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
2767 static u64
calculate_bytes_needed(struct btrfs_root
*root
, int num_items
)
2772 level
= BTRFS_MAX_LEVEL
- 2;
2774 * NOTE: these calculations are absolutely the worst possible case.
2775 * This assumes that _every_ item we insert will require a new leaf, and
2776 * that the tree has grown to its maximum level size.
2780 * for every item we insert we could insert both an extent item and a
2781 * extent ref item. Then for ever item we insert, we will need to cow
2782 * both the original leaf, plus the leaf to the left and right of it.
2784 * Unless we are talking about the extent root, then we just want the
2785 * number of items * 2, since we just need the extent item plus its ref.
2787 if (root
== root
->fs_info
->extent_root
)
2788 num_bytes
= num_items
* 2;
2790 num_bytes
= (num_items
+ (2 * num_items
)) * 3;
2793 * num_bytes is total number of leaves we could need times the leaf
2794 * size, and then for every leaf we could end up cow'ing 2 nodes per
2795 * level, down to the leaf level.
2797 num_bytes
= (num_bytes
* root
->leafsize
) +
2798 (num_bytes
* (level
* 2)) * root
->nodesize
;
2804 * Unreserve metadata space for delalloc. If we have less reserved credits than
2805 * we have extents, this function does nothing.
2807 int btrfs_unreserve_metadata_for_delalloc(struct btrfs_root
*root
,
2808 struct inode
*inode
, int num_items
)
2810 struct btrfs_fs_info
*info
= root
->fs_info
;
2811 struct btrfs_space_info
*meta_sinfo
;
2816 /* get the space info for where the metadata will live */
2817 alloc_target
= btrfs_get_alloc_profile(root
, 0);
2818 meta_sinfo
= __find_space_info(info
, alloc_target
);
2820 num_bytes
= calculate_bytes_needed(root
->fs_info
->extent_root
,
2823 spin_lock(&meta_sinfo
->lock
);
2824 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
2825 if (BTRFS_I(inode
)->reserved_extents
<=
2826 BTRFS_I(inode
)->outstanding_extents
) {
2827 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
2828 spin_unlock(&meta_sinfo
->lock
);
2831 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
2833 BTRFS_I(inode
)->reserved_extents
--;
2834 BUG_ON(BTRFS_I(inode
)->reserved_extents
< 0);
2836 if (meta_sinfo
->bytes_delalloc
< num_bytes
) {
2838 meta_sinfo
->bytes_delalloc
= 0;
2840 meta_sinfo
->bytes_delalloc
-= num_bytes
;
2842 spin_unlock(&meta_sinfo
->lock
);
2849 static void check_force_delalloc(struct btrfs_space_info
*meta_sinfo
)
2853 thresh
= meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
2854 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
+
2855 meta_sinfo
->bytes_super
+ meta_sinfo
->bytes_root
+
2856 meta_sinfo
->bytes_may_use
;
2858 thresh
= meta_sinfo
->total_bytes
- thresh
;
2860 do_div(thresh
, 100);
2861 if (thresh
<= meta_sinfo
->bytes_delalloc
)
2862 meta_sinfo
->force_delalloc
= 1;
2864 meta_sinfo
->force_delalloc
= 0;
2867 struct async_flush
{
2868 struct btrfs_root
*root
;
2869 struct btrfs_space_info
*info
;
2870 struct btrfs_work work
;
2873 static noinline
void flush_delalloc_async(struct btrfs_work
*work
)
2875 struct async_flush
*async
;
2876 struct btrfs_root
*root
;
2877 struct btrfs_space_info
*info
;
2879 async
= container_of(work
, struct async_flush
, work
);
2883 btrfs_start_delalloc_inodes(root
);
2884 wake_up(&info
->flush_wait
);
2885 btrfs_wait_ordered_extents(root
, 0);
2887 spin_lock(&info
->lock
);
2889 spin_unlock(&info
->lock
);
2890 wake_up(&info
->flush_wait
);
2895 static void wait_on_flush(struct btrfs_space_info
*info
)
2901 prepare_to_wait(&info
->flush_wait
, &wait
,
2902 TASK_UNINTERRUPTIBLE
);
2903 spin_lock(&info
->lock
);
2904 if (!info
->flushing
) {
2905 spin_unlock(&info
->lock
);
2909 used
= info
->bytes_used
+ info
->bytes_reserved
+
2910 info
->bytes_pinned
+ info
->bytes_readonly
+
2911 info
->bytes_super
+ info
->bytes_root
+
2912 info
->bytes_may_use
+ info
->bytes_delalloc
;
2913 if (used
< info
->total_bytes
) {
2914 spin_unlock(&info
->lock
);
2917 spin_unlock(&info
->lock
);
2920 finish_wait(&info
->flush_wait
, &wait
);
2923 static void flush_delalloc(struct btrfs_root
*root
,
2924 struct btrfs_space_info
*info
)
2926 struct async_flush
*async
;
2929 spin_lock(&info
->lock
);
2931 if (!info
->flushing
) {
2933 init_waitqueue_head(&info
->flush_wait
);
2938 spin_unlock(&info
->lock
);
2941 wait_on_flush(info
);
2945 async
= kzalloc(sizeof(*async
), GFP_NOFS
);
2951 async
->work
.func
= flush_delalloc_async
;
2953 btrfs_queue_worker(&root
->fs_info
->enospc_workers
,
2955 wait_on_flush(info
);
2959 btrfs_start_delalloc_inodes(root
);
2960 btrfs_wait_ordered_extents(root
, 0);
2962 spin_lock(&info
->lock
);
2964 spin_unlock(&info
->lock
);
2965 wake_up(&info
->flush_wait
);
2968 static int maybe_allocate_chunk(struct btrfs_root
*root
,
2969 struct btrfs_space_info
*info
)
2971 struct btrfs_super_block
*disk_super
= &root
->fs_info
->super_copy
;
2972 struct btrfs_trans_handle
*trans
;
2978 free_space
= btrfs_super_total_bytes(disk_super
);
2980 * we allow the metadata to grow to a max of either 10gb or 5% of the
2981 * space in the volume.
2983 min_metadata
= min((u64
)10 * 1024 * 1024 * 1024,
2984 div64_u64(free_space
* 5, 100));
2985 if (info
->total_bytes
>= min_metadata
) {
2986 spin_unlock(&info
->lock
);
2991 spin_unlock(&info
->lock
);
2995 if (!info
->allocating_chunk
) {
2996 info
->force_alloc
= 1;
2997 info
->allocating_chunk
= 1;
2998 init_waitqueue_head(&info
->allocate_wait
);
3003 spin_unlock(&info
->lock
);
3006 wait_event(info
->allocate_wait
,
3007 !info
->allocating_chunk
);
3011 trans
= btrfs_start_transaction(root
, 1);
3017 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3018 4096 + 2 * 1024 * 1024,
3020 btrfs_end_transaction(trans
, root
);
3024 spin_lock(&info
->lock
);
3025 info
->allocating_chunk
= 0;
3026 spin_unlock(&info
->lock
);
3027 wake_up(&info
->allocate_wait
);
3035 * Reserve metadata space for delalloc.
3037 int btrfs_reserve_metadata_for_delalloc(struct btrfs_root
*root
,
3038 struct inode
*inode
, int num_items
)
3040 struct btrfs_fs_info
*info
= root
->fs_info
;
3041 struct btrfs_space_info
*meta_sinfo
;
3048 /* get the space info for where the metadata will live */
3049 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3050 meta_sinfo
= __find_space_info(info
, alloc_target
);
3052 num_bytes
= calculate_bytes_needed(root
->fs_info
->extent_root
,
3055 spin_lock(&meta_sinfo
->lock
);
3057 force_delalloc
= meta_sinfo
->force_delalloc
;
3059 if (unlikely(!meta_sinfo
->bytes_root
))
3060 meta_sinfo
->bytes_root
= calculate_bytes_needed(root
, 6);
3063 meta_sinfo
->bytes_delalloc
+= num_bytes
;
3065 used
= meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
3066 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
+
3067 meta_sinfo
->bytes_super
+ meta_sinfo
->bytes_root
+
3068 meta_sinfo
->bytes_may_use
+ meta_sinfo
->bytes_delalloc
;
3070 if (used
> meta_sinfo
->total_bytes
) {
3074 if (maybe_allocate_chunk(root
, meta_sinfo
))
3078 spin_unlock(&meta_sinfo
->lock
);
3082 filemap_flush(inode
->i_mapping
);
3084 } else if (flushed
== 3) {
3085 flush_delalloc(root
, meta_sinfo
);
3088 spin_lock(&meta_sinfo
->lock
);
3089 meta_sinfo
->bytes_delalloc
-= num_bytes
;
3090 spin_unlock(&meta_sinfo
->lock
);
3091 printk(KERN_ERR
"enospc, has %d, reserved %d\n",
3092 BTRFS_I(inode
)->outstanding_extents
,
3093 BTRFS_I(inode
)->reserved_extents
);
3094 dump_space_info(meta_sinfo
, 0, 0);
3098 BTRFS_I(inode
)->reserved_extents
++;
3099 check_force_delalloc(meta_sinfo
);
3100 spin_unlock(&meta_sinfo
->lock
);
3102 if (!flushed
&& force_delalloc
)
3103 filemap_flush(inode
->i_mapping
);
3109 * unreserve num_items number of items worth of metadata space. This needs to
3110 * be paired with btrfs_reserve_metadata_space.
3112 * NOTE: if you have the option, run this _AFTER_ you do a
3113 * btrfs_end_transaction, since btrfs_end_transaction will run delayed ref
3114 * oprations which will result in more used metadata, so we want to make sure we
3115 * can do that without issue.
3117 int btrfs_unreserve_metadata_space(struct btrfs_root
*root
, int num_items
)
3119 struct btrfs_fs_info
*info
= root
->fs_info
;
3120 struct btrfs_space_info
*meta_sinfo
;
3125 /* get the space info for where the metadata will live */
3126 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3127 meta_sinfo
= __find_space_info(info
, alloc_target
);
3129 num_bytes
= calculate_bytes_needed(root
, num_items
);
3131 spin_lock(&meta_sinfo
->lock
);
3132 if (meta_sinfo
->bytes_may_use
< num_bytes
) {
3134 meta_sinfo
->bytes_may_use
= 0;
3136 meta_sinfo
->bytes_may_use
-= num_bytes
;
3138 spin_unlock(&meta_sinfo
->lock
);
3146 * Reserve some metadata space for use. We'll calculate the worste case number
3147 * of bytes that would be needed to modify num_items number of items. If we
3148 * have space, fantastic, if not, you get -ENOSPC. Please call
3149 * btrfs_unreserve_metadata_space when you are done for the _SAME_ number of
3150 * items you reserved, since whatever metadata you needed should have already
3153 * This will commit the transaction to make more space if we don't have enough
3154 * metadata space. THe only time we don't do this is if we're reserving space
3155 * inside of a transaction, then we will just return -ENOSPC and it is the
3156 * callers responsibility to handle it properly.
3158 int btrfs_reserve_metadata_space(struct btrfs_root
*root
, int num_items
)
3160 struct btrfs_fs_info
*info
= root
->fs_info
;
3161 struct btrfs_space_info
*meta_sinfo
;
3167 /* get the space info for where the metadata will live */
3168 alloc_target
= btrfs_get_alloc_profile(root
, 0);
3169 meta_sinfo
= __find_space_info(info
, alloc_target
);
3171 num_bytes
= calculate_bytes_needed(root
, num_items
);
3173 spin_lock(&meta_sinfo
->lock
);
3175 if (unlikely(!meta_sinfo
->bytes_root
))
3176 meta_sinfo
->bytes_root
= calculate_bytes_needed(root
, 6);
3179 meta_sinfo
->bytes_may_use
+= num_bytes
;
3181 used
= meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
3182 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
+
3183 meta_sinfo
->bytes_super
+ meta_sinfo
->bytes_root
+
3184 meta_sinfo
->bytes_may_use
+ meta_sinfo
->bytes_delalloc
;
3186 if (used
> meta_sinfo
->total_bytes
) {
3189 if (maybe_allocate_chunk(root
, meta_sinfo
))
3193 spin_unlock(&meta_sinfo
->lock
);
3197 flush_delalloc(root
, meta_sinfo
);
3200 spin_lock(&meta_sinfo
->lock
);
3201 meta_sinfo
->bytes_may_use
-= num_bytes
;
3202 spin_unlock(&meta_sinfo
->lock
);
3204 dump_space_info(meta_sinfo
, 0, 0);
3208 check_force_delalloc(meta_sinfo
);
3209 spin_unlock(&meta_sinfo
->lock
);
3215 * This will check the space that the inode allocates from to make sure we have
3216 * enough space for bytes.
3218 int btrfs_check_data_free_space(struct btrfs_root
*root
, struct inode
*inode
,
3221 struct btrfs_space_info
*data_sinfo
;
3222 int ret
= 0, committed
= 0;
3224 /* make sure bytes are sectorsize aligned */
3225 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3227 data_sinfo
= BTRFS_I(inode
)->space_info
;
3232 /* make sure we have enough space to handle the data first */
3233 spin_lock(&data_sinfo
->lock
);
3234 if (data_sinfo
->total_bytes
- data_sinfo
->bytes_used
-
3235 data_sinfo
->bytes_delalloc
- data_sinfo
->bytes_reserved
-
3236 data_sinfo
->bytes_pinned
- data_sinfo
->bytes_readonly
-
3237 data_sinfo
->bytes_may_use
- data_sinfo
->bytes_super
< bytes
) {
3238 struct btrfs_trans_handle
*trans
;
3241 * if we don't have enough free bytes in this space then we need
3242 * to alloc a new chunk.
3244 if (!data_sinfo
->full
) {
3247 data_sinfo
->force_alloc
= 1;
3248 spin_unlock(&data_sinfo
->lock
);
3250 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3251 trans
= btrfs_start_transaction(root
, 1);
3255 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3256 bytes
+ 2 * 1024 * 1024,
3258 btrfs_end_transaction(trans
, root
);
3263 btrfs_set_inode_space_info(root
, inode
);
3264 data_sinfo
= BTRFS_I(inode
)->space_info
;
3268 spin_unlock(&data_sinfo
->lock
);
3270 /* commit the current transaction and try again */
3271 if (!committed
&& !root
->fs_info
->open_ioctl_trans
) {
3273 trans
= btrfs_join_transaction(root
, 1);
3276 ret
= btrfs_commit_transaction(trans
, root
);
3282 printk(KERN_ERR
"no space left, need %llu, %llu delalloc bytes"
3283 ", %llu bytes_used, %llu bytes_reserved, "
3284 "%llu bytes_pinned, %llu bytes_readonly, %llu may use "
3285 "%llu total\n", (unsigned long long)bytes
,
3286 (unsigned long long)data_sinfo
->bytes_delalloc
,
3287 (unsigned long long)data_sinfo
->bytes_used
,
3288 (unsigned long long)data_sinfo
->bytes_reserved
,
3289 (unsigned long long)data_sinfo
->bytes_pinned
,
3290 (unsigned long long)data_sinfo
->bytes_readonly
,
3291 (unsigned long long)data_sinfo
->bytes_may_use
,
3292 (unsigned long long)data_sinfo
->total_bytes
);
3295 data_sinfo
->bytes_may_use
+= bytes
;
3296 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
3297 spin_unlock(&data_sinfo
->lock
);
3303 * if there was an error for whatever reason after calling
3304 * btrfs_check_data_free_space, call this so we can cleanup the counters.
