x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob2c8caa51addb40c3120d9d3c97d91a559a70814e
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86 struct buffer_head *bh, ext4_fsblk_t blocknr)
88 int err;
90 might_sleep();
92 BUFFER_TRACE(bh, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 "data mode %x\n",
96 bh, is_metadata, inode->i_mode,
97 test_opt(inode->i_sb, DATA_FLAGS));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
102 * data blocks. */
104 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 (!is_metadata && !ext4_should_journal_data(inode))) {
106 if (bh) {
107 BUFFER_TRACE(bh, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle, bh);
110 return 0;
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 err = ext4_journal_revoke(handle, blocknr, bh);
118 if (err)
119 ext4_abort(inode->i_sb, __func__,
120 "error %d when attempting revoke", err);
121 BUFFER_TRACE(bh, "exit");
122 return err;
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode *inode)
131 ext4_lblk_t needed;
133 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
141 if (needed < 2)
142 needed = 2;
144 /* But we need to bound the transaction so we don't overflow the
145 * journal. */
146 if (needed > EXT4_MAX_TRANS_DATA)
147 needed = EXT4_MAX_TRANS_DATA;
149 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t *start_transaction(struct inode *inode)
164 handle_t *result;
166 result = ext4_journal_start(inode, blocks_for_truncate(inode));
167 if (!IS_ERR(result))
168 return result;
170 ext4_std_error(inode->i_sb, PTR_ERR(result));
171 return result;
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
182 if (!ext4_handle_valid(handle))
183 return 0;
184 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185 return 0;
186 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187 return 0;
188 return 1;
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
194 * this transaction.
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197 int nblocks)
199 int ret;
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode) == NULL);
208 jbd_debug(2, "restarting handle %p\n", handle);
209 up_write(&EXT4_I(inode)->i_data_sem);
210 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 down_write(&EXT4_I(inode)->i_data_sem);
212 ext4_discard_preallocations(inode);
214 return ret;
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode *inode)
222 handle_t *handle;
223 int err;
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
229 if (is_bad_inode(inode))
230 goto no_delete;
232 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233 if (IS_ERR(handle)) {
234 ext4_std_error(inode->i_sb, PTR_ERR(handle));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
238 * cleaned up.
240 ext4_orphan_del(NULL, inode);
241 goto no_delete;
244 if (IS_SYNC(inode))
245 ext4_handle_sync(handle);
246 inode->i_size = 0;
247 err = ext4_mark_inode_dirty(handle, inode);
248 if (err) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't mark inode dirty (err %d)", err);
251 goto stop_handle;
253 if (inode->i_blocks)
254 ext4_truncate(inode);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle, 3)) {
263 err = ext4_journal_extend(handle, 3);
264 if (err > 0)
265 err = ext4_journal_restart(handle, 3);
266 if (err != 0) {
267 ext4_warning(inode->i_sb, __func__,
268 "couldn't extend journal (err %d)", err);
269 stop_handle:
270 ext4_journal_stop(handle);
271 goto no_delete;
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle, inode);
284 EXT4_I(inode)->i_dtime = get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
291 * fails.
293 if (ext4_mark_inode_dirty(handle, inode))
294 /* If that failed, just do the required in-core inode clear. */
295 clear_inode(inode);
296 else
297 ext4_free_inode(handle, inode);
298 ext4_journal_stop(handle);
299 return;
300 no_delete:
301 clear_inode(inode); /* We must guarantee clearing of inode... */
304 typedef struct {
305 __le32 *p;
306 __le32 key;
307 struct buffer_head *bh;
308 } Indirect;
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
312 p->key = *(p->p = v);
313 p->bh = bh;
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
334 * inode->i_sb).
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
344 * get there at all.
347 static int ext4_block_to_path(struct inode *inode,
348 ext4_lblk_t i_block,
349 ext4_lblk_t offsets[4], int *boundary)
351 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353 const long direct_blocks = EXT4_NDIR_BLOCKS,
354 indirect_blocks = ptrs,
355 double_blocks = (1 << (ptrs_bits * 2));
356 int n = 0;
357 int final = 0;
359 if (i_block < direct_blocks) {
360 offsets[n++] = i_block;
361 final = direct_blocks;
362 } else if ((i_block -= direct_blocks) < indirect_blocks) {
363 offsets[n++] = EXT4_IND_BLOCK;
364 offsets[n++] = i_block;
365 final = ptrs;
366 } else if ((i_block -= indirect_blocks) < double_blocks) {
367 offsets[n++] = EXT4_DIND_BLOCK;
368 offsets[n++] = i_block >> ptrs_bits;
369 offsets[n++] = i_block & (ptrs - 1);
370 final = ptrs;
371 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372 offsets[n++] = EXT4_TIND_BLOCK;
373 offsets[n++] = i_block >> (ptrs_bits * 2);
374 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375 offsets[n++] = i_block & (ptrs - 1);
376 final = ptrs;
377 } else {
378 ext4_warning(inode->i_sb, "ext4_block_to_path",
379 "block %lu > max in inode %lu",
380 i_block + direct_blocks +
381 indirect_blocks + double_blocks, inode->i_ino);
383 if (boundary)
384 *boundary = final - 1 - (i_block & (ptrs - 1));
385 return n;
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389 __le32 *p, unsigned int max)
391 __le32 *bref = p;
392 unsigned int blk;
394 while (bref < p+max) {
395 blk = le32_to_cpu(*bref++);
396 if (blk &&
397 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398 blk, 1))) {
399 ext4_error(inode->i_sb, function,
400 "invalid block reference %u "
401 "in inode #%lu", blk, inode->i_ino);
402 return -EIO;
405 return 0;
409 #define ext4_check_indirect_blockref(inode, bh) \
410 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
411 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
413 #define ext4_check_inode_blockref(inode) \
414 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
415 EXT4_NDIR_BLOCKS)
418 * ext4_get_branch - read the chain of indirect blocks leading to data
419 * @inode: inode in question
420 * @depth: depth of the chain (1 - direct pointer, etc.)
421 * @offsets: offsets of pointers in inode/indirect blocks
422 * @chain: place to store the result
423 * @err: here we store the error value
425 * Function fills the array of triples <key, p, bh> and returns %NULL
426 * if everything went OK or the pointer to the last filled triple
427 * (incomplete one) otherwise. Upon the return chain[i].key contains
428 * the number of (i+1)-th block in the chain (as it is stored in memory,
429 * i.e. little-endian 32-bit), chain[i].p contains the address of that
430 * number (it points into struct inode for i==0 and into the bh->b_data
431 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432 * block for i>0 and NULL for i==0. In other words, it holds the block
433 * numbers of the chain, addresses they were taken from (and where we can
434 * verify that chain did not change) and buffer_heads hosting these
435 * numbers.
437 * Function stops when it stumbles upon zero pointer (absent block)
438 * (pointer to last triple returned, *@err == 0)
439 * or when it gets an IO error reading an indirect block
440 * (ditto, *@err == -EIO)
441 * or when it reads all @depth-1 indirect blocks successfully and finds
442 * the whole chain, all way to the data (returns %NULL, *err == 0).
444 * Need to be called with
445 * down_read(&EXT4_I(inode)->i_data_sem)
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448 ext4_lblk_t *offsets,
449 Indirect chain[4], int *err)
451 struct super_block *sb = inode->i_sb;
452 Indirect *p = chain;
453 struct buffer_head *bh;
455 *err = 0;
456 /* i_data is not going away, no lock needed */
457 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458 if (!p->key)
459 goto no_block;
460 while (--depth) {
461 bh = sb_getblk(sb, le32_to_cpu(p->key));
462 if (unlikely(!bh))
463 goto failure;
465 if (!bh_uptodate_or_lock(bh)) {
466 if (bh_submit_read(bh) < 0) {
467 put_bh(bh);
468 goto failure;
470 /* validate block references */
471 if (ext4_check_indirect_blockref(inode, bh)) {
472 put_bh(bh);
473 goto failure;
477 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478 /* Reader: end */
479 if (!p->key)
480 goto no_block;
482 return NULL;
484 failure:
485 *err = -EIO;
486 no_block:
487 return p;
491 * ext4_find_near - find a place for allocation with sufficient locality
492 * @inode: owner
493 * @ind: descriptor of indirect block.
495 * This function returns the preferred place for block allocation.
496 * It is used when heuristic for sequential allocation fails.
497 * Rules are:
498 * + if there is a block to the left of our position - allocate near it.
499 * + if pointer will live in indirect block - allocate near that block.
500 * + if pointer will live in inode - allocate in the same
501 * cylinder group.
503 * In the latter case we colour the starting block by the callers PID to
504 * prevent it from clashing with concurrent allocations for a different inode
505 * in the same block group. The PID is used here so that functionally related
506 * files will be close-by on-disk.
508 * Caller must make sure that @ind is valid and will stay that way.
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
512 struct ext4_inode_info *ei = EXT4_I(inode);
513 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514 __le32 *p;
515 ext4_fsblk_t bg_start;
516 ext4_fsblk_t last_block;
517 ext4_grpblk_t colour;
518 ext4_group_t block_group;
519 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
521 /* Try to find previous block */
522 for (p = ind->p - 1; p >= start; p--) {
523 if (*p)
524 return le32_to_cpu(*p);
527 /* No such thing, so let's try location of indirect block */
528 if (ind->bh)
529 return ind->bh->b_blocknr;
532 * It is going to be referred to from the inode itself? OK, just put it
533 * into the same cylinder group then.
535 block_group = ei->i_block_group;
536 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537 block_group &= ~(flex_size-1);
538 if (S_ISREG(inode->i_mode))
539 block_group++;
541 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
545 * If we are doing delayed allocation, we don't need take
546 * colour into account.
548 if (test_opt(inode->i_sb, DELALLOC))
549 return bg_start;
551 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552 colour = (current->pid % 16) *
553 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554 else
555 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556 return bg_start + colour;
560 * ext4_find_goal - find a preferred place for allocation.
561 * @inode: owner
562 * @block: block we want
563 * @partial: pointer to the last triple within a chain
565 * Normally this function find the preferred place for block allocation,
566 * returns it.
567 * Because this is only used for non-extent files, we limit the block nr
568 * to 32 bits.
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571 Indirect *partial)
573 ext4_fsblk_t goal;
576 * XXX need to get goal block from mballoc's data structures
579 goal = ext4_find_near(inode, partial);
580 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581 return goal;
585 * ext4_blks_to_allocate: Look up the block map and count the number
586 * of direct blocks need to be allocated for the given branch.
588 * @branch: chain of indirect blocks
589 * @k: number of blocks need for indirect blocks
590 * @blks: number of data blocks to be mapped.
591 * @blocks_to_boundary: the offset in the indirect block
593 * return the total number of blocks to be allocate, including the
594 * direct and indirect blocks.
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597 int blocks_to_boundary)
599 unsigned int count = 0;
602 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 * then it's clear blocks on that path have not allocated
605 if (k > 0) {
606 /* right now we don't handle cross boundary allocation */
607 if (blks < blocks_to_boundary + 1)
608 count += blks;
609 else
610 count += blocks_to_boundary + 1;
611 return count;
614 count++;
615 while (count < blks && count <= blocks_to_boundary &&
616 le32_to_cpu(*(branch[0].p + count)) == 0) {
617 count++;
619 return count;
623 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
624 * @indirect_blks: the number of blocks need to allocate for indirect
625 * blocks
627 * @new_blocks: on return it will store the new block numbers for
628 * the indirect blocks(if needed) and the first direct block,
629 * @blks: on return it will store the total number of allocated
630 * direct blocks
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633 ext4_lblk_t iblock, ext4_fsblk_t goal,
634 int indirect_blks, int blks,
635 ext4_fsblk_t new_blocks[4], int *err)
637 struct ext4_allocation_request ar;
638 int target, i;
639 unsigned long count = 0, blk_allocated = 0;
640 int index = 0;
641 ext4_fsblk_t current_block = 0;
642 int ret = 0;
645 * Here we try to allocate the requested multiple blocks at once,
646 * on a best-effort basis.
647 * To build a branch, we should allocate blocks for
648 * the indirect blocks(if not allocated yet), and at least
649 * the first direct block of this branch. That's the
650 * minimum number of blocks need to allocate(required)
652 /* first we try to allocate the indirect blocks */
653 target = indirect_blks;
654 while (target > 0) {
655 count = target;
656 /* allocating blocks for indirect blocks and direct blocks */
657 current_block = ext4_new_meta_blocks(handle, inode,
658 goal, &count, err);
659 if (*err)
660 goto failed_out;
662 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
664 target -= count;
665 /* allocate blocks for indirect blocks */
666 while (index < indirect_blks && count) {
667 new_blocks[index++] = current_block++;
668 count--;
670 if (count > 0) {
672 * save the new block number
673 * for the first direct block
675 new_blocks[index] = current_block;
676 printk(KERN_INFO "%s returned more blocks than "
677 "requested\n", __func__);
678 WARN_ON(1);
679 break;
683 target = blks - count ;
684 blk_allocated = count;
685 if (!target)
686 goto allocated;
687 /* Now allocate data blocks */
688 memset(&ar, 0, sizeof(ar));
689 ar.inode = inode;
690 ar.goal = goal;
691 ar.len = target;
692 ar.logical = iblock;
693 if (S_ISREG(inode->i_mode))
694 /* enable in-core preallocation only for regular files */
695 ar.flags = EXT4_MB_HINT_DATA;
697 current_block = ext4_mb_new_blocks(handle, &ar, err);
698 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
700 if (*err && (target == blks)) {
702 * if the allocation failed and we didn't allocate
703 * any blocks before
705 goto failed_out;
707 if (!*err) {
708 if (target == blks) {
710 * save the new block number
711 * for the first direct block
713 new_blocks[index] = current_block;
715 blk_allocated += ar.len;
717 allocated:
718 /* total number of blocks allocated for direct blocks */
719 ret = blk_allocated;
720 *err = 0;
721 return ret;
722 failed_out:
723 for (i = 0; i < index; i++)
724 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725 return ret;
729 * ext4_alloc_branch - allocate and set up a chain of blocks.
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @offsets: offsets (in the blocks) to store the pointers to next.
734 * @branch: place to store the chain in.
736 * This function allocates blocks, zeroes out all but the last one,
737 * links them into chain and (if we are synchronous) writes them to disk.
738 * In other words, it prepares a branch that can be spliced onto the
739 * inode. It stores the information about that chain in the branch[], in
740 * the same format as ext4_get_branch() would do. We are calling it after
741 * we had read the existing part of chain and partial points to the last
742 * triple of that (one with zero ->key). Upon the exit we have the same
743 * picture as after the successful ext4_get_block(), except that in one
744 * place chain is disconnected - *branch->p is still zero (we did not
745 * set the last link), but branch->key contains the number that should
746 * be placed into *branch->p to fill that gap.
748 * If allocation fails we free all blocks we've allocated (and forget
749 * their buffer_heads) and return the error value the from failed
750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751 * as described above and return 0.
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754 ext4_lblk_t iblock, int indirect_blks,
755 int *blks, ext4_fsblk_t goal,
756 ext4_lblk_t *offsets, Indirect *branch)
758 int blocksize = inode->i_sb->s_blocksize;
759 int i, n = 0;
760 int err = 0;
761 struct buffer_head *bh;
762 int num;
763 ext4_fsblk_t new_blocks[4];
764 ext4_fsblk_t current_block;
766 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767 *blks, new_blocks, &err);
768 if (err)
769 return err;
771 branch[0].key = cpu_to_le32(new_blocks[0]);
773 * metadata blocks and data blocks are allocated.
775 for (n = 1; n <= indirect_blks; n++) {
777 * Get buffer_head for parent block, zero it out
778 * and set the pointer to new one, then send
779 * parent to disk.
781 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 branch[n].bh = bh;
783 lock_buffer(bh);
784 BUFFER_TRACE(bh, "call get_create_access");
785 err = ext4_journal_get_create_access(handle, bh);
786 if (err) {
787 /* Don't brelse(bh) here; it's done in
788 * ext4_journal_forget() below */
789 unlock_buffer(bh);
790 goto failed;
793 memset(bh->b_data, 0, blocksize);
794 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795 branch[n].key = cpu_to_le32(new_blocks[n]);
796 *branch[n].p = branch[n].key;
797 if (n == indirect_blks) {
798 current_block = new_blocks[n];
800 * End of chain, update the last new metablock of
801 * the chain to point to the new allocated
802 * data blocks numbers
804 for (i = 1; i < num; i++)
805 *(branch[n].p + i) = cpu_to_le32(++current_block);
807 BUFFER_TRACE(bh, "marking uptodate");
808 set_buffer_uptodate(bh);
809 unlock_buffer(bh);
811 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, bh);
813 if (err)
814 goto failed;
816 *blks = num;
817 return err;
818 failed:
819 /* Allocation failed, free what we already allocated */
820 for (i = 1; i <= n ; i++) {
821 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822 ext4_journal_forget(handle, branch[i].bh);
824 for (i = 0; i < indirect_blks; i++)
825 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
827 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
829 return err;
833 * ext4_splice_branch - splice the allocated branch onto inode.
834 * @inode: owner
835 * @block: (logical) number of block we are adding
836 * @chain: chain of indirect blocks (with a missing link - see
837 * ext4_alloc_branch)
838 * @where: location of missing link
839 * @num: number of indirect blocks we are adding
840 * @blks: number of direct blocks we are adding
842 * This function fills the missing link and does all housekeeping needed in
843 * inode (->i_blocks, etc.). In case of success we end up with the full
844 * chain to new block and return 0.
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847 ext4_lblk_t block, Indirect *where, int num,
848 int blks)
850 int i;
851 int err = 0;
852 ext4_fsblk_t current_block;
855 * If we're splicing into a [td]indirect block (as opposed to the
856 * inode) then we need to get write access to the [td]indirect block
857 * before the splice.
859 if (where->bh) {
860 BUFFER_TRACE(where->bh, "get_write_access");
861 err = ext4_journal_get_write_access(handle, where->bh);
862 if (err)
863 goto err_out;
865 /* That's it */
867 *where->p = where->key;
870 * Update the host buffer_head or inode to point to more just allocated
871 * direct blocks blocks
873 if (num == 0 && blks > 1) {
874 current_block = le32_to_cpu(where->key) + 1;
875 for (i = 1; i < blks; i++)
876 *(where->p + i) = cpu_to_le32(current_block++);
879 /* We are done with atomic stuff, now do the rest of housekeeping */
880 /* had we spliced it onto indirect block? */
881 if (where->bh) {
883 * If we spliced it onto an indirect block, we haven't
884 * altered the inode. Note however that if it is being spliced
885 * onto an indirect block at the very end of the file (the
886 * file is growing) then we *will* alter the inode to reflect
887 * the new i_size. But that is not done here - it is done in
888 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
890 jbd_debug(5, "splicing indirect only\n");
891 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893 if (err)
894 goto err_out;
895 } else {
897 * OK, we spliced it into the inode itself on a direct block.
899 ext4_mark_inode_dirty(handle, inode);
900 jbd_debug(5, "splicing direct\n");
902 return err;
904 err_out:
905 for (i = 1; i <= num; i++) {
906 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907 ext4_journal_forget(handle, where[i].bh);
908 ext4_free_blocks(handle, inode,
909 le32_to_cpu(where[i-1].key), 1, 0);
911 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
913 return err;
917 * The ext4_ind_get_blocks() function handles non-extents inodes
918 * (i.e., using the traditional indirect/double-indirect i_blocks
919 * scheme) for ext4_get_blocks().
921 * Allocation strategy is simple: if we have to allocate something, we will
922 * have to go the whole way to leaf. So let's do it before attaching anything
923 * to tree, set linkage between the newborn blocks, write them if sync is
924 * required, recheck the path, free and repeat if check fails, otherwise
925 * set the last missing link (that will protect us from any truncate-generated
926 * removals - all blocks on the path are immune now) and possibly force the
927 * write on the parent block.
928 * That has a nice additional property: no special recovery from the failed
929 * allocations is needed - we simply release blocks and do not touch anything
930 * reachable from inode.
