x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blobc207e8c32c9bfc5212e111edb440adf4b59f2059
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
30 #define BTRFS_ROOT_TRANS_TAG 0
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 WARN_ON(transaction->use_count == 0);
35 transaction->use_count--;
36 if (transaction->use_count == 0) {
37 list_del_init(&transaction->list);
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
43 static noinline void switch_commit_root(struct btrfs_root *root)
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
50 * either allocate a new transaction or hop into the existing one
52 static noinline int join_transaction(struct btrfs_root *root)
54 struct btrfs_transaction *cur_trans;
55 cur_trans = root->fs_info->running_transaction;
56 if (!cur_trans) {
57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 GFP_NOFS);
59 BUG_ON(!cur_trans);
60 root->fs_info->generation++;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 cur_trans->use_count = 1;
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
72 cur_trans->delayed_refs.root.rb_node = NULL;
73 cur_trans->delayed_refs.num_entries = 0;
74 cur_trans->delayed_refs.num_heads_ready = 0;
75 cur_trans->delayed_refs.num_heads = 0;
76 cur_trans->delayed_refs.flushing = 0;
77 cur_trans->delayed_refs.run_delayed_start = 0;
78 spin_lock_init(&cur_trans->delayed_refs.lock);
80 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 extent_io_tree_init(&cur_trans->dirty_pages,
83 root->fs_info->btree_inode->i_mapping,
84 GFP_NOFS);
85 spin_lock(&root->fs_info->new_trans_lock);
86 root->fs_info->running_transaction = cur_trans;
87 spin_unlock(&root->fs_info->new_trans_lock);
88 } else {
89 cur_trans->num_writers++;
90 cur_trans->num_joined++;
93 return 0;
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root)
105 if (root->ref_cows && root->last_trans < trans->transid) {
106 WARN_ON(root == root->fs_info->extent_root);
107 WARN_ON(root->commit_root != root->node);
109 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 (unsigned long)root->root_key.objectid,
111 BTRFS_ROOT_TRANS_TAG);
112 root->last_trans = trans->transid;
113 btrfs_init_reloc_root(trans, root);
115 return 0;
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 struct btrfs_root *root)
121 if (!root->ref_cows)
122 return 0;
124 mutex_lock(&root->fs_info->trans_mutex);
125 if (root->last_trans == trans->transid) {
126 mutex_unlock(&root->fs_info->trans_mutex);
127 return 0;
130 record_root_in_trans(trans, root);
131 mutex_unlock(&root->fs_info->trans_mutex);
132 return 0;
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
139 static void wait_current_trans(struct btrfs_root *root)
141 struct btrfs_transaction *cur_trans;
143 cur_trans = root->fs_info->running_transaction;
144 if (cur_trans && cur_trans->blocked) {
145 DEFINE_WAIT(wait);
146 cur_trans->use_count++;
147 while (1) {
148 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 TASK_UNINTERRUPTIBLE);
150 if (cur_trans->blocked) {
151 mutex_unlock(&root->fs_info->trans_mutex);
152 schedule();
153 mutex_lock(&root->fs_info->trans_mutex);
154 finish_wait(&root->fs_info->transaction_wait,
155 &wait);
156 } else {
157 finish_wait(&root->fs_info->transaction_wait,
158 &wait);
159 break;
162 put_transaction(cur_trans);
166 enum btrfs_trans_type {
167 TRANS_START,
168 TRANS_JOIN,
169 TRANS_USERSPACE,
172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
173 int num_blocks, int type)
175 struct btrfs_trans_handle *h =
176 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
177 int ret;
179 mutex_lock(&root->fs_info->trans_mutex);
180 if (!root->fs_info->log_root_recovering &&
181 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
182 type == TRANS_USERSPACE))
183 wait_current_trans(root);
184 ret = join_transaction(root);
185 BUG_ON(ret);