3306 void btrfs_free_reserved_data_space(struct btrfs_root
*root
,
3307 struct inode
*inode
, u64 bytes
)
3309 struct btrfs_space_info
*data_sinfo
;
3311 /* make sure bytes are sectorsize aligned */
3312 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3314 data_sinfo
= BTRFS_I(inode
)->space_info
;
3315 spin_lock(&data_sinfo
->lock
);
3316 data_sinfo
->bytes_may_use
-= bytes
;
3317 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3318 spin_unlock(&data_sinfo
->lock
);
3321 /* called when we are adding a delalloc extent to the inode's io_tree */
3322 void btrfs_delalloc_reserve_space(struct btrfs_root
*root
, struct inode
*inode
,
3325 struct btrfs_space_info
*data_sinfo
;
3327 /* get the space info for where this inode will be storing its data */
3328 data_sinfo
= BTRFS_I(inode
)->space_info
;
3330 /* make sure we have enough space to handle the data first */
3331 spin_lock(&data_sinfo
->lock
);
3332 data_sinfo
->bytes_delalloc
+= bytes
;
3335 * we are adding a delalloc extent without calling
3336 * btrfs_check_data_free_space first. This happens on a weird
3337 * writepage condition, but shouldn't hurt our accounting
3339 if (unlikely(bytes
> BTRFS_I(inode
)->reserved_bytes
)) {
3340 data_sinfo
->bytes_may_use
-= BTRFS_I(inode
)->reserved_bytes
;
3341 BTRFS_I(inode
)->reserved_bytes
= 0;
3343 data_sinfo
->bytes_may_use
-= bytes
;
3344 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3347 spin_unlock(&data_sinfo
->lock
);
3350 /* called when we are clearing an delalloc extent from the inode's io_tree */
3351 void btrfs_delalloc_free_space(struct btrfs_root
*root
, struct inode
*inode
,
3354 struct btrfs_space_info
*info
;
3356 info
= BTRFS_I(inode
)->space_info
;
3358 spin_lock(&info
->lock
);
3359 info
->bytes_delalloc
-= bytes
;
3360 spin_unlock(&info
->lock
);
3363 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3365 struct list_head
*head
= &info
->space_info
;
3366 struct btrfs_space_info
*found
;
3369 list_for_each_entry_rcu(found
, head
, list
) {
3370 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3371 found
->force_alloc
= 1;
3376 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3377 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3378 u64 flags
, int force
)
3380 struct btrfs_space_info
*space_info
;
3381 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3385 mutex_lock(&fs_info
->chunk_mutex
);
3387 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3389 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3391 ret
= update_space_info(extent_root
->fs_info
, flags
,
3395 BUG_ON(!space_info
);
3397 spin_lock(&space_info
->lock
);
3398 if (space_info
->force_alloc
)
3400 if (space_info
->full
) {
3401 spin_unlock(&space_info
->lock
);
3405 thresh
= space_info
->total_bytes
- space_info
->bytes_readonly
;
3406 thresh
= div_factor(thresh
, 8);
3408 (space_info
->bytes_used
+ space_info
->bytes_pinned
+
3409 space_info
->bytes_reserved
+ alloc_bytes
) < thresh
) {
3410 spin_unlock(&space_info
->lock
);
3413 spin_unlock(&space_info
->lock
);
3416 * if we're doing a data chunk, go ahead and make sure that
3417 * we keep a reasonable number of metadata chunks allocated in the
3420 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3421 fs_info
->data_chunk_allocations
++;
3422 if (!(fs_info
->data_chunk_allocations
%
3423 fs_info
->metadata_ratio
))
3424 force_metadata_allocation(fs_info
);
3427 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3428 spin_lock(&space_info
->lock
);
3430 space_info
->full
= 1;
3431 space_info
->force_alloc
= 0;
3432 spin_unlock(&space_info
->lock
);
3434 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3438 static int update_block_group(struct btrfs_trans_handle
*trans
,
3439 struct btrfs_root
*root
,
3440 u64 bytenr
, u64 num_bytes
, int alloc
,
3443 struct btrfs_block_group_cache
*cache
;
3444 struct btrfs_fs_info
*info
= root
->fs_info
;
3445 u64 total
= num_bytes
;
3449 /* block accounting for super block */
3450 spin_lock(&info
->delalloc_lock
);
3451 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
3453 old_val
+= num_bytes
;
3455 old_val
-= num_bytes
;
3456 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
3458 /* block accounting for root item */
3459 old_val
= btrfs_root_used(&root
->root_item
);
3461 old_val
+= num_bytes
;
3463 old_val
-= num_bytes
;
3464 btrfs_set_root_used(&root
->root_item
, old_val
);
3465 spin_unlock(&info
->delalloc_lock
);
3468 cache
= btrfs_lookup_block_group(info
, bytenr
);
3471 byte_in_group
= bytenr
- cache
->key
.objectid
;
3472 WARN_ON(byte_in_group
> cache
->key
.offset
);
3474 spin_lock(&cache
->space_info
->lock
);
3475 spin_lock(&cache
->lock
);
3477 old_val
= btrfs_block_group_used(&cache
->item
);
3478 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
3480 old_val
+= num_bytes
;
3481 btrfs_set_block_group_used(&cache
->item
, old_val
);
3482 cache
->reserved
-= num_bytes
;
3483 cache
->space_info
->bytes_used
+= num_bytes
;
3484 cache
->space_info
->bytes_reserved
-= num_bytes
;
3486 cache
->space_info
->bytes_readonly
-= num_bytes
;
3487 spin_unlock(&cache
->lock
);
3488 spin_unlock(&cache
->space_info
->lock
);
3490 old_val
-= num_bytes
;
3491 cache
->space_info
->bytes_used
-= num_bytes
;
3493 cache
->space_info
->bytes_readonly
+= num_bytes
;
3494 btrfs_set_block_group_used(&cache
->item
, old_val
);
3495 spin_unlock(&cache
->lock
);
3496 spin_unlock(&cache
->space_info
->lock
);
3500 ret
= btrfs_discard_extent(root
, bytenr
,
3504 ret
= btrfs_add_free_space(cache
, bytenr
,
3509 btrfs_put_block_group(cache
);
3511 bytenr
+= num_bytes
;
3516 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
3518 struct btrfs_block_group_cache
*cache
;
3521 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
3525 bytenr
= cache
->key
.objectid
;
3526 btrfs_put_block_group(cache
);
3532 * this function must be called within transaction
3534 int btrfs_pin_extent(struct btrfs_root
*root
,
3535 u64 bytenr
, u64 num_bytes
, int reserved
)
3537 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3538 struct btrfs_block_group_cache
*cache
;
3540 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
3543 spin_lock(&cache
->space_info
->lock
);
3544 spin_lock(&cache
->lock
);
3545 cache
->pinned
+= num_bytes
;
3546 cache
->space_info
->bytes_pinned
+= num_bytes
;
3548 cache
->reserved
-= num_bytes
;
3549 cache
->space_info
->bytes_reserved
-= num_bytes
;
3551 spin_unlock(&cache
->lock
);
3552 spin_unlock(&cache
->space_info
->lock
);
3554 btrfs_put_block_group(cache
);
3556 set_extent_dirty(fs_info
->pinned_extents
,
3557 bytenr
, bytenr
+ num_bytes
- 1, GFP_NOFS
);
3561 static int update_reserved_extents(struct btrfs_block_group_cache
*cache
,
3562 u64 num_bytes
, int reserve
)
3564 spin_lock(&cache
->space_info
->lock
);
3565 spin_lock(&cache
->lock
);
3567 cache
->reserved
+= num_bytes
;
3568 cache
->space_info
->bytes_reserved
+= num_bytes
;
3570 cache
->reserved
-= num_bytes
;
3571 cache
->space_info
->bytes_reserved
-= num_bytes
;
3573 spin_unlock(&cache
->lock
);
3574 spin_unlock(&cache
->space_info
->lock
);
3578 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
3579 struct btrfs_root
*root
)
3581 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3582 struct btrfs_caching_control
*next
;
3583 struct btrfs_caching_control
*caching_ctl
;
3584 struct btrfs_block_group_cache
*cache
;
3586 down_write(&fs_info
->extent_commit_sem
);
3588 list_for_each_entry_safe(caching_ctl
, next
,
3589 &fs_info
->caching_block_groups
, list
) {
3590 cache
= caching_ctl
->block_group
;
3591 if (block_group_cache_done(cache
)) {
3592 cache
->last_byte_to_unpin
= (u64
)-1;
3593 list_del_init(&caching_ctl
->list
);
3594 put_caching_control(caching_ctl
);
3596 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
3600 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
3601 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
3603 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
3605 up_write(&fs_info
->extent_commit_sem
);
3609 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
3611 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3612 struct btrfs_block_group_cache
*cache
= NULL
;
3615 while (start
<= end
) {
3617 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
3619 btrfs_put_block_group(cache
);
3620 cache
= btrfs_lookup_block_group(fs_info
, start
);
3624 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
3625 len
= min(len
, end
+ 1 - start
);
3627 if (start
< cache
->last_byte_to_unpin
) {
3628 len
= min(len
, cache
->last_byte_to_unpin
- start
);
3629 btrfs_add_free_space(cache
, start
, len
);
3632 spin_lock(&cache
->space_info
->lock
);
3633 spin_lock(&cache
->lock
);
3634 cache
->pinned
-= len
;
3635 cache
->space_info
->bytes_pinned
-= len
;
3636 spin_unlock(&cache
->lock
);
3637 spin_unlock(&cache
->space_info
->lock
);
3643 btrfs_put_block_group(cache
);
3647 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
3648 struct btrfs_root
*root
)
3650 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3651 struct extent_io_tree
*unpin
;
3656 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
3657 unpin
= &fs_info
->freed_extents
[1];
3659 unpin
= &fs_info
->freed_extents
[0];
3662 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3667 ret
= btrfs_discard_extent(root
, start
, end
+ 1 - start
);
3669 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3670 unpin_extent_range(root
, start
, end
);
3677 static int pin_down_bytes(struct btrfs_trans_handle
*trans
,
3678 struct btrfs_root
*root
,
3679 struct btrfs_path
*path
,
3680 u64 bytenr
, u64 num_bytes
,
3681 int is_data
, int reserved
,
3682 struct extent_buffer
**must_clean
)
3685 struct extent_buffer
*buf
;
3691 * discard is sloooow, and so triggering discards on
3692 * individual btree blocks isn't a good plan. Just
3693 * pin everything in discard mode.
3695 if (btrfs_test_opt(root
, DISCARD
))
3698 buf
= btrfs_find_tree_block(root
, bytenr
, num_bytes
);
3702 /* we can reuse a block if it hasn't been written
3703 * and it is from this transaction. We can't
3704 * reuse anything from the tree log root because
3705 * it has tiny sub-transactions.
3707 if (btrfs_buffer_uptodate(buf
, 0) &&
3708 btrfs_try_tree_lock(buf
)) {
3709 u64 header_owner
= btrfs_header_owner(buf
);
3710 u64 header_transid
= btrfs_header_generation(buf
);
3711 if (header_owner
!= BTRFS_TREE_LOG_OBJECTID
&&
3712 header_transid
== trans
->transid
&&
3713 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
3717 btrfs_tree_unlock(buf
);
3719 free_extent_buffer(buf
);
3722 btrfs_set_path_blocking(path
);
3723 /* unlocks the pinned mutex */
3724 btrfs_pin_extent(root
, bytenr
, num_bytes
, reserved
);
3730 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
3731 struct btrfs_root
*root
,
3732 u64 bytenr
, u64 num_bytes
, u64 parent
,
3733 u64 root_objectid
, u64 owner_objectid
,
3734 u64 owner_offset
, int refs_to_drop
,
3735 struct btrfs_delayed_extent_op
*extent_op
)
3737 struct btrfs_key key
;
3738 struct btrfs_path
*path
;
3739 struct btrfs_fs_info
*info
= root
->fs_info
;
3740 struct btrfs_root
*extent_root
= info
->extent_root
;
3741 struct extent_buffer
*leaf
;
3742 struct btrfs_extent_item
*ei
;
3743 struct btrfs_extent_inline_ref
*iref
;
3746 int extent_slot
= 0;
3747 int found_extent
= 0;
3752 path
= btrfs_alloc_path();
3757 path
->leave_spinning
= 1;
3759 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
3760 BUG_ON(!is_data
&& refs_to_drop
!= 1);
3762 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
3763 bytenr
, num_bytes
, parent
,
3764 root_objectid
, owner_objectid
,
3767 extent_slot
= path
->slots
[0];
3768 while (extent_slot
>= 0) {
3769 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3771 if (key
.objectid
!= bytenr
)
3773 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3774 key
.offset
== num_bytes
) {
3778 if (path
->slots
[0] - extent_slot
> 5)
3782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3783 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
3784 if (found_extent
&& item_size
< sizeof(*ei
))
3787 if (!found_extent
) {
3789 ret
= remove_extent_backref(trans
, extent_root
, path
,
3793 btrfs_release_path(extent_root
, path
);
3794 path
->leave_spinning
= 1;
3796 key
.objectid
= bytenr
;
3797 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3798 key
.offset
= num_bytes
;
3800 ret
= btrfs_search_slot(trans
, extent_root
,
3803 printk(KERN_ERR
"umm, got %d back from search"
3804 ", was looking for %llu\n", ret
,
3805 (unsigned long long)bytenr
);
3806 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3809 extent_slot
= path
->slots
[0];
3812 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3814 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
3815 "parent %llu root %llu owner %llu offset %llu\n",
3816 (unsigned long long)bytenr
,
3817 (unsigned long long)parent
,
3818 (unsigned long long)root_objectid
,
3819 (unsigned long long)owner_objectid
,
3820 (unsigned long long)owner_offset
);
3823 leaf
= path
->nodes
[0];
3824 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3826 if (item_size
< sizeof(*ei
)) {
3827 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
3828 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
3832 btrfs_release_path(extent_root
, path
);
3833 path
->leave_spinning
= 1;
3835 key
.objectid
= bytenr
;
3836 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3837 key
.offset
= num_bytes
;
3839 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
3842 printk(KERN_ERR
"umm, got %d back from search"
3843 ", was looking for %llu\n", ret
,
3844 (unsigned long long)bytenr
);
3845 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3848 extent_slot
= path
->slots
[0];
3849 leaf
= path
->nodes
[0];
3850 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3853 BUG_ON(item_size
< sizeof(*ei
));
3854 ei
= btrfs_item_ptr(leaf
, extent_slot
,
3855 struct btrfs_extent_item
);
3856 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
3857 struct btrfs_tree_block_info
*bi
;
3858 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
3859 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
3860 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
3863 refs
= btrfs_extent_refs(leaf
, ei
);
3864 BUG_ON(refs
< refs_to_drop
);
3865 refs
-= refs_to_drop
;
3869 __run_delayed_extent_op(extent_op
, leaf
, ei
);
3871 * In the case of inline back ref, reference count will
3872 * be updated by remove_extent_backref
3875 BUG_ON(!found_extent
);
3877 btrfs_set_extent_refs(leaf
, ei
, refs
);
3878 btrfs_mark_buffer_dirty(leaf
);
3881 ret
= remove_extent_backref(trans
, extent_root
, path
,
3888 struct extent_buffer
*must_clean
= NULL
;
3891 BUG_ON(is_data
&& refs_to_drop
!=
3892 extent_data_ref_count(root
, path
, iref
));
3894 BUG_ON(path
->slots
[0] != extent_slot
);
3896 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
3897 path
->slots
[0] = extent_slot
;
3902 ret
= pin_down_bytes(trans
, root
, path
, bytenr
,
3903 num_bytes
, is_data
, 0, &must_clean
);
3908 * it is going to be very rare for someone to be waiting
3909 * on the block we're freeing. del_items might need to
3910 * schedule, so rather than get fancy, just force it
3914 btrfs_set_lock_blocking(must_clean
);
3916 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
3919 btrfs_release_path(extent_root
, path
);
3922 clean_tree_block(NULL
, root
, must_clean
);
3923 btrfs_tree_unlock(must_clean
);
3924 free_extent_buffer(must_clean
);
3928 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
3931 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
3932 bytenr
>> PAGE_CACHE_SHIFT
,
3933 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
3936 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0,
3940 btrfs_free_path(path
);
3945 * when we free an extent, it is possible (and likely) that we free the last
3946 * delayed ref for that extent as well. This searches the delayed ref tree for
3947 * a given extent, and if there are no other delayed refs to be processed, it
3948 * removes it from the tree.