932 * `handle' can be NULL if create == 0.
934 * return > 0, # of blocks mapped or allocated.
935 * return = 0, if plain lookup failed.
936 * return < 0, error case.
938 * The ext4_ind_get_blocks() function should be called with
939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942 * blocks.
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945 ext4_lblk_t iblock, unsigned int maxblocks,
946 struct buffer_head *bh_result,
947 int flags)
949 int err = -EIO;
950 ext4_lblk_t offsets[4];
951 Indirect chain[4];
952 Indirect *partial;
953 ext4_fsblk_t goal;
954 int indirect_blks;
955 int blocks_to_boundary = 0;
956 int depth;
957 int count = 0;
958 ext4_fsblk_t first_block = 0;
960 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
961 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962 depth = ext4_block_to_path(inode, iblock, offsets,
963 &blocks_to_boundary);
965 if (depth == 0)
966 goto out;
968 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
970 /* Simplest case - block found, no allocation needed */
971 if (!partial) {
972 first_block = le32_to_cpu(chain[depth - 1].key);
973 clear_buffer_new(bh_result);
974 count++;
975 /*map more blocks*/
976 while (count < maxblocks && count <= blocks_to_boundary) {
977 ext4_fsblk_t blk;
979 blk = le32_to_cpu(*(chain[depth-1].p + count));
981 if (blk == first_block + count)
982 count++;
983 else
984 break;
986 goto got_it;
989 /* Next simple case - plain lookup or failed read of indirect block */
990 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991 goto cleanup;
994 * Okay, we need to do block allocation.
996 goal = ext4_find_goal(inode, iblock, partial);
998 /* the number of blocks need to allocate for [d,t]indirect blocks */
999 indirect_blks = (chain + depth) - partial - 1;
1002 * Next look up the indirect map to count the totoal number of
1003 * direct blocks to allocate for this branch.
1005 count = ext4_blks_to_allocate(partial, indirect_blks,
1006 maxblocks, blocks_to_boundary);
1008 * Block out ext4_truncate while we alter the tree
1010 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011 &count, goal,
1012 offsets + (partial - chain), partial);
1015 * The ext4_splice_branch call will free and forget any buffers
1016 * on the new chain if there is a failure, but that risks using
1017 * up transaction credits, especially for bitmaps where the
1018 * credits cannot be returned. Can we handle this somehow? We
1019 * may need to return -EAGAIN upwards in the worst case. --sct
1021 if (!err)
1022 err = ext4_splice_branch(handle, inode, iblock,
1023 partial, indirect_blks, count);
1024 else
1025 goto cleanup;
1027 set_buffer_new(bh_result);
1028 got_it:
1029 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1030 if (count > blocks_to_boundary)
1031 set_buffer_boundary(bh_result);
1032 err = count;
1033 /* Clean up and exit */
1034 partial = chain + depth - 1; /* the whole chain */
1035 cleanup:
1036 while (partial > chain) {
1037 BUFFER_TRACE(partial->bh, "call brelse");
1038 brelse(partial->bh);
1039 partial--;
1041 BUFFER_TRACE(bh_result, "returned");
1042 out:
1043 return err;
1046 qsize_t ext4_get_reserved_space(struct inode *inode)
1048 unsigned long long total;
1050 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1051 total = EXT4_I(inode)->i_reserved_data_blocks +
1052 EXT4_I(inode)->i_reserved_meta_blocks;
1053 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1055 return total;
1058 * Calculate the number of metadata blocks need to reserve
1059 * to allocate @blocks for non extent file based file
1061 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1063 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1064 int ind_blks, dind_blks, tind_blks;
1066 /* number of new indirect blocks needed */
1067 ind_blks = (blocks + icap - 1) / icap;
1069 dind_blks = (ind_blks + icap - 1) / icap;
1071 tind_blks = 1;
1073 return ind_blks + dind_blks + tind_blks;
1077 * Calculate the number of metadata blocks need to reserve
1078 * to allocate given number of blocks
1080 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1082 if (!blocks)
1083 return 0;
1085 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1086 return ext4_ext_calc_metadata_amount(inode, blocks);
1088 return ext4_indirect_calc_metadata_amount(inode, blocks);
1091 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1093 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1094 int total, mdb, mdb_free;
1096 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1097 /* recalculate the number of metablocks still need to be reserved */
1098 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1099 mdb = ext4_calc_metadata_amount(inode, total);
1101 /* figure out how many metablocks to release */
1102 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1103 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1105 if (mdb_free) {
1106 /* Account for allocated meta_blocks */
1107 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1109 /* update fs dirty blocks counter */
1110 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1111 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1112 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1115 /* update per-inode reservations */
1116 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1117 EXT4_I(inode)->i_reserved_data_blocks -= used;
1118 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1121 * free those over-booking quota for metadata blocks
1123 if (mdb_free)
1124 vfs_dq_release_reservation_block(inode, mdb_free);
1127 * If we have done all the pending block allocations and if
1128 * there aren't any writers on the inode, we can discard the
1129 * inode's preallocations.
1131 if (!total && (atomic_read(&inode->i_writecount) == 0))
1132 ext4_discard_preallocations(inode);
1135 static int check_block_validity(struct inode *inode, const char *msg,
1136 sector_t logical, sector_t phys, int len)
1138 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1139 ext4_error(inode->i_sb, msg,
1140 "inode #%lu logical block %llu mapped to %llu "
1141 "(size %d)", inode->i_ino,
1142 (unsigned long long) logical,
1143 (unsigned long long) phys, len);
1144 return -EIO;
1146 return 0;
1150 * Return the number of contiguous dirty pages in a given inode
1151 * starting at page frame idx.
1153 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1154 unsigned int max_pages)
1156 struct address_space *mapping = inode->i_mapping;
1157 pgoff_t index;
1158 struct pagevec pvec;
1159 pgoff_t num = 0;
1160 int i, nr_pages, done = 0;
1162 if (max_pages == 0)
1163 return 0;
1164 pagevec_init(&pvec, 0);
1165 while (!done) {
1166 index = idx;
1167 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1168 PAGECACHE_TAG_DIRTY,
1169 (pgoff_t)PAGEVEC_SIZE);
1170 if (nr_pages == 0)
1171 break;
1172 for (i = 0; i < nr_pages; i++) {
1173 struct page *page = pvec.pages[i];
1174 struct buffer_head *bh, *head;
1176 lock_page(page);
1177 if (unlikely(page->mapping != mapping) ||
1178 !PageDirty(page) ||
1179 PageWriteback(page) ||
1180 page->index != idx) {
1181 done = 1;
1182 unlock_page(page);
1183 break;
1185 if (page_has_buffers(page)) {
1186 bh = head = page_buffers(page);
1187 do {
1188 if (!buffer_delay(bh) &&
1189 !buffer_unwritten(bh))
1190 done = 1;
1191 bh = bh->b_this_page;
1192 } while (!done && (bh != head));
1194 unlock_page(page);
1195 if (done)
1196 break;
1197 idx++;
1198 num++;
1199 if (num >= max_pages)
1200 break;
1202 pagevec_release(&pvec);
1204 return num;
1208 * The ext4_get_blocks() function tries to look up the requested blocks,
1209 * and returns if the blocks are already mapped.
1211 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1212 * and store the allocated blocks in the result buffer head and mark it
1213 * mapped.
1215 * If file type is extents based, it will call ext4_ext_get_blocks(),
1216 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1217 * based files
1219 * On success, it returns the number of blocks being mapped or allocate.
1220 * if create==0 and the blocks are pre-allocated and uninitialized block,
1221 * the result buffer head is unmapped. If the create ==1, it will make sure
1222 * the buffer head is mapped.
1224 * It returns 0 if plain look up failed (blocks have not been allocated), in
1225 * that casem, buffer head is unmapped
1227 * It returns the error in case of allocation failure.
1229 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1230 unsigned int max_blocks, struct buffer_head *bh,
1231 int flags)
1233 int retval;
1235 clear_buffer_mapped(bh);
1236 clear_buffer_unwritten(bh);
1238 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1239 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1240 (unsigned long)block);
1242 * Try to see if we can get the block without requesting a new
1243 * file system block.
1245 down_read((&EXT4_I(inode)->i_data_sem));
1246 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1247 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1248 bh, 0);
1249 } else {
1250 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1251 bh, 0);
1253 up_read((&EXT4_I(inode)->i_data_sem));
1255 if (retval > 0 && buffer_mapped(bh)) {
1256 int ret = check_block_validity(inode, "file system corruption",
1257 block, bh->b_blocknr, retval);
1258 if (ret != 0)
1259 return ret;
1262 /* If it is only a block(s) look up */
1263 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1264 return retval;
1267 * Returns if the blocks have already allocated
1269 * Note that if blocks have been preallocated
1270 * ext4_ext_get_block() returns th create = 0
1271 * with buffer head unmapped.
1273 if (retval > 0 && buffer_mapped(bh))
1274 return retval;
1277 * When we call get_blocks without the create flag, the
1278 * BH_Unwritten flag could have gotten set if the blocks
1279 * requested were part of a uninitialized extent. We need to
1280 * clear this flag now that we are committed to convert all or
1281 * part of the uninitialized extent to be an initialized
1282 * extent. This is because we need to avoid the combination
1283 * of BH_Unwritten and BH_Mapped flags being simultaneously
1284 * set on the buffer_head.
1286 clear_buffer_unwritten(bh);
1289 * New blocks allocate and/or writing to uninitialized extent
1290 * will possibly result in updating i_data, so we take
1291 * the write lock of i_data_sem, and call get_blocks()
1292 * with create == 1 flag.
1294 down_write((&EXT4_I(inode)->i_data_sem));
1297 * if the caller is from delayed allocation writeout path
1298 * we have already reserved fs blocks for allocation
1299 * let the underlying get_block() function know to
1300 * avoid double accounting
1302 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1303 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1305 * We need to check for EXT4 here because migrate
1306 * could have changed the inode type in between
1308 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1309 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1310 bh, flags);
1311 } else {
1312 retval = ext4_ind_get_blocks(handle, inode, block,
1313 max_blocks, bh, flags);
1315 if (retval > 0 && buffer_new(bh)) {
1317 * We allocated new blocks which will result in
1318 * i_data's format changing. Force the migrate
1319 * to fail by clearing migrate flags
1321 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1325 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1326 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1329 * Update reserved blocks/metadata blocks after successful
1330 * block allocation which had been deferred till now.
1332 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1333 ext4_da_update_reserve_space(inode, retval);
1335 up_write((&EXT4_I(inode)->i_data_sem));
1336 if (retval > 0 && buffer_mapped(bh)) {
1337 int ret = check_block_validity(inode, "file system "
1338 "corruption after allocation",
1339 block, bh->b_blocknr, retval);
1340 if (ret != 0)
1341 return ret;
1343 return retval;
1346 /* Maximum number of blocks we map for direct IO at once. */
1347 #define DIO_MAX_BLOCKS 4096
1349 int ext4_get_block(struct inode *inode, sector_t iblock,
1350 struct buffer_head *bh_result, int create)
1352 handle_t *handle = ext4_journal_current_handle();
1353 int ret = 0, started = 0;
1354 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1355 int dio_credits;
1357 if (create && !handle) {
1358 /* Direct IO write... */
1359 if (max_blocks > DIO_MAX_BLOCKS)
1360 max_blocks = DIO_MAX_BLOCKS;
1361 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1362 handle = ext4_journal_start(inode, dio_credits);
1363 if (IS_ERR(handle)) {
1364 ret = PTR_ERR(handle);
1365 goto out;
1367 started = 1;
1370 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1371 create ? EXT4_GET_BLOCKS_CREATE : 0);
1372 if (ret > 0) {
1373 bh_result->b_size = (ret << inode->i_blkbits);
1374 ret = 0;
1376 if (started)
1377 ext4_journal_stop(handle);
1378 out:
1379 return ret;
1383 * `handle' can be NULL if create is zero
1385 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1386 ext4_lblk_t block, int create, int *errp)
1388 struct buffer_head dummy;
1389 int fatal = 0, err;
1390 int flags = 0;
1392 J_ASSERT(handle != NULL || create == 0);
1394 dummy.b_state = 0;
1395 dummy.b_blocknr = -1000;
1396 buffer_trace_init(&dummy.b_history);
1397 if (create)
1398 flags |= EXT4_GET_BLOCKS_CREATE;
1399 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1401 * ext4_get_blocks() returns number of blocks mapped. 0 in
1402 * case of a HOLE.
1404 if (err > 0) {
1405 if (err > 1)
1406 WARN_ON(1);
1407 err = 0;
1409 *errp = err;
1410 if (!err && buffer_mapped(&dummy)) {
1411 struct buffer_head *bh;
1412 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1413 if (!bh) {
1414 *errp = -EIO;
1415 goto err;
1417 if (buffer_new(&dummy)) {
1418 J_ASSERT(create != 0);
1419 J_ASSERT(handle != NULL);
1422 * Now that we do not always journal data, we should
1423 * keep in mind whether this should always journal the
1424 * new buffer as metadata. For now, regular file
1425 * writes use ext4_get_block instead, so it's not a
1426 * problem.
1428 lock_buffer(bh);
1429 BUFFER_TRACE(bh, "call get_create_access");
1430 fatal = ext4_journal_get_create_access(handle, bh);
1431 if (!fatal && !buffer_uptodate(bh)) {
1432 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1433 set_buffer_uptodate(bh);
1435 unlock_buffer(bh);
1436 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437 err = ext4_handle_dirty_metadata(handle, inode, bh);
1438 if (!fatal)
1439 fatal = err;
1440 } else {
1441 BUFFER_TRACE(bh, "not a new buffer");
1443 if (fatal) {
1444 *errp = fatal;
1445 brelse(bh);
1446 bh = NULL;
1448 return bh;
1450 err:
1451 return NULL;
1454 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1455 ext4_lblk_t block, int create, int *err)
1457 struct buffer_head *bh;
1459 bh = ext4_getblk(handle, inode, block, create, err);
1460 if (!bh)
1461 return bh;
1462 if (buffer_uptodate(bh))
1463 return bh;
1464 ll_rw_block(READ_META, 1, &bh);
1465 wait_on_buffer(bh);
1466 if (buffer_uptodate(bh))
1467 return bh;
1468 put_bh(bh);
1469 *err = -EIO;
1470 return NULL;
1473 static int walk_page_buffers(handle_t *handle,
1474 struct buffer_head *head,
1475 unsigned from,
1476 unsigned to,
1477 int *partial,
1478 int (*fn)(handle_t *handle,
1479 struct buffer_head *bh))
1481 struct buffer_head *bh;
1482 unsigned block_start, block_end;
1483 unsigned blocksize = head->b_size;
1484 int err, ret = 0;
1485 struct buffer_head *next;
1487 for (bh = head, block_start = 0;
1488 ret == 0 && (bh != head || !block_start);
1489 block_start = block_end, bh = next) {
1490 next = bh->b_this_page;
1491 block_end = block_start + blocksize;
1492 if (block_end <= from || block_start >= to) {
1493 if (partial && !buffer_uptodate(bh))
1494 *partial = 1;
1495 continue;
1497 err = (*fn)(handle, bh);
1498 if (!ret)
1499 ret = err;
1501 return ret;
1505 * To preserve ordering, it is essential that the hole instantiation and
1506 * the data write be encapsulated in a single transaction. We cannot
1507 * close off a transaction and start a new one between the ext4_get_block()
1508 * and the commit_write(). So doing the jbd2_journal_start at the start of
1509 * prepare_write() is the right place.
1511 * Also, this function can nest inside ext4_writepage() ->
1512 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1513 * has generated enough buffer credits to do the whole page. So we won't
1514 * block on the journal in that case, which is good, because the caller may
1515 * be PF_MEMALLOC.
1517 * By accident, ext4 can be reentered when a transaction is open via
1518 * quota file writes. If we were to commit the transaction while thus
1519 * reentered, there can be a deadlock - we would be holding a quota
1520 * lock, and the commit would never complete if another thread had a
1521 * transaction open and was blocking on the quota lock - a ranking
1522 * violation.
1524 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1525 * will _not_ run commit under these circumstances because handle->h_ref
1526 * is elevated. We'll still have enough credits for the tiny quotafile
1527 * write.
1529 static int do_journal_get_write_access(handle_t *handle,
1530 struct buffer_head *bh)
1532 if (!buffer_mapped(bh) || buffer_freed(bh))
1533 return 0;
1534 return ext4_journal_get_write_access(handle, bh);
1537 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1538 loff_t pos, unsigned len, unsigned flags,
1539 struct page **pagep, void **fsdata)
1541 struct inode *inode = mapping->host;
1542 int ret, needed_blocks;
1543 handle_t *handle;
1544 int retries = 0;
1545 struct page *page;
1546 pgoff_t index;
1547 unsigned from, to;
1549 trace_ext4_write_begin(inode, pos, len, flags);
1551 * Reserve one block more for addition to orphan list in case
1552 * we allocate blocks but write fails for some reason
1554 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1555 index = pos >> PAGE_CACHE_SHIFT;
1556 from = pos & (PAGE_CACHE_SIZE - 1);
1557 to = from + len;
1559 retry:
1560 handle = ext4_journal_start(inode, needed_blocks);
1561 if (IS_ERR(handle)) {
1562 ret = PTR_ERR(handle);
1563 goto out;
1566 /* We cannot recurse into the filesystem as the transaction is already
1567 * started */
1568 flags |= AOP_FLAG_NOFS;
1570 page = grab_cache_page_write_begin(mapping, index, flags);
1571 if (!page) {
1572 ext4_journal_stop(handle);
1573 ret = -ENOMEM;
1574 goto out;
1576 *pagep = page;
1578 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1579 ext4_get_block);
1581 if (!ret && ext4_should_journal_data(inode)) {
1582 ret = walk_page_buffers(handle, page_buffers(page),
1583 from, to, NULL, do_journal_get_write_access);
1586 if (ret) {
1587 unlock_page(page);
1588 page_cache_release(page);
1590 * block_write_begin may have instantiated a few blocks
1591 * outside i_size. Trim these off again. Don't need
1592 * i_size_read because we hold i_mutex.
1594 * Add inode to orphan list in case we crash before
1595 * truncate finishes
1597 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1598 ext4_orphan_add(handle, inode);
1600 ext4_journal_stop(handle);
1601 if (pos + len > inode->i_size) {
1602 ext4_truncate(inode);
1604 * If truncate failed early the inode might
1605 * still be on the orphan list; we need to
1606 * make sure the inode is removed from the
1607 * orphan list in that case.
1609 if (inode->i_nlink)
1610 ext4_orphan_del(NULL, inode);
1614 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1615 goto retry;
1616 out:
1617 return ret;
1620 /* For write_end() in data=journal mode */
1621 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1623 if (!buffer_mapped(bh) || buffer_freed(bh))
1624 return 0;
1625 set_buffer_uptodate(bh);
1626 return ext4_handle_dirty_metadata(handle, NULL, bh);
1629 static int ext4_generic_write_end(struct file *file,
1630 struct address_space *mapping,
1631 loff_t pos, unsigned len, unsigned copied,
1632 struct page *page, void *fsdata)
1634 int i_size_changed = 0;
1635 struct inode *inode = mapping->host;
1636 handle_t *handle = ext4_journal_current_handle();
1638 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1641 * No need to use i_size_read() here, the i_size
1642 * cannot change under us because we hold i_mutex.
1644 * But it's important to update i_size while still holding page lock:
1645 * page writeout could otherwise come in and zero beyond i_size.
1647 if (pos + copied > inode->i_size) {
1648 i_size_write(inode, pos + copied);
1649 i_size_changed = 1;
1652 if (pos + copied > EXT4_I(inode)->i_disksize) {
1653 /* We need to mark inode dirty even if
1654 * new_i_size is less that inode->i_size
1655 * bu greater than i_disksize.(hint delalloc)
1657 ext4_update_i_disksize(inode, (pos + copied));
1658 i_size_changed = 1;
1660 unlock_page(page);
1661 page_cache_release(page);
1664 * Don't mark the inode dirty under page lock. First, it unnecessarily
1665 * makes the holding time of page lock longer. Second, it forces lock
1666 * ordering of page lock and transaction start for journaling
1667 * filesystems.