187 h->transid = root->fs_info->running_transaction->transid;
188 h->transaction = root->fs_info->running_transaction;
189 h->blocks_reserved = num_blocks;
190 h->blocks_used = 0;
191 h->block_group = 0;
192 h->alloc_exclude_nr = 0;
193 h->alloc_exclude_start = 0;
194 h->delayed_ref_updates = 0;
196 if (!current->journal_info && type != TRANS_USERSPACE)
197 current->journal_info = h;
199 root->fs_info->running_transaction->use_count++;
200 record_root_in_trans(h, root);
201 mutex_unlock(&root->fs_info->trans_mutex);
202 return h;
205 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
206 int num_blocks)
208 return start_transaction(root, num_blocks, TRANS_START);
210 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
211 int num_blocks)
213 return start_transaction(root, num_blocks, TRANS_JOIN);
216 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
217 int num_blocks)
219 return start_transaction(r, num_blocks, TRANS_USERSPACE);
222 /* wait for a transaction commit to be fully complete */
223 static noinline int wait_for_commit(struct btrfs_root *root,
224 struct btrfs_transaction *commit)
226 DEFINE_WAIT(wait);
227 mutex_lock(&root->fs_info->trans_mutex);
228 while (!commit->commit_done) {
229 prepare_to_wait(&commit->commit_wait, &wait,
230 TASK_UNINTERRUPTIBLE);
231 if (commit->commit_done)
232 break;
233 mutex_unlock(&root->fs_info->trans_mutex);
234 schedule();
235 mutex_lock(&root->fs_info->trans_mutex);
237 mutex_unlock(&root->fs_info->trans_mutex);
238 finish_wait(&commit->commit_wait, &wait);
239 return 0;
242 #if 0
244 * rate limit against the drop_snapshot code. This helps to slow down new
245 * operations if the drop_snapshot code isn't able to keep up.
247 static void throttle_on_drops(struct btrfs_root *root)
249 struct btrfs_fs_info *info = root->fs_info;
250 int harder_count = 0;
252 harder:
253 if (atomic_read(&info->throttles)) {
254 DEFINE_WAIT(wait);
255 int thr;
256 thr = atomic_read(&info->throttle_gen);
258 do {
259 prepare_to_wait(&info->transaction_throttle,
260 &wait, TASK_UNINTERRUPTIBLE);
261 if (!atomic_read(&info->throttles)) {
262 finish_wait(&info->transaction_throttle, &wait);
263 break;
265 schedule();
266 finish_wait(&info->transaction_throttle, &wait);
267 } while (thr == atomic_read(&info->throttle_gen));
268 harder_count++;
270 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
271 harder_count < 2)
272 goto harder;
274 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
275 harder_count < 10)
276 goto harder;
278 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
279 harder_count < 20)
280 goto harder;
283 #endif
285 void btrfs_throttle(struct btrfs_root *root)
287 mutex_lock(&root->fs_info->trans_mutex);
288 if (!root->fs_info->open_ioctl_trans)
289 wait_current_trans(root);
290 mutex_unlock(&root->fs_info->trans_mutex);
293 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
294 struct btrfs_root *root, int throttle)
296 struct btrfs_transaction *cur_trans;
297 struct btrfs_fs_info *info = root->fs_info;
298 int count = 0;
300 while (count < 4) {
301 unsigned long cur = trans->delayed_ref_updates;
302 trans->delayed_ref_updates = 0;
303 if (cur &&
304 trans->transaction->delayed_refs.num_heads_ready > 64) {
305 trans->delayed_ref_updates = 0;
308 * do a full flush if the transaction is trying
309 * to close
311 if (trans->transaction->delayed_refs.flushing)
312 cur = 0;
313 btrfs_run_delayed_refs(trans, root, cur);
314 } else {
315 break;
317 count++;
320 mutex_lock(&info->trans_mutex);
321 cur_trans = info->running_transaction;
322 WARN_ON(cur_trans != trans->transaction);
323 WARN_ON(cur_trans->num_writers < 1);
324 cur_trans->num_writers--;
326 if (waitqueue_active(&cur_trans->writer_wait))
327 wake_up(&cur_trans->writer_wait);
328 put_transaction(cur_trans);
329 mutex_unlock(&info->trans_mutex);
331 if (current->journal_info == trans)