3950 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
3951 struct btrfs_root
*root
, u64 bytenr
)
3953 struct btrfs_delayed_ref_head
*head
;
3954 struct btrfs_delayed_ref_root
*delayed_refs
;
3955 struct btrfs_delayed_ref_node
*ref
;
3956 struct rb_node
*node
;
3959 delayed_refs
= &trans
->transaction
->delayed_refs
;
3960 spin_lock(&delayed_refs
->lock
);
3961 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3965 node
= rb_prev(&head
->node
.rb_node
);
3969 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3971 /* there are still entries for this ref, we can't drop it */
3972 if (ref
->bytenr
== bytenr
)
3975 if (head
->extent_op
) {
3976 if (!head
->must_insert_reserved
)
3978 kfree(head
->extent_op
);
3979 head
->extent_op
= NULL
;
3983 * waiting for the lock here would deadlock. If someone else has it
3984 * locked they are already in the process of dropping it anyway
3986 if (!mutex_trylock(&head
->mutex
))
3990 * at this point we have a head with no other entries. Go
3991 * ahead and process it.
3993 head
->node
.in_tree
= 0;
3994 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
3996 delayed_refs
->num_entries
--;
3999 * we don't take a ref on the node because we're removing it from the
4000 * tree, so we just steal the ref the tree was holding.
4002 delayed_refs
->num_heads
--;
4003 if (list_empty(&head
->cluster
))
4004 delayed_refs
->num_heads_ready
--;
4006 list_del_init(&head
->cluster
);
4007 spin_unlock(&delayed_refs
->lock
);
4009 ret
= run_one_delayed_ref(trans
, root
->fs_info
->tree_root
,
4010 &head
->node
, head
->extent_op
,
4011 head
->must_insert_reserved
);
4013 btrfs_put_delayed_ref(&head
->node
);
4016 spin_unlock(&delayed_refs
->lock
);
4020 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4021 struct btrfs_root
*root
,
4022 u64 bytenr
, u64 num_bytes
, u64 parent
,
4023 u64 root_objectid
, u64 owner
, u64 offset
)
4028 * tree log blocks never actually go into the extent allocation
4029 * tree, just update pinning info and exit early.
4031 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4032 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
4033 /* unlocks the pinned mutex */
4034 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
4036 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
4037 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
4038 parent
, root_objectid
, (int)owner
,
4039 BTRFS_DROP_DELAYED_REF
, NULL
);
4041 ret
= check_ref_cleanup(trans
, root
, bytenr
);
4044 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
4045 parent
, root_objectid
, owner
,
4046 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
4052 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
4054 u64 mask
= ((u64
)root
->stripesize
- 1);
4055 u64 ret
= (val
+ mask
) & ~mask
;
4060 * when we wait for progress in the block group caching, its because
4061 * our allocation attempt failed at least once. So, we must sleep
4062 * and let some progress happen before we try again.
4064 * This function will sleep at least once waiting for new free space to
4065 * show up, and then it will check the block group free space numbers
4066 * for our min num_bytes. Another option is to have it go ahead
4067 * and look in the rbtree for a free extent of a given size, but this
4071 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
4074 struct btrfs_caching_control
*caching_ctl
;
4077 caching_ctl
= get_caching_control(cache
);
4081 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
4082 (cache
->free_space
>= num_bytes
));
4084 put_caching_control(caching_ctl
);
4089 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
4091 struct btrfs_caching_control
*caching_ctl
;
4094 caching_ctl
= get_caching_control(cache
);
4098 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
4100 put_caching_control(caching_ctl
);
4104 enum btrfs_loop_type
{
4105 LOOP_FIND_IDEAL
= 0,
4106 LOOP_CACHING_NOWAIT
= 1,
4107 LOOP_CACHING_WAIT
= 2,
4108 LOOP_ALLOC_CHUNK
= 3,
4109 LOOP_NO_EMPTY_SIZE
= 4,
4113 * walks the btree of allocated extents and find a hole of a given size.
4114 * The key ins is changed to record the hole:
4115 * ins->objectid == block start
4116 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4117 * ins->offset == number of blocks
4118 * Any available blocks before search_start are skipped.
4120 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
4121 struct btrfs_root
*orig_root
,
4122 u64 num_bytes
, u64 empty_size
,
4123 u64 search_start
, u64 search_end
,
4124 u64 hint_byte
, struct btrfs_key
*ins
,
4125 u64 exclude_start
, u64 exclude_nr
,
4129 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
4130 struct btrfs_free_cluster
*last_ptr
= NULL
;
4131 struct btrfs_block_group_cache
*block_group
= NULL
;
4132 int empty_cluster
= 2 * 1024 * 1024;
4133 int allowed_chunk_alloc
= 0;
4134 int done_chunk_alloc
= 0;
4135 struct btrfs_space_info
*space_info
;
4136 int last_ptr_loop
= 0;
4138 bool found_uncached_bg
= false;
4139 bool failed_cluster_refill
= false;
4140 bool failed_alloc
= false;
4141 u64 ideal_cache_percent
= 0;
4142 u64 ideal_cache_offset
= 0;
4144 WARN_ON(num_bytes
< root
->sectorsize
);
4145 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
4149 space_info
= __find_space_info(root
->fs_info
, data
);
4151 if (orig_root
->ref_cows
|| empty_size
)
4152 allowed_chunk_alloc
= 1;
4154 if (data
& BTRFS_BLOCK_GROUP_METADATA
) {
4155 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
4156 if (!btrfs_test_opt(root
, SSD
))
4157 empty_cluster
= 64 * 1024;
4160 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && btrfs_test_opt(root
, SSD
)) {
4161 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
4165 spin_lock(&last_ptr
->lock
);
4166 if (last_ptr
->block_group
)
4167 hint_byte
= last_ptr
->window_start
;
4168 spin_unlock(&last_ptr
->lock
);
4171 search_start
= max(search_start
, first_logical_byte(root
, 0));
4172 search_start
= max(search_start
, hint_byte
);
4177 if (search_start
== hint_byte
) {
4179 block_group
= btrfs_lookup_block_group(root
->fs_info
,
4182 * we don't want to use the block group if it doesn't match our
4183 * allocation bits, or if its not cached.
4185 * However if we are re-searching with an ideal block group
4186 * picked out then we don't care that the block group is cached.
4188 if (block_group
&& block_group_bits(block_group
, data
) &&
4189 (block_group
->cached
!= BTRFS_CACHE_NO
||
4190 search_start
== ideal_cache_offset
)) {
4191 down_read(&space_info
->groups_sem
);
4192 if (list_empty(&block_group
->list
) ||
4195 * someone is removing this block group,
4196 * we can't jump into the have_block_group
4197 * target because our list pointers are not
4200 btrfs_put_block_group(block_group
);
4201 up_read(&space_info
->groups_sem
);
4203 goto have_block_group
;
4205 } else if (block_group
) {
4206 btrfs_put_block_group(block_group
);
4210 down_read(&space_info
->groups_sem
);
4211 list_for_each_entry(block_group
, &space_info
->block_groups
, list
) {
4215 atomic_inc(&block_group
->count
);
4216 search_start
= block_group
->key
.objectid
;
4219 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
4222 free_percent
= btrfs_block_group_used(&block_group
->item
);
4223 free_percent
*= 100;
4224 free_percent
= div64_u64(free_percent
,
4225 block_group
->key
.offset
);
4226 free_percent
= 100 - free_percent
;
4227 if (free_percent
> ideal_cache_percent
&&
4228 likely(!block_group
->ro
)) {
4229 ideal_cache_offset
= block_group
->key
.objectid
;
4230 ideal_cache_percent
= free_percent
;
4234 * We only want to start kthread caching if we are at
4235 * the point where we will wait for caching to make
4236 * progress, or if our ideal search is over and we've
4237 * found somebody to start caching.
4239 if (loop
> LOOP_CACHING_NOWAIT
||
4240 (loop
> LOOP_FIND_IDEAL
&&
4241 atomic_read(&space_info
->caching_threads
) < 2)) {
4242 ret
= cache_block_group(block_group
);
4245 found_uncached_bg
= true;
4248 * If loop is set for cached only, try the next block
4251 if (loop
== LOOP_FIND_IDEAL
)
4255 cached
= block_group_cache_done(block_group
);
4256 if (unlikely(!cached
))
4257 found_uncached_bg
= true;
4259 if (unlikely(block_group
->ro
))
4263 * Ok we want to try and use the cluster allocator, so lets look
4264 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4265 * have tried the cluster allocator plenty of times at this
4266 * point and not have found anything, so we are likely way too
4267 * fragmented for the clustering stuff to find anything, so lets
4268 * just skip it and let the allocator find whatever block it can
4271 if (last_ptr
&& loop
< LOOP_NO_EMPTY_SIZE
) {
4273 * the refill lock keeps out other
4274 * people trying to start a new cluster
4276 spin_lock(&last_ptr
->refill_lock
);
4277 if (last_ptr
->block_group
&&
4278 (last_ptr
->block_group
->ro
||
4279 !block_group_bits(last_ptr
->block_group
, data
))) {
4281 goto refill_cluster
;
4284 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
4285 num_bytes
, search_start
);
4287 /* we have a block, we're done */
4288 spin_unlock(&last_ptr
->refill_lock
);
4292 spin_lock(&last_ptr
->lock
);
4294 * whoops, this cluster doesn't actually point to
4295 * this block group. Get a ref on the block
4296 * group is does point to and try again
4298 if (!last_ptr_loop
&& last_ptr
->block_group
&&
4299 last_ptr
->block_group
!= block_group
) {
4301 btrfs_put_block_group(block_group
);
4302 block_group
= last_ptr
->block_group
;
4303 atomic_inc(&block_group
->count
);
4304 spin_unlock(&last_ptr
->lock
);
4305 spin_unlock(&last_ptr
->refill_lock
);
4308 search_start
= block_group
->key
.objectid
;
4310 * we know this block group is properly
4311 * in the list because
4312 * btrfs_remove_block_group, drops the
4313 * cluster before it removes the block
4314 * group from the list
4316 goto have_block_group
;
4318 spin_unlock(&last_ptr
->lock
);
4321 * this cluster didn't work out, free it and
4324 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
4328 /* allocate a cluster in this block group */
4329 ret
= btrfs_find_space_cluster(trans
, root
,
4330 block_group
, last_ptr
,
4332 empty_cluster
+ empty_size
);
4335 * now pull our allocation out of this
4338 offset
= btrfs_alloc_from_cluster(block_group
,
4339 last_ptr
, num_bytes
,
4342 /* we found one, proceed */
4343 spin_unlock(&last_ptr
->refill_lock
);
4346 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
4347 && !failed_cluster_refill
) {
4348 spin_unlock(&last_ptr
->refill_lock
);
4350 failed_cluster_refill
= true;
4351 wait_block_group_cache_progress(block_group
,
4352 num_bytes
+ empty_cluster
+ empty_size
);
4353 goto have_block_group
;
4357 * at this point we either didn't find a cluster
4358 * or we weren't able to allocate a block from our
4359 * cluster. Free the cluster we've been trying
4360 * to use, and go to the next block group
4362 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
4363 spin_unlock(&last_ptr
->refill_lock
);
4367 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
4368 num_bytes
, empty_size
);
4370 * If we didn't find a chunk, and we haven't failed on this
4371 * block group before, and this block group is in the middle of
4372 * caching and we are ok with waiting, then go ahead and wait
4373 * for progress to be made, and set failed_alloc to true.
4375 * If failed_alloc is true then we've already waited on this
4376 * block group once and should move on to the next block group.
4378 if (!offset
&& !failed_alloc
&& !cached
&&
4379 loop
> LOOP_CACHING_NOWAIT
) {
4380 wait_block_group_cache_progress(block_group
,
4381 num_bytes
+ empty_size
);
4382 failed_alloc
= true;
4383 goto have_block_group
;
4384 } else if (!offset
) {
4388 search_start
= stripe_align(root
, offset
);
4389 /* move on to the next group */
4390 if (search_start
+ num_bytes
>= search_end
) {
4391 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4395 /* move on to the next group */
4396 if (search_start
+ num_bytes
>
4397 block_group
->key
.objectid
+ block_group
->key
.offset
) {
4398 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4402 if (exclude_nr
> 0 &&
4403 (search_start
+ num_bytes
> exclude_start
&&
4404 search_start
< exclude_start
+ exclude_nr
)) {
4405 search_start
= exclude_start
+ exclude_nr
;
4407 btrfs_add_free_space(block_group
, offset
, num_bytes
);
4409 * if search_start is still in this block group
4410 * then we just re-search this block group
4412 if (search_start
>= block_group
->key
.objectid
&&
4413 search_start
< (block_group
->key
.objectid
+
4414 block_group
->key
.offset
))
4415 goto have_block_group
;
4419 ins
->objectid
= search_start
;
4420 ins
->offset
= num_bytes
;
4422 if (offset
< search_start
)
4423 btrfs_add_free_space(block_group
, offset
,
4424 search_start
- offset
);
4425 BUG_ON(offset
> search_start
);
4427 update_reserved_extents(block_group
, num_bytes
, 1);
4429 /* we are all good, lets return */
4432 failed_cluster_refill
= false;
4433 failed_alloc
= false;
4434 btrfs_put_block_group(block_group
);
4436 up_read(&space_info
->groups_sem
);
4438 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
4439 * for them to make caching progress. Also
4440 * determine the best possible bg to cache
4441 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4442 * caching kthreads as we move along
4443 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4444 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4445 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4448 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
&&
4449 (found_uncached_bg
|| empty_size
|| empty_cluster
||
4450 allowed_chunk_alloc
)) {
4451 if (loop
== LOOP_FIND_IDEAL
&& found_uncached_bg
) {
4452 found_uncached_bg
= false;
4454 if (!ideal_cache_percent
&&
4455 atomic_read(&space_info
->caching_threads
))
4459 * 1 of the following 2 things have happened so far
4461 * 1) We found an ideal block group for caching that
4462 * is mostly full and will cache quickly, so we might
4463 * as well wait for it.