1669 if (i_size_changed)
1670 ext4_mark_inode_dirty(handle, inode);
1672 return copied;
1676 * We need to pick up the new inode size which generic_commit_write gave us
1677 * `file' can be NULL - eg, when called from page_symlink().
1679 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1680 * buffers are managed internally.
1682 static int ext4_ordered_write_end(struct file *file,
1683 struct address_space *mapping,
1684 loff_t pos, unsigned len, unsigned copied,
1685 struct page *page, void *fsdata)
1687 handle_t *handle = ext4_journal_current_handle();
1688 struct inode *inode = mapping->host;
1689 int ret = 0, ret2;
1691 trace_ext4_ordered_write_end(inode, pos, len, copied);
1692 ret = ext4_jbd2_file_inode(handle, inode);
1694 if (ret == 0) {
1695 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1696 page, fsdata);
1697 copied = ret2;
1698 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1699 /* if we have allocated more blocks and copied
1700 * less. We will have blocks allocated outside
1701 * inode->i_size. So truncate them
1703 ext4_orphan_add(handle, inode);
1704 if (ret2 < 0)
1705 ret = ret2;
1707 ret2 = ext4_journal_stop(handle);
1708 if (!ret)
1709 ret = ret2;
1711 if (pos + len > inode->i_size) {
1712 ext4_truncate(inode);
1714 * If truncate failed early the inode might still be
1715 * on the orphan list; we need to make sure the inode
1716 * is removed from the orphan list in that case.
1718 if (inode->i_nlink)
1719 ext4_orphan_del(NULL, inode);
1723 return ret ? ret : copied;
1726 static int ext4_writeback_write_end(struct file *file,
1727 struct address_space *mapping,
1728 loff_t pos, unsigned len, unsigned copied,
1729 struct page *page, void *fsdata)
1731 handle_t *handle = ext4_journal_current_handle();
1732 struct inode *inode = mapping->host;
1733 int ret = 0, ret2;
1735 trace_ext4_writeback_write_end(inode, pos, len, copied);
1736 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1737 page, fsdata);
1738 copied = ret2;
1739 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1740 /* if we have allocated more blocks and copied
1741 * less. We will have blocks allocated outside
1742 * inode->i_size. So truncate them
1744 ext4_orphan_add(handle, inode);
1746 if (ret2 < 0)
1747 ret = ret2;
1749 ret2 = ext4_journal_stop(handle);
1750 if (!ret)
1751 ret = ret2;
1753 if (pos + len > inode->i_size) {
1754 ext4_truncate(inode);
1756 * If truncate failed early the inode might still be
1757 * on the orphan list; we need to make sure the inode
1758 * is removed from the orphan list in that case.
1760 if (inode->i_nlink)
1761 ext4_orphan_del(NULL, inode);
1764 return ret ? ret : copied;
1767 static int ext4_journalled_write_end(struct file *file,
1768 struct address_space *mapping,
1769 loff_t pos, unsigned len, unsigned copied,
1770 struct page *page, void *fsdata)
1772 handle_t *handle = ext4_journal_current_handle();
1773 struct inode *inode = mapping->host;
1774 int ret = 0, ret2;
1775 int partial = 0;
1776 unsigned from, to;
1777 loff_t new_i_size;
1779 trace_ext4_journalled_write_end(inode, pos, len, copied);
1780 from = pos & (PAGE_CACHE_SIZE - 1);
1781 to = from + len;
1783 if (copied < len) {
1784 if (!PageUptodate(page))
1785 copied = 0;
1786 page_zero_new_buffers(page, from+copied, to);
1789 ret = walk_page_buffers(handle, page_buffers(page), from,
1790 to, &partial, write_end_fn);
1791 if (!partial)
1792 SetPageUptodate(page);
1793 new_i_size = pos + copied;
1794 if (new_i_size > inode->i_size)
1795 i_size_write(inode, pos+copied);
1796 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1797 if (new_i_size > EXT4_I(inode)->i_disksize) {
1798 ext4_update_i_disksize(inode, new_i_size);
1799 ret2 = ext4_mark_inode_dirty(handle, inode);
1800 if (!ret)
1801 ret = ret2;
1804 unlock_page(page);
1805 page_cache_release(page);
1806 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1807 /* if we have allocated more blocks and copied
1808 * less. We will have blocks allocated outside
1809 * inode->i_size. So truncate them
1811 ext4_orphan_add(handle, inode);
1813 ret2 = ext4_journal_stop(handle);
1814 if (!ret)
1815 ret = ret2;
1816 if (pos + len > inode->i_size) {
1817 ext4_truncate(inode);
1819 * If truncate failed early the inode might still be
1820 * on the orphan list; we need to make sure the inode
1821 * is removed from the orphan list in that case.
1823 if (inode->i_nlink)
1824 ext4_orphan_del(NULL, inode);
1827 return ret ? ret : copied;
1830 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1832 int retries = 0;
1833 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1834 unsigned long md_needed, mdblocks, total = 0;
1837 * recalculate the amount of metadata blocks to reserve
1838 * in order to allocate nrblocks
1839 * worse case is one extent per block
1841 repeat:
1842 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1843 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1844 mdblocks = ext4_calc_metadata_amount(inode, total);
1845 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1847 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1848 total = md_needed + nrblocks;
1851 * Make quota reservation here to prevent quota overflow
1852 * later. Real quota accounting is done at pages writeout
1853 * time.
1855 if (vfs_dq_reserve_block(inode, total)) {
1856 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1857 return -EDQUOT;
1860 if (ext4_claim_free_blocks(sbi, total)) {
1861 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1862 vfs_dq_release_reservation_block(inode, total);
1863 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1864 yield();
1865 goto repeat;
1867 return -ENOSPC;
1869 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1870 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1872 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1873 return 0; /* success */
1876 static void ext4_da_release_space(struct inode *inode, int to_free)
1878 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1879 int total, mdb, mdb_free, release;
1881 if (!to_free)
1882 return; /* Nothing to release, exit */
1884 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1886 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1888 * if there is no reserved blocks, but we try to free some
1889 * then the counter is messed up somewhere.
1890 * but since this function is called from invalidate
1891 * page, it's harmless to return without any action
1893 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1894 "blocks for inode %lu, but there is no reserved "
1895 "data blocks\n", to_free, inode->i_ino);
1896 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1897 return;
1900 /* recalculate the number of metablocks still need to be reserved */
1901 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1902 mdb = ext4_calc_metadata_amount(inode, total);
1904 /* figure out how many metablocks to release */
1905 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1906 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1908 release = to_free + mdb_free;
1910 /* update fs dirty blocks counter for truncate case */
1911 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1913 /* update per-inode reservations */
1914 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1915 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1917 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1918 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1919 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1921 vfs_dq_release_reservation_block(inode, release);
1924 static void ext4_da_page_release_reservation(struct page *page,
1925 unsigned long offset)
1927 int to_release = 0;
1928 struct buffer_head *head, *bh;
1929 unsigned int curr_off = 0;
1931 head = page_buffers(page);
1932 bh = head;
1933 do {
1934 unsigned int next_off = curr_off + bh->b_size;
1936 if ((offset <= curr_off) && (buffer_delay(bh))) {
1937 to_release++;
1938 clear_buffer_delay(bh);
1940 curr_off = next_off;
1941 } while ((bh = bh->b_this_page) != head);
1942 ext4_da_release_space(page->mapping->host, to_release);
1946 * Delayed allocation stuff
1950 * mpage_da_submit_io - walks through extent of pages and try to write
1951 * them with writepage() call back
1953 * @mpd->inode: inode
1954 * @mpd->first_page: first page of the extent
1955 * @mpd->next_page: page after the last page of the extent
1957 * By the time mpage_da_submit_io() is called we expect all blocks
1958 * to be allocated. this may be wrong if allocation failed.
1960 * As pages are already locked by write_cache_pages(), we can't use it
1962 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1964 long pages_skipped;
1965 struct pagevec pvec;
1966 unsigned long index, end;
1967 int ret = 0, err, nr_pages, i;
1968 struct inode *inode = mpd->inode;
1969 struct address_space *mapping = inode->i_mapping;
1971 BUG_ON(mpd->next_page <= mpd->first_page);
1973 * We need to start from the first_page to the next_page - 1
1974 * to make sure we also write the mapped dirty buffer_heads.
1975 * If we look at mpd->b_blocknr we would only be looking
1976 * at the currently mapped buffer_heads.
1978 index = mpd->first_page;
1979 end = mpd->next_page - 1;
1981 pagevec_init(&pvec, 0);
1982 while (index <= end) {
1983 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1984 if (nr_pages == 0)
1985 break;
1986 for (i = 0; i < nr_pages; i++) {
1987 struct page *page = pvec.pages[i];
1989 index = page->index;
1990 if (index > end)
1991 break;
1992 index++;
1994 BUG_ON(!PageLocked(page));
1995 BUG_ON(PageWriteback(page));
1997 pages_skipped = mpd->wbc->pages_skipped;
1998 err = mapping->a_ops->writepage(page, mpd->wbc);
1999 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2001 * have successfully written the page
2002 * without skipping the same
2004 mpd->pages_written++;
2006 * In error case, we have to continue because
2007 * remaining pages are still locked
2008 * XXX: unlock and re-dirty them?
2010 if (ret == 0)
2011 ret = err;
2013 pagevec_release(&pvec);
2015 return ret;
2019 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2021 * @mpd->inode - inode to walk through
2022 * @exbh->b_blocknr - first block on a disk
2023 * @exbh->b_size - amount of space in bytes
2024 * @logical - first logical block to start assignment with
2026 * the function goes through all passed space and put actual disk
2027 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2029 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2030 struct buffer_head *exbh)
2032 struct inode *inode = mpd->inode;
2033 struct address_space *mapping = inode->i_mapping;
2034 int blocks = exbh->b_size >> inode->i_blkbits;
2035 sector_t pblock = exbh->b_blocknr, cur_logical;
2036 struct buffer_head *head, *bh;
2037 pgoff_t index, end;
2038 struct pagevec pvec;
2039 int nr_pages, i;
2041 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2042 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2043 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2045 pagevec_init(&pvec, 0);
2047 while (index <= end) {
2048 /* XXX: optimize tail */
2049 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2050 if (nr_pages == 0)
2051 break;
2052 for (i = 0; i < nr_pages; i++) {
2053 struct page *page = pvec.pages[i];
2055 index = page->index;
2056 if (index > end)
2057 break;
2058 index++;
2060 BUG_ON(!PageLocked(page));
2061 BUG_ON(PageWriteback(page));
2062 BUG_ON(!page_has_buffers(page));
2064 bh = page_buffers(page);
2065 head = bh;
2067 /* skip blocks out of the range */
2068 do {
2069 if (cur_logical >= logical)
2070 break;
2071 cur_logical++;
2072 } while ((bh = bh->b_this_page) != head);
2074 do {
2075 if (cur_logical >= logical + blocks)
2076 break;
2078 if (buffer_delay(bh) ||
2079 buffer_unwritten(bh)) {
2081 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2083 if (buffer_delay(bh)) {
2084 clear_buffer_delay(bh);
2085 bh->b_blocknr = pblock;
2086 } else {
2088 * unwritten already should have
2089 * blocknr assigned. Verify that
2091 clear_buffer_unwritten(bh);
2092 BUG_ON(bh->b_blocknr != pblock);
2095 } else if (buffer_mapped(bh))
2096 BUG_ON(bh->b_blocknr != pblock);
2098 cur_logical++;
2099 pblock++;
2100 } while ((bh = bh->b_this_page) != head);
2102 pagevec_release(&pvec);
2108 * __unmap_underlying_blocks - just a helper function to unmap
2109 * set of blocks described by @bh
2111 static inline void __unmap_underlying_blocks(struct inode *inode,
2112 struct buffer_head *bh)
2114 struct block_device *bdev = inode->i_sb->s_bdev;
2115 int blocks, i;
2117 blocks = bh->b_size >> inode->i_blkbits;
2118 for (i = 0; i < blocks; i++)
2119 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2122 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2123 sector_t logical, long blk_cnt)
2125 int nr_pages, i;
2126 pgoff_t index, end;
2127 struct pagevec pvec;
2128 struct inode *inode = mpd->inode;
2129 struct address_space *mapping = inode->i_mapping;
2131 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2132 end = (logical + blk_cnt - 1) >>
2133 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2134 while (index <= end) {
2135 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2136 if (nr_pages == 0)
2137 break;
2138 for (i = 0; i < nr_pages; i++) {
2139 struct page *page = pvec.pages[i];
2140 index = page->index;
2141 if (index > end)
2142 break;
2143 index++;
2145 BUG_ON(!PageLocked(page));
2146 BUG_ON(PageWriteback(page));
2147 block_invalidatepage(page, 0);
2148 ClearPageUptodate(page);
2149 unlock_page(page);
2152 return;
2155 static void ext4_print_free_blocks(struct inode *inode)
2157 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2158 printk(KERN_CRIT "Total free blocks count %lld\n",
2159 ext4_count_free_blocks(inode->i_sb));
2160 printk(KERN_CRIT "Free/Dirty block details\n");
2161 printk(KERN_CRIT "free_blocks=%lld\n",
2162 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2163 printk(KERN_CRIT "dirty_blocks=%lld\n",
2164 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2165 printk(KERN_CRIT "Block reservation details\n");
2166 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2167 EXT4_I(inode)->i_reserved_data_blocks);
2168 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2169 EXT4_I(inode)->i_reserved_meta_blocks);
2170 return;
2174 * mpage_da_map_blocks - go through given space
2176 * @mpd - bh describing space
2178 * The function skips space we know is already mapped to disk blocks.
2181 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2183 int err, blks, get_blocks_flags;
2184 struct buffer_head new;
2185 sector_t next = mpd->b_blocknr;
2186 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2187 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2188 handle_t *handle = NULL;
2191 * We consider only non-mapped and non-allocated blocks
2193 if ((mpd->b_state & (1 << BH_Mapped)) &&
2194 !(mpd->b_state & (1 << BH_Delay)) &&
2195 !(mpd->b_state & (1 << BH_Unwritten)))
2196 return 0;
2199 * If we didn't accumulate anything to write simply return
2201 if (!mpd->b_size)
2202 return 0;
2204 handle = ext4_journal_current_handle();
2205 BUG_ON(!handle);
2208 * Call ext4_get_blocks() to allocate any delayed allocation
2209 * blocks, or to convert an uninitialized extent to be
2210 * initialized (in the case where we have written into
2211 * one or more preallocated blocks).
2213 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2214 * indicate that we are on the delayed allocation path. This
2215 * affects functions in many different parts of the allocation
2216 * call path. This flag exists primarily because we don't
2217 * want to change *many* call functions, so ext4_get_blocks()
2218 * will set the magic i_delalloc_reserved_flag once the
2219 * inode's allocation semaphore is taken.
2221 * If the blocks in questions were delalloc blocks, set
2222 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2223 * variables are updated after the blocks have been allocated.
2225 new.b_state = 0;
2226 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2227 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2228 if (mpd->b_state & (1 << BH_Delay))
2229 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2230 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2231 &new, get_blocks_flags);
2232 if (blks < 0) {
2233 err = blks;
2235 * If get block returns with error we simply
2236 * return. Later writepage will redirty the page and
2237 * writepages will find the dirty page again
2239 if (err == -EAGAIN)
2240 return 0;
2242 if (err == -ENOSPC &&
2243 ext4_count_free_blocks(mpd->inode->i_sb)) {
2244 mpd->retval = err;
2245 return 0;
2249 * get block failure will cause us to loop in
2250 * writepages, because a_ops->writepage won't be able
2251 * to make progress. The page will be redirtied by
2252 * writepage and writepages will again try to write
2253 * the same.
2255 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2256 "delayed block allocation failed for inode %lu at "
2257 "logical offset %llu with max blocks %zd with "
2258 "error %d\n", mpd->inode->i_ino,
2259 (unsigned long long) next,
2260 mpd->b_size >> mpd->inode->i_blkbits, err);
2261 printk(KERN_CRIT "This should not happen!! "
2262 "Data will be lost\n");
2263 if (err == -ENOSPC) {
2264 ext4_print_free_blocks(mpd->inode);
2266 /* invalidate all the pages */
2267 ext4_da_block_invalidatepages(mpd, next,
2268 mpd->b_size >> mpd->inode->i_blkbits);
2269 return err;
2271 BUG_ON(blks == 0);
2273 new.b_size = (blks << mpd->inode->i_blkbits);
2275 if (buffer_new(&new))
2276 __unmap_underlying_blocks(mpd->inode, &new);
2279 * If blocks are delayed marked, we need to
2280 * put actual blocknr and drop delayed bit
2282 if ((mpd->b_state & (1 << BH_Delay)) ||
2283 (mpd->b_state & (1 << BH_Unwritten)))
2284 mpage_put_bnr_to_bhs(mpd, next, &new);
2286 if (ext4_should_order_data(mpd->inode)) {
2287 err = ext4_jbd2_file_inode(handle, mpd->inode);
2288 if (err)
2289 return err;
2293 * Update on-disk size along with block allocation.
2295 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2296 if (disksize > i_size_read(mpd->inode))
2297 disksize = i_size_read(mpd->inode);
2298 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2299 ext4_update_i_disksize(mpd->inode, disksize);
2300 return ext4_mark_inode_dirty(handle, mpd->inode);
2303 return 0;
2306 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2307 (1 << BH_Delay) | (1 << BH_Unwritten))
2310 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2312 * @mpd->lbh - extent of blocks
2313 * @logical - logical number of the block in the file
2314 * @bh - bh of the block (used to access block's state)
2316 * the function is used to collect contig. blocks in same state
2318 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2319 sector_t logical, size_t b_size,
2320 unsigned long b_state)
2322 sector_t next;
2323 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2325 /* check if thereserved journal credits might overflow */
2326 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2327 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2329 * With non-extent format we are limited by the journal
2330 * credit available. Total credit needed to insert
2331 * nrblocks contiguous blocks is dependent on the
2332 * nrblocks. So limit nrblocks.
2334 goto flush_it;
2335 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2336 EXT4_MAX_TRANS_DATA) {
2338 * Adding the new buffer_head would make it cross the
2339 * allowed limit for which we have journal credit
2340 * reserved. So limit the new bh->b_size
2342 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2343 mpd->inode->i_blkbits;
2344 /* we will do mpage_da_submit_io in the next loop */
2348 * First block in the extent
2350 if (mpd->b_size == 0) {
2351 mpd->b_blocknr = logical;
2352 mpd->b_size = b_size;
2353 mpd->b_state = b_state & BH_FLAGS;
2354 return;
2357 next = mpd->b_blocknr + nrblocks;
2359 * Can we merge the block to our big extent?
2361 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2362 mpd->b_size += b_size;
2363 return;
2366 flush_it:
2368 * We couldn't merge the block to our extent, so we
2369 * need to flush current extent and start new one
2371 if (mpage_da_map_blocks(mpd) == 0)
2372 mpage_da_submit_io(mpd);
2373 mpd->io_done = 1;
2374 return;
2377 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2379 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2383 * __mpage_da_writepage - finds extent of pages and blocks
2385 * @page: page to consider
2386 * @wbc: not used, we just follow rules
2387 * @data: context
2389 * The function finds extents of pages and scan them for all blocks.
2391 static int __mpage_da_writepage(struct page *page,
2392 struct writeback_control *wbc, void *data)
2394 struct mpage_da_data *mpd = data;
2395 struct inode *inode = mpd->inode;
2396 struct buffer_head *bh, *head;
2397 sector_t logical;
2399 if (mpd->io_done) {
2401 * Rest of the page in the page_vec
2402 * redirty then and skip then. We will
2403 * try to write them again after
2404 * starting a new transaction
2406 redirty_page_for_writepage(wbc, page);
2407 unlock_page(page);
2408 return MPAGE_DA_EXTENT_TAIL;
2411 * Can we merge this page to current extent?