332 current->journal_info = NULL;
333 memset(trans, 0, sizeof(*trans));
334 kmem_cache_free(btrfs_trans_handle_cachep, trans);
336 return 0;
339 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
340 struct btrfs_root *root)
342 return __btrfs_end_transaction(trans, root, 0);
345 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
346 struct btrfs_root *root)
348 return __btrfs_end_transaction(trans, root, 1);
352 * when btree blocks are allocated, they have some corresponding bits set for
353 * them in one of two extent_io trees. This is used to make sure all of
354 * those extents are sent to disk but does not wait on them
356 int btrfs_write_marked_extents(struct btrfs_root *root,
357 struct extent_io_tree *dirty_pages)
359 int ret;
360 int err = 0;
361 int werr = 0;
362 struct page *page;
363 struct inode *btree_inode = root->fs_info->btree_inode;
364 u64 start = 0;
365 u64 end;
366 unsigned long index;
368 while (1) {
369 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
370 EXTENT_DIRTY);
371 if (ret)
372 break;
373 while (start <= end) {
374 cond_resched();
376 index = start >> PAGE_CACHE_SHIFT;
377 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
378 page = find_get_page(btree_inode->i_mapping, index);
379 if (!page)
380 continue;
382 btree_lock_page_hook(page);
383 if (!page->mapping) {
384 unlock_page(page);
385 page_cache_release(page);
386 continue;
389 if (PageWriteback(page)) {
390 if (PageDirty(page))
391 wait_on_page_writeback(page);
392 else {
393 unlock_page(page);
394 page_cache_release(page);
395 continue;
398 err = write_one_page(page, 0);
399 if (err)
400 werr = err;
401 page_cache_release(page);
404 if (err)
405 werr = err;
406 return werr;
410 * when btree blocks are allocated, they have some corresponding bits set for
411 * them in one of two extent_io trees. This is used to make sure all of
412 * those extents are on disk for transaction or log commit. We wait
413 * on all the pages and clear them from the dirty pages state tree
415 int btrfs_wait_marked_extents(struct btrfs_root *root,
416 struct extent_io_tree *dirty_pages)
418 int ret;
419 int err = 0;
420 int werr = 0;
421 struct page *page;
422 struct inode *btree_inode = root->fs_info->btree_inode;
423 u64 start = 0;
424 u64 end;
425 unsigned long index;
427 while (1) {
428 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
429 EXTENT_DIRTY);
430 if (ret)
431 break;
433 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
434 while (start <= end) {
435 index = start >> PAGE_CACHE_SHIFT;
436 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
437 page = find_get_page(btree_inode->i_mapping, index);
438 if (!page)
439 continue;
440 if (PageDirty(page)) {
441 btree_lock_page_hook(page);
442 wait_on_page_writeback(page);
443 err = write_one_page(page, 0);
444 if (err)
445 werr = err;
447 wait_on_page_writeback(page);
448 page_cache_release(page);
449 cond_resched();
452 if (err)
453 werr = err;
454 return werr;
458 * when btree blocks are allocated, they have some corresponding bits set for
459 * them in one of two extent_io trees. This is used to make sure all of
460 * those extents are on disk for transaction or log commit
462 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
463 struct extent_io_tree *dirty_pages)
465 int ret;
466 int ret2;
468 ret = btrfs_write_marked_extents(root, dirty_pages);
469 ret2 = btrfs_wait_marked_extents(root, dirty_pages);
470 return ret || ret2;
473 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
474 struct btrfs_root *root)
476 if (!trans || !trans->transaction) {
477 struct inode *btree_inode;
478 btree_inode = root->fs_info->btree_inode;
479 return filemap_write_and_wait(btree_inode->i_mapping);
481 return btrfs_write_and_wait_marked_extents(root,
482 &trans->transaction->dirty_pages);
486 * this is used to update the root pointer in the tree of tree roots.