4465 * 2) We searched for cached only and we didn't find
4466 * anything, and we didn't start any caching kthreads
4467 * either, so chances are we will loop through and
4468 * start a couple caching kthreads, and then come back
4469 * around and just wait for them. This will be slower
4470 * because we will have 2 caching kthreads reading at
4471 * the same time when we could have just started one
4472 * and waited for it to get far enough to give us an
4473 * allocation, so go ahead and go to the wait caching
4476 loop
= LOOP_CACHING_WAIT
;
4477 search_start
= ideal_cache_offset
;
4478 ideal_cache_percent
= 0;
4480 } else if (loop
== LOOP_FIND_IDEAL
) {
4482 * Didn't find a uncached bg, wait on anything we find
4485 loop
= LOOP_CACHING_WAIT
;
4489 if (loop
< LOOP_CACHING_WAIT
) {
4494 if (loop
== LOOP_ALLOC_CHUNK
) {
4499 if (allowed_chunk_alloc
) {
4500 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
4501 2 * 1024 * 1024, data
, 1);
4502 allowed_chunk_alloc
= 0;
4503 done_chunk_alloc
= 1;
4504 } else if (!done_chunk_alloc
) {
4505 space_info
->force_alloc
= 1;
4508 if (loop
< LOOP_NO_EMPTY_SIZE
) {
4513 } else if (!ins
->objectid
) {
4517 /* we found what we needed */
4518 if (ins
->objectid
) {
4519 if (!(data
& BTRFS_BLOCK_GROUP_DATA
))
4520 trans
->block_group
= block_group
->key
.objectid
;
4522 btrfs_put_block_group(block_group
);
4529 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
4530 int dump_block_groups
)
4532 struct btrfs_block_group_cache
*cache
;
4534 spin_lock(&info
->lock
);
4535 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
4536 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
4537 info
->bytes_pinned
- info
->bytes_reserved
-
4539 (info
->full
) ? "" : "not ");
4540 printk(KERN_INFO
"space_info total=%llu, pinned=%llu, delalloc=%llu,"
4541 " may_use=%llu, used=%llu, root=%llu, super=%llu, reserved=%llu"
4543 (unsigned long long)info
->total_bytes
,
4544 (unsigned long long)info
->bytes_pinned
,
4545 (unsigned long long)info
->bytes_delalloc
,
4546 (unsigned long long)info
->bytes_may_use
,
4547 (unsigned long long)info
->bytes_used
,
4548 (unsigned long long)info
->bytes_root
,
4549 (unsigned long long)info
->bytes_super
,
4550 (unsigned long long)info
->bytes_reserved
);
4551 spin_unlock(&info
->lock
);
4553 if (!dump_block_groups
)
4556 down_read(&info
->groups_sem
);
4557 list_for_each_entry(cache
, &info
->block_groups
, list
) {
4558 spin_lock(&cache
->lock
);
4559 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
4560 "%llu pinned %llu reserved\n",
4561 (unsigned long long)cache
->key
.objectid
,
4562 (unsigned long long)cache
->key
.offset
,
4563 (unsigned long long)btrfs_block_group_used(&cache
->item
),
4564 (unsigned long long)cache
->pinned
,
4565 (unsigned long long)cache
->reserved
);
4566 btrfs_dump_free_space(cache
, bytes
);
4567 spin_unlock(&cache
->lock
);
4569 up_read(&info
->groups_sem
);
4572 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
4573 struct btrfs_root
*root
,
4574 u64 num_bytes
, u64 min_alloc_size
,
4575 u64 empty_size
, u64 hint_byte
,
4576 u64 search_end
, struct btrfs_key
*ins
,
4580 u64 search_start
= 0;
4581 struct btrfs_fs_info
*info
= root
->fs_info
;
4583 data
= btrfs_get_alloc_profile(root
, data
);
4586 * the only place that sets empty_size is btrfs_realloc_node, which
4587 * is not called recursively on allocations
4589 if (empty_size
|| root
->ref_cows
) {
4590 if (!(data
& BTRFS_BLOCK_GROUP_METADATA
)) {
4591 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4593 BTRFS_BLOCK_GROUP_METADATA
|
4594 (info
->metadata_alloc_profile
&
4595 info
->avail_metadata_alloc_bits
), 0);
4597 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4598 num_bytes
+ 2 * 1024 * 1024, data
, 0);
4601 WARN_ON(num_bytes
< root
->sectorsize
);
4602 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
4603 search_start
, search_end
, hint_byte
, ins
,
4604 trans
->alloc_exclude_start
,
4605 trans
->alloc_exclude_nr
, data
);
4607 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
4608 num_bytes
= num_bytes
>> 1;
4609 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
4610 num_bytes
= max(num_bytes
, min_alloc_size
);
4611 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4612 num_bytes
, data
, 1);
4615 if (ret
== -ENOSPC
) {
4616 struct btrfs_space_info
*sinfo
;
4618 sinfo
= __find_space_info(root
->fs_info
, data
);
4619 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
4620 "wanted %llu\n", (unsigned long long)data
,
4621 (unsigned long long)num_bytes
);
4622 dump_space_info(sinfo
, num_bytes
, 1);
4628 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
4630 struct btrfs_block_group_cache
*cache
;
4633 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
4635 printk(KERN_ERR
"Unable to find block group for %llu\n",
4636 (unsigned long long)start
);
4640 ret
= btrfs_discard_extent(root
, start
, len
);
4642 btrfs_add_free_space(cache
, start
, len
);
4643 update_reserved_extents(cache
, len
, 0);
4644 btrfs_put_block_group(cache
);
4649 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4650 struct btrfs_root
*root
,
4651 u64 parent
, u64 root_objectid
,
4652 u64 flags
, u64 owner
, u64 offset
,
4653 struct btrfs_key
*ins
, int ref_mod
)
4656 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4657 struct btrfs_extent_item
*extent_item
;
4658 struct btrfs_extent_inline_ref
*iref
;
4659 struct btrfs_path
*path
;
4660 struct extent_buffer
*leaf
;
4665 type
= BTRFS_SHARED_DATA_REF_KEY
;
4667 type
= BTRFS_EXTENT_DATA_REF_KEY
;
4669 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
4671 path
= btrfs_alloc_path();
4674 path
->leave_spinning
= 1;
4675 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4679 leaf
= path
->nodes
[0];
4680 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4681 struct btrfs_extent_item
);
4682 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
4683 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4684 btrfs_set_extent_flags(leaf
, extent_item
,
4685 flags
| BTRFS_EXTENT_FLAG_DATA
);
4687 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4688 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
4690 struct btrfs_shared_data_ref
*ref
;
4691 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
4692 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4693 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
4695 struct btrfs_extent_data_ref
*ref
;
4696 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
4697 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
4698 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
4699 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
4700 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
4703 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4704 btrfs_free_path(path
);
4706 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
,
4709 printk(KERN_ERR
"btrfs update block group failed for %llu "
4710 "%llu\n", (unsigned long long)ins
->objectid
,
4711 (unsigned long long)ins
->offset
);
4717 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
4718 struct btrfs_root
*root
,
4719 u64 parent
, u64 root_objectid
,
4720 u64 flags
, struct btrfs_disk_key
*key
,
4721 int level
, struct btrfs_key
*ins
)
4724 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4725 struct btrfs_extent_item
*extent_item
;
4726 struct btrfs_tree_block_info
*block_info
;
4727 struct btrfs_extent_inline_ref
*iref
;
4728 struct btrfs_path
*path
;
4729 struct extent_buffer
*leaf
;
4730 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
4732 path
= btrfs_alloc_path();
4735 path
->leave_spinning
= 1;
4736 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4740 leaf
= path
->nodes
[0];
4741 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4742 struct btrfs_extent_item
);
4743 btrfs_set_extent_refs(leaf
, extent_item
, 1);
4744 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4745 btrfs_set_extent_flags(leaf
, extent_item
,
4746 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
4747 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
4749 btrfs_set_tree_block_key(leaf
, block_info
, key
);
4750 btrfs_set_tree_block_level(leaf
, block_info
, level
);
4752 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
4754 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
4755 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4756 BTRFS_SHARED_BLOCK_REF_KEY
);
4757 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4759 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4760 BTRFS_TREE_BLOCK_REF_KEY
);
4761 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
4764 btrfs_mark_buffer_dirty(leaf
);
4765 btrfs_free_path(path
);
4767 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
,
4770 printk(KERN_ERR
"btrfs update block group failed for %llu "
4771 "%llu\n", (unsigned long long)ins
->objectid
,
4772 (unsigned long long)ins
->offset
);
4778 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4779 struct btrfs_root
*root
,
4780 u64 root_objectid
, u64 owner
,
4781 u64 offset
, struct btrfs_key
*ins
)
4785 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
4787 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
4788 0, root_objectid
, owner
, offset
,
4789 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
4794 * this is used by the tree logging recovery code. It records that
4795 * an extent has been allocated and makes sure to clear the free
4796 * space cache bits as well
4798 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
4799 struct btrfs_root
*root
,
4800 u64 root_objectid
, u64 owner
, u64 offset
,
4801 struct btrfs_key
*ins
)
4804 struct btrfs_block_group_cache
*block_group
;
4805 struct btrfs_caching_control
*caching_ctl
;
4806 u64 start
= ins
->objectid
;
4807 u64 num_bytes
= ins
->offset
;
4809 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
4810 cache_block_group(block_group
);
4811 caching_ctl
= get_caching_control(block_group
);
4814 BUG_ON(!block_group_cache_done(block_group
));
4815 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
4818 mutex_lock(&caching_ctl
->mutex
);
4820 if (start
>= caching_ctl
->progress
) {
4821 ret
= add_excluded_extent(root
, start
, num_bytes
);
4823 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
4824 ret
= btrfs_remove_free_space(block_group
,
4828 num_bytes
= caching_ctl
->progress
- start
;
4829 ret
= btrfs_remove_free_space(block_group
,
4833 start
= caching_ctl
->progress
;
4834 num_bytes
= ins
->objectid
+ ins
->offset
-
4835 caching_ctl
->progress
;
4836 ret
= add_excluded_extent(root
, start
, num_bytes
);
4840 mutex_unlock(&caching_ctl
->mutex
);
4841 put_caching_control(caching_ctl
);
4844 update_reserved_extents(block_group
, ins
->offset
, 1);
4845 btrfs_put_block_group(block_group
);
4846 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
4847 0, owner
, offset
, ins
, 1);
4852 * finds a free extent and does all the dirty work required for allocation
4853 * returns the key for the extent through ins, and a tree buffer for
4854 * the first block of the extent through buf.
4856 * returns 0 if everything worked, non-zero otherwise.
4858 static int alloc_tree_block(struct btrfs_trans_handle
*trans
,
4859 struct btrfs_root
*root
,
4860 u64 num_bytes
, u64 parent
, u64 root_objectid
,
4861 struct btrfs_disk_key
*key
, int level
,
4862 u64 empty_size
, u64 hint_byte
, u64 search_end
,
4863 struct btrfs_key
*ins
)
4868 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, num_bytes
,
4869 empty_size
, hint_byte
, search_end
,
4874 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
4876 parent
= ins
->objectid
;
4877 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4881 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4882 struct btrfs_delayed_extent_op
*extent_op
;
4883 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
4886 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
4888 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
4889 extent_op
->flags_to_set
= flags
;
4890 extent_op
->update_key
= 1;
4891 extent_op
->update_flags
= 1;
4892 extent_op
->is_data
= 0;
4894 ret
= btrfs_add_delayed_tree_ref(trans
, ins
->objectid
,
4895 ins
->offset
, parent
, root_objectid
,
4896 level
, BTRFS_ADD_DELAYED_EXTENT
,
4903 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
4904 struct btrfs_root
*root
,
4905 u64 bytenr
, u32 blocksize
,
4908 struct extent_buffer
*buf
;
4910 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
4912 return ERR_PTR(-ENOMEM
);
4913 btrfs_set_header_generation(buf
, trans
->transid
);
4914 btrfs_set_buffer_lockdep_class(buf
, level
);
4915 btrfs_tree_lock(buf
);
4916 clean_tree_block(trans
, root
, buf
);
4918 btrfs_set_lock_blocking(buf
);
4919 btrfs_set_buffer_uptodate(buf
);
4921 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4922 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
4923 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4925 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
4926 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4928 trans
->blocks_used
++;
4929 /* this returns a buffer locked for blocking */
4934 * helper function to allocate a block for a given tree
4935 * returns the tree buffer or NULL.
4937 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
4938 struct btrfs_root
*root
, u32 blocksize
,
4939 u64 parent
, u64 root_objectid
,
4940 struct btrfs_disk_key
*key
, int level
,
4941 u64 hint
, u64 empty_size
)
4943 struct btrfs_key ins
;
4945 struct extent_buffer
*buf
;
4947 ret
= alloc_tree_block(trans
, root
, blocksize
, parent
, root_objectid
,
4948 key
, level
, empty_size
, hint
, (u64
)-1, &ins
);
4951 return ERR_PTR(ret
);
4954 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
4959 struct walk_control
{
4960 u64 refs
[BTRFS_MAX_LEVEL
];
4961 u64 flags
[BTRFS_MAX_LEVEL
];
4962 struct btrfs_key update_progress
;
4972 #define DROP_REFERENCE 1
4973 #define UPDATE_BACKREF 2
4975 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
4976 struct btrfs_root
*root
,
4977 struct walk_control
*wc
,
4978 struct btrfs_path
*path
)
4987 struct btrfs_key key
;
4988 struct extent_buffer
*eb
;
4993 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
4994 wc
->reada_count
= wc
->reada_count
* 2 / 3;
4995 wc
->reada_count
= max(wc
->reada_count
, 2);
4997 wc
->reada_count
= wc
->reada_count
* 3 / 2;
4998 wc
->reada_count
= min_t(int, wc
->reada_count
,
4999 BTRFS_NODEPTRS_PER_BLOCK(root
));
5002 eb
= path
->nodes
[wc
->level
];
5003 nritems
= btrfs_header_nritems(eb
);
5004 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
5006 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
5007 if (nread
>= wc
->reada_count
)
5011 bytenr
= btrfs_node_blockptr(eb
, slot
);
5012 generation
= btrfs_node_ptr_generation(eb
, slot
);
5014 if (slot
== path
->slots
[wc
->level
])
5017 if (wc
->stage
== UPDATE_BACKREF
&&
5018 generation
<= root
->root_key
.offset
)
5021 /* We don't lock the tree block, it's OK to be racy here */
5022 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5027 if (wc
->stage
== DROP_REFERENCE
) {
5031 if (wc
->level
== 1 &&
5032 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5034 if (!wc
->update_ref
||
5035 generation
<= root
->root_key
.offset
)
5037 btrfs_node_key_to_cpu(eb
, &key
, slot
);
5038 ret
= btrfs_comp_cpu_keys(&key
,
5039 &wc
->update_progress
);
5043 if (wc
->level
== 1 &&
5044 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5048 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
5052 last
= bytenr
+ blocksize
;
5055 wc
->reada_slot
= slot
;
5059 * hepler to process tree block while walking down the tree.
5061 * when wc->stage == UPDATE_BACKREF, this function updates
5062 * back refs for pointers in the block.
5064 * NOTE: return value 1 means we should stop walking down.
5066 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
5067 struct btrfs_root
*root
,
5068 struct btrfs_path
*path
,
5069 struct walk_control
*wc
, int lookup_info
)
5071 int level
= wc
->level
;
5072 struct extent_buffer
*eb
= path
->nodes
[level
];
5073 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5076 if (wc
->stage
== UPDATE_BACKREF
&&
5077 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
5081 * when reference count of tree block is 1, it won't increase
5082 * again. once full backref flag is set, we never clear it.
5085 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
5086 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
5087 BUG_ON(!path
->locks
[level
]);
5088 ret
= btrfs_lookup_extent_info(trans
, root
,
5093 BUG_ON(wc
->refs
[level
] == 0);
5096 if (wc
->stage
== DROP_REFERENCE
) {
5097 if (wc
->refs
[level
] > 1)
5100 if (path
->locks
[level
] && !wc
->keep_locks
) {
5101 btrfs_tree_unlock(eb
);
5102 path
->locks
[level
] = 0;
5107 /* wc->stage == UPDATE_BACKREF */
5108 if (!(wc
->flags
[level
] & flag
)) {
5109 BUG_ON(!path
->locks
[level
]);
5110 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
5112 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5114 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
5117 wc
->flags
[level
] |= flag
;
5121 * the block is shared by multiple trees, so it's not good to
5122 * keep the tree lock
5124 if (path
->locks
[level
] && level
> 0) {
5125 btrfs_tree_unlock(eb
);
5126 path
->locks
[level
] = 0;
5132 * hepler to process tree block pointer.
5134 * when wc->stage == DROP_REFERENCE, this function checks
5135 * reference count of the block pointed to. if the block
5136 * is shared and we need update back refs for the subtree
5137 * rooted at the block, this function changes wc->stage to
5138 * UPDATE_BACKREF. if the block is shared and there is no
5139 * need to update back, this function drops the reference
5142 * NOTE: return value 1 means we should stop walking down.