2413 if (mpd->next_page != page->index) {
2415 * Nope, we can't. So, we map non-allocated blocks
2416 * and start IO on them using writepage()
2418 if (mpd->next_page != mpd->first_page) {
2419 if (mpage_da_map_blocks(mpd) == 0)
2420 mpage_da_submit_io(mpd);
2422 * skip rest of the page in the page_vec
2424 mpd->io_done = 1;
2425 redirty_page_for_writepage(wbc, page);
2426 unlock_page(page);
2427 return MPAGE_DA_EXTENT_TAIL;
2431 * Start next extent of pages ...
2433 mpd->first_page = page->index;
2436 * ... and blocks
2438 mpd->b_size = 0;
2439 mpd->b_state = 0;
2440 mpd->b_blocknr = 0;
2443 mpd->next_page = page->index + 1;
2444 logical = (sector_t) page->index <<
2445 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2447 if (!page_has_buffers(page)) {
2448 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2449 (1 << BH_Dirty) | (1 << BH_Uptodate));
2450 if (mpd->io_done)
2451 return MPAGE_DA_EXTENT_TAIL;
2452 } else {
2454 * Page with regular buffer heads, just add all dirty ones
2456 head = page_buffers(page);
2457 bh = head;
2458 do {
2459 BUG_ON(buffer_locked(bh));
2461 * We need to try to allocate
2462 * unmapped blocks in the same page.
2463 * Otherwise we won't make progress
2464 * with the page in ext4_writepage
2466 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2467 mpage_add_bh_to_extent(mpd, logical,
2468 bh->b_size,
2469 bh->b_state);
2470 if (mpd->io_done)
2471 return MPAGE_DA_EXTENT_TAIL;
2472 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2474 * mapped dirty buffer. We need to update
2475 * the b_state because we look at
2476 * b_state in mpage_da_map_blocks. We don't
2477 * update b_size because if we find an
2478 * unmapped buffer_head later we need to
2479 * use the b_state flag of that buffer_head.
2481 if (mpd->b_size == 0)
2482 mpd->b_state = bh->b_state & BH_FLAGS;
2484 logical++;
2485 } while ((bh = bh->b_this_page) != head);
2488 return 0;
2492 * This is a special get_blocks_t callback which is used by
2493 * ext4_da_write_begin(). It will either return mapped block or
2494 * reserve space for a single block.
2496 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2497 * We also have b_blocknr = -1 and b_bdev initialized properly
2499 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2500 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2501 * initialized properly.
2503 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2504 struct buffer_head *bh_result, int create)
2506 int ret = 0;
2507 sector_t invalid_block = ~((sector_t) 0xffff);
2509 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2510 invalid_block = ~0;
2512 BUG_ON(create == 0);
2513 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2516 * first, we need to know whether the block is allocated already
2517 * preallocated blocks are unmapped but should treated
2518 * the same as allocated blocks.
2520 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2521 if ((ret == 0) && !buffer_delay(bh_result)) {
2522 /* the block isn't (pre)allocated yet, let's reserve space */
2524 * XXX: __block_prepare_write() unmaps passed block,
2525 * is it OK?
2527 ret = ext4_da_reserve_space(inode, 1);
2528 if (ret)
2529 /* not enough space to reserve */
2530 return ret;
2532 map_bh(bh_result, inode->i_sb, invalid_block);
2533 set_buffer_new(bh_result);
2534 set_buffer_delay(bh_result);
2535 } else if (ret > 0) {
2536 bh_result->b_size = (ret << inode->i_blkbits);
2537 if (buffer_unwritten(bh_result)) {
2538 /* A delayed write to unwritten bh should
2539 * be marked new and mapped. Mapped ensures
2540 * that we don't do get_block multiple times
2541 * when we write to the same offset and new
2542 * ensures that we do proper zero out for
2543 * partial write.
2545 set_buffer_new(bh_result);
2546 set_buffer_mapped(bh_result);
2548 ret = 0;
2551 return ret;
2555 * This function is used as a standard get_block_t calback function
2556 * when there is no desire to allocate any blocks. It is used as a
2557 * callback function for block_prepare_write(), nobh_writepage(), and
2558 * block_write_full_page(). These functions should only try to map a
2559 * single block at a time.
2561 * Since this function doesn't do block allocations even if the caller
2562 * requests it by passing in create=1, it is critically important that
2563 * any caller checks to make sure that any buffer heads are returned
2564 * by this function are either all already mapped or marked for
2565 * delayed allocation before calling nobh_writepage() or
2566 * block_write_full_page(). Otherwise, b_blocknr could be left
2567 * unitialized, and the page write functions will be taken by
2568 * surprise.
2570 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2571 struct buffer_head *bh_result, int create)
2573 int ret = 0;
2574 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2576 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2579 * we don't want to do block allocation in writepage
2580 * so call get_block_wrap with create = 0
2582 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2583 if (ret > 0) {
2584 bh_result->b_size = (ret << inode->i_blkbits);
2585 ret = 0;
2587 return ret;
2590 static int bget_one(handle_t *handle, struct buffer_head *bh)
2592 get_bh(bh);
2593 return 0;
2596 static int bput_one(handle_t *handle, struct buffer_head *bh)
2598 put_bh(bh);
2599 return 0;
2602 static int __ext4_journalled_writepage(struct page *page,
2603 struct writeback_control *wbc,
2604 unsigned int len)
2606 struct address_space *mapping = page->mapping;
2607 struct inode *inode = mapping->host;
2608 struct buffer_head *page_bufs;
2609 handle_t *handle = NULL;
2610 int ret = 0;
2611 int err;
2613 page_bufs = page_buffers(page);
2614 BUG_ON(!page_bufs);
2615 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2616 /* As soon as we unlock the page, it can go away, but we have
2617 * references to buffers so we are safe */
2618 unlock_page(page);
2620 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2621 if (IS_ERR(handle)) {
2622 ret = PTR_ERR(handle);
2623 goto out;
2626 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2627 do_journal_get_write_access);
2629 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2630 write_end_fn);
2631 if (ret == 0)
2632 ret = err;
2633 err = ext4_journal_stop(handle);
2634 if (!ret)
2635 ret = err;
2637 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2638 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2639 out:
2640 return ret;
2644 * Note that we don't need to start a transaction unless we're journaling data
2645 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2646 * need to file the inode to the transaction's list in ordered mode because if
2647 * we are writing back data added by write(), the inode is already there and if
2648 * we are writing back data modified via mmap(), noone guarantees in which
2649 * transaction the data will hit the disk. In case we are journaling data, we
2650 * cannot start transaction directly because transaction start ranks above page
2651 * lock so we have to do some magic.
2653 * This function can get called via...
2654 * - ext4_da_writepages after taking page lock (have journal handle)
2655 * - journal_submit_inode_data_buffers (no journal handle)
2656 * - shrink_page_list via pdflush (no journal handle)
2657 * - grab_page_cache when doing write_begin (have journal handle)
2659 * We don't do any block allocation in this function. If we have page with
2660 * multiple blocks we need to write those buffer_heads that are mapped. This
2661 * is important for mmaped based write. So if we do with blocksize 1K
2662 * truncate(f, 1024);
2663 * a = mmap(f, 0, 4096);
2664 * a[0] = 'a';
2665 * truncate(f, 4096);
2666 * we have in the page first buffer_head mapped via page_mkwrite call back
2667 * but other bufer_heads would be unmapped but dirty(dirty done via the
2668 * do_wp_page). So writepage should write the first block. If we modify
2669 * the mmap area beyond 1024 we will again get a page_fault and the
2670 * page_mkwrite callback will do the block allocation and mark the
2671 * buffer_heads mapped.
2673 * We redirty the page if we have any buffer_heads that is either delay or
2674 * unwritten in the page.
2676 * We can get recursively called as show below.
2678 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2679 * ext4_writepage()
2681 * But since we don't do any block allocation we should not deadlock.
2682 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2684 static int ext4_writepage(struct page *page,
2685 struct writeback_control *wbc)
2687 int ret = 0;
2688 loff_t size;
2689 unsigned int len;
2690 struct buffer_head *page_bufs;
2691 struct inode *inode = page->mapping->host;
2693 trace_ext4_writepage(inode, page);
2694 size = i_size_read(inode);
2695 if (page->index == size >> PAGE_CACHE_SHIFT)
2696 len = size & ~PAGE_CACHE_MASK;
2697 else
2698 len = PAGE_CACHE_SIZE;
2700 if (page_has_buffers(page)) {
2701 page_bufs = page_buffers(page);
2702 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2703 ext4_bh_delay_or_unwritten)) {
2705 * We don't want to do block allocation
2706 * So redirty the page and return
2707 * We may reach here when we do a journal commit
2708 * via journal_submit_inode_data_buffers.
2709 * If we don't have mapping block we just ignore
2710 * them. We can also reach here via shrink_page_list
2712 redirty_page_for_writepage(wbc, page);
2713 unlock_page(page);
2714 return 0;
2716 } else {
2718 * The test for page_has_buffers() is subtle:
2719 * We know the page is dirty but it lost buffers. That means
2720 * that at some moment in time after write_begin()/write_end()
2721 * has been called all buffers have been clean and thus they
2722 * must have been written at least once. So they are all
2723 * mapped and we can happily proceed with mapping them
2724 * and writing the page.
2726 * Try to initialize the buffer_heads and check whether
2727 * all are mapped and non delay. We don't want to
2728 * do block allocation here.
2730 ret = block_prepare_write(page, 0, len,
2731 noalloc_get_block_write);
2732 if (!ret) {
2733 page_bufs = page_buffers(page);
2734 /* check whether all are mapped and non delay */
2735 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2736 ext4_bh_delay_or_unwritten)) {
2737 redirty_page_for_writepage(wbc, page);
2738 unlock_page(page);
2739 return 0;
2741 } else {
2743 * We can't do block allocation here
2744 * so just redity the page and unlock
2745 * and return
2747 redirty_page_for_writepage(wbc, page);
2748 unlock_page(page);
2749 return 0;
2751 /* now mark the buffer_heads as dirty and uptodate */
2752 block_commit_write(page, 0, len);
2755 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2757 * It's mmapped pagecache. Add buffers and journal it. There
2758 * doesn't seem much point in redirtying the page here.
2760 ClearPageChecked(page);
2761 return __ext4_journalled_writepage(page, wbc, len);
2764 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2765 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2766 else
2767 ret = block_write_full_page(page, noalloc_get_block_write,
2768 wbc);
2770 return ret;
2774 * This is called via ext4_da_writepages() to
2775 * calulate the total number of credits to reserve to fit
2776 * a single extent allocation into a single transaction,
2777 * ext4_da_writpeages() will loop calling this before
2778 * the block allocation.
2781 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2783 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2786 * With non-extent format the journal credit needed to
2787 * insert nrblocks contiguous block is dependent on
2788 * number of contiguous block. So we will limit
2789 * number of contiguous block to a sane value
2791 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2792 (max_blocks > EXT4_MAX_TRANS_DATA))
2793 max_blocks = EXT4_MAX_TRANS_DATA;
2795 return ext4_chunk_trans_blocks(inode, max_blocks);
2798 static int ext4_da_writepages(struct address_space *mapping,
2799 struct writeback_control *wbc)
2801 pgoff_t index;
2802 int range_whole = 0;
2803 handle_t *handle = NULL;
2804 struct mpage_da_data mpd;
2805 struct inode *inode = mapping->host;
2806 int no_nrwrite_index_update;
2807 int pages_written = 0;
2808 long pages_skipped;
2809 unsigned int max_pages;
2810 int range_cyclic, cycled = 1, io_done = 0;
2811 int needed_blocks, ret = 0;
2812 long desired_nr_to_write, nr_to_writebump = 0;
2813 loff_t range_start = wbc->range_start;
2814 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2816 trace_ext4_da_writepages(inode, wbc);
2819 * No pages to write? This is mainly a kludge to avoid starting
2820 * a transaction for special inodes like journal inode on last iput()
2821 * because that could violate lock ordering on umount
2823 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2824 return 0;
2827 * If the filesystem has aborted, it is read-only, so return
2828 * right away instead of dumping stack traces later on that
2829 * will obscure the real source of the problem. We test
2830 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2831 * the latter could be true if the filesystem is mounted
2832 * read-only, and in that case, ext4_da_writepages should
2833 * *never* be called, so if that ever happens, we would want
2834 * the stack trace.
2836 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2837 return -EROFS;
2839 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2840 range_whole = 1;
2842 range_cyclic = wbc->range_cyclic;
2843 if (wbc->range_cyclic) {
2844 index = mapping->writeback_index;
2845 if (index)
2846 cycled = 0;
2847 wbc->range_start = index << PAGE_CACHE_SHIFT;
2848 wbc->range_end = LLONG_MAX;
2849 wbc->range_cyclic = 0;
2850 } else
2851 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2854 * This works around two forms of stupidity. The first is in
2855 * the writeback code, which caps the maximum number of pages
2856 * written to be 1024 pages. This is wrong on multiple
2857 * levels; different architectues have a different page size,
2858 * which changes the maximum amount of data which gets
2859 * written. Secondly, 4 megabytes is way too small. XFS
2860 * forces this value to be 16 megabytes by multiplying
2861 * nr_to_write parameter by four, and then relies on its
2862 * allocator to allocate larger extents to make them
2863 * contiguous. Unfortunately this brings us to the second
2864 * stupidity, which is that ext4's mballoc code only allocates
2865 * at most 2048 blocks. So we force contiguous writes up to
2866 * the number of dirty blocks in the inode, or
2867 * sbi->max_writeback_mb_bump whichever is smaller.
2869 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2870 if (!range_cyclic && range_whole)
2871 desired_nr_to_write = wbc->nr_to_write * 8;
2872 else
2873 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2874 max_pages);
2875 if (desired_nr_to_write > max_pages)
2876 desired_nr_to_write = max_pages;
2878 if (wbc->nr_to_write < desired_nr_to_write) {
2879 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2880 wbc->nr_to_write = desired_nr_to_write;
2883 mpd.wbc = wbc;
2884 mpd.inode = mapping->host;
2887 * we don't want write_cache_pages to update
2888 * nr_to_write and writeback_index
2890 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2891 wbc->no_nrwrite_index_update = 1;
2892 pages_skipped = wbc->pages_skipped;
2894 retry:
2895 while (!ret && wbc->nr_to_write > 0) {
2898 * we insert one extent at a time. So we need
2899 * credit needed for single extent allocation.
2900 * journalled mode is currently not supported
2901 * by delalloc
2903 BUG_ON(ext4_should_journal_data(inode));
2904 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2906 /* start a new transaction*/
2907 handle = ext4_journal_start(inode, needed_blocks);
2908 if (IS_ERR(handle)) {
2909 ret = PTR_ERR(handle);
2910 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2911 "%ld pages, ino %lu; err %d\n", __func__,
2912 wbc->nr_to_write, inode->i_ino, ret);
2913 goto out_writepages;
2917 * Now call __mpage_da_writepage to find the next
2918 * contiguous region of logical blocks that need
2919 * blocks to be allocated by ext4. We don't actually
2920 * submit the blocks for I/O here, even though
2921 * write_cache_pages thinks it will, and will set the
2922 * pages as clean for write before calling
2923 * __mpage_da_writepage().
2925 mpd.b_size = 0;
2926 mpd.b_state = 0;
2927 mpd.b_blocknr = 0;
2928 mpd.first_page = 0;
2929 mpd.next_page = 0;
2930 mpd.io_done = 0;
2931 mpd.pages_written = 0;
2932 mpd.retval = 0;
2933 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2934 &mpd);
2936 * If we have a contigous extent of pages and we
2937 * haven't done the I/O yet, map the blocks and submit
2938 * them for I/O.
2940 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2941 if (mpage_da_map_blocks(&mpd) == 0)
2942 mpage_da_submit_io(&mpd);
2943 mpd.io_done = 1;
2944 ret = MPAGE_DA_EXTENT_TAIL;
2946 trace_ext4_da_write_pages(inode, &mpd);
2947 wbc->nr_to_write -= mpd.pages_written;
2949 ext4_journal_stop(handle);
2951 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2952 /* commit the transaction which would
2953 * free blocks released in the transaction
2954 * and try again
2956 jbd2_journal_force_commit_nested(sbi->s_journal);
2957 wbc->pages_skipped = pages_skipped;
2958 ret = 0;
2959 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2961 * got one extent now try with
2962 * rest of the pages
2964 pages_written += mpd.pages_written;
2965 wbc->pages_skipped = pages_skipped;
2966 ret = 0;
2967 io_done = 1;
2968 } else if (wbc->nr_to_write)
2970 * There is no more writeout needed
2971 * or we requested for a noblocking writeout
2972 * and we found the device congested
2974 break;
2976 if (!io_done && !cycled) {
2977 cycled = 1;
2978 index = 0;
2979 wbc->range_start = index << PAGE_CACHE_SHIFT;
2980 wbc->range_end = mapping->writeback_index - 1;
2981 goto retry;
2983 if (pages_skipped != wbc->pages_skipped)
2984 ext4_msg(inode->i_sb, KERN_CRIT,
2985 "This should not happen leaving %s "
2986 "with nr_to_write = %ld ret = %d\n",
2987 __func__, wbc->nr_to_write, ret);
2989 /* Update index */
2990 index += pages_written;
2991 wbc->range_cyclic = range_cyclic;
2992 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2994 * set the writeback_index so that range_cyclic
2995 * mode will write it back later
2997 mapping->writeback_index = index;
2999 out_writepages:
3000 if (!no_nrwrite_index_update)
3001 wbc->no_nrwrite_index_update = 0;
3002 if (wbc->nr_to_write > nr_to_writebump)
3003 wbc->nr_to_write -= nr_to_writebump;
3004 wbc->range_start = range_start;
3005 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3006 return ret;
3009 #define FALL_BACK_TO_NONDELALLOC 1
3010 static int ext4_nonda_switch(struct super_block *sb)
3012 s64 free_blocks, dirty_blocks;
3013 struct ext4_sb_info *sbi = EXT4_SB(sb);
3016 * switch to non delalloc mode if we are running low
3017 * on free block. The free block accounting via percpu
3018 * counters can get slightly wrong with percpu_counter_batch getting
3019 * accumulated on each CPU without updating global counters
3020 * Delalloc need an accurate free block accounting. So switch
3021 * to non delalloc when we are near to error range.
3023 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3024 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3025 if (2 * free_blocks < 3 * dirty_blocks ||
3026 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3028 * free block count is less that 150% of dirty blocks
3029 * or free blocks is less that watermark
3031 return 1;
3033 return 0;
3036 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3037 loff_t pos, unsigned len, unsigned flags,
3038 struct page **pagep, void **fsdata)
3040 int ret, retries = 0;
3041 struct page *page;
3042 pgoff_t index;
3043 unsigned from, to;
3044 struct inode *inode = mapping->host;
3045 handle_t *handle;
3047 index = pos >> PAGE_CACHE_SHIFT;
3048 from = pos & (PAGE_CACHE_SIZE - 1);
3049 to = from + len;
3051 if (ext4_nonda_switch(inode->i_sb)) {
3052 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3053 return ext4_write_begin(file, mapping, pos,
3054 len, flags, pagep, fsdata);
3056 *fsdata = (void *)0;
3057 trace_ext4_da_write_begin(inode, pos, len, flags);
3058 retry:
3060 * With delayed allocation, we don't log the i_disksize update
3061 * if there is delayed block allocation. But we still need
3062 * to journalling the i_disksize update if writes to the end
3063 * of file which has an already mapped buffer.
3065 handle = ext4_journal_start(inode, 1);
3066 if (IS_ERR(handle)) {
3067 ret = PTR_ERR(handle);
3068 goto out;
3070 /* We cannot recurse into the filesystem as the transaction is already
3071 * started */
3072 flags |= AOP_FLAG_NOFS;
3074 page = grab_cache_page_write_begin(mapping, index, flags);
3075 if (!page) {
3076 ext4_journal_stop(handle);
3077 ret = -ENOMEM;
3078 goto out;
3080 *pagep = page;
3082 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3083 ext4_da_get_block_prep);
3084 if (ret < 0) {
3085 unlock_page(page);
3086 ext4_journal_stop(handle);
3087 page_cache_release(page);
3089 * block_write_begin may have instantiated a few blocks
3090 * outside i_size. Trim these off again. Don't need
3091 * i_size_read because we hold i_mutex.