488 * But, in the case of the extent allocation tree, updating the root
489 * pointer may allocate blocks which may change the root of the extent
490 * allocation tree.
492 * So, this loops and repeats and makes sure the cowonly root didn't
493 * change while the root pointer was being updated in the metadata.
495 static int update_cowonly_root(struct btrfs_trans_handle *trans,
496 struct btrfs_root *root)
498 int ret;
499 u64 old_root_bytenr;
500 struct btrfs_root *tree_root = root->fs_info->tree_root;
502 btrfs_write_dirty_block_groups(trans, root);
504 while (1) {
505 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
506 if (old_root_bytenr == root->node->start)
507 break;
509 btrfs_set_root_node(&root->root_item, root->node);
510 ret = btrfs_update_root(trans, tree_root,
511 &root->root_key,
512 &root->root_item);
513 BUG_ON(ret);
515 ret = btrfs_write_dirty_block_groups(trans, root);
516 BUG_ON(ret);
519 if (root != root->fs_info->extent_root)
520 switch_commit_root(root);
522 return 0;
526 * update all the cowonly tree roots on disk
528 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
529 struct btrfs_root *root)
531 struct btrfs_fs_info *fs_info = root->fs_info;
532 struct list_head *next;
533 struct extent_buffer *eb;
534 int ret;
536 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
537 BUG_ON(ret);
539 eb = btrfs_lock_root_node(fs_info->tree_root);
540 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
541 btrfs_tree_unlock(eb);
542 free_extent_buffer(eb);
544 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
545 BUG_ON(ret);
547 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
548 next = fs_info->dirty_cowonly_roots.next;
549 list_del_init(next);
550 root = list_entry(next, struct btrfs_root, dirty_list);
552 update_cowonly_root(trans, root);
555 down_write(&fs_info->extent_commit_sem);
556 switch_commit_root(fs_info->extent_root);
557 up_write(&fs_info->extent_commit_sem);
559 return 0;
563 * dead roots are old snapshots that need to be deleted. This allocates
564 * a dirty root struct and adds it into the list of dead roots that need to
565 * be deleted
567 int btrfs_add_dead_root(struct btrfs_root *root)
569 mutex_lock(&root->fs_info->trans_mutex);
570 list_add(&root->root_list, &root->fs_info->dead_roots);
571 mutex_unlock(&root->fs_info->trans_mutex);
572 return 0;
576 * update all the cowonly tree roots on disk
578 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
579 struct btrfs_root *root)
581 struct btrfs_root *gang[8];
582 struct btrfs_fs_info *fs_info = root->fs_info;
583 int i;
584 int ret;
585 int err = 0;
587 while (1) {
588 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
589 (void **)gang, 0,
590 ARRAY_SIZE(gang),
591 BTRFS_ROOT_TRANS_TAG);
592 if (ret == 0)
593 break;
594 for (i = 0; i < ret; i++) {
595 root = gang[i];
596 radix_tree_tag_clear(&fs_info->fs_roots_radix,
597 (unsigned long)root->root_key.objectid,
598 BTRFS_ROOT_TRANS_TAG);
600 btrfs_free_log(trans, root);
601 btrfs_update_reloc_root(trans, root);
603 if (root->commit_root != root->node) {
604 switch_commit_root(root);
605 btrfs_set_root_node(&root->root_item,
606 root->node);
609 err = btrfs_update_root(trans, fs_info->tree_root,
610 &root->root_key,
611 &root->root_item);
612 if (err)
613 break;
616 return err;
620 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
621 * otherwise every leaf in the btree is read and defragged.