5144 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
5145 struct btrfs_root
*root
,
5146 struct btrfs_path
*path
,
5147 struct walk_control
*wc
, int *lookup_info
)
5153 struct btrfs_key key
;
5154 struct extent_buffer
*next
;
5155 int level
= wc
->level
;
5159 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
5160 path
->slots
[level
]);
5162 * if the lower level block was created before the snapshot
5163 * was created, we know there is no need to update back refs
5166 if (wc
->stage
== UPDATE_BACKREF
&&
5167 generation
<= root
->root_key
.offset
) {
5172 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
5173 blocksize
= btrfs_level_size(root
, level
- 1);
5175 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
5177 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5180 btrfs_tree_lock(next
);
5181 btrfs_set_lock_blocking(next
);
5183 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5184 &wc
->refs
[level
- 1],
5185 &wc
->flags
[level
- 1]);
5187 BUG_ON(wc
->refs
[level
- 1] == 0);
5190 if (wc
->stage
== DROP_REFERENCE
) {
5191 if (wc
->refs
[level
- 1] > 1) {
5193 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5196 if (!wc
->update_ref
||
5197 generation
<= root
->root_key
.offset
)
5200 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
5201 path
->slots
[level
]);
5202 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
5206 wc
->stage
= UPDATE_BACKREF
;
5207 wc
->shared_level
= level
- 1;
5211 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5215 if (!btrfs_buffer_uptodate(next
, generation
)) {
5216 btrfs_tree_unlock(next
);
5217 free_extent_buffer(next
);
5223 if (reada
&& level
== 1)
5224 reada_walk_down(trans
, root
, wc
, path
);
5225 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
5226 btrfs_tree_lock(next
);
5227 btrfs_set_lock_blocking(next
);
5231 BUG_ON(level
!= btrfs_header_level(next
));
5232 path
->nodes
[level
] = next
;
5233 path
->slots
[level
] = 0;
5234 path
->locks
[level
] = 1;
5240 wc
->refs
[level
- 1] = 0;
5241 wc
->flags
[level
- 1] = 0;
5242 if (wc
->stage
== DROP_REFERENCE
) {
5243 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
5244 parent
= path
->nodes
[level
]->start
;
5246 BUG_ON(root
->root_key
.objectid
!=
5247 btrfs_header_owner(path
->nodes
[level
]));
5251 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
5252 root
->root_key
.objectid
, level
- 1, 0);
5255 btrfs_tree_unlock(next
);
5256 free_extent_buffer(next
);
5262 * hepler to process tree block while walking up the tree.
5264 * when wc->stage == DROP_REFERENCE, this function drops
5265 * reference count on the block.
5267 * when wc->stage == UPDATE_BACKREF, this function changes
5268 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5269 * to UPDATE_BACKREF previously while processing the block.
5271 * NOTE: return value 1 means we should stop walking up.
5273 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
5274 struct btrfs_root
*root
,
5275 struct btrfs_path
*path
,
5276 struct walk_control
*wc
)
5279 int level
= wc
->level
;
5280 struct extent_buffer
*eb
= path
->nodes
[level
];
5283 if (wc
->stage
== UPDATE_BACKREF
) {
5284 BUG_ON(wc
->shared_level
< level
);
5285 if (level
< wc
->shared_level
)
5288 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
5292 wc
->stage
= DROP_REFERENCE
;
5293 wc
->shared_level
= -1;
5294 path
->slots
[level
] = 0;
5297 * check reference count again if the block isn't locked.
5298 * we should start walking down the tree again if reference
5301 if (!path
->locks
[level
]) {
5303 btrfs_tree_lock(eb
);
5304 btrfs_set_lock_blocking(eb
);
5305 path
->locks
[level
] = 1;
5307 ret
= btrfs_lookup_extent_info(trans
, root
,
5312 BUG_ON(wc
->refs
[level
] == 0);
5313 if (wc
->refs
[level
] == 1) {
5314 btrfs_tree_unlock(eb
);
5315 path
->locks
[level
] = 0;
5321 /* wc->stage == DROP_REFERENCE */
5322 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
5324 if (wc
->refs
[level
] == 1) {
5326 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5327 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
5329 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5332 /* make block locked assertion in clean_tree_block happy */
5333 if (!path
->locks
[level
] &&
5334 btrfs_header_generation(eb
) == trans
->transid
) {
5335 btrfs_tree_lock(eb
);
5336 btrfs_set_lock_blocking(eb
);
5337 path
->locks
[level
] = 1;
5339 clean_tree_block(trans
, root
, eb
);
5342 if (eb
== root
->node
) {
5343 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5346 BUG_ON(root
->root_key
.objectid
!=
5347 btrfs_header_owner(eb
));
5349 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5350 parent
= path
->nodes
[level
+ 1]->start
;
5352 BUG_ON(root
->root_key
.objectid
!=
5353 btrfs_header_owner(path
->nodes
[level
+ 1]));
5356 ret
= btrfs_free_extent(trans
, root
, eb
->start
, eb
->len
, parent
,
5357 root
->root_key
.objectid
, level
, 0);
5360 wc
->refs
[level
] = 0;
5361 wc
->flags
[level
] = 0;
5365 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
5366 struct btrfs_root
*root
,
5367 struct btrfs_path
*path
,
5368 struct walk_control
*wc
)
5370 int level
= wc
->level
;
5371 int lookup_info
= 1;
5374 while (level
>= 0) {
5375 if (path
->slots
[level
] >=
5376 btrfs_header_nritems(path
->nodes
[level
]))
5379 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
5386 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
5388 path
->slots
[level
]++;
5396 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
5397 struct btrfs_root
*root
,
5398 struct btrfs_path
*path
,
5399 struct walk_control
*wc
, int max_level
)
5401 int level
= wc
->level
;
5404 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
5405 while (level
< max_level
&& path
->nodes
[level
]) {
5407 if (path
->slots
[level
] + 1 <
5408 btrfs_header_nritems(path
->nodes
[level
])) {
5409 path
->slots
[level
]++;
5412 ret
= walk_up_proc(trans
, root
, path
, wc
);
5416 if (path
->locks
[level
]) {
5417 btrfs_tree_unlock(path
->nodes
[level
]);
5418 path
->locks
[level
] = 0;
5420 free_extent_buffer(path
->nodes
[level
]);
5421 path
->nodes
[level
] = NULL
;
5429 * drop a subvolume tree.
5431 * this function traverses the tree freeing any blocks that only
5432 * referenced by the tree.
5434 * when a shared tree block is found. this function decreases its
5435 * reference count by one. if update_ref is true, this function
5436 * also make sure backrefs for the shared block and all lower level
5437 * blocks are properly updated.
5439 int btrfs_drop_snapshot(struct btrfs_root
*root
, int update_ref
)
5441 struct btrfs_path
*path
;
5442 struct btrfs_trans_handle
*trans
;
5443 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
5444 struct btrfs_root_item
*root_item
= &root
->root_item
;
5445 struct walk_control
*wc
;
5446 struct btrfs_key key
;
5451 path
= btrfs_alloc_path();
5454 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5457 trans
= btrfs_start_transaction(tree_root
, 1);
5459 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
5460 level
= btrfs_header_level(root
->node
);
5461 path
->nodes
[level
] = btrfs_lock_root_node(root
);
5462 btrfs_set_lock_blocking(path
->nodes
[level
]);
5463 path
->slots
[level
] = 0;
5464 path
->locks
[level
] = 1;
5465 memset(&wc
->update_progress
, 0,
5466 sizeof(wc
->update_progress
));
5468 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
5469 memcpy(&wc
->update_progress
, &key
,
5470 sizeof(wc
->update_progress
));
5472 level
= root_item
->drop_level
;
5474 path
->lowest_level
= level
;
5475 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5476 path
->lowest_level
= 0;
5484 * unlock our path, this is safe because only this
5485 * function is allowed to delete this snapshot
5487 btrfs_unlock_up_safe(path
, 0);
5489 level
= btrfs_header_level(root
->node
);
5491 btrfs_tree_lock(path
->nodes
[level
]);
5492 btrfs_set_lock_blocking(path
->nodes
[level
]);
5494 ret
= btrfs_lookup_extent_info(trans
, root
,
5495 path
->nodes
[level
]->start
,
5496 path
->nodes
[level
]->len
,
5500 BUG_ON(wc
->refs
[level
] == 0);
5502 if (level
== root_item
->drop_level
)
5505 btrfs_tree_unlock(path
->nodes
[level
]);
5506 WARN_ON(wc
->refs
[level
] != 1);
5512 wc
->shared_level
= -1;
5513 wc
->stage
= DROP_REFERENCE
;
5514 wc
->update_ref
= update_ref
;
5516 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
5519 ret
= walk_down_tree(trans
, root
, path
, wc
);
5525 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
5532 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
5536 if (wc
->stage
== DROP_REFERENCE
) {
5538 btrfs_node_key(path
->nodes
[level
],
5539 &root_item
->drop_progress
,
5540 path
->slots
[level
]);
5541 root_item
->drop_level
= level
;
5544 BUG_ON(wc
->level
== 0);
5545 if (trans
->transaction
->in_commit
||
5546 trans
->transaction
->delayed_refs
.flushing
) {
5547 ret
= btrfs_update_root(trans
, tree_root
,
5552 btrfs_end_transaction(trans
, tree_root
);
5553 trans
= btrfs_start_transaction(tree_root
, 1);
5555 unsigned long update
;
5556 update
= trans
->delayed_ref_updates
;
5557 trans
->delayed_ref_updates
= 0;
5559 btrfs_run_delayed_refs(trans
, tree_root
,
5563 btrfs_release_path(root
, path
);
5566 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
5569 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
5570 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
5574 ret
= btrfs_del_orphan_item(trans
, tree_root
,
5575 root
->root_key
.objectid
);
5580 if (root
->in_radix
) {
5581 btrfs_free_fs_root(tree_root
->fs_info
, root
);
5583 free_extent_buffer(root
->node
);
5584 free_extent_buffer(root
->commit_root
);
5588 btrfs_end_transaction(trans
, tree_root
);
5590 btrfs_free_path(path
);
5595 * drop subtree rooted at tree block 'node'.
5597 * NOTE: this function will unlock and release tree block 'node'
5599 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
5600 struct btrfs_root
*root
,
5601 struct extent_buffer
*node
,
5602 struct extent_buffer
*parent
)
5604 struct btrfs_path
*path
;
5605 struct walk_control
*wc
;
5611 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
5613 path
= btrfs_alloc_path();
5616 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5619 btrfs_assert_tree_locked(parent
);
5620 parent_level
= btrfs_header_level(parent
);
5621 extent_buffer_get(parent
);
5622 path
->nodes
[parent_level
] = parent
;
5623 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
5625 btrfs_assert_tree_locked(node
);
5626 level
= btrfs_header_level(node
);
5627 path
->nodes
[level
] = node
;
5628 path
->slots
[level
] = 0;
5629 path
->locks
[level
] = 1;
5631 wc
->refs
[parent_level
] = 1;
5632 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5634 wc
->shared_level
= -1;
5635 wc
->stage
= DROP_REFERENCE
;
5638 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
5641 wret
= walk_down_tree(trans
, root
, path
, wc
);
5647 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
5655 btrfs_free_path(path
);
5660 static unsigned long calc_ra(unsigned long start
, unsigned long last
,
5663 return min(last
, start
+ nr
- 1);
5666 static noinline
int relocate_inode_pages(struct inode
*inode
, u64 start
,
5671 unsigned long first_index
;
5672 unsigned long last_index
;
5675 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5676 struct file_ra_state
*ra
;
5677 struct btrfs_ordered_extent
*ordered
;
5678 unsigned int total_read
= 0;
5679 unsigned int total_dirty
= 0;
5682 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
5684 mutex_lock(&inode
->i_mutex
);
5685 first_index
= start
>> PAGE_CACHE_SHIFT
;
5686 last_index
= (start
+ len
- 1) >> PAGE_CACHE_SHIFT
;
5688 /* make sure the dirty trick played by the caller work */
5689 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
5690 first_index
, last_index
);
5694 file_ra_state_init(ra
, inode
->i_mapping
);
5696 for (i
= first_index
; i
<= last_index
; i
++) {
5697 if (total_read
% ra
->ra_pages
== 0) {
5698 btrfs_force_ra(inode
->i_mapping
, ra
, NULL
, i
,
5699 calc_ra(i
, last_index
, ra
->ra_pages
));
5703 if (((u64
)i
<< PAGE_CACHE_SHIFT
) > i_size_read(inode
))
5705 page
= grab_cache_page(inode
->i_mapping
, i
);
5710 if (!PageUptodate(page
)) {
5711 btrfs_readpage(NULL
, page
);
5713 if (!PageUptodate(page
)) {
5715 page_cache_release(page
);
5720 wait_on_page_writeback(page
);
5722 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
5723 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
5724 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5726 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
5728 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5730 page_cache_release(page
);
5731 btrfs_start_ordered_extent(inode
, ordered
, 1);
5732 btrfs_put_ordered_extent(ordered
);
5735 set_page_extent_mapped(page
);
5737 if (i
== first_index
)
5738 set_extent_bits(io_tree
, page_start
, page_end
,
5739 EXTENT_BOUNDARY
, GFP_NOFS
);
5740 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
5742 set_page_dirty(page
);
5745 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5747 page_cache_release(page
);
5752 mutex_unlock(&inode
->i_mutex
);
5753 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, total_dirty
);
5757 static noinline
int relocate_data_extent(struct inode
*reloc_inode
,
5758 struct btrfs_key
*extent_key
,
5761 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
5762 struct extent_map_tree
*em_tree
= &BTRFS_I(reloc_inode
)->extent_tree
;
5763 struct extent_map
*em
;
5764 u64 start
= extent_key
->objectid
- offset
;
5765 u64 end
= start
+ extent_key
->offset
- 1;
5767 em
= alloc_extent_map(GFP_NOFS
);
5768 BUG_ON(!em
|| IS_ERR(em
));
5771 em
->len
= extent_key
->offset
;
5772 em
->block_len
= extent_key
->offset
;
5773 em
->block_start
= extent_key
->objectid
;
5774 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5775 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5777 /* setup extent map to cheat btrfs_readpage */
5778 lock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
5781 write_lock(&em_tree
->lock
);
5782 ret
= add_extent_mapping(em_tree
, em
);
5783 write_unlock(&em_tree
->lock
);
5784 if (ret
!= -EEXIST
) {
5785 free_extent_map(em
);
5788 btrfs_drop_extent_cache(reloc_inode
, start
, end
, 0);
5790 unlock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
5792 return relocate_inode_pages(reloc_inode
, start
, extent_key
->offset
);
5795 struct btrfs_ref_path
{
5797 u64 nodes
[BTRFS_MAX_LEVEL
];
5799 u64 root_generation
;
5806 struct btrfs_key node_keys
[BTRFS_MAX_LEVEL
];
5807 u64 new_nodes
[BTRFS_MAX_LEVEL
];
5810 struct disk_extent
{
5821 static int is_cowonly_root(u64 root_objectid
)
5823 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
||
5824 root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
||
5825 root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
||
5826 root_objectid
== BTRFS_DEV_TREE_OBJECTID
||
5827 root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
5828 root_objectid
== BTRFS_CSUM_TREE_OBJECTID
)
5833 static noinline
int __next_ref_path(struct btrfs_trans_handle
*trans
,
5834 struct btrfs_root
*extent_root
,
5835 struct btrfs_ref_path
*ref_path
,
5838 struct extent_buffer
*leaf
;
5839 struct btrfs_path
*path
;
5840 struct btrfs_extent_ref
*ref
;
5841 struct btrfs_key key
;
5842 struct btrfs_key found_key
;
5848 path
= btrfs_alloc_path();
5853 ref_path
->lowest_level
= -1;
5854 ref_path
->current_level
= -1;
5855 ref_path
->shared_level
= -1;
5859 level
= ref_path
->current_level
- 1;
5860 while (level
>= -1) {
5862 if (level
< ref_path
->lowest_level
)
5866 bytenr
= ref_path
->nodes
[level
];
5868 bytenr
= ref_path
->extent_start
;
5869 BUG_ON(bytenr
== 0);
5871 parent
= ref_path
->nodes
[level
+ 1];
5872 ref_path
->nodes
[level
+ 1] = 0;
5873 ref_path
->current_level
= level
;
5874 BUG_ON(parent
== 0);
5876 key
.objectid
= bytenr
;
5877 key
.offset
= parent
+ 1;
5878 key
.type
= BTRFS_EXTENT_REF_KEY
;
5880 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
5885 leaf
= path
->nodes
[0];
5886 nritems
= btrfs_header_nritems(leaf
);
5887 if (path
->slots
[0] >= nritems
) {
5888 ret
= btrfs_next_leaf(extent_root
, path
);
5893 leaf
= path
->nodes
[0];
5896 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5897 if (found_key
.objectid
== bytenr
&&
5898 found_key
.type
== BTRFS_EXTENT_REF_KEY
) {
5899 if (level
< ref_path
->shared_level
)
5900 ref_path
->shared_level
= level
;
5905 btrfs_release_path(extent_root
, path
);
5908 /* reached lowest level */
5912 level
= ref_path
->current_level
;
5913 while (level
< BTRFS_MAX_LEVEL
- 1) {
5917 bytenr
= ref_path
->nodes
[level
];
5919 bytenr
= ref_path
->extent_start
;
5921 BUG_ON(bytenr
== 0);
5923 key
.objectid
= bytenr
;
5925 key
.type
= BTRFS_EXTENT_REF_KEY
;
5927 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
5931 leaf
= path
->nodes
[0];
5932 nritems
= btrfs_header_nritems(leaf
);
5933 if (path
->slots
[0] >= nritems
) {
5934 ret
= btrfs_next_leaf(extent_root
, path
);
5938 /* the extent was freed by someone */
5939 if (ref_path
->lowest_level
== level
)
5941 btrfs_release_path(extent_root
, path
);
5944 leaf
= path
->nodes
[0];
5947 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5948 if (found_key
.objectid
!= bytenr
||
5949 found_key
.type
!= BTRFS_EXTENT_REF_KEY
) {
5950 /* the extent was freed by someone */
5951 if (ref_path
->lowest_level
== level
) {
5955 btrfs_release_path(extent_root
, path
);
5959 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
5960 struct btrfs_extent_ref
);
5961 ref_objectid
= btrfs_ref_objectid(leaf
, ref
);
5962 if (ref_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
5964 level
= (int)ref_objectid
;
5965 BUG_ON(level
>= BTRFS_MAX_LEVEL
);
5966 ref_path
->lowest_level
= level
;
5967 ref_path
->current_level
= level
;
5968 ref_path
->nodes
[level
] = bytenr
;
5970 WARN_ON(ref_objectid
!= level
);
5973 WARN_ON(level
!= -1);
5977 if (ref_path
->lowest_level
== level
) {
5978 ref_path
->owner_objectid
= ref_objectid
;
5979 ref_path
->num_refs
= btrfs_ref_num_refs(leaf
, ref
);
5983 * the block is tree root or the block isn't in reference
5986 if (found_key
.objectid
== found_key
.offset
||
5987 is_cowonly_root(btrfs_ref_root(leaf
, ref
))) {
5988 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
5989 ref_path
->root_generation
=
5990 btrfs_ref_generation(leaf
, ref
);
5992 /* special reference from the tree log */
5993 ref_path
->nodes
[0] = found_key
.offset
;
5994 ref_path
->current_level
= 0;
6001 BUG_ON(ref_path
->nodes
[level
] != 0);
6002 ref_path
->nodes
[level
] = found_key
.offset
;
6003 ref_path
->current_level
= level
;
6006 * the reference was created in the running transaction,
6007 * no need to continue walking up.