3093 if (pos + len > inode->i_size)
3094 ext4_truncate(inode);
3097 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3098 goto retry;
3099 out:
3100 return ret;
3104 * Check if we should update i_disksize
3105 * when write to the end of file but not require block allocation
3107 static int ext4_da_should_update_i_disksize(struct page *page,
3108 unsigned long offset)
3110 struct buffer_head *bh;
3111 struct inode *inode = page->mapping->host;
3112 unsigned int idx;
3113 int i;
3115 bh = page_buffers(page);
3116 idx = offset >> inode->i_blkbits;
3118 for (i = 0; i < idx; i++)
3119 bh = bh->b_this_page;
3121 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3122 return 0;
3123 return 1;
3126 static int ext4_da_write_end(struct file *file,
3127 struct address_space *mapping,
3128 loff_t pos, unsigned len, unsigned copied,
3129 struct page *page, void *fsdata)
3131 struct inode *inode = mapping->host;
3132 int ret = 0, ret2;
3133 handle_t *handle = ext4_journal_current_handle();
3134 loff_t new_i_size;
3135 unsigned long start, end;
3136 int write_mode = (int)(unsigned long)fsdata;
3138 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3139 if (ext4_should_order_data(inode)) {
3140 return ext4_ordered_write_end(file, mapping, pos,
3141 len, copied, page, fsdata);
3142 } else if (ext4_should_writeback_data(inode)) {
3143 return ext4_writeback_write_end(file, mapping, pos,
3144 len, copied, page, fsdata);
3145 } else {
3146 BUG();
3150 trace_ext4_da_write_end(inode, pos, len, copied);
3151 start = pos & (PAGE_CACHE_SIZE - 1);
3152 end = start + copied - 1;
3155 * generic_write_end() will run mark_inode_dirty() if i_size
3156 * changes. So let's piggyback the i_disksize mark_inode_dirty
3157 * into that.
3160 new_i_size = pos + copied;
3161 if (new_i_size > EXT4_I(inode)->i_disksize) {
3162 if (ext4_da_should_update_i_disksize(page, end)) {
3163 down_write(&EXT4_I(inode)->i_data_sem);
3164 if (new_i_size > EXT4_I(inode)->i_disksize) {
3166 * Updating i_disksize when extending file
3167 * without needing block allocation
3169 if (ext4_should_order_data(inode))
3170 ret = ext4_jbd2_file_inode(handle,
3171 inode);
3173 EXT4_I(inode)->i_disksize = new_i_size;
3175 up_write(&EXT4_I(inode)->i_data_sem);
3176 /* We need to mark inode dirty even if
3177 * new_i_size is less that inode->i_size
3178 * bu greater than i_disksize.(hint delalloc)
3180 ext4_mark_inode_dirty(handle, inode);
3183 ret2 = generic_write_end(file, mapping, pos, len, copied,
3184 page, fsdata);
3185 copied = ret2;
3186 if (ret2 < 0)
3187 ret = ret2;
3188 ret2 = ext4_journal_stop(handle);
3189 if (!ret)
3190 ret = ret2;
3192 return ret ? ret : copied;
3195 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3198 * Drop reserved blocks
3200 BUG_ON(!PageLocked(page));
3201 if (!page_has_buffers(page))
3202 goto out;
3204 ext4_da_page_release_reservation(page, offset);
3206 out:
3207 ext4_invalidatepage(page, offset);
3209 return;
3213 * Force all delayed allocation blocks to be allocated for a given inode.
3215 int ext4_alloc_da_blocks(struct inode *inode)
3217 trace_ext4_alloc_da_blocks(inode);
3219 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3220 !EXT4_I(inode)->i_reserved_meta_blocks)
3221 return 0;
3224 * We do something simple for now. The filemap_flush() will
3225 * also start triggering a write of the data blocks, which is
3226 * not strictly speaking necessary (and for users of
3227 * laptop_mode, not even desirable). However, to do otherwise
3228 * would require replicating code paths in:
3230 * ext4_da_writepages() ->
3231 * write_cache_pages() ---> (via passed in callback function)
3232 * __mpage_da_writepage() -->
3233 * mpage_add_bh_to_extent()
3234 * mpage_da_map_blocks()
3236 * The problem is that write_cache_pages(), located in
3237 * mm/page-writeback.c, marks pages clean in preparation for
3238 * doing I/O, which is not desirable if we're not planning on
3239 * doing I/O at all.
3241 * We could call write_cache_pages(), and then redirty all of
3242 * the pages by calling redirty_page_for_writeback() but that
3243 * would be ugly in the extreme. So instead we would need to
3244 * replicate parts of the code in the above functions,
3245 * simplifying them becuase we wouldn't actually intend to
3246 * write out the pages, but rather only collect contiguous
3247 * logical block extents, call the multi-block allocator, and
3248 * then update the buffer heads with the block allocations.
3250 * For now, though, we'll cheat by calling filemap_flush(),
3251 * which will map the blocks, and start the I/O, but not
3252 * actually wait for the I/O to complete.
3254 return filemap_flush(inode->i_mapping);
3258 * bmap() is special. It gets used by applications such as lilo and by
3259 * the swapper to find the on-disk block of a specific piece of data.
3261 * Naturally, this is dangerous if the block concerned is still in the
3262 * journal. If somebody makes a swapfile on an ext4 data-journaling
3263 * filesystem and enables swap, then they may get a nasty shock when the
3264 * data getting swapped to that swapfile suddenly gets overwritten by
3265 * the original zero's written out previously to the journal and
3266 * awaiting writeback in the kernel's buffer cache.
3268 * So, if we see any bmap calls here on a modified, data-journaled file,
3269 * take extra steps to flush any blocks which might be in the cache.
3271 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3273 struct inode *inode = mapping->host;
3274 journal_t *journal;
3275 int err;
3277 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3278 test_opt(inode->i_sb, DELALLOC)) {
3280 * With delalloc we want to sync the file
3281 * so that we can make sure we allocate
3282 * blocks for file
3284 filemap_write_and_wait(mapping);
3287 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3289 * This is a REALLY heavyweight approach, but the use of
3290 * bmap on dirty files is expected to be extremely rare:
3291 * only if we run lilo or swapon on a freshly made file
3292 * do we expect this to happen.
3294 * (bmap requires CAP_SYS_RAWIO so this does not
3295 * represent an unprivileged user DOS attack --- we'd be
3296 * in trouble if mortal users could trigger this path at
3297 * will.)
3299 * NB. EXT4_STATE_JDATA is not set on files other than
3300 * regular files. If somebody wants to bmap a directory
3301 * or symlink and gets confused because the buffer
3302 * hasn't yet been flushed to disk, they deserve
3303 * everything they get.
3306 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3307 journal = EXT4_JOURNAL(inode);
3308 jbd2_journal_lock_updates(journal);
3309 err = jbd2_journal_flush(journal);
3310 jbd2_journal_unlock_updates(journal);
3312 if (err)
3313 return 0;
3316 return generic_block_bmap(mapping, block, ext4_get_block);
3319 static int ext4_readpage(struct file *file, struct page *page)
3321 return mpage_readpage(page, ext4_get_block);
3324 static int
3325 ext4_readpages(struct file *file, struct address_space *mapping,
3326 struct list_head *pages, unsigned nr_pages)
3328 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3331 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3333 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3336 * If it's a full truncate we just forget about the pending dirtying
3338 if (offset == 0)
3339 ClearPageChecked(page);
3341 if (journal)
3342 jbd2_journal_invalidatepage(journal, page, offset);
3343 else
3344 block_invalidatepage(page, offset);
3347 static int ext4_releasepage(struct page *page, gfp_t wait)
3349 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3351 WARN_ON(PageChecked(page));
3352 if (!page_has_buffers(page))
3353 return 0;
3354 if (journal)
3355 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3356 else
3357 return try_to_free_buffers(page);
3361 * O_DIRECT for ext3 (or indirect map) based files
3363 * If the O_DIRECT write will extend the file then add this inode to the
3364 * orphan list. So recovery will truncate it back to the original size
3365 * if the machine crashes during the write.
3367 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3368 * crashes then stale disk data _may_ be exposed inside the file. But current
3369 * VFS code falls back into buffered path in that case so we are safe.
3371 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3372 const struct iovec *iov, loff_t offset,
3373 unsigned long nr_segs)
3375 struct file *file = iocb->ki_filp;
3376 struct inode *inode = file->f_mapping->host;
3377 struct ext4_inode_info *ei = EXT4_I(inode);
3378 handle_t *handle;
3379 ssize_t ret;
3380 int orphan = 0;
3381 size_t count = iov_length(iov, nr_segs);
3382 int retries = 0;
3384 if (rw == WRITE) {
3385 loff_t final_size = offset + count;
3387 if (final_size > inode->i_size) {
3388 /* Credits for sb + inode write */
3389 handle = ext4_journal_start(inode, 2);
3390 if (IS_ERR(handle)) {
3391 ret = PTR_ERR(handle);
3392 goto out;
3394 ret = ext4_orphan_add(handle, inode);
3395 if (ret) {
3396 ext4_journal_stop(handle);
3397 goto out;
3399 orphan = 1;
3400 ei->i_disksize = inode->i_size;
3401 ext4_journal_stop(handle);
3405 retry:
3406 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3407 offset, nr_segs,
3408 ext4_get_block, NULL);
3409 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3410 goto retry;
3412 if (orphan) {
3413 int err;
3415 /* Credits for sb + inode write */
3416 handle = ext4_journal_start(inode, 2);
3417 if (IS_ERR(handle)) {
3418 /* This is really bad luck. We've written the data
3419 * but cannot extend i_size. Bail out and pretend
3420 * the write failed... */
3421 ret = PTR_ERR(handle);
3422 goto out;
3424 if (inode->i_nlink)
3425 ext4_orphan_del(handle, inode);
3426 if (ret > 0) {
3427 loff_t end = offset + ret;
3428 if (end > inode->i_size) {
3429 ei->i_disksize = end;
3430 i_size_write(inode, end);
3432 * We're going to return a positive `ret'
3433 * here due to non-zero-length I/O, so there's
3434 * no way of reporting error returns from
3435 * ext4_mark_inode_dirty() to userspace. So
3436 * ignore it.
3438 ext4_mark_inode_dirty(handle, inode);
3441 err = ext4_journal_stop(handle);
3442 if (ret == 0)
3443 ret = err;
3445 out:
3446 return ret;
3449 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3450 struct buffer_head *bh_result, int create)
3452 handle_t *handle = NULL;
3453 int ret = 0;
3454 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3455 int dio_credits;
3457 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3458 inode->i_ino, create);
3460 * DIO VFS code passes create = 0 flag for write to
3461 * the middle of file. It does this to avoid block
3462 * allocation for holes, to prevent expose stale data
3463 * out when there is parallel buffered read (which does
3464 * not hold the i_mutex lock) while direct IO write has
3465 * not completed. DIO request on holes finally falls back
3466 * to buffered IO for this reason.
3468 * For ext4 extent based file, since we support fallocate,
3469 * new allocated extent as uninitialized, for holes, we
3470 * could fallocate blocks for holes, thus parallel
3471 * buffered IO read will zero out the page when read on
3472 * a hole while parallel DIO write to the hole has not completed.
3474 * when we come here, we know it's a direct IO write to
3475 * to the middle of file (<i_size)
3476 * so it's safe to override the create flag from VFS.
3478 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3480 if (max_blocks > DIO_MAX_BLOCKS)
3481 max_blocks = DIO_MAX_BLOCKS;
3482 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3483 handle = ext4_journal_start(inode, dio_credits);
3484 if (IS_ERR(handle)) {
3485 ret = PTR_ERR(handle);
3486 goto out;
3488 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3489 create);
3490 if (ret > 0) {
3491 bh_result->b_size = (ret << inode->i_blkbits);
3492 ret = 0;
3494 ext4_journal_stop(handle);
3495 out:
3496 return ret;
3499 static void ext4_free_io_end(ext4_io_end_t *io)
3501 BUG_ON(!io);
3502 iput(io->inode);
3503 kfree(io);
3505 static void dump_aio_dio_list(struct inode * inode)
3507 #ifdef EXT4_DEBUG
3508 struct list_head *cur, *before, *after;
3509 ext4_io_end_t *io, *io0, *io1;
3511 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3512 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3513 return;
3516 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3517 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3518 cur = &io->list;
3519 before = cur->prev;
3520 io0 = container_of(before, ext4_io_end_t, list);
3521 after = cur->next;
3522 io1 = container_of(after, ext4_io_end_t, list);
3524 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3525 io, inode->i_ino, io0, io1);
3527 #endif
3531 * check a range of space and convert unwritten extents to written.
3533 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3535 struct inode *inode = io->inode;
3536 loff_t offset = io->offset;
3537 size_t size = io->size;
3538 int ret = 0;
3540 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3541 "list->prev 0x%p\n",
3542 io, inode->i_ino, io->list.next, io->list.prev);
3544 if (list_empty(&io->list))
3545 return ret;
3547 if (io->flag != DIO_AIO_UNWRITTEN)
3548 return ret;
3550 if (offset + size <= i_size_read(inode))
3551 ret = ext4_convert_unwritten_extents(inode, offset, size);
3553 if (ret < 0) {
3554 printk(KERN_EMERG "%s: failed to convert unwritten"
3555 "extents to written extents, error is %d"
3556 " io is still on inode %lu aio dio list\n",
3557 __func__, ret, inode->i_ino);
3558 return ret;
3561 /* clear the DIO AIO unwritten flag */
3562 io->flag = 0;
3563 return ret;
3566 * work on completed aio dio IO, to convert unwritten extents to extents
3568 static void ext4_end_aio_dio_work(struct work_struct *work)
3570 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3571 struct inode *inode = io->inode;
3572 int ret = 0;
3574 mutex_lock(&inode->i_mutex);
3575 ret = ext4_end_aio_dio_nolock(io);
3576 if (ret >= 0) {
3577 if (!list_empty(&io->list))
3578 list_del_init(&io->list);
3579 ext4_free_io_end(io);
3581 mutex_unlock(&inode->i_mutex);
3584 * This function is called from ext4_sync_file().
3586 * When AIO DIO IO is completed, the work to convert unwritten
3587 * extents to written is queued on workqueue but may not get immediately
3588 * scheduled. When fsync is called, we need to ensure the
3589 * conversion is complete before fsync returns.
3590 * The inode keeps track of a list of completed AIO from DIO path
3591 * that might needs to do the conversion. This function walks through
3592 * the list and convert the related unwritten extents to written.
3594 int flush_aio_dio_completed_IO(struct inode *inode)
3596 ext4_io_end_t *io;
3597 int ret = 0;
3598 int ret2 = 0;
3600 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3601 return ret;
3603 dump_aio_dio_list(inode);
3604 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3605 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3606 ext4_io_end_t, list);
3608 * Calling ext4_end_aio_dio_nolock() to convert completed
3609 * IO to written.
3611 * When ext4_sync_file() is called, run_queue() may already
3612 * about to flush the work corresponding to this io structure.
3613 * It will be upset if it founds the io structure related
3614 * to the work-to-be schedule is freed.
3616 * Thus we need to keep the io structure still valid here after
3617 * convertion finished. The io structure has a flag to
3618 * avoid double converting from both fsync and background work
3619 * queue work.
3621 ret = ext4_end_aio_dio_nolock(io);
3622 if (ret < 0)
3623 ret2 = ret;
3624 else
3625 list_del_init(&io->list);
3627 return (ret2 < 0) ? ret2 : 0;
3630 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3632 ext4_io_end_t *io = NULL;
3634 io = kmalloc(sizeof(*io), GFP_NOFS);
3636 if (io) {
3637 igrab(inode);
3638 io->inode = inode;
3639 io->flag = 0;
3640 io->offset = 0;
3641 io->size = 0;
3642 io->error = 0;
3643 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3644 INIT_LIST_HEAD(&io->list);
3647 return io;
3650 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3651 ssize_t size, void *private)
3653 ext4_io_end_t *io_end = iocb->private;
3654 struct workqueue_struct *wq;
3656 /* if not async direct IO or dio with 0 bytes write, just return */
3657 if (!io_end || !size)
3658 return;
3660 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3661 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3662 iocb->private, io_end->inode->i_ino, iocb, offset,
3663 size);
3665 /* if not aio dio with unwritten extents, just free io and return */
3666 if (io_end->flag != DIO_AIO_UNWRITTEN){
3667 ext4_free_io_end(io_end);
3668 iocb->private = NULL;
3669 return;
3672 io_end->offset = offset;
3673 io_end->size = size;
3674 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3676 /* queue the work to convert unwritten extents to written */
3677 queue_work(wq, &io_end->work);
3679 /* Add the io_end to per-inode completed aio dio list*/
3680 list_add_tail(&io_end->list,
3681 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3682 iocb->private = NULL;
3685 * For ext4 extent files, ext4 will do direct-io write to holes,
3686 * preallocated extents, and those write extend the file, no need to
3687 * fall back to buffered IO.
3689 * For holes, we fallocate those blocks, mark them as unintialized
3690 * If those blocks were preallocated, we mark sure they are splited, but
3691 * still keep the range to write as unintialized.
3693 * The unwrritten extents will be converted to written when DIO is completed.
3694 * For async direct IO, since the IO may still pending when return, we
3695 * set up an end_io call back function, which will do the convertion
3696 * when async direct IO completed.
3698 * If the O_DIRECT write will extend the file then add this inode to the
3699 * orphan list. So recovery will truncate it back to the original size
3700 * if the machine crashes during the write.
3703 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3704 const struct iovec *iov, loff_t offset,
3705 unsigned long nr_segs)
3707 struct file *file = iocb->ki_filp;
3708 struct inode *inode = file->f_mapping->host;
3709 ssize_t ret;
3710 size_t count = iov_length(iov, nr_segs);
3712 loff_t final_size = offset + count;
3713 if (rw == WRITE && final_size <= inode->i_size) {
3715 * We could direct write to holes and fallocate.
3717 * Allocated blocks to fill the hole are marked as uninitialized
3718 * to prevent paralel buffered read to expose the stale data
3719 * before DIO complete the data IO.
3721 * As to previously fallocated extents, ext4 get_block
3722 * will just simply mark the buffer mapped but still
3723 * keep the extents uninitialized.
3725 * for non AIO case, we will convert those unwritten extents
3726 * to written after return back from blockdev_direct_IO.
3728 * for async DIO, the conversion needs to be defered when
3729 * the IO is completed. The ext4 end_io callback function
3730 * will be called to take care of the conversion work.
3731 * Here for async case, we allocate an io_end structure to
3732 * hook to the iocb.
3734 iocb->private = NULL;
3735 EXT4_I(inode)->cur_aio_dio = NULL;
3736 if (!is_sync_kiocb(iocb)) {
3737 iocb->private = ext4_init_io_end(inode);
3738 if (!iocb->private)
3739 return -ENOMEM;
3741 * we save the io structure for current async
3742 * direct IO, so that later ext4_get_blocks()
3743 * could flag the io structure whether there
3744 * is a unwritten extents needs to be converted
3745 * when IO is completed.
3747 EXT4_I(inode)->cur_aio_dio = iocb->private;
3750 ret = blockdev_direct_IO(rw, iocb, inode,
3751 inode->i_sb->s_bdev, iov,
3752 offset, nr_segs,
3753 ext4_get_block_dio_write,
3754 ext4_end_io_dio);
3755 if (iocb->private)
3756 EXT4_I(inode)->cur_aio_dio = NULL;
3758 * The io_end structure takes a reference to the inode,
3759 * that structure needs to be destroyed and the
3760 * reference to the inode need to be dropped, when IO is
3761 * complete, even with 0 byte write, or failed.