623 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
625 struct btrfs_fs_info *info = root->fs_info;
626 int ret;
627 struct btrfs_trans_handle *trans;
628 unsigned long nr;
630 smp_mb();
631 if (root->defrag_running)
632 return 0;
633 trans = btrfs_start_transaction(root, 1);
634 while (1) {
635 root->defrag_running = 1;
636 ret = btrfs_defrag_leaves(trans, root, cacheonly);
637 nr = trans->blocks_used;
638 btrfs_end_transaction(trans, root);
639 btrfs_btree_balance_dirty(info->tree_root, nr);
640 cond_resched();
642 trans = btrfs_start_transaction(root, 1);
643 if (root->fs_info->closing || ret != -EAGAIN)
644 break;
646 root->defrag_running = 0;
647 smp_mb();
648 btrfs_end_transaction(trans, root);
649 return 0;
652 #if 0
654 * when dropping snapshots, we generate a ton of delayed refs, and it makes
655 * sense not to join the transaction while it is trying to flush the current
656 * queue of delayed refs out.
658 * This is used by the drop snapshot code only
660 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
662 DEFINE_WAIT(wait);
664 mutex_lock(&info->trans_mutex);
665 while (info->running_transaction &&
666 info->running_transaction->delayed_refs.flushing) {
667 prepare_to_wait(&info->transaction_wait, &wait,
668 TASK_UNINTERRUPTIBLE);
669 mutex_unlock(&info->trans_mutex);
671 schedule();
673 mutex_lock(&info->trans_mutex);
674 finish_wait(&info->transaction_wait, &wait);
676 mutex_unlock(&info->trans_mutex);
677 return 0;
681 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
682 * all of them
684 int btrfs_drop_dead_root(struct btrfs_root *root)
686 struct btrfs_trans_handle *trans;
687 struct btrfs_root *tree_root = root->fs_info->tree_root;
688 unsigned long nr;
689 int ret;
691 while (1) {
693 * we don't want to jump in and create a bunch of
694 * delayed refs if the transaction is starting to close
696 wait_transaction_pre_flush(tree_root->fs_info);
697 trans = btrfs_start_transaction(tree_root, 1);
700 * we've joined a transaction, make sure it isn't
701 * closing right now
703 if (trans->transaction->delayed_refs.flushing) {
704 btrfs_end_transaction(trans, tree_root);
705 continue;
708 ret = btrfs_drop_snapshot(trans, root);
709 if (ret != -EAGAIN)
710 break;
712 ret = btrfs_update_root(trans, tree_root,
713 &root->root_key,
714 &root->root_item);
715 if (ret)
716 break;
718 nr = trans->blocks_used;
719 ret = btrfs_end_transaction(trans, tree_root);
720 BUG_ON(ret);
722 btrfs_btree_balance_dirty(tree_root, nr);
723 cond_resched();
725 BUG_ON(ret);
727 ret = btrfs_del_root(trans, tree_root, &root->root_key);
728 BUG_ON(ret);
730 nr = trans->blocks_used;
731 ret = btrfs_end_transaction(trans, tree_root);
732 BUG_ON(ret);
734 free_extent_buffer(root->node);
735 free_extent_buffer(root->commit_root);
736 kfree(root);
738 btrfs_btree_balance_dirty(tree_root, nr);
739 return ret;
741 #endif
744 * new snapshots need to be created at a very specific time in the
745 * transaction commit. This does the actual creation
747 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
748 struct btrfs_fs_info *fs_info,
749 struct btrfs_pending_snapshot *pending)
751 struct btrfs_key key;
752 struct btrfs_root_item *new_root_item;
753 struct btrfs_root *tree_root = fs_info->tree_root;
754 struct btrfs_root *root = pending->root;
755 struct extent_buffer *tmp;
756 struct extent_buffer *old;
757 int ret;
758 u64 objectid;
760 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
761 if (!new_root_item) {
762 ret = -ENOMEM;
763 goto fail;
765 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
766 if (ret)
767 goto fail;
769 record_root_in_trans(trans, root);
770 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
771 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
773 key.objectid = objectid;
774 /* record when the snapshot was created in key.offset */
775 key.offset = trans->transid;
776 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
778 old = btrfs_lock_root_node(root);
779 btrfs_cow_block(trans, root, old, NULL, 0, &old);
780 btrfs_set_lock_blocking(old);
782 btrfs_copy_root(trans, root, old, &tmp, objectid);
783 btrfs_tree_unlock(old);