6009 if (btrfs_ref_generation(leaf
, ref
) == trans
->transid
) {
6010 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
6011 ref_path
->root_generation
=
6012 btrfs_ref_generation(leaf
, ref
);
6017 btrfs_release_path(extent_root
, path
);
6020 /* reached max tree level, but no tree root found. */
6023 btrfs_free_path(path
);
6027 static int btrfs_first_ref_path(struct btrfs_trans_handle
*trans
,
6028 struct btrfs_root
*extent_root
,
6029 struct btrfs_ref_path
*ref_path
,
6032 memset(ref_path
, 0, sizeof(*ref_path
));
6033 ref_path
->extent_start
= extent_start
;
6035 return __next_ref_path(trans
, extent_root
, ref_path
, 1);
6038 static int btrfs_next_ref_path(struct btrfs_trans_handle
*trans
,
6039 struct btrfs_root
*extent_root
,
6040 struct btrfs_ref_path
*ref_path
)
6042 return __next_ref_path(trans
, extent_root
, ref_path
, 0);
6045 static noinline
int get_new_locations(struct inode
*reloc_inode
,
6046 struct btrfs_key
*extent_key
,
6047 u64 offset
, int no_fragment
,
6048 struct disk_extent
**extents
,
6051 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
6052 struct btrfs_path
*path
;
6053 struct btrfs_file_extent_item
*fi
;
6054 struct extent_buffer
*leaf
;
6055 struct disk_extent
*exts
= *extents
;
6056 struct btrfs_key found_key
;
6061 int max
= *nr_extents
;
6064 WARN_ON(!no_fragment
&& *extents
);
6067 exts
= kmalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6072 path
= btrfs_alloc_path();
6075 cur_pos
= extent_key
->objectid
- offset
;
6076 last_byte
= extent_key
->objectid
+ extent_key
->offset
;
6077 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, reloc_inode
->i_ino
,
6087 leaf
= path
->nodes
[0];
6088 nritems
= btrfs_header_nritems(leaf
);
6089 if (path
->slots
[0] >= nritems
) {
6090 ret
= btrfs_next_leaf(root
, path
);
6095 leaf
= path
->nodes
[0];
6098 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6099 if (found_key
.offset
!= cur_pos
||
6100 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
||
6101 found_key
.objectid
!= reloc_inode
->i_ino
)
6104 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6105 struct btrfs_file_extent_item
);
6106 if (btrfs_file_extent_type(leaf
, fi
) !=
6107 BTRFS_FILE_EXTENT_REG
||
6108 btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6112 struct disk_extent
*old
= exts
;
6114 exts
= kzalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6115 memcpy(exts
, old
, sizeof(*exts
) * nr
);
6116 if (old
!= *extents
)
6120 exts
[nr
].disk_bytenr
=
6121 btrfs_file_extent_disk_bytenr(leaf
, fi
);
6122 exts
[nr
].disk_num_bytes
=
6123 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6124 exts
[nr
].offset
= btrfs_file_extent_offset(leaf
, fi
);
6125 exts
[nr
].num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6126 exts
[nr
].ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6127 exts
[nr
].compression
= btrfs_file_extent_compression(leaf
, fi
);
6128 exts
[nr
].encryption
= btrfs_file_extent_encryption(leaf
, fi
);
6129 exts
[nr
].other_encoding
= btrfs_file_extent_other_encoding(leaf
,
6131 BUG_ON(exts
[nr
].offset
> 0);
6132 BUG_ON(exts
[nr
].compression
|| exts
[nr
].encryption
);
6133 BUG_ON(exts
[nr
].num_bytes
!= exts
[nr
].disk_num_bytes
);
6135 cur_pos
+= exts
[nr
].num_bytes
;
6138 if (cur_pos
+ offset
>= last_byte
)
6148 BUG_ON(cur_pos
+ offset
> last_byte
);
6149 if (cur_pos
+ offset
< last_byte
) {
6155 btrfs_free_path(path
);
6157 if (exts
!= *extents
)
6166 static noinline
int replace_one_extent(struct btrfs_trans_handle
*trans
,
6167 struct btrfs_root
*root
,
6168 struct btrfs_path
*path
,
6169 struct btrfs_key
*extent_key
,
6170 struct btrfs_key
*leaf_key
,
6171 struct btrfs_ref_path
*ref_path
,
6172 struct disk_extent
*new_extents
,
6175 struct extent_buffer
*leaf
;
6176 struct btrfs_file_extent_item
*fi
;
6177 struct inode
*inode
= NULL
;
6178 struct btrfs_key key
;
6183 u64 search_end
= (u64
)-1;
6186 int extent_locked
= 0;
6190 memcpy(&key
, leaf_key
, sizeof(key
));
6191 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
6192 if (key
.objectid
< ref_path
->owner_objectid
||
6193 (key
.objectid
== ref_path
->owner_objectid
&&
6194 key
.type
< BTRFS_EXTENT_DATA_KEY
)) {
6195 key
.objectid
= ref_path
->owner_objectid
;
6196 key
.type
= BTRFS_EXTENT_DATA_KEY
;
6202 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
6206 leaf
= path
->nodes
[0];
6207 nritems
= btrfs_header_nritems(leaf
);
6209 if (extent_locked
&& ret
> 0) {
6211 * the file extent item was modified by someone
6212 * before the extent got locked.
6214 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6215 lock_end
, GFP_NOFS
);
6219 if (path
->slots
[0] >= nritems
) {
6220 if (++nr_scaned
> 2)
6223 BUG_ON(extent_locked
);
6224 ret
= btrfs_next_leaf(root
, path
);
6229 leaf
= path
->nodes
[0];
6230 nritems
= btrfs_header_nritems(leaf
);
6233 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
6235 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
6236 if ((key
.objectid
> ref_path
->owner_objectid
) ||
6237 (key
.objectid
== ref_path
->owner_objectid
&&
6238 key
.type
> BTRFS_EXTENT_DATA_KEY
) ||
6239 key
.offset
>= search_end
)
6243 if (inode
&& key
.objectid
!= inode
->i_ino
) {
6244 BUG_ON(extent_locked
);
6245 btrfs_release_path(root
, path
);
6246 mutex_unlock(&inode
->i_mutex
);
6252 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6257 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6258 struct btrfs_file_extent_item
);
6259 extent_type
= btrfs_file_extent_type(leaf
, fi
);
6260 if ((extent_type
!= BTRFS_FILE_EXTENT_REG
&&
6261 extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
) ||
6262 (btrfs_file_extent_disk_bytenr(leaf
, fi
) !=
6263 extent_key
->objectid
)) {
6269 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6270 ext_offset
= btrfs_file_extent_offset(leaf
, fi
);
6272 if (search_end
== (u64
)-1) {
6273 search_end
= key
.offset
- ext_offset
+
6274 btrfs_file_extent_ram_bytes(leaf
, fi
);
6277 if (!extent_locked
) {
6278 lock_start
= key
.offset
;
6279 lock_end
= lock_start
+ num_bytes
- 1;
6281 if (lock_start
> key
.offset
||
6282 lock_end
+ 1 < key
.offset
+ num_bytes
) {
6283 unlock_extent(&BTRFS_I(inode
)->io_tree
,
6284 lock_start
, lock_end
, GFP_NOFS
);
6290 btrfs_release_path(root
, path
);
6292 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
6293 key
.objectid
, root
);
6294 if (inode
->i_state
& I_NEW
) {
6295 BTRFS_I(inode
)->root
= root
;
6296 BTRFS_I(inode
)->location
.objectid
=
6298 BTRFS_I(inode
)->location
.type
=
6299 BTRFS_INODE_ITEM_KEY
;
6300 BTRFS_I(inode
)->location
.offset
= 0;
6301 btrfs_read_locked_inode(inode
);
6302 unlock_new_inode(inode
);
6305 * some code call btrfs_commit_transaction while
6306 * holding the i_mutex, so we can't use mutex_lock
6309 if (is_bad_inode(inode
) ||
6310 !mutex_trylock(&inode
->i_mutex
)) {
6313 key
.offset
= (u64
)-1;
6318 if (!extent_locked
) {
6319 struct btrfs_ordered_extent
*ordered
;
6321 btrfs_release_path(root
, path
);
6323 lock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6324 lock_end
, GFP_NOFS
);
6325 ordered
= btrfs_lookup_first_ordered_extent(inode
,
6328 ordered
->file_offset
<= lock_end
&&
6329 ordered
->file_offset
+ ordered
->len
> lock_start
) {
6330 unlock_extent(&BTRFS_I(inode
)->io_tree
,
6331 lock_start
, lock_end
, GFP_NOFS
);
6332 btrfs_start_ordered_extent(inode
, ordered
, 1);
6333 btrfs_put_ordered_extent(ordered
);
6334 key
.offset
+= num_bytes
;
6338 btrfs_put_ordered_extent(ordered
);
6344 if (nr_extents
== 1) {
6345 /* update extent pointer in place */
6346 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6347 new_extents
[0].disk_bytenr
);
6348 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6349 new_extents
[0].disk_num_bytes
);
6350 btrfs_mark_buffer_dirty(leaf
);
6352 btrfs_drop_extent_cache(inode
, key
.offset
,
6353 key
.offset
+ num_bytes
- 1, 0);
6355 ret
= btrfs_inc_extent_ref(trans
, root
,
6356 new_extents
[0].disk_bytenr
,
6357 new_extents
[0].disk_num_bytes
,
6359 root
->root_key
.objectid
,
6364 ret
= btrfs_free_extent(trans
, root
,
6365 extent_key
->objectid
,
6368 btrfs_header_owner(leaf
),
6369 btrfs_header_generation(leaf
),
6373 btrfs_release_path(root
, path
);
6374 key
.offset
+= num_bytes
;
6382 * drop old extent pointer at first, then insert the
6383 * new pointers one bye one
6385 btrfs_release_path(root
, path
);
6386 ret
= btrfs_drop_extents(trans
, root
, inode
, key
.offset
,
6387 key
.offset
+ num_bytes
,
6388 key
.offset
, &alloc_hint
);
6391 for (i
= 0; i
< nr_extents
; i
++) {
6392 if (ext_offset
>= new_extents
[i
].num_bytes
) {
6393 ext_offset
-= new_extents
[i
].num_bytes
;
6396 extent_len
= min(new_extents
[i
].num_bytes
-
6397 ext_offset
, num_bytes
);
6399 ret
= btrfs_insert_empty_item(trans
, root
,
6404 leaf
= path
->nodes
[0];
6405 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6406 struct btrfs_file_extent_item
);
6407 btrfs_set_file_extent_generation(leaf
, fi
,
6409 btrfs_set_file_extent_type(leaf
, fi
,
6410 BTRFS_FILE_EXTENT_REG
);
6411 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6412 new_extents
[i
].disk_bytenr
);
6413 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6414 new_extents
[i
].disk_num_bytes
);
6415 btrfs_set_file_extent_ram_bytes(leaf
, fi
,
6416 new_extents
[i
].ram_bytes
);
6418 btrfs_set_file_extent_compression(leaf
, fi
,
6419 new_extents
[i
].compression
);
6420 btrfs_set_file_extent_encryption(leaf
, fi
,
6421 new_extents
[i
].encryption
);
6422 btrfs_set_file_extent_other_encoding(leaf
, fi
,
6423 new_extents
[i
].other_encoding
);
6425 btrfs_set_file_extent_num_bytes(leaf
, fi
,
6427 ext_offset
+= new_extents
[i
].offset
;
6428 btrfs_set_file_extent_offset(leaf
, fi
,
6430 btrfs_mark_buffer_dirty(leaf
);
6432 btrfs_drop_extent_cache(inode
, key
.offset
,
6433 key
.offset
+ extent_len
- 1, 0);
6435 ret
= btrfs_inc_extent_ref(trans
, root
,
6436 new_extents
[i
].disk_bytenr
,
6437 new_extents
[i
].disk_num_bytes
,
6439 root
->root_key
.objectid
,
6440 trans
->transid
, key
.objectid
);
6442 btrfs_release_path(root
, path
);
6444 inode_add_bytes(inode
, extent_len
);
6447 num_bytes
-= extent_len
;
6448 key
.offset
+= extent_len
;
6453 BUG_ON(i
>= nr_extents
);
6457 if (extent_locked
) {
6458 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6459 lock_end
, GFP_NOFS
);
6463 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
&&
6464 key
.offset
>= search_end
)
6471 btrfs_release_path(root
, path
);
6473 mutex_unlock(&inode
->i_mutex
);
6474 if (extent_locked
) {
6475 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6476 lock_end
, GFP_NOFS
);
6483 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle
*trans
,
6484 struct btrfs_root
*root
,
6485 struct extent_buffer
*buf
, u64 orig_start
)
6490 BUG_ON(btrfs_header_generation(buf
) != trans
->transid
);
6491 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6493 level
= btrfs_header_level(buf
);
6495 struct btrfs_leaf_ref
*ref
;
6496 struct btrfs_leaf_ref
*orig_ref
;
6498 orig_ref
= btrfs_lookup_leaf_ref(root
, orig_start
);
6502 ref
= btrfs_alloc_leaf_ref(root
, orig_ref
->nritems
);
6504 btrfs_free_leaf_ref(root
, orig_ref
);
6508 ref
->nritems
= orig_ref
->nritems
;
6509 memcpy(ref
->extents
, orig_ref
->extents
,
6510 sizeof(ref
->extents
[0]) * ref
->nritems
);
6512 btrfs_free_leaf_ref(root
, orig_ref
);
6514 ref
->root_gen
= trans
->transid
;
6515 ref
->bytenr
= buf
->start
;
6516 ref
->owner
= btrfs_header_owner(buf
);
6517 ref
->generation
= btrfs_header_generation(buf
);
6519 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
6521 btrfs_free_leaf_ref(root
, ref
);
6526 static noinline
int invalidate_extent_cache(struct btrfs_root
*root
,
6527 struct extent_buffer
*leaf
,
6528 struct btrfs_block_group_cache
*group
,
6529 struct btrfs_root
*target_root
)
6531 struct btrfs_key key
;
6532 struct inode
*inode
= NULL
;
6533 struct btrfs_file_extent_item
*fi
;
6535 u64 skip_objectid
= 0;
6539 nritems
= btrfs_header_nritems(leaf
);
6540 for (i
= 0; i
< nritems
; i
++) {
6541 btrfs_item_key_to_cpu(leaf
, &key
, i
);
6542 if (key
.objectid
== skip_objectid
||
6543 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6545 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
6546 if (btrfs_file_extent_type(leaf
, fi
) ==
6547 BTRFS_FILE_EXTENT_INLINE
)
6549 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6551 if (!inode
|| inode
->i_ino
!= key
.objectid
) {
6553 inode
= btrfs_ilookup(target_root
->fs_info
->sb
,
6554 key
.objectid
, target_root
, 1);
6557 skip_objectid
= key
.objectid
;
6560 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6562 lock_extent(&BTRFS_I(inode
)->io_tree
, key
.offset
,
6563 key