3763 * In the successful AIO DIO case, the io_end structure will be
3764 * desctroyed and the reference to the inode will be dropped
3765 * after the end_io call back function is called.
3767 * In the case there is 0 byte write, or error case, since
3768 * VFS direct IO won't invoke the end_io call back function,
3769 * we need to free the end_io structure here.
3771 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3772 ext4_free_io_end(iocb->private);
3773 iocb->private = NULL;
3774 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3775 EXT4_STATE_DIO_UNWRITTEN)) {
3776 int err;
3778 * for non AIO case, since the IO is already
3779 * completed, we could do the convertion right here
3781 err = ext4_convert_unwritten_extents(inode,
3782 offset, ret);
3783 if (err < 0)
3784 ret = err;
3785 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3787 return ret;
3790 /* for write the the end of file case, we fall back to old way */
3791 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3794 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3795 const struct iovec *iov, loff_t offset,
3796 unsigned long nr_segs)
3798 struct file *file = iocb->ki_filp;
3799 struct inode *inode = file->f_mapping->host;
3801 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3802 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3804 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3808 * Pages can be marked dirty completely asynchronously from ext4's journalling
3809 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3810 * much here because ->set_page_dirty is called under VFS locks. The page is
3811 * not necessarily locked.
3813 * We cannot just dirty the page and leave attached buffers clean, because the
3814 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3815 * or jbddirty because all the journalling code will explode.
3817 * So what we do is to mark the page "pending dirty" and next time writepage
3818 * is called, propagate that into the buffers appropriately.
3820 static int ext4_journalled_set_page_dirty(struct page *page)
3822 SetPageChecked(page);
3823 return __set_page_dirty_nobuffers(page);
3826 static const struct address_space_operations ext4_ordered_aops = {
3827 .readpage = ext4_readpage,
3828 .readpages = ext4_readpages,
3829 .writepage = ext4_writepage,
3830 .sync_page = block_sync_page,
3831 .write_begin = ext4_write_begin,
3832 .write_end = ext4_ordered_write_end,
3833 .bmap = ext4_bmap,
3834 .invalidatepage = ext4_invalidatepage,
3835 .releasepage = ext4_releasepage,
3836 .direct_IO = ext4_direct_IO,
3837 .migratepage = buffer_migrate_page,
3838 .is_partially_uptodate = block_is_partially_uptodate,
3839 .error_remove_page = generic_error_remove_page,
3842 static const struct address_space_operations ext4_writeback_aops = {
3843 .readpage = ext4_readpage,
3844 .readpages = ext4_readpages,
3845 .writepage = ext4_writepage,
3846 .sync_page = block_sync_page,
3847 .write_begin = ext4_write_begin,
3848 .write_end = ext4_writeback_write_end,
3849 .bmap = ext4_bmap,
3850 .invalidatepage = ext4_invalidatepage,
3851 .releasepage = ext4_releasepage,
3852 .direct_IO = ext4_direct_IO,
3853 .migratepage = buffer_migrate_page,
3854 .is_partially_uptodate = block_is_partially_uptodate,
3855 .error_remove_page = generic_error_remove_page,
3858 static const struct address_space_operations ext4_journalled_aops = {
3859 .readpage = ext4_readpage,
3860 .readpages = ext4_readpages,
3861 .writepage = ext4_writepage,
3862 .sync_page = block_sync_page,
3863 .write_begin = ext4_write_begin,
3864 .write_end = ext4_journalled_write_end,
3865 .set_page_dirty = ext4_journalled_set_page_dirty,
3866 .bmap = ext4_bmap,
3867 .invalidatepage = ext4_invalidatepage,
3868 .releasepage = ext4_releasepage,
3869 .is_partially_uptodate = block_is_partially_uptodate,
3870 .error_remove_page = generic_error_remove_page,
3873 static const struct address_space_operations ext4_da_aops = {
3874 .readpage = ext4_readpage,
3875 .readpages = ext4_readpages,
3876 .writepage = ext4_writepage,
3877 .writepages = ext4_da_writepages,
3878 .sync_page = block_sync_page,
3879 .write_begin = ext4_da_write_begin,
3880 .write_end = ext4_da_write_end,
3881 .bmap = ext4_bmap,
3882 .invalidatepage = ext4_da_invalidatepage,
3883 .releasepage = ext4_releasepage,
3884 .direct_IO = ext4_direct_IO,
3885 .migratepage = buffer_migrate_page,
3886 .is_partially_uptodate = block_is_partially_uptodate,
3887 .error_remove_page = generic_error_remove_page,
3890 void ext4_set_aops(struct inode *inode)
3892 if (ext4_should_order_data(inode) &&
3893 test_opt(inode->i_sb, DELALLOC))
3894 inode->i_mapping->a_ops = &ext4_da_aops;
3895 else if (ext4_should_order_data(inode))
3896 inode->i_mapping->a_ops = &ext4_ordered_aops;
3897 else if (ext4_should_writeback_data(inode) &&
3898 test_opt(inode->i_sb, DELALLOC))
3899 inode->i_mapping->a_ops = &ext4_da_aops;
3900 else if (ext4_should_writeback_data(inode))
3901 inode->i_mapping->a_ops = &ext4_writeback_aops;
3902 else
3903 inode->i_mapping->a_ops = &ext4_journalled_aops;
3907 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3908 * up to the end of the block which corresponds to `from'.
3909 * This required during truncate. We need to physically zero the tail end
3910 * of that block so it doesn't yield old data if the file is later grown.
3912 int ext4_block_truncate_page(handle_t *handle,
3913 struct address_space *mapping, loff_t from)
3915 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3916 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3917 unsigned blocksize, length, pos;
3918 ext4_lblk_t iblock;
3919 struct inode *inode = mapping->host;
3920 struct buffer_head *bh;
3921 struct page *page;
3922 int err = 0;
3924 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3925 mapping_gfp_mask(mapping) & ~__GFP_FS);
3926 if (!page)
3927 return -EINVAL;
3929 blocksize = inode->i_sb->s_blocksize;
3930 length = blocksize - (offset & (blocksize - 1));
3931 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3934 * For "nobh" option, we can only work if we don't need to
3935 * read-in the page - otherwise we create buffers to do the IO.
3937 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3938 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3939 zero_user(page, offset, length);
3940 set_page_dirty(page);
3941 goto unlock;
3944 if (!page_has_buffers(page))
3945 create_empty_buffers(page, blocksize, 0);
3947 /* Find the buffer that contains "offset" */
3948 bh = page_buffers(page);
3949 pos = blocksize;
3950 while (offset >= pos) {
3951 bh = bh->b_this_page;
3952 iblock++;
3953 pos += blocksize;
3956 err = 0;
3957 if (buffer_freed(bh)) {
3958 BUFFER_TRACE(bh, "freed: skip");
3959 goto unlock;
3962 if (!buffer_mapped(bh)) {
3963 BUFFER_TRACE(bh, "unmapped");
3964 ext4_get_block(inode, iblock, bh, 0);
3965 /* unmapped? It's a hole - nothing to do */
3966 if (!buffer_mapped(bh)) {
3967 BUFFER_TRACE(bh, "still unmapped");
3968 goto unlock;
3972 /* Ok, it's mapped. Make sure it's up-to-date */
3973 if (PageUptodate(page))
3974 set_buffer_uptodate(bh);
3976 if (!buffer_uptodate(bh)) {
3977 err = -EIO;
3978 ll_rw_block(READ, 1, &bh);
3979 wait_on_buffer(bh);
3980 /* Uhhuh. Read error. Complain and punt. */
3981 if (!buffer_uptodate(bh))
3982 goto unlock;
3985 if (ext4_should_journal_data(inode)) {
3986 BUFFER_TRACE(bh, "get write access");
3987 err = ext4_journal_get_write_access(handle, bh);
3988 if (err)
3989 goto unlock;
3992 zero_user(page, offset, length);
3994 BUFFER_TRACE(bh, "zeroed end of block");
3996 err = 0;
3997 if (ext4_should_journal_data(inode)) {
3998 err = ext4_handle_dirty_metadata(handle, inode, bh);
3999 } else {
4000 if (ext4_should_order_data(inode))
4001 err = ext4_jbd2_file_inode(handle, inode);
4002 mark_buffer_dirty(bh);
4005 unlock:
4006 unlock_page(page);
4007 page_cache_release(page);
4008 return err;
4012 * Probably it should be a library function... search for first non-zero word
4013 * or memcmp with zero_page, whatever is better for particular architecture.
4014 * Linus?
4016 static inline int all_zeroes(__le32 *p, __le32 *q)
4018 while (p < q)
4019 if (*p++)
4020 return 0;
4021 return 1;
4025 * ext4_find_shared - find the indirect blocks for partial truncation.
4026 * @inode: inode in question
4027 * @depth: depth of the affected branch
4028 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4029 * @chain: place to store the pointers to partial indirect blocks
4030 * @top: place to the (detached) top of branch
4032 * This is a helper function used by ext4_truncate().
4034 * When we do truncate() we may have to clean the ends of several
4035 * indirect blocks but leave the blocks themselves alive. Block is
4036 * partially truncated if some data below the new i_size is refered
4037 * from it (and it is on the path to the first completely truncated
4038 * data block, indeed). We have to free the top of that path along
4039 * with everything to the right of the path. Since no allocation
4040 * past the truncation point is possible until ext4_truncate()
4041 * finishes, we may safely do the latter, but top of branch may
4042 * require special attention - pageout below the truncation point
4043 * might try to populate it.
4045 * We atomically detach the top of branch from the tree, store the
4046 * block number of its root in *@top, pointers to buffer_heads of
4047 * partially truncated blocks - in @chain[].bh and pointers to
4048 * their last elements that should not be removed - in
4049 * @chain[].p. Return value is the pointer to last filled element
4050 * of @chain.
4052 * The work left to caller to do the actual freeing of subtrees:
4053 * a) free the subtree starting from *@top
4054 * b) free the subtrees whose roots are stored in
4055 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4056 * c) free the subtrees growing from the inode past the @chain[0].
4057 * (no partially truncated stuff there). */
4059 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4060 ext4_lblk_t offsets[4], Indirect chain[4],
4061 __le32 *top)
4063 Indirect *partial, *p;
4064 int k, err;
4066 *top = 0;
4067 /* Make k index the deepest non-null offest + 1 */
4068 for (k = depth; k > 1 && !offsets[k-1]; k--)
4070 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4071 /* Writer: pointers */
4072 if (!partial)
4073 partial = chain + k-1;
4075 * If the branch acquired continuation since we've looked at it -
4076 * fine, it should all survive and (new) top doesn't belong to us.
4078 if (!partial->key && *partial->p)
4079 /* Writer: end */
4080 goto no_top;
4081 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4084 * OK, we've found the last block that must survive. The rest of our
4085 * branch should be detached before unlocking. However, if that rest
4086 * of branch is all ours and does not grow immediately from the inode
4087 * it's easier to cheat and just decrement partial->p.
4089 if (p == chain + k - 1 && p > chain) {
4090 p->p--;
4091 } else {
4092 *top = *p->p;
4093 /* Nope, don't do this in ext4. Must leave the tree intact */
4094 #if 0
4095 *p->p = 0;
4096 #endif
4098 /* Writer: end */
4100 while (partial > p) {
4101 brelse(partial->bh);
4102 partial--;
4104 no_top:
4105 return partial;
4109 * Zero a number of block pointers in either an inode or an indirect block.
4110 * If we restart the transaction we must again get write access to the
4111 * indirect block for further modification.
4113 * We release `count' blocks on disk, but (last - first) may be greater
4114 * than `count' because there can be holes in there.
4116 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4117 struct buffer_head *bh,
4118 ext4_fsblk_t block_to_free,
4119 unsigned long count, __le32 *first,
4120 __le32 *last)
4122 __le32 *p;
4123 if (try_to_extend_transaction(handle, inode)) {
4124 if (bh) {
4125 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4126 ext4_handle_dirty_metadata(handle, inode, bh);
4128 ext4_mark_inode_dirty(handle, inode);
4129 ext4_truncate_restart_trans(handle, inode,
4130 blocks_for_truncate(inode));
4131 if (bh) {
4132 BUFFER_TRACE(bh, "retaking write access");
4133 ext4_journal_get_write_access(handle, bh);
4138 * Any buffers which are on the journal will be in memory. We
4139 * find them on the hash table so jbd2_journal_revoke() will
4140 * run jbd2_journal_forget() on them. We've already detached
4141 * each block from the file, so bforget() in
4142 * jbd2_journal_forget() should be safe.
4144 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4146 for (p = first; p < last; p++) {
4147 u32 nr = le32_to_cpu(*p);
4148 if (nr) {
4149 struct buffer_head *tbh;
4151 *p = 0;
4152 tbh = sb_find_get_block(inode->i_sb, nr);
4153 ext4_forget(handle, 0, inode, tbh, nr);
4157 ext4_free_blocks(handle, inode, block_to_free, count, 0);
4161 * ext4_free_data - free a list of data blocks
4162 * @handle: handle for this transaction
4163 * @inode: inode we are dealing with
4164 * @this_bh: indirect buffer_head which contains *@first and *@last
4165 * @first: array of block numbers
4166 * @last: points immediately past the end of array
4168 * We are freeing all blocks refered from that array (numbers are stored as
4169 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4171 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4172 * blocks are contiguous then releasing them at one time will only affect one
4173 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4174 * actually use a lot of journal space.
4176 * @this_bh will be %NULL if @first and @last point into the inode's direct
4177 * block pointers.
4179 static void ext4_free_data(handle_t *handle, struct inode *inode,
4180 struct buffer_head *this_bh,
4181 __le32 *first, __le32 *last)
4183 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4184 unsigned long count = 0; /* Number of blocks in the run */
4185 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4186 corresponding to
4187 block_to_free */
4188 ext4_fsblk_t nr; /* Current block # */
4189 __le32 *p; /* Pointer into inode/ind
4190 for current block */
4191 int err;
4193 if (this_bh) { /* For indirect block */
4194 BUFFER_TRACE(this_bh, "get_write_access");
4195 err = ext4_journal_get_write_access(handle, this_bh);
4196 /* Important: if we can't update the indirect pointers
4197 * to the blocks, we can't free them. */
4198 if (err)
4199 return;
4202 for (p = first; p < last; p++) {
4203 nr = le32_to_cpu(*p);
4204 if (nr) {
4205 /* accumulate blocks to free if they're contiguous */
4206 if (count == 0) {
4207 block_to_free = nr;
4208 block_to_free_p = p;
4209 count = 1;
4210 } else if (nr == block_to_free + count) {
4211 count++;
4212 } else {
4213 ext4_clear_blocks(handle, inode, this_bh,
4214 block_to_free,
4215 count, block_to_free_p, p);
4216 block_to_free = nr;
4217 block_to_free_p = p;
4218 count = 1;
4223 if (count > 0)
4224 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4225 count, block_to_free_p, p);
4227 if (this_bh) {
4228 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4231 * The buffer head should have an attached journal head at this
4232 * point. However, if the data is corrupted and an indirect
4233 * block pointed to itself, it would have been detached when
4234 * the block was cleared. Check for this instead of OOPSing.
4236 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4237 ext4_handle_dirty_metadata(handle, inode, this_bh);
4238 else
4239 ext4_error(inode->i_sb, __func__,
4240 "circular indirect block detected, "
4241 "inode=%lu, block=%llu",
4242 inode->i_ino,
4243 (unsigned long long) this_bh->b_blocknr);
4248 * ext4_free_branches - free an array of branches
4249 * @handle: JBD handle for this transaction
4250 * @inode: inode we are dealing with
4251 * @parent_bh: the buffer_head which contains *@first and *@last
4252 * @first: array of block numbers
4253 * @last: pointer immediately past the end of array
4254 * @depth: depth of the branches to free
4256 * We are freeing all blocks refered from these branches (numbers are
4257 * stored as little-endian 32-bit) and updating @inode->i_blocks
4258 * appropriately.
4260 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4261 struct buffer_head *parent_bh,
4262 __le32 *first, __le32 *last, int depth)
4264 ext4_fsblk_t nr;
4265 __le32 *p;
4267 if (ext4_handle_is_aborted(handle))
4268 return;
4270 if (depth--) {
4271 struct buffer_head *bh;
4272 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4273 p = last;
4274 while (--p >= first) {
4275 nr = le32_to_cpu(*p);
4276 if (!nr)
4277 continue; /* A hole */
4279 /* Go read the buffer for the next level down */
4280 bh = sb_bread(inode->i_sb, nr);
4283 * A read failure? Report error and clear slot
4284 * (should be rare).
4286 if (!bh) {
4287 ext4_error(inode->i_sb, "ext4_free_branches",
4288 "Read failure, inode=%lu, block=%llu",
4289 inode->i_ino, nr);
4290 continue;
4293 /* This zaps the entire block. Bottom up. */
4294 BUFFER_TRACE(bh, "free child branches");
4295 ext4_free_branches(handle, inode, bh,
4296 (__le32 *) bh->b_data,
4297 (__le32 *) bh->b_data + addr_per_block,
4298 depth);
4301 * We've probably journalled the indirect block several
4302 * times during the truncate. But it's no longer
4303 * needed and we now drop it from the transaction via
4304 * jbd2_journal_revoke().
4306 * That's easy if it's exclusively part of this
4307 * transaction. But if it's part of the committing
4308 * transaction then jbd2_journal_forget() will simply
4309 * brelse() it. That means that if the underlying
4310 * block is reallocated in ext4_get_block(),
4311 * unmap_underlying_metadata() will find this block
4312 * and will try to get rid of it. damn, damn.
4314 * If this block has already been committed to the
4315 * journal, a revoke record will be written. And
4316 * revoke records must be emitted *before* clearing
4317 * this block's bit in the bitmaps.
4319 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4322 * Everything below this this pointer has been
4323 * released. Now let this top-of-subtree go.
4325 * We want the freeing of this indirect block to be
4326 * atomic in the journal with the updating of the
4327 * bitmap block which owns it. So make some room in
4328 * the journal.
4330 * We zero the parent pointer *after* freeing its
4331 * pointee in the bitmaps, so if extend_transaction()
4332 * for some reason fails to put the bitmap changes and
4333 * the release into the same transaction, recovery
4334 * will merely complain about releasing a free block,
4335 * rather than leaking blocks.
4337 if (ext4_handle_is_aborted(handle))
4338 return;
4339 if (try_to_extend_transaction(handle, inode)) {
4340 ext4_mark_inode_dirty(handle, inode);
4341 ext4_truncate_restart_trans(handle, inode,
4342 blocks_for_truncate(inode));
4345 ext4_free_blocks(handle, inode, nr, 1, 1);
4347 if (parent_bh) {
4349 * The block which we have just freed is
4350 * pointed to by an indirect block: journal it
4352 BUFFER_TRACE(parent_bh, "get_write_access");
4353 if (!ext4_journal_get_write_access(handle,
4354 parent_bh)){
4355 *p = 0;
4356 BUFFER_TRACE(parent_bh,
4357 "call ext4_handle_dirty_metadata");
4358 ext4_handle_dirty_metadata(handle,
4359 inode,
4360 parent_bh);
4364 } else {
4365 /* We have reached the bottom of the tree. */
4366 BUFFER_TRACE(parent_bh, "free data blocks");
4367 ext4_free_data(handle, inode, parent_bh, first, last);
4371 int ext4_can_truncate(struct inode *inode)
4373 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4374 return 0;
4375 if (S_ISREG(inode->i_mode))
4376 return 1;
4377 if (S_ISDIR(inode->i_mode))
4378 return 1;
4379 if (S_ISLNK(inode->i_mode))
4380 return !ext4_inode_is_fast_symlink(inode);
4381 return 0;
4385 * ext4_truncate()
4387 * We block out ext4_get_block() block instantiations across the entire
4388 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4389 * simultaneously on behalf of the same inode.
4391 * As we work through the truncate and commmit bits of it to the journal there
4392 * is one core, guiding principle: the file's tree must always be consistent on
4393 * disk. We must be able to restart the truncate after a crash.