784 free_extent_buffer(old);
786 btrfs_set_root_node(new_root_item, tmp);
787 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
788 new_root_item);
789 btrfs_tree_unlock(tmp);
790 free_extent_buffer(tmp);
791 if (ret)
792 goto fail;
794 key.offset = (u64)-1;
795 memcpy(&pending->root_key, &key, sizeof(key));
796 fail:
797 kfree(new_root_item);
798 btrfs_unreserve_metadata_space(root, 6);
799 return ret;
802 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
803 struct btrfs_pending_snapshot *pending)
805 int ret;
806 int namelen;
807 u64 index = 0;
808 struct btrfs_trans_handle *trans;
809 struct inode *parent_inode;
810 struct inode *inode;
811 struct btrfs_root *parent_root;
813 parent_inode = pending->dentry->d_parent->d_inode;
814 parent_root = BTRFS_I(parent_inode)->root;
815 trans = btrfs_join_transaction(parent_root, 1);
818 * insert the directory item
820 namelen = strlen(pending->name);
821 ret = btrfs_set_inode_index(parent_inode, &index);
822 ret = btrfs_insert_dir_item(trans, parent_root,
823 pending->name, namelen,
824 parent_inode->i_ino,
825 &pending->root_key, BTRFS_FT_DIR, index);
827 if (ret)
828 goto fail;
830 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
831 ret = btrfs_update_inode(trans, parent_root, parent_inode);
832 BUG_ON(ret);
834 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
835 pending->root_key.objectid,
836 parent_root->root_key.objectid,
837 parent_inode->i_ino, index, pending->name,
838 namelen);
840 BUG_ON(ret);
842 inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
843 d_instantiate(pending->dentry, inode);
844 fail:
845 btrfs_end_transaction(trans, fs_info->fs_root);
846 return ret;
850 * create all the snapshots we've scheduled for creation
852 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
853 struct btrfs_fs_info *fs_info)
855 struct btrfs_pending_snapshot *pending;
856 struct list_head *head = &trans->transaction->pending_snapshots;
857 int ret;
859 list_for_each_entry(pending, head, list) {
860 ret = create_pending_snapshot(trans, fs_info, pending);
861 BUG_ON(ret);
863 return 0;
866 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
867 struct btrfs_fs_info *fs_info)
869 struct btrfs_pending_snapshot *pending;
870 struct list_head *head = &trans->transaction->pending_snapshots;
871 int ret;
873 while (!list_empty(head)) {
874 pending = list_entry(head->next,
875 struct btrfs_pending_snapshot, list);
876 ret = finish_pending_snapshot(fs_info, pending);
877 BUG_ON(ret);
878 list_del(&pending->list);
879 kfree(pending->name);
880 kfree(pending);
882 return 0;
885 static void update_super_roots(struct btrfs_root *root)
887 struct btrfs_root_item *root_item;
888 struct btrfs_super_block *super;
890 super = &root->fs_info->super_copy;
892 root_item = &root->fs_info->chunk_root->root_item;
893 super->chunk_root = root_item->bytenr;
894 super->chunk_root_generation = root_item->generation;
895 super->chunk_root_level = root_item->level;
897 root_item = &root->fs_info->tree_root->root_item;
898 super->root = root_item->bytenr;
899 super->generation = root_item->generation;
900 super->root_level = root_item->level;
903 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
905 int ret = 0;
906 spin_lock(&info->new_trans_lock);
907 if (info->running_transaction)
908 ret = info->running_transaction->in_commit;
909 spin_unlock(&info->new_trans_lock);
910 return ret;
913 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
914 struct btrfs_root *root)
916 unsigned long joined = 0;
917 unsigned long timeout = 1;
918 struct btrfs_transaction *cur_trans;
919 struct btrfs_transaction *prev_trans = NULL;
920 DEFINE_WAIT(wait);
921 int ret;
922 int should_grow = 0;
923 unsigned long now = get_seconds();
924 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
926 btrfs_run_ordered_operations(root, 0);
928 /* make a pass through all the delayed refs we have so far
929 * any runnings procs may add more while we are here
931 ret = btrfs_run_delayed_refs(trans, root, 0);
932 BUG_ON(ret);
934 cur_trans = trans->transaction;
936 * set the flushing flag so procs in this transaction have to
937 * start sending their work down.