.offset
+ num_bytes
- 1, GFP_NOFS
);
6564 btrfs_drop_extent_cache(inode
, key
.offset
,
6565 key
.offset
+ num_bytes
- 1, 1);
6566 unlock_extent(&BTRFS_I(inode
)->io_tree
, key
.offset
,
6567 key
.offset
+ num_bytes
- 1, GFP_NOFS
);
6574 static noinline
int replace_extents_in_leaf(struct btrfs_trans_handle
*trans
,
6575 struct btrfs_root
*root
,
6576 struct extent_buffer
*leaf
,
6577 struct btrfs_block_group_cache
*group
,
6578 struct inode
*reloc_inode
)
6580 struct btrfs_key key
;
6581 struct btrfs_key extent_key
;
6582 struct btrfs_file_extent_item
*fi
;
6583 struct btrfs_leaf_ref
*ref
;
6584 struct disk_extent
*new_extent
;
6593 new_extent
= kmalloc(sizeof(*new_extent
), GFP_NOFS
);
6594 BUG_ON(!new_extent
);
6596 ref
= btrfs_lookup_leaf_ref(root
, leaf
->start
);
6600 nritems
= btrfs_header_nritems(leaf
);
6601 for (i
= 0; i
< nritems
; i
++) {
6602 btrfs_item_key_to_cpu(leaf
, &key
, i
);
6603 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
6605 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
6606 if (btrfs_file_extent_type(leaf
, fi
) ==
6607 BTRFS_FILE_EXTENT_INLINE
)
6609 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6610 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6615 if (bytenr
>= group
->key
.objectid
+ group
->key
.offset
||
6616 bytenr
+ num_bytes
<= group
->key
.objectid
)
6619 extent_key
.objectid
= bytenr
;
6620 extent_key
.offset
= num_bytes
;
6621 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6623 ret
= get_new_locations(reloc_inode
, &extent_key
,
6624 group
->key
.objectid
, 1,
6625 &new_extent
, &nr_extent
);
6630 BUG_ON(ref
->extents
[ext_index
].bytenr
!= bytenr
);
6631 BUG_ON(ref
->extents
[ext_index
].num_bytes
!= num_bytes
);
6632 ref
->extents
[ext_index
].bytenr
= new_extent
->disk_bytenr
;
6633 ref
->extents
[ext_index
].num_bytes
= new_extent
->disk_num_bytes
;
6635 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6636 new_extent
->disk_bytenr
);
6637 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6638 new_extent
->disk_num_bytes
);
6639 btrfs_mark_buffer_dirty(leaf
);
6641 ret
= btrfs_inc_extent_ref(trans
, root
,
6642 new_extent
->disk_bytenr
,
6643 new_extent
->disk_num_bytes
,
6645 root
->root_key
.objectid
,
6646 trans
->transid
, key
.objectid
);
6649 ret
= btrfs_free_extent(trans
, root
,
6650 bytenr
, num_bytes
, leaf
->start
,
6651 btrfs_header_owner(leaf
),
6652 btrfs_header_generation(leaf
),
6658 BUG_ON(ext_index
+ 1 != ref
->nritems
);
6659 btrfs_free_leaf_ref(root
, ref
);
6663 int btrfs_free_reloc_root(struct btrfs_trans_handle
*trans
,
6664 struct btrfs_root
*root
)
6666 struct btrfs_root
*reloc_root
;
6669 if (root
->reloc_root
) {
6670 reloc_root
= root
->reloc_root
;
6671 root
->reloc_root
= NULL
;
6672 list_add(&reloc_root
->dead_list
,
6673 &root
->fs_info
->dead_reloc_roots
);
6675 btrfs_set_root_bytenr(&reloc_root
->root_item
,
6676 reloc_root
->node
->start
);
6677 btrfs_set_root_level(&root
->root_item
,
6678 btrfs_header_level(reloc_root
->node
));
6679 memset(&reloc_root
->root_item
.drop_progress
, 0,
6680 sizeof(struct btrfs_disk_key
));
6681 reloc_root
->root_item
.drop_level
= 0;
6683 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
6684 &reloc_root
->root_key
,
6685 &reloc_root
->root_item
);
6691 int btrfs_drop_dead_reloc_roots(struct btrfs_root
*root
)
6693 struct btrfs_trans_handle
*trans
;
6694 struct btrfs_root
*reloc_root
;
6695 struct btrfs_root
*prev_root
= NULL
;
6696 struct list_head dead_roots
;
6700 INIT_LIST_HEAD(&dead_roots
);
6701 list_splice_init(&root
->fs_info
->dead_reloc_roots
, &dead_roots
);
6703 while (!list_empty(&dead_roots
)) {
6704 reloc_root
= list_entry(dead_roots
.prev
,
6705 struct btrfs_root
, dead_list
);
6706 list_del_init(&reloc_root
->dead_list
);
6708 BUG_ON(reloc_root
->commit_root
!= NULL
);
6710 trans
= btrfs_join_transaction(root
, 1);
6713 mutex_lock(&root
->fs_info
->drop_mutex
);
6714 ret
= btrfs_drop_snapshot(trans
, reloc_root
);
6717 mutex_unlock(&root
->fs_info
->drop_mutex
);
6719 nr
= trans
->blocks_used
;
6720 ret
= btrfs_end_transaction(trans
, root
);
6722 btrfs_btree_balance_dirty(root
, nr
);
6725 free_extent_buffer(reloc_root
->node
);
6727 ret
= btrfs_del_root(trans
, root
->fs_info
->tree_root
,
6728 &reloc_root
->root_key
);
6730 mutex_unlock(&root
->fs_info
->drop_mutex
);
6732 nr
= trans
->blocks_used
;
6733 ret
= btrfs_end_transaction(trans
, root
);
6735 btrfs_btree_balance_dirty(root
, nr
);
6738 prev_root
= reloc_root
;
6741 btrfs_remove_leaf_refs(prev_root
, (u64
)-1, 0);
6747 int btrfs_add_dead_reloc_root(struct btrfs_root
*root
)
6749 list_add(&root
->dead_list
, &root
->fs_info
->dead_reloc_roots
);
6753 int btrfs_cleanup_reloc_trees(struct btrfs_root
*root
)
6755 struct btrfs_root
*reloc_root
;
6756 struct btrfs_trans_handle
*trans
;
6757 struct btrfs_key location
;
6761 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
6762 ret
= btrfs_find_dead_roots(root
, BTRFS_TREE_RELOC_OBJECTID
, NULL
);
6764 found
= !list_empty(&root
->fs_info
->dead_reloc_roots
);
6765 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
6768 trans
= btrfs_start_transaction(root
, 1);
6770 ret
= btrfs_commit_transaction(trans
, root
);
6774 location
.objectid
= BTRFS_DATA_RELOC_TREE_OBJECTID
;
6775 location
.offset
= (u64
)-1;
6776 location
.type
= BTRFS_ROOT_ITEM_KEY
;
6778 reloc_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
6779 BUG_ON(!reloc_root
);
6780 btrfs_orphan_cleanup(reloc_root
);
6784 static noinline
int init_reloc_tree(struct btrfs_trans_handle
*trans
,
6785 struct btrfs_root
*root
)
6787 struct btrfs_root
*reloc_root
;
6788 struct extent_buffer
*eb
;
6789 struct btrfs_root_item
*root_item
;
6790 struct btrfs_key root_key
;
6793 BUG_ON(!root
->ref_cows
);
6794 if (root
->reloc_root
)
6797 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
6800 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
,
6801 &eb
, BTRFS_TREE_RELOC_OBJECTID
);
6804 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
6805 root_key
.offset
= root
->root_key
.objectid
;
6806 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6808 memcpy(root_item
, &root
->root_item
, sizeof(root_item
));
6809 btrfs_set_root_refs(root_item
, 0);
6810 btrfs_set_root_bytenr(root_item
, eb
->start
);
6811 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
6812 btrfs_set_root_generation(root_item
, trans
->transid
);
6814 btrfs_tree_unlock(eb
);
6815 free_extent_buffer(eb
);
6817 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
,
6818 &root_key
, root_item
);
6822 reloc_root
= btrfs_read_fs_root_no_radix(root
->fs_info
->tree_root
,
6824 BUG_ON(!reloc_root
);
6825 reloc_root
->last_trans
= trans
->transid
;
6826 reloc_root
->commit_root
= NULL
;
6827 reloc_root
->ref_tree
= &root
->fs_info
->reloc_ref_tree
;
6829 root
->reloc_root
= reloc_root
;
6834 * Core function of space balance.
6836 * The idea is using reloc trees to relocate tree blocks in reference
6837 * counted roots. There is one reloc tree for each subvol, and all
6838 * reloc trees share same root key objectid. Reloc trees are snapshots
6839 * of the latest committed roots of subvols (root->commit_root).
6841 * To relocate a tree block referenced by a subvol, there are two steps.
6842 * COW the block through subvol's reloc tree, then update block pointer
6843 * in the subvol to point to the new block. Since all reloc trees share
6844 * same root key objectid, doing special handing for tree blocks owned
6845 * by them is easy. Once a tree block has been COWed in one reloc tree,
6846 * we can use the resulting new block directly when the same block is
6847 * required to COW again through other reloc trees. By this way, relocated
6848 * tree blocks are shared between reloc trees, so they are also shared
6851 static noinline
int relocate_one_path(struct btrfs_trans_handle
*trans
,
6852 struct btrfs_root
*root
,
6853 struct btrfs_path
*path
,
6854 struct btrfs_key
*first_key
,
6855 struct btrfs_ref_path
*ref_path
,
6856 struct btrfs_block_group_cache
*group
,
6857 struct inode
*reloc_inode
)
6859 struct btrfs_root
*reloc_root
;
6860 struct extent_buffer
*eb
= NULL
;
6861 struct btrfs_key
*keys
;
6865 int lowest_level
= 0;
6868 if (ref_path
->owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
)
6869 lowest_level
= ref_path
->owner_objectid
;
6871 if (!root
->ref_cows
) {
6872 path
->lowest_level
= lowest_level
;
6873 ret
= btrfs_search_slot(trans
, root
, first_key
, path
, 0, 1);
6875 path
->lowest_level
= 0;
6876 btrfs_release_path(root
, path
);
6880 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
6881 ret
= init_reloc_tree(trans
, root
);
6883 reloc_root
= root
->reloc_root
;
6885 shared_level
= ref_path
->shared_level
;
6886 ref_path
->shared_level
= BTRFS_MAX_LEVEL
- 1;
6888 keys
= ref_path
->node_keys
;
6889 nodes
= ref_path
->new_nodes
;
6890 memset(&keys
[shared_level
+ 1], 0,
6891 sizeof(*keys
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
6892 memset(&nodes
[shared_level
+ 1], 0,
6893 sizeof(*nodes
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
6895 if (nodes
[lowest_level
] == 0) {
6896 path
->lowest_level
= lowest_level
;
6897 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
6900 for (level
= lowest_level
; level
< BTRFS_MAX_LEVEL
; level
++) {
6901 eb
= path
->nodes
[level
];
6902 if (!eb
|| eb
== reloc_root
->node
)
6904 nodes
[level
] = eb
->start
;
6906 btrfs_item_key_to_cpu(eb
, &keys
[level
], 0);
6908 btrfs_node_key_to_cpu(eb
, &keys
[level
], 0);
6911 ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6912 eb
= path
->nodes
[0];
6913 ret
= replace_extents_in_leaf(trans
, reloc_root
, eb
,
6914 group
, reloc_inode
);
6917 btrfs_release_path(reloc_root
, path
);
6919 ret
= btrfs_merge_path(trans
, reloc_root
, keys
, nodes
,
6925 * replace tree blocks in the fs tree with tree blocks in
6928 ret
= btrfs_merge_path(trans
, root
, keys
, nodes
, lowest_level
);
6931 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6932 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
6935 extent_buffer_get(path
->nodes
[0]);
6936 eb
= path
->nodes
[0];
6937 btrfs_release_path(reloc_root
, path
);
6938 ret
= invalidate_extent_cache(reloc_root
, eb
, group
, root
);
6940 free_extent_buffer(eb
);
6943 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
6944 path
->lowest_level
= 0;
6948 static noinline
int relocate_tree_block(struct btrfs_trans_handle
*trans
,
6949 struct btrfs_root
*root
,
6950 struct btrfs_path
*path
,
6951 struct btrfs_key
*first_key
,
6952 struct btrfs_ref_path
*ref_path
)
6956 ret
= relocate_one_path(trans
, root
, path
, first_key
,
6957 ref_path
, NULL
, NULL
);
6963 static noinline
int del_extent_zero(struct btrfs_trans_handle
*trans
,
6964 struct btrfs_root
*extent_root
,
6965 struct btrfs_path
*path
,
6966 struct btrfs_key
*extent_key
)
6970 ret
= btrfs_search_slot(trans
, extent_root
, extent_key
, path
, -1, 1);
6973 ret
= btrfs_del_item(trans
, extent_root
, path
);
6975 btrfs_release_path(extent_root
, path
);
6979 static noinline
struct btrfs_root
*read_ref_root(struct btrfs_fs_info
*fs_info
,
6980 struct btrfs_ref_path
*ref_path
)
6982 struct btrfs_key root_key
;
6984 root_key
.objectid
= ref_path
->root_objectid
;
6985 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6986 if (is_cowonly_root(ref_path
->root_objectid
))
6987 root_key
.offset
= 0;
6989 root_key
.offset
= (u64
)-1;
6991 return btrfs_read_fs_root_no_name(fs_info
, &root_key
);
6994 static noinline
int relocate_one_extent(struct btrfs_root
*extent_root
,
6995 struct btrfs_path
*path
,
6996 struct btrfs_key
*extent_key
,
6997 struct btrfs_block_group_cache
*group
,
6998 struct inode
*reloc_inode
, int pass
)
7000 struct btrfs_trans_handle
*trans
;
7001 struct btrfs_root
*found_root
;
7002 struct btrfs_ref_path
*ref_path
= NULL
;
7003 struct disk_extent
*new_extents
= NULL
;
7008 struct btrfs_key first_key
;
7012 trans
= btrfs_start_transaction(extent_root
, 1);
7015 if (extent_key
->objectid
== 0) {
7016 ret
= del_extent_zero(trans
, extent_root
, path
, extent_key
);
7020 ref_path
= kmalloc(sizeof(*ref_path
), GFP_NOFS
);
7026 for (loops
= 0; ; loops
++) {
7028 ret
= btrfs_first_ref_path(trans
, extent_root
, ref_path
,
7029 extent_key
->objectid
);
7031 ret
= btrfs_next_ref_path(trans
, extent_root
, ref_path
);
7038 if (ref_path
->root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
7039 ref_path
->root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
7042 found_root
= read_ref_root(extent_root
->fs_info
, ref_path
);
7043 BUG_ON(!found_root
);
7045 * for reference counted tree, only process reference paths
7046 * rooted at the latest committed root.