4395 * The file's tree may be transiently inconsistent in memory (although it
4396 * probably isn't), but whenever we close off and commit a journal transaction,
4397 * the contents of (the filesystem + the journal) must be consistent and
4398 * restartable. It's pretty simple, really: bottom up, right to left (although
4399 * left-to-right works OK too).
4401 * Note that at recovery time, journal replay occurs *before* the restart of
4402 * truncate against the orphan inode list.
4404 * The committed inode has the new, desired i_size (which is the same as
4405 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4406 * that this inode's truncate did not complete and it will again call
4407 * ext4_truncate() to have another go. So there will be instantiated blocks
4408 * to the right of the truncation point in a crashed ext4 filesystem. But
4409 * that's fine - as long as they are linked from the inode, the post-crash
4410 * ext4_truncate() run will find them and release them.
4412 void ext4_truncate(struct inode *inode)
4414 handle_t *handle;
4415 struct ext4_inode_info *ei = EXT4_I(inode);
4416 __le32 *i_data = ei->i_data;
4417 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4418 struct address_space *mapping = inode->i_mapping;
4419 ext4_lblk_t offsets[4];
4420 Indirect chain[4];
4421 Indirect *partial;
4422 __le32 nr = 0;
4423 int n;
4424 ext4_lblk_t last_block;
4425 unsigned blocksize = inode->i_sb->s_blocksize;
4427 if (!ext4_can_truncate(inode))
4428 return;
4430 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4431 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4433 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4434 ext4_ext_truncate(inode);
4435 return;
4438 handle = start_transaction(inode);
4439 if (IS_ERR(handle))
4440 return; /* AKPM: return what? */
4442 last_block = (inode->i_size + blocksize-1)
4443 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4445 if (inode->i_size & (blocksize - 1))
4446 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4447 goto out_stop;
4449 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4450 if (n == 0)
4451 goto out_stop; /* error */
4454 * OK. This truncate is going to happen. We add the inode to the
4455 * orphan list, so that if this truncate spans multiple transactions,
4456 * and we crash, we will resume the truncate when the filesystem
4457 * recovers. It also marks the inode dirty, to catch the new size.
4459 * Implication: the file must always be in a sane, consistent
4460 * truncatable state while each transaction commits.
4462 if (ext4_orphan_add(handle, inode))
4463 goto out_stop;
4466 * From here we block out all ext4_get_block() callers who want to
4467 * modify the block allocation tree.
4469 down_write(&ei->i_data_sem);
4471 ext4_discard_preallocations(inode);
4474 * The orphan list entry will now protect us from any crash which
4475 * occurs before the truncate completes, so it is now safe to propagate
4476 * the new, shorter inode size (held for now in i_size) into the
4477 * on-disk inode. We do this via i_disksize, which is the value which
4478 * ext4 *really* writes onto the disk inode.
4480 ei->i_disksize = inode->i_size;
4482 if (n == 1) { /* direct blocks */
4483 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4484 i_data + EXT4_NDIR_BLOCKS);
4485 goto do_indirects;
4488 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4489 /* Kill the top of shared branch (not detached) */
4490 if (nr) {
4491 if (partial == chain) {
4492 /* Shared branch grows from the inode */
4493 ext4_free_branches(handle, inode, NULL,
4494 &nr, &nr+1, (chain+n-1) - partial);
4495 *partial->p = 0;
4497 * We mark the inode dirty prior to restart,
4498 * and prior to stop. No need for it here.
4500 } else {
4501 /* Shared branch grows from an indirect block */
4502 BUFFER_TRACE(partial->bh, "get_write_access");
4503 ext4_free_branches(handle, inode, partial->bh,
4504 partial->p,
4505 partial->p+1, (chain+n-1) - partial);
4508 /* Clear the ends of indirect blocks on the shared branch */
4509 while (partial > chain) {
4510 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4511 (__le32*)partial->bh->b_data+addr_per_block,
4512 (chain+n-1) - partial);
4513 BUFFER_TRACE(partial->bh, "call brelse");
4514 brelse(partial->bh);
4515 partial--;
4517 do_indirects:
4518 /* Kill the remaining (whole) subtrees */
4519 switch (offsets[0]) {
4520 default:
4521 nr = i_data[EXT4_IND_BLOCK];
4522 if (nr) {
4523 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4524 i_data[EXT4_IND_BLOCK] = 0;
4526 case EXT4_IND_BLOCK:
4527 nr = i_data[EXT4_DIND_BLOCK];
4528 if (nr) {
4529 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4530 i_data[EXT4_DIND_BLOCK] = 0;
4532 case EXT4_DIND_BLOCK:
4533 nr = i_data[EXT4_TIND_BLOCK];
4534 if (nr) {
4535 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4536 i_data[EXT4_TIND_BLOCK] = 0;
4538 case EXT4_TIND_BLOCK:
4542 up_write(&ei->i_data_sem);
4543 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4544 ext4_mark_inode_dirty(handle, inode);
4547 * In a multi-transaction truncate, we only make the final transaction
4548 * synchronous
4550 if (IS_SYNC(inode))
4551 ext4_handle_sync(handle);
4552 out_stop:
4554 * If this was a simple ftruncate(), and the file will remain alive
4555 * then we need to clear up the orphan record which we created above.
4556 * However, if this was a real unlink then we were called by
4557 * ext4_delete_inode(), and we allow that function to clean up the
4558 * orphan info for us.
4560 if (inode->i_nlink)
4561 ext4_orphan_del(handle, inode);
4563 ext4_journal_stop(handle);
4567 * ext4_get_inode_loc returns with an extra refcount against the inode's
4568 * underlying buffer_head on success. If 'in_mem' is true, we have all
4569 * data in memory that is needed to recreate the on-disk version of this
4570 * inode.
4572 static int __ext4_get_inode_loc(struct inode *inode,
4573 struct ext4_iloc *iloc, int in_mem)
4575 struct ext4_group_desc *gdp;
4576 struct buffer_head *bh;
4577 struct super_block *sb = inode->i_sb;
4578 ext4_fsblk_t block;
4579 int inodes_per_block, inode_offset;
4581 iloc->bh = NULL;
4582 if (!ext4_valid_inum(sb, inode->i_ino))
4583 return -EIO;
4585 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4586 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4587 if (!gdp)
4588 return -EIO;
4591 * Figure out the offset within the block group inode table
4593 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4594 inode_offset = ((inode->i_ino - 1) %
4595 EXT4_INODES_PER_GROUP(sb));
4596 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4597 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4599 bh = sb_getblk(sb, block);
4600 if (!bh) {
4601 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4602 "inode block - inode=%lu, block=%llu",
4603 inode->i_ino, block);
4604 return -EIO;
4606 if (!buffer_uptodate(bh)) {
4607 lock_buffer(bh);
4610 * If the buffer has the write error flag, we have failed
4611 * to write out another inode in the same block. In this
4612 * case, we don't have to read the block because we may
4613 * read the old inode data successfully.
4615 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4616 set_buffer_uptodate(bh);
4618 if (buffer_uptodate(bh)) {
4619 /* someone brought it uptodate while we waited */
4620 unlock_buffer(bh);
4621 goto has_buffer;
4625 * If we have all information of the inode in memory and this
4626 * is the only valid inode in the block, we need not read the
4627 * block.
4629 if (in_mem) {
4630 struct buffer_head *bitmap_bh;
4631 int i, start;
4633 start = inode_offset & ~(inodes_per_block - 1);
4635 /* Is the inode bitmap in cache? */
4636 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4637 if (!bitmap_bh)
4638 goto make_io;
4641 * If the inode bitmap isn't in cache then the
4642 * optimisation may end up performing two reads instead
4643 * of one, so skip it.
4645 if (!buffer_uptodate(bitmap_bh)) {
4646 brelse(bitmap_bh);
4647 goto make_io;
4649 for (i = start; i < start + inodes_per_block; i++) {
4650 if (i == inode_offset)
4651 continue;
4652 if (ext4_test_bit(i, bitmap_bh->b_data))
4653 break;
4655 brelse(bitmap_bh);
4656 if (i == start + inodes_per_block) {
4657 /* all other inodes are free, so skip I/O */
4658 memset(bh->b_data, 0, bh->b_size);
4659 set_buffer_uptodate(bh);
4660 unlock_buffer(bh);
4661 goto has_buffer;
4665 make_io:
4667 * If we need to do any I/O, try to pre-readahead extra
4668 * blocks from the inode table.
4670 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4671 ext4_fsblk_t b, end, table;
4672 unsigned num;
4674 table = ext4_inode_table(sb, gdp);
4675 /* s_inode_readahead_blks is always a power of 2 */
4676 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4677 if (table > b)
4678 b = table;
4679 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4680 num = EXT4_INODES_PER_GROUP(sb);
4681 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4682 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4683 num -= ext4_itable_unused_count(sb, gdp);
4684 table += num / inodes_per_block;
4685 if (end > table)
4686 end = table;
4687 while (b <= end)
4688 sb_breadahead(sb, b++);
4692 * There are other valid inodes in the buffer, this inode
4693 * has in-inode xattrs, or we don't have this inode in memory.
4694 * Read the block from disk.
4696 get_bh(bh);
4697 bh->b_end_io = end_buffer_read_sync;
4698 submit_bh(READ_META, bh);
4699 wait_on_buffer(bh);
4700 if (!buffer_uptodate(bh)) {
4701 ext4_error(sb, __func__,
4702 "unable to read inode block - inode=%lu, "
4703 "block=%llu", inode->i_ino, block);
4704 brelse(bh);
4705 return -EIO;
4708 has_buffer:
4709 iloc->bh = bh;
4710 return 0;
4713 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4715 /* We have all inode data except xattrs in memory here. */
4716 return __ext4_get_inode_loc(inode, iloc,
4717 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4720 void ext4_set_inode_flags(struct inode *inode)
4722 unsigned int flags = EXT4_I(inode)->i_flags;
4724 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4725 if (flags & EXT4_SYNC_FL)
4726 inode->i_flags |= S_SYNC;
4727 if (flags & EXT4_APPEND_FL)
4728 inode->i_flags |= S_APPEND;
4729 if (flags & EXT4_IMMUTABLE_FL)
4730 inode->i_flags |= S_IMMUTABLE;
4731 if (flags & EXT4_NOATIME_FL)
4732 inode->i_flags |= S_NOATIME;
4733 if (flags & EXT4_DIRSYNC_FL)
4734 inode->i_flags |= S_DIRSYNC;
4737 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4738 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4740 unsigned int flags = ei->vfs_inode.i_flags;
4742 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4743 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4744 if (flags & S_SYNC)
4745 ei->i_flags |= EXT4_SYNC_FL;
4746 if (flags & S_APPEND)
4747 ei->i_flags |= EXT4_APPEND_FL;
4748 if (flags & S_IMMUTABLE)
4749 ei->i_flags |= EXT4_IMMUTABLE_FL;
4750 if (flags & S_NOATIME)
4751 ei->i_flags |= EXT4_NOATIME_FL;
4752 if (flags & S_DIRSYNC)
4753 ei->i_flags |= EXT4_DIRSYNC_FL;
4756 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4757 struct ext4_inode_info *ei)
4759 blkcnt_t i_blocks ;
4760 struct inode *inode = &(ei->vfs_inode);
4761 struct super_block *sb = inode->i_sb;
4763 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4764 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4765 /* we are using combined 48 bit field */
4766 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4767 le32_to_cpu(raw_inode->i_blocks_lo);
4768 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4769 /* i_blocks represent file system block size */
4770 return i_blocks << (inode->i_blkbits - 9);
4771 } else {
4772 return i_blocks;
4774 } else {
4775 return le32_to_cpu(raw_inode->i_blocks_lo);
4779 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4781 struct ext4_iloc iloc;
4782 struct ext4_inode *raw_inode;
4783 struct ext4_inode_info *ei;
4784 struct buffer_head *bh;
4785 struct inode *inode;
4786 long ret;
4787 int block;
4789 inode = iget_locked(sb, ino);
4790 if (!inode)
4791 return ERR_PTR(-ENOMEM);
4792 if (!(inode->i_state & I_NEW))
4793 return inode;
4795 ei = EXT4_I(inode);
4797 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4798 if (ret < 0)
4799 goto bad_inode;
4800 bh = iloc.bh;
4801 raw_inode = ext4_raw_inode(&iloc);
4802 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4803 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4804 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4805 if (!(test_opt(inode->i_sb, NO_UID32))) {
4806 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4807 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4809 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4811 ei->i_state = 0;
4812 ei->i_dir_start_lookup = 0;
4813 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4814 /* We now have enough fields to check if the inode was active or not.
4815 * This is needed because nfsd might try to access dead inodes
4816 * the test is that same one that e2fsck uses
4817 * NeilBrown 1999oct15
4819 if (inode->i_nlink == 0) {
4820 if (inode->i_mode == 0 ||
4821 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4822 /* this inode is deleted */
4823 brelse(bh);
4824 ret = -ESTALE;
4825 goto bad_inode;
4827 /* The only unlinked inodes we let through here have
4828 * valid i_mode and are being read by the orphan
4829 * recovery code: that's fine, we're about to complete
4830 * the process of deleting those. */
4832 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4833 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4834 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4835 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4836 ei->i_file_acl |=
4837 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4838 inode->i_size = ext4_isize(raw_inode);
4839 ei->i_disksize = inode->i_size;
4840 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4841 ei->i_block_group = iloc.block_group;
4842 ei->i_last_alloc_group = ~0;
4844 * NOTE! The in-memory inode i_data array is in little-endian order
4845 * even on big-endian machines: we do NOT byteswap the block numbers!
4847 for (block = 0; block < EXT4_N_BLOCKS; block++)
4848 ei->i_data[block] = raw_inode->i_block[block];
4849 INIT_LIST_HEAD(&ei->i_orphan);
4851 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4852 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4853 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4854 EXT4_INODE_SIZE(inode->i_sb)) {
4855 brelse(bh);
4856 ret = -EIO;
4857 goto bad_inode;
4859 if (ei->i_extra_isize == 0) {
4860 /* The extra space is currently unused. Use it. */
4861 ei->i_extra_isize = sizeof(struct ext4_inode) -
4862 EXT4_GOOD_OLD_INODE_SIZE;
4863 } else {
4864 __le32 *magic = (void *)raw_inode +
4865 EXT4_GOOD_OLD_INODE_SIZE +
4866 ei->i_extra_isize;
4867 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4868 ei->i_state |= EXT4_STATE_XATTR;
4870 } else
4871 ei->i_extra_isize = 0;
4873 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4874 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4875 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4876 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4878 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4879 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4880 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4881 inode->i_version |=
4882 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4885 ret = 0;
4886 if (ei->i_file_acl &&
4887 ((ei->i_file_acl <
4888 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4889 EXT4_SB(sb)->s_gdb_count)) ||
4890 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4891 ext4_error(sb, __func__,
4892 "bad extended attribute block %llu in inode #%lu",
4893 ei->i_file_acl, inode->i_ino);
4894 ret = -EIO;
4895 goto bad_inode;
4896 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4897 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4898 (S_ISLNK(inode->i_mode) &&
4899 !ext4_inode_is_fast_symlink(inode)))
4900 /* Validate extent which is part of inode */
4901 ret = ext4_ext_check_inode(inode);
4902 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4903 (S_ISLNK(inode->i_mode) &&
4904 !ext4_inode_is_fast_symlink(inode))) {
4905 /* Validate block references which are part of inode */
4906 ret = ext4_check_inode_blockref(inode);
4908 if (ret) {
4909 brelse(bh);
4910 goto bad_inode;
4913 if (S_ISREG(inode->i_mode)) {
4914 inode->i_op = &ext4_file_inode_operations;
4915 inode->i_fop = &ext4_file_operations;
4916 ext4_set_aops(inode);
4917 } else if (S_ISDIR(inode->i_mode)) {
4918 inode->i_op = &ext4_dir_inode_operations;
4919 inode->i_fop = &ext4_dir_operations;
4920 } else if (S_ISLNK(inode->i_mode)) {
4921 if (ext4_inode_is_fast_symlink(inode)) {
4922 inode->i_op = &ext4_fast_symlink_inode_operations;
4923 nd_terminate_link(ei->i_data, inode->i_size,
4924 sizeof(ei->i_data) - 1);
4925 } else {
4926 inode->i_op = &ext4_symlink_inode_operations;
4927 ext4_set_aops(inode);
4929 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4930 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4931 inode->i_op = &ext4_special_inode_operations;
4932 if (raw_inode->i_block[0])
4933 init_special_inode(inode, inode->i_mode,
4934 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4935 else
4936 init_special_inode(inode, inode->i_mode,
4937 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4938 } else {
4939 brelse(bh);
4940 ret = -EIO;
4941 ext4_error(inode->i_sb, __func__,
4942 "bogus i_mode (%o) for inode=%lu",
4943 inode->i_mode, inode->i_ino);
4944 goto bad_inode;
4946 brelse(iloc.bh);
4947 ext4_set_inode_flags(inode);
4948 unlock_new_inode(inode);
4949 return inode;
4951 bad_inode:
4952 iget_failed(inode);
4953 return ERR_PTR(ret);
4956 static int ext4_inode_blocks_set(handle_t *handle,
4957 struct ext4_inode *raw_inode,
4958 struct ext4_inode_info *ei)
4960 struct inode *inode = &(ei->vfs_inode);
4961 u64 i_blocks = inode->i_blocks;
4962 struct super_block *sb = inode->i_sb;
4964 if (i_blocks <= ~0U) {
4966 * i_blocks can be represnted in a 32 bit variable
4967 * as multiple of 512 bytes
4969 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4970 raw_inode->i_blocks_high = 0;
4971 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4972 return 0;
4974 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4975 return -EFBIG;
4977 if (i_blocks <= 0xffffffffffffULL) {
4979 * i_blocks can be represented in a 48 bit variable
4980 * as multiple of 512 bytes
4982 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4983 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4984 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4985 } else {
4986 ei->i_flags |= EXT4_HUGE_FILE_FL;
4987 /* i_block is stored in file system block size */
4988 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4989 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4990 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4992 return 0;
4996 * Post the struct inode info into an on-disk inode location in the
4997 * buffer-cache. This gobbles the caller's reference to the
4998 * buffer_head in the inode location struct.
5000 * The caller must have write access to iloc->bh.
5002 static int ext4_do_update_inode(handle_t *handle,
5003 struct inode *inode,
5004 struct ext4_iloc *iloc)
5006 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5007 struct ext4_inode_info *ei = EXT4_I(inode);
5008 struct buffer_head *bh = iloc->bh;
5009 int err = 0, rc, block;
5011 /* For fields not not tracking in the in-memory inode,
5012 * initialise them to zero for new inodes. */
5013 if (ei->i_state & EXT4_STATE_NEW)
5014 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5016 ext4_get_inode_flags(ei);
5017 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5018 if (!(test_opt(inode->i_sb, NO_UID32))) {
5019 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5020 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5022 * Fix up interoperability with old kernels. Otherwise, old inodes get
5023 * re-used with the upper 16 bits of the uid/gid intact
5025 if (!ei->i_dtime) {
5026 raw_inode->i_uid_high =
5027 cpu_to_le16(high_16_bits(inode->i_uid));
5028 raw_inode->i_gid_high =
5029 cpu_to_le16(high_16_bits(inode->i_gid));
5030 } else {
5031 raw_inode->i_uid_high = 0;
5032 raw_inode->i_gid_high = 0;
5034 } else {
5035 raw_inode->i_uid_low =
5036 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5037 raw_inode->i_gid_low =
5038 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5039 raw_inode->i_uid_high = 0;
5040 raw_inode->i_gid_high = 0;
5042 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5044 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5045 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5046 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5047 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5049 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5050 goto out_brelse;
5051 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5052 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5053 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5054 cpu_to_le32(EXT4_OS_HURD))
5055 raw_inode->i_file_acl_high =
5056 cpu_to_le16(ei->i_file_acl >> 32);
5057 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5058 ext4_isize_set(raw_inode, ei->i_disksize);
5059 if (ei->i_disksize > 0x7fffffffULL) {
5060 struct super_block *sb = inode->i_sb;
5061 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5062 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5063 EXT4_SB(sb)->s_es->s_rev_level ==
5064 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5065 /* If this is the first large file
5066 * created, add a flag to the superblock.