939 cur_trans->delayed_refs.flushing = 1;
941 ret = btrfs_run_delayed_refs(trans, root, 0);
942 BUG_ON(ret);
944 mutex_lock(&root->fs_info->trans_mutex);
945 if (cur_trans->in_commit) {
946 cur_trans->use_count++;
947 mutex_unlock(&root->fs_info->trans_mutex);
948 btrfs_end_transaction(trans, root);
950 ret = wait_for_commit(root, cur_trans);
951 BUG_ON(ret);
953 mutex_lock(&root->fs_info->trans_mutex);
954 put_transaction(cur_trans);
955 mutex_unlock(&root->fs_info->trans_mutex);
957 return 0;
960 trans->transaction->in_commit = 1;
961 trans->transaction->blocked = 1;
962 if (cur_trans->list.prev != &root->fs_info->trans_list) {
963 prev_trans = list_entry(cur_trans->list.prev,
964 struct btrfs_transaction, list);
965 if (!prev_trans->commit_done) {
966 prev_trans->use_count++;
967 mutex_unlock(&root->fs_info->trans_mutex);
969 wait_for_commit(root, prev_trans);
971 mutex_lock(&root->fs_info->trans_mutex);
972 put_transaction(prev_trans);
976 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
977 should_grow = 1;
979 do {
980 int snap_pending = 0;
981 joined = cur_trans->num_joined;
982 if (!list_empty(&trans->transaction->pending_snapshots))
983 snap_pending = 1;
985 WARN_ON(cur_trans != trans->transaction);
986 prepare_to_wait(&cur_trans->writer_wait, &wait,
987 TASK_UNINTERRUPTIBLE);
989 if (cur_trans->num_writers > 1)
990 timeout = MAX_SCHEDULE_TIMEOUT;
991 else if (should_grow)
992 timeout = 1;
994 mutex_unlock(&root->fs_info->trans_mutex);
996 if (flush_on_commit) {
997 btrfs_start_delalloc_inodes(root);
998 ret = btrfs_wait_ordered_extents(root, 0);
999 BUG_ON(ret);
1000 } else if (snap_pending) {
1001 ret = btrfs_wait_ordered_extents(root, 1);
1002 BUG_ON(ret);
1006 * rename don't use btrfs_join_transaction, so, once we
1007 * set the transaction to blocked above, we aren't going
1008 * to get any new ordered operations. We can safely run
1009 * it here and no for sure that nothing new will be added
1010 * to the list
1012 btrfs_run_ordered_operations(root, 1);
1014 smp_mb();
1015 if (cur_trans->num_writers > 1 || should_grow)
1016 schedule_timeout(timeout);
1018 mutex_lock(&root->fs_info->trans_mutex);
1019 finish_wait(&cur_trans->writer_wait, &wait);
1020 } while (cur_trans->num_writers > 1 ||
1021 (should_grow && cur_trans->num_joined != joined));
1023 ret = create_pending_snapshots(trans, root->fs_info);
1024 BUG_ON(ret);
1026 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1027 BUG_ON(ret);
1029 WARN_ON(cur_trans != trans->transaction);
1031 /* btrfs_commit_tree_roots is responsible for getting the
1032 * various roots consistent with each other. Every pointer
1033 * in the tree of tree roots has to point to the most up to date
1034 * root for every subvolume and other tree. So, we have to keep
1035 * the tree logging code from jumping in and changing any
1036 * of the trees.