7048 if (found_root
->ref_cows
&&
7049 ref_path
->root_generation
!= found_root
->root_key
.offset
)
7052 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7055 * copy data extents to new locations
7057 u64 group_start
= group
->key
.objectid
;
7058 ret
= relocate_data_extent(reloc_inode
,
7067 level
= ref_path
->owner_objectid
;
7070 if (prev_block
!= ref_path
->nodes
[level
]) {
7071 struct extent_buffer
*eb
;
7072 u64 block_start
= ref_path
->nodes
[level
];
7073 u64 block_size
= btrfs_level_size(found_root
, level
);
7075 eb
= read_tree_block(found_root
, block_start
,
7077 btrfs_tree_lock(eb
);
7078 BUG_ON(level
!= btrfs_header_level(eb
));
7081 btrfs_item_key_to_cpu(eb
, &first_key
, 0);
7083 btrfs_node_key_to_cpu(eb
, &first_key
, 0);
7085 btrfs_tree_unlock(eb
);
7086 free_extent_buffer(eb
);
7087 prev_block
= block_start
;
7090 mutex_lock(&extent_root
->fs_info
->trans_mutex
);
7091 btrfs_record_root_in_trans(found_root
);
7092 mutex_unlock(&extent_root
->fs_info
->trans_mutex
);
7093 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7095 * try to update data extent references while
7096 * keeping metadata shared between snapshots.
7099 ret
= relocate_one_path(trans
, found_root
,
7100 path
, &first_key
, ref_path
,
7101 group
, reloc_inode
);
7107 * use fallback method to process the remaining
7111 u64 group_start
= group
->key
.objectid
;
7112 new_extents
= kmalloc(sizeof(*new_extents
),
7115 ret
= get_new_locations(reloc_inode
,
7123 ret
= replace_one_extent(trans
, found_root
,
7125 &first_key
, ref_path
,
7126 new_extents
, nr_extents
);
7128 ret
= relocate_tree_block(trans
, found_root
, path
,
7129 &first_key
, ref_path
);
7136 btrfs_end_transaction(trans
, extent_root
);
7143 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
7146 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
7147 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
7149 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
7150 if (num_devices
== 1) {
7151 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7152 stripped
= flags
& ~stripped
;
7154 /* turn raid0 into single device chunks */
7155 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7158 /* turn mirroring into duplication */
7159 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7160 BTRFS_BLOCK_GROUP_RAID10
))
7161 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
7164 /* they already had raid on here, just return */
7165 if (flags
& stripped
)
7168 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7169 stripped
= flags
& ~stripped
;
7171 /* switch duplicated blocks with raid1 */
7172 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7173 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
7175 /* turn single device chunks into raid0 */
7176 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
7181 static int __alloc_chunk_for_shrink(struct btrfs_root
*root
,
7182 struct btrfs_block_group_cache
*shrink_block_group
,
7185 struct btrfs_trans_handle
*trans
;
7186 u64 new_alloc_flags
;
7189 spin_lock(&shrink_block_group
->lock
);
7190 if (btrfs_block_group_used(&shrink_block_group
->item
) +
7191 shrink_block_group
->reserved
> 0) {
7192 spin_unlock(&shrink_block_group
->lock
);
7194 trans
= btrfs_start_transaction(root
, 1);
7195 spin_lock(&shrink_block_group
->lock
);
7197 new_alloc_flags
= update_block_group_flags(root
,
7198 shrink_block_group
->flags
);
7199 if (new_alloc_flags
!= shrink_block_group
->flags
) {
7201 btrfs_block_group_used(&shrink_block_group
->item
);
7203 calc
= shrink_block_group
->key
.offset
;
7205 spin_unlock(&shrink_block_group
->lock
);
7207 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
7208 calc
+ 2 * 1024 * 1024, new_alloc_flags
, force
);
7210 btrfs_end_transaction(trans
, root
);
7212 spin_unlock(&shrink_block_group
->lock
);
7217 int btrfs_prepare_block_group_relocation(struct btrfs_root
*root
,
7218 struct btrfs_block_group_cache
*group
)
7221 __alloc_chunk_for_shrink(root
, group
, 1);
7222 set_block_group_readonly(group
);
7227 * checks to see if its even possible to relocate this block group.
7229 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7230 * ok to go ahead and try.
7232 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
7234 struct btrfs_block_group_cache
*block_group
;
7235 struct btrfs_space_info
*space_info
;
7236 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7237 struct btrfs_device
*device
;
7241 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
7243 /* odd, couldn't find the block group, leave it alone */
7247 /* no bytes used, we're good */
7248 if (!btrfs_block_group_used(&block_group
->item
))
7251 space_info
= block_group
->space_info
;
7252 spin_lock(&space_info
->lock
);
7254 full
= space_info
->full
;
7257 * if this is the last block group we have in this space, we can't
7258 * relocate it unless we're able to allocate a new chunk below.
7260 * Otherwise, we need to make sure we have room in the space to handle
7261 * all of the extents from this block group. If we can, we're good
7263 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
7264 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
7265 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
7266 btrfs_block_group_used(&block_group
->item
) <
7267 space_info
->total_bytes
)) {
7268 spin_unlock(&space_info
->lock
);
7271 spin_unlock(&space_info
->lock
);
7274 * ok we don't have enough space, but maybe we have free space on our
7275 * devices to allocate new chunks for relocation, so loop through our
7276 * alloc devices and guess if we have enough space. However, if we
7277 * were marked as full, then we know there aren't enough chunks, and we
7284 mutex_lock(&root
->fs_info
->chunk_mutex
);
7285 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
7286 u64 min_free
= btrfs_block_group_used(&block_group
->item
);
7287 u64 dev_offset
, max_avail
;
7290 * check to make sure we can actually find a chunk with enough
7291 * space to fit our block group in.
7293 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
7294 ret
= find_free_dev_extent(NULL
, device
, min_free
,
7295 &dev_offset
, &max_avail
);
7301 mutex_unlock(&root
->fs_info
->chunk_mutex
);
7303 btrfs_put_block_group(block_group
);
7307 static int find_first_block_group(struct btrfs_root
*root
,
7308 struct btrfs_path
*path
, struct btrfs_key
*key
)
7311 struct btrfs_key found_key
;
7312 struct extent_buffer
*leaf
;
7315 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
7320 slot
= path
->slots
[0];
7321 leaf
= path
->nodes
[0];
7322 if (slot
>= btrfs_header_nritems(leaf
)) {
7323 ret
= btrfs_next_leaf(root
, path
);
7330 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7332 if (found_key
.objectid
>= key
->objectid
&&
7333 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
7344 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
7346 struct btrfs_block_group_cache
*block_group
;
7347 struct btrfs_space_info
*space_info
;
7348 struct btrfs_caching_control
*caching_ctl
;
7351 down_write(&info
->extent_commit_sem
);
7352 while (!list_empty(&info
->caching_block_groups
)) {
7353 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
7354 struct btrfs_caching_control
, list
);
7355 list_del(&caching_ctl
->list
);
7356 put_caching_control(caching_ctl
);
7358 up_write(&info
->extent_commit_sem
);
7360 spin_lock(&info
->block_group_cache_lock
);
7361 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
7362 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
7364 rb_erase(&block_group
->cache_node
,
7365 &info
->block_group_cache_tree
);
7366 spin_unlock(&info
->block_group_cache_lock
);
7368 down_write(&block_group
->space_info
->groups_sem
);
7369 list_del(&block_group
->list
);
7370 up_write(&block_group
->space_info
->groups_sem
);
7372 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7373 wait_block_group_cache_done(block_group
);
7375 btrfs_remove_free_space_cache(block_group
);
7377 WARN_ON(atomic_read(&block_group
->count
) != 1);
7380 spin_lock(&info
->block_group_cache_lock
);
7382 spin_unlock(&info
->block_group_cache_lock
);
7384 /* now that all the block groups are freed, go through and
7385 * free all the space_info structs. This is only called during
7386 * the final stages of unmount, and so we know nobody is
7387 * using them. We call synchronize_rcu() once before we start,
7388 * just to be on the safe side.
7392 while(!list_empty(&info
->space_info
)) {
7393 space_info
= list_entry(info
->space_info
.next
,
7394 struct btrfs_space_info
,
7397 list_del(&space_info
->list
);
7403 int btrfs_read_block_groups(struct btrfs_root
*root
)
7405 struct btrfs_path
*path
;
7407 struct btrfs_block_group_cache
*cache
;
7408 struct btrfs_fs_info
*info
= root
->fs_info
;
7409 struct btrfs_space_info
*space_info
;
7410 struct btrfs_key key
;
7411 struct btrfs_key found_key
;
7412 struct extent_buffer
*leaf
;
7414 root
= info
->extent_root
;
7417 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7418 path
= btrfs_alloc_path();
7423 ret
= find_first_block_group(root
, path
, &key
);
7431 leaf
= path
->nodes
[0];
7432 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7433 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7439 atomic_set(&cache
->count
, 1);
7440 spin_lock_init(&cache
->lock
);
7441 spin_lock_init(&cache
->tree_lock
);
7442 cache
->fs_info
= info
;
7443 INIT_LIST_HEAD(&cache
->list
);
7444 INIT_LIST_HEAD(&cache
->cluster_list
);
7447 * we only want to have 32k of ram per block group for keeping
7448 * track of free space, and if we pass 1/2 of that we want to
7449 * start converting things over to using bitmaps
7451 cache
->extents_thresh
= ((1024 * 32) / 2) /
7452 sizeof(struct btrfs_free_space
);
7454 read_extent_buffer(leaf
, &cache
->item
,
7455 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7456 sizeof(cache
->item
));
7457 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7459 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7460 btrfs_release_path(root
, path
);
7461 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7462 cache
->sectorsize
= root
->sectorsize
;
7465 * check for two cases, either we are full, and therefore
7466 * don't need to bother with the caching work since we won't
7467 * find any space, or we are empty, and we can just add all
7468 * the space in and be done with it. This saves us _alot_ of
7469 * time, particularly in the full case.
7471 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7472 exclude_super_stripes(root
, cache
);
7473 cache
->last_byte_to_unpin
= (u64
)-1;
7474 cache
->cached
= BTRFS_CACHE_FINISHED
;
7475 free_excluded_extents(root
, cache
);
7476 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7477 exclude_super_stripes(root
, cache
);
7478 cache
->last_byte_to_unpin
= (u64
)-1;
7479 cache
->cached
= BTRFS_CACHE_FINISHED
;
7480 add_new_free_space(cache
, root
->fs_info
,
7482 found_key
.objectid
+
7484 free_excluded_extents(root
, cache
);
7487 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7488 btrfs_block_group_used(&cache
->item
),
7491 cache
->space_info
= space_info
;
7492 spin_lock(&cache
->space_info
->lock
);
7493 cache
->space_info
->bytes_super
+= cache
->bytes_super
;
7494 spin_unlock(&cache
->space_info
->lock
);
7496 down_write(&space_info
->groups_sem
);
7497 list_add_tail(&cache
->list
, &space_info
->block_groups
);
7498 up_write(&space_info
->groups_sem
);
7500 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7503 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7504 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7505 set_block_group_readonly(cache
);
7509 btrfs_free_path(path
);
7513 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7514 struct btrfs_root
*root
, u64 bytes_used
,
7515 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7519 struct btrfs_root
*extent_root
;
7520 struct btrfs_block_group_cache
*cache
;
7522 extent_root
= root
->fs_info
->extent_root
;
7524 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7526 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7530 cache
->key
.objectid
= chunk_offset
;
7531 cache
->key
.offset
= size
;
7532 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7533 cache
->sectorsize
= root
->sectorsize
;
7536 * we only want to have 32k of ram per block group for keeping track
7537 * of free space, and if we pass 1/2 of that we want to start
7538 * converting things over to using bitmaps
7540 cache
->extents_thresh
= ((1024 * 32) / 2) /
7541 sizeof(struct btrfs_free_space
);
7542 atomic_set(&cache
->count
, 1);
7543 spin_lock_init(&cache
->lock
);
7544 spin_lock_init(&cache
->tree_lock
);
7545 INIT_LIST_HEAD(&cache
->list
);
7546 INIT_LIST_HEAD(&cache
->cluster_list
);
7548 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7549 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7550 cache
->flags
= type
;
7551 btrfs_set_block_group_flags(&cache
->item
, type
);
7553 cache
->last_byte_to_unpin
= (u64
)-1;
7554 cache
->cached
= BTRFS_CACHE_FINISHED
;
7555 exclude_super_stripes(root
, cache
);
7557 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7558 chunk_offset
+ size
);
7560 free_excluded_extents(root
, cache
);
7562 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7563 &cache
->space_info
);
7566 spin_lock(&cache
->space_info
->lock
);
7567 cache
->space_info
->bytes_super
+= cache
->bytes_super
;
7568 spin_unlock(&cache
->space_info
->lock
);
7570 down_write(&cache
->space_info
->groups_sem
);
7571 list_add_tail(&cache
->list
, &cache
->space_info
->block_groups
);
7572 up_write(&cache
->space_info
->groups_sem
);
7574 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7577 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
7578 sizeof(cache
->item
));
7581 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7586 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7587 struct btrfs_root
*root
, u64 group_start
)
7589 struct btrfs_path
*path
;
7590 struct btrfs_block_group_cache
*block_group
;
7591 struct btrfs_free_cluster
*cluster
;
7592 struct btrfs_key key
;
7595 root
= root
->fs_info
->extent_root
;
7597 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7598 BUG_ON(!block_group
);
7599 BUG_ON(!block_group
->ro
);
7601 memcpy(&key
, &block_group
->key
, sizeof(key
));
7603 /* make sure this block group isn't part of an allocation cluster */
7604 cluster
= &root
->fs_info
->data_alloc_cluster
;
7605 spin_lock(&cluster
->refill_lock
);
7606 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7607 spin_unlock(&cluster
->refill_lock
);
7610 * make sure this block group isn't part of a metadata
7611 * allocation cluster
7613 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7614 spin_lock(&cluster
->refill_lock
);
7615 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7616 spin_unlock(&cluster
->refill_lock
);
7618 path
= btrfs_alloc_path();
7621 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7622 rb_erase(&block_group
->cache_node
,
7623 &root
->fs_info
->block_group_cache_tree
);
7624 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7626 down_write(&block_group
->space_info
->groups_sem
);
7628 * we must use list_del_init so people can check to see if they
7629 * are still on the list after taking the semaphore
7631 list_del_init(&block_group
->list
);
7632 up_write(&block_group
->space_info
->groups_sem
);
7634 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7635 wait_block_group_cache_done(block_group
);
7637 btrfs_remove_free_space_cache(block_group
);
7639 spin_lock(&block_group
->space_info
->lock
);
7640 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
7641 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
7642 spin_unlock(&block_group
->space_info
->lock
);
7644 btrfs_clear_space_info_full(root
->fs_info
);
7646 btrfs_put_block_group(block_group
);
7647 btrfs_put_block_group(block_group
);
7649 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
7655 ret
= btrfs_del_item(trans
, root
, path
);
7657 btrfs_free_path(path
);