5068 err = ext4_journal_get_write_access(handle,
5069 EXT4_SB(sb)->s_sbh);
5070 if (err)
5071 goto out_brelse;
5072 ext4_update_dynamic_rev(sb);
5073 EXT4_SET_RO_COMPAT_FEATURE(sb,
5074 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5075 sb->s_dirt = 1;
5076 ext4_handle_sync(handle);
5077 err = ext4_handle_dirty_metadata(handle, inode,
5078 EXT4_SB(sb)->s_sbh);
5081 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5082 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5083 if (old_valid_dev(inode->i_rdev)) {
5084 raw_inode->i_block[0] =
5085 cpu_to_le32(old_encode_dev(inode->i_rdev));
5086 raw_inode->i_block[1] = 0;
5087 } else {
5088 raw_inode->i_block[0] = 0;
5089 raw_inode->i_block[1] =
5090 cpu_to_le32(new_encode_dev(inode->i_rdev));
5091 raw_inode->i_block[2] = 0;
5093 } else
5094 for (block = 0; block < EXT4_N_BLOCKS; block++)
5095 raw_inode->i_block[block] = ei->i_data[block];
5097 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5098 if (ei->i_extra_isize) {
5099 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5100 raw_inode->i_version_hi =
5101 cpu_to_le32(inode->i_version >> 32);
5102 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5105 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5106 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5107 if (!err)
5108 err = rc;
5109 ei->i_state &= ~EXT4_STATE_NEW;
5111 out_brelse:
5112 brelse(bh);
5113 ext4_std_error(inode->i_sb, err);
5114 return err;
5118 * ext4_write_inode()
5120 * We are called from a few places:
5122 * - Within generic_file_write() for O_SYNC files.
5123 * Here, there will be no transaction running. We wait for any running
5124 * trasnaction to commit.
5126 * - Within sys_sync(), kupdate and such.
5127 * We wait on commit, if tol to.
5129 * - Within prune_icache() (PF_MEMALLOC == true)
5130 * Here we simply return. We can't afford to block kswapd on the
5131 * journal commit.
5133 * In all cases it is actually safe for us to return without doing anything,
5134 * because the inode has been copied into a raw inode buffer in
5135 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5136 * knfsd.
5138 * Note that we are absolutely dependent upon all inode dirtiers doing the
5139 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5140 * which we are interested.
5142 * It would be a bug for them to not do this. The code:
5144 * mark_inode_dirty(inode)
5145 * stuff();
5146 * inode->i_size = expr;
5148 * is in error because a kswapd-driven write_inode() could occur while
5149 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5150 * will no longer be on the superblock's dirty inode list.
5152 int ext4_write_inode(struct inode *inode, int wait)
5154 int err;
5156 if (current->flags & PF_MEMALLOC)
5157 return 0;
5159 if (EXT4_SB(inode->i_sb)->s_journal) {
5160 if (ext4_journal_current_handle()) {
5161 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5162 dump_stack();
5163 return -EIO;
5166 if (!wait)
5167 return 0;
5169 err = ext4_force_commit(inode->i_sb);
5170 } else {
5171 struct ext4_iloc iloc;
5173 err = ext4_get_inode_loc(inode, &iloc);
5174 if (err)
5175 return err;
5176 if (wait)
5177 sync_dirty_buffer(iloc.bh);
5178 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5179 ext4_error(inode->i_sb, __func__,
5180 "IO error syncing inode, "
5181 "inode=%lu, block=%llu",
5182 inode->i_ino,
5183 (unsigned long long)iloc.bh->b_blocknr);
5184 err = -EIO;
5187 return err;
5191 * ext4_setattr()
5193 * Called from notify_change.
5195 * We want to trap VFS attempts to truncate the file as soon as
5196 * possible. In particular, we want to make sure that when the VFS
5197 * shrinks i_size, we put the inode on the orphan list and modify
5198 * i_disksize immediately, so that during the subsequent flushing of
5199 * dirty pages and freeing of disk blocks, we can guarantee that any
5200 * commit will leave the blocks being flushed in an unused state on
5201 * disk. (On recovery, the inode will get truncated and the blocks will
5202 * be freed, so we have a strong guarantee that no future commit will
5203 * leave these blocks visible to the user.)
5205 * Another thing we have to assure is that if we are in ordered mode
5206 * and inode is still attached to the committing transaction, we must
5207 * we start writeout of all the dirty pages which are being truncated.
5208 * This way we are sure that all the data written in the previous
5209 * transaction are already on disk (truncate waits for pages under
5210 * writeback).
5212 * Called with inode->i_mutex down.
5214 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5216 struct inode *inode = dentry->d_inode;
5217 int error, rc = 0;
5218 const unsigned int ia_valid = attr->ia_valid;
5220 error = inode_change_ok(inode, attr);
5221 if (error)
5222 return error;
5224 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5225 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5226 handle_t *handle;
5228 /* (user+group)*(old+new) structure, inode write (sb,
5229 * inode block, ? - but truncate inode update has it) */
5230 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5231 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5232 if (IS_ERR(handle)) {
5233 error = PTR_ERR(handle);
5234 goto err_out;
5236 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5237 if (error) {
5238 ext4_journal_stop(handle);
5239 return error;
5241 /* Update corresponding info in inode so that everything is in
5242 * one transaction */
5243 if (attr->ia_valid & ATTR_UID)
5244 inode->i_uid = attr->ia_uid;
5245 if (attr->ia_valid & ATTR_GID)
5246 inode->i_gid = attr->ia_gid;
5247 error = ext4_mark_inode_dirty(handle, inode);
5248 ext4_journal_stop(handle);
5251 if (attr->ia_valid & ATTR_SIZE) {
5252 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5253 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5255 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5256 error = -EFBIG;
5257 goto err_out;
5262 if (S_ISREG(inode->i_mode) &&
5263 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5264 handle_t *handle;
5266 handle = ext4_journal_start(inode, 3);
5267 if (IS_ERR(handle)) {
5268 error = PTR_ERR(handle);
5269 goto err_out;
5272 error = ext4_orphan_add(handle, inode);
5273 EXT4_I(inode)->i_disksize = attr->ia_size;
5274 rc = ext4_mark_inode_dirty(handle, inode);
5275 if (!error)
5276 error = rc;
5277 ext4_journal_stop(handle);
5279 if (ext4_should_order_data(inode)) {
5280 error = ext4_begin_ordered_truncate(inode,
5281 attr->ia_size);
5282 if (error) {
5283 /* Do as much error cleanup as possible */
5284 handle = ext4_journal_start(inode, 3);
5285 if (IS_ERR(handle)) {
5286 ext4_orphan_del(NULL, inode);
5287 goto err_out;
5289 ext4_orphan_del(handle, inode);
5290 ext4_journal_stop(handle);
5291 goto err_out;
5296 rc = inode_setattr(inode, attr);
5298 /* If inode_setattr's call to ext4_truncate failed to get a
5299 * transaction handle at all, we need to clean up the in-core
5300 * orphan list manually. */
5301 if (inode->i_nlink)
5302 ext4_orphan_del(NULL, inode);
5304 if (!rc && (ia_valid & ATTR_MODE))
5305 rc = ext4_acl_chmod(inode);
5307 err_out:
5308 ext4_std_error(inode->i_sb, error);
5309 if (!error)
5310 error = rc;
5311 return error;
5314 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5315 struct kstat *stat)
5317 struct inode *inode;
5318 unsigned long delalloc_blocks;
5320 inode = dentry->d_inode;
5321 generic_fillattr(inode, stat);
5324 * We can't update i_blocks if the block allocation is delayed
5325 * otherwise in the case of system crash before the real block
5326 * allocation is done, we will have i_blocks inconsistent with
5327 * on-disk file blocks.
5328 * We always keep i_blocks updated together with real
5329 * allocation. But to not confuse with user, stat
5330 * will return the blocks that include the delayed allocation
5331 * blocks for this file.
5333 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5334 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5335 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5337 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5338 return 0;
5341 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5342 int chunk)
5344 int indirects;
5346 /* if nrblocks are contiguous */
5347 if (chunk) {
5349 * With N contiguous data blocks, it need at most
5350 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5351 * 2 dindirect blocks
5352 * 1 tindirect block
5354 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5355 return indirects + 3;
5358 * if nrblocks are not contiguous, worse case, each block touch
5359 * a indirect block, and each indirect block touch a double indirect
5360 * block, plus a triple indirect block
5362 indirects = nrblocks * 2 + 1;
5363 return indirects;
5366 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5368 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5369 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5370 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5374 * Account for index blocks, block groups bitmaps and block group
5375 * descriptor blocks if modify datablocks and index blocks
5376 * worse case, the indexs blocks spread over different block groups
5378 * If datablocks are discontiguous, they are possible to spread over
5379 * different block groups too. If they are contiugous, with flexbg,
5380 * they could still across block group boundary.
5382 * Also account for superblock, inode, quota and xattr blocks
5384 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5386 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5387 int gdpblocks;
5388 int idxblocks;
5389 int ret = 0;
5392 * How many index blocks need to touch to modify nrblocks?
5393 * The "Chunk" flag indicating whether the nrblocks is
5394 * physically contiguous on disk
5396 * For Direct IO and fallocate, they calls get_block to allocate
5397 * one single extent at a time, so they could set the "Chunk" flag
5399 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5401 ret = idxblocks;
5404 * Now let's see how many group bitmaps and group descriptors need
5405 * to account
5407 groups = idxblocks;
5408 if (chunk)
5409 groups += 1;
5410 else
5411 groups += nrblocks;
5413 gdpblocks = groups;
5414 if (groups > ngroups)
5415 groups = ngroups;
5416 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5417 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5419 /* bitmaps and block group descriptor blocks */
5420 ret += groups + gdpblocks;
5422 /* Blocks for super block, inode, quota and xattr blocks */
5423 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5425 return ret;
5429 * Calulate the total number of credits to reserve to fit
5430 * the modification of a single pages into a single transaction,
5431 * which may include multiple chunks of block allocations.
5433 * This could be called via ext4_write_begin()
5435 * We need to consider the worse case, when
5436 * one new block per extent.
5438 int ext4_writepage_trans_blocks(struct inode *inode)
5440 int bpp = ext4_journal_blocks_per_page(inode);
5441 int ret;
5443 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5445 /* Account for data blocks for journalled mode */
5446 if (ext4_should_journal_data(inode))
5447 ret += bpp;
5448 return ret;
5452 * Calculate the journal credits for a chunk of data modification.
5454 * This is called from DIO, fallocate or whoever calling
5455 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5457 * journal buffers for data blocks are not included here, as DIO
5458 * and fallocate do no need to journal data buffers.
5460 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5462 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5466 * The caller must have previously called ext4_reserve_inode_write().
5467 * Give this, we know that the caller already has write access to iloc->bh.
5469 int ext4_mark_iloc_dirty(handle_t *handle,
5470 struct inode *inode, struct ext4_iloc *iloc)
5472 int err = 0;
5474 if (test_opt(inode->i_sb, I_VERSION))
5475 inode_inc_iversion(inode);
5477 /* the do_update_inode consumes one bh->b_count */
5478 get_bh(iloc->bh);
5480 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5481 err = ext4_do_update_inode(handle, inode, iloc);
5482 put_bh(iloc->bh);
5483 return err;
5487 * On success, We end up with an outstanding reference count against
5488 * iloc->bh. This _must_ be cleaned up later.
5492 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5493 struct ext4_iloc *iloc)
5495 int err;
5497 err = ext4_get_inode_loc(inode, iloc);
5498 if (!err) {
5499 BUFFER_TRACE(iloc->bh, "get_write_access");
5500 err = ext4_journal_get_write_access(handle, iloc->bh);
5501 if (err) {
5502 brelse(iloc->bh);
5503 iloc->bh = NULL;
5506 ext4_std_error(inode->i_sb, err);
5507 return err;
5511 * Expand an inode by new_extra_isize bytes.
5512 * Returns 0 on success or negative error number on failure.
5514 static int ext4_expand_extra_isize(struct inode *inode,
5515 unsigned int new_extra_isize,
5516 struct ext4_iloc iloc,
5517 handle_t *handle)
5519 struct ext4_inode *raw_inode;
5520 struct ext4_xattr_ibody_header *header;
5521 struct ext4_xattr_entry *entry;
5523 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5524 return 0;
5526 raw_inode = ext4_raw_inode(&iloc);
5528 header = IHDR(inode, raw_inode);
5529 entry = IFIRST(header);
5531 /* No extended attributes present */
5532 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5533 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5534 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5535 new_extra_isize);
5536 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5537 return 0;
5540 /* try to expand with EAs present */
5541 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5542 raw_inode, handle);
5546 * What we do here is to mark the in-core inode as clean with respect to inode
5547 * dirtiness (it may still be data-dirty).
5548 * This means that the in-core inode may be reaped by prune_icache
5549 * without having to perform any I/O. This is a very good thing,
5550 * because *any* task may call prune_icache - even ones which
5551 * have a transaction open against a different journal.
5553 * Is this cheating? Not really. Sure, we haven't written the
5554 * inode out, but prune_icache isn't a user-visible syncing function.
5555 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5556 * we start and wait on commits.
5558 * Is this efficient/effective? Well, we're being nice to the system
5559 * by cleaning up our inodes proactively so they can be reaped
5560 * without I/O. But we are potentially leaving up to five seconds'
5561 * worth of inodes floating about which prune_icache wants us to
5562 * write out. One way to fix that would be to get prune_icache()
5563 * to do a write_super() to free up some memory. It has the desired
5564 * effect.
5566 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5568 struct ext4_iloc iloc;
5569 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5570 static unsigned int mnt_count;
5571 int err, ret;
5573 might_sleep();
5574 err = ext4_reserve_inode_write(handle, inode, &iloc);
5575 if (ext4_handle_valid(handle) &&
5576 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5577 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5579 * We need extra buffer credits since we may write into EA block
5580 * with this same handle. If journal_extend fails, then it will
5581 * only result in a minor loss of functionality for that inode.
5582 * If this is felt to be critical, then e2fsck should be run to
5583 * force a large enough s_min_extra_isize.
5585 if ((jbd2_journal_extend(handle,
5586 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5587 ret = ext4_expand_extra_isize(inode,
5588 sbi->s_want_extra_isize,
5589 iloc, handle);
5590 if (ret) {
5591 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5592 if (mnt_count !=
5593 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5594 ext4_warning(inode->i_sb, __func__,
5595 "Unable to expand inode %lu. Delete"
5596 " some EAs or run e2fsck.",
5597 inode->i_ino);
5598 mnt_count =
5599 le16_to_cpu(sbi->s_es->s_mnt_count);
5604 if (!err)
5605 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5606 return err;
5610 * ext4_dirty_inode() is called from __mark_inode_dirty()
5612 * We're really interested in the case where a file is being extended.
5613 * i_size has been changed by generic_commit_write() and we thus need
5614 * to include the updated inode in the current transaction.
5616 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5617 * are allocated to the file.
5619 * If the inode is marked synchronous, we don't honour that here - doing
5620 * so would cause a commit on atime updates, which we don't bother doing.
5621 * We handle synchronous inodes at the highest possible level.
5623 void ext4_dirty_inode(struct inode *inode)
5625 handle_t *handle;
5627 handle = ext4_journal_start(inode, 2);
5628 if (IS_ERR(handle))
5629 goto out;
5631 ext4_mark_inode_dirty(handle, inode);
5633 ext4_journal_stop(handle);
5634 out:
5635 return;
5638 #if 0
5640 * Bind an inode's backing buffer_head into this transaction, to prevent
5641 * it from being flushed to disk early. Unlike
5642 * ext4_reserve_inode_write, this leaves behind no bh reference and
5643 * returns no iloc structure, so the caller needs to repeat the iloc
5644 * lookup to mark the inode dirty later.
5646 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5648 struct ext4_iloc iloc;
5650 int err = 0;
5651 if (handle) {
5652 err = ext4_get_inode_loc(inode, &iloc);
5653 if (!err) {
5654 BUFFER_TRACE(iloc.bh, "get_write_access");
5655 err = jbd2_journal_get_write_access(handle, iloc.bh);
5656 if (!err)
5657 err = ext4_handle_dirty_metadata(handle,
5658 inode,
5659 iloc.bh);
5660 brelse(iloc.bh);
5663 ext4_std_error(inode->i_sb, err);
5664 return err;
5666 #endif
5668 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5670 journal_t *journal;
5671 handle_t *handle;
5672 int err;
5675 * We have to be very careful here: changing a data block's
5676 * journaling status dynamically is dangerous. If we write a
5677 * data block to the journal, change the status and then delete
5678 * that block, we risk forgetting to revoke the old log record
5679 * from the journal and so a subsequent replay can corrupt data.
5680 * So, first we make sure that the journal is empty and that
5681 * nobody is changing anything.
5684 journal = EXT4_JOURNAL(inode);
5685 if (!journal)
5686 return 0;
5687 if (is_journal_aborted(journal))
5688 return -EROFS;
5690 jbd2_journal_lock_updates(journal);
5691 jbd2_journal_flush(journal);
5694 * OK, there are no updates running now, and all cached data is
5695 * synced to disk. We are now in a completely consistent state
5696 * which doesn't have anything in the journal, and we know that
5697 * no filesystem updates are running, so it is safe to modify
5698 * the inode's in-core data-journaling state flag now.
5701 if (val)
5702 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5703 else
5704 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5705 ext4_set_aops(inode);
5707 jbd2_journal_unlock_updates(journal);
5709 /* Finally we can mark the inode as dirty. */
5711 handle = ext4_journal_start(inode, 1);
5712 if (IS_ERR(handle))
5713 return PTR_ERR(handle);
5715 err = ext4_mark_inode_dirty(handle, inode);
5716 ext4_handle_sync(handle);
5717 ext4_journal_stop(handle);
5718 ext4_std_error(inode->i_sb, err);
5720 return err;
5723 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5725 return !buffer_mapped(bh);
5728 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5730 struct page *page = vmf->page;
5731 loff_t size;
5732 unsigned long len;
5733 int ret = -EINVAL;
5734 void *fsdata;
5735 struct file *file = vma->vm_file;
5736 struct inode *inode = file->f_path.dentry->d_inode;
5737 struct address_space *mapping = inode->i_mapping;
5740 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5741 * get i_mutex because we are already holding mmap_sem.
5743 down_read(&inode->i_alloc_sem);
5744 size = i_size_read(inode);
5745 if (page->mapping != mapping || size <= page_offset(page)
5746 || !PageUptodate(page)) {
5747 /* page got truncated from under us? */
5748 goto out_unlock;
5750 ret = 0;
5751 if (PageMappedToDisk(page))
5752 goto out_unlock;
5754 if (page->index == size >> PAGE_CACHE_SHIFT)
5755 len = size & ~PAGE_CACHE_MASK;
5756 else
5757 len = PAGE_CACHE_SIZE;
5759 lock_page(page);
5761 * return if we have all the buffers mapped. This avoid
5762 * the need to call write_begin/write_end which does a
5763 * journal_start/journal_stop which can block and take
5764 * long time
5766 if (page_has_buffers(page)) {
5767 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5768 ext4_bh_unmapped)) {
5769 unlock_page(page);
5770 goto out_unlock;
5773 unlock_page(page);
5775 * OK, we need to fill the hole... Do write_begin write_end
5776 * to do block allocation/reservation.We are not holding
5777 * inode.i__mutex here. That allow * parallel write_begin,
5778 * write_end call. lock_page prevent this from happening
5779 * on the same page though
5781 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5782 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5783 if (ret < 0)
5784 goto out_unlock;
5785 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5786 len, len, page, fsdata);
5787 if (ret < 0)
5788 goto out_unlock;
5789 ret = 0;
5790 out_unlock:
5791 if (ret)
5792 ret = VM_FAULT_SIGBUS;
5793 up_read(&inode->i_alloc_sem);
5794 return ret;