1038 * At this point in the commit, there can't be any tree-log
1039 * writers, but a little lower down we drop the trans mutex
1040 * and let new people in. By holding the tree_log_mutex
1041 * from now until after the super is written, we avoid races
1042 * with the tree-log code.
1044 mutex_lock(&root->fs_info->tree_log_mutex);
1046 ret = commit_fs_roots(trans, root);
1047 BUG_ON(ret);
1049 /* commit_fs_roots gets rid of all the tree log roots, it is now
1050 * safe to free the root of tree log roots
1052 btrfs_free_log_root_tree(trans, root->fs_info);
1054 ret = commit_cowonly_roots(trans, root);
1055 BUG_ON(ret);
1057 btrfs_prepare_extent_commit(trans, root);
1059 cur_trans = root->fs_info->running_transaction;
1060 spin_lock(&root->fs_info->new_trans_lock);
1061 root->fs_info->running_transaction = NULL;
1062 spin_unlock(&root->fs_info->new_trans_lock);
1064 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1065 root->fs_info->tree_root->node);
1066 switch_commit_root(root->fs_info->tree_root);
1068 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1069 root->fs_info->chunk_root->node);
1070 switch_commit_root(root->fs_info->chunk_root);
1072 update_super_roots(root);
1074 if (!root->fs_info->log_root_recovering) {
1075 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1076 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1079 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1080 sizeof(root->fs_info->super_copy));
1082 trans->transaction->blocked = 0;
1084 wake_up(&root->fs_info->transaction_wait);
1086 mutex_unlock(&root->fs_info->trans_mutex);
1087 ret = btrfs_write_and_wait_transaction(trans, root);
1088 BUG_ON(ret);
1089 write_ctree_super(trans, root, 0);
1092 * the super is written, we can safely allow the tree-loggers
1093 * to go about their business
1095 mutex_unlock(&root->fs_info->tree_log_mutex);
1097 btrfs_finish_extent_commit(trans, root);
1099 /* do the directory inserts of any pending snapshot creations */
1100 finish_pending_snapshots(trans, root->fs_info);
1102 mutex_lock(&root->fs_info->trans_mutex);
1104 cur_trans->commit_done = 1;
1106 root->fs_info->last_trans_committed = cur_trans->transid;
1108 wake_up(&cur_trans->commit_wait);
1110 put_transaction(cur_trans);
1111 put_transaction(cur_trans);
1113 mutex_unlock(&root->fs_info->trans_mutex);
1115 if (current->journal_info == trans)
1116 current->journal_info = NULL;
1118 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1119 return ret;
1123 * interface function to delete all the snapshots we have scheduled for deletion
1125 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1127 LIST_HEAD(list);
1128 struct btrfs_fs_info *fs_info = root->fs_info;
1130 mutex_lock(&fs_info->trans_mutex);
1131 list_splice_init(&fs_info->dead_roots, &list);
1132 mutex_unlock(&fs_info->trans_mutex);
1134 while (!list_empty(&list)) {
1135 root = list_entry(list.next, struct btrfs_root, root_list);
1136 list_del(&root->root_list);
1138 if (btrfs_header_backref_rev(root->node) <
1139 BTRFS_MIXED_BACKREF_REV)
1140 btrfs_drop_snapshot(root, 0);
1141 else
1142 btrfs_drop_snapshot(root, 1);
1144 return 0;