x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / fs / inode.c
blob4d8e3be55976272732f6f42610ab7813f66b8133
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/rwsem.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/ima.h>
22 #include <linux/pagemap.h>
23 #include <linux/cdev.h>
24 #include <linux/bootmem.h>
25 #include <linux/inotify.h>
26 #include <linux/fsnotify.h>
27 #include <linux/mount.h>
28 #include <linux/async.h>
29 #include <linux/posix_acl.h>
32 * This is needed for the following functions:
33 * - inode_has_buffers
34 * - invalidate_inode_buffers
35 * - invalidate_bdev
37 * FIXME: remove all knowledge of the buffer layer from this file
39 #include <linux/buffer_head.h>
42 * New inode.c implementation.
44 * This implementation has the basic premise of trying
45 * to be extremely low-overhead and SMP-safe, yet be
46 * simple enough to be "obviously correct".
48 * Famous last words.
51 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
53 /* #define INODE_PARANOIA 1 */
54 /* #define INODE_DEBUG 1 */
57 * Inode lookup is no longer as critical as it used to be:
58 * most of the lookups are going to be through the dcache.
60 #define I_HASHBITS i_hash_shift
61 #define I_HASHMASK i_hash_mask
63 static unsigned int i_hash_mask __read_mostly;
64 static unsigned int i_hash_shift __read_mostly;
67 * Each inode can be on two separate lists. One is
68 * the hash list of the inode, used for lookups. The
69 * other linked list is the "type" list:
70 * "in_use" - valid inode, i_count > 0, i_nlink > 0
71 * "dirty" - as "in_use" but also dirty
72 * "unused" - valid inode, i_count = 0
74 * A "dirty" list is maintained for each super block,
75 * allowing for low-overhead inode sync() operations.
78 LIST_HEAD(inode_in_use);
79 LIST_HEAD(inode_unused);
80 static struct hlist_head *inode_hashtable __read_mostly;
83 * A simple spinlock to protect the list manipulations.
85 * NOTE! You also have to own the lock if you change
86 * the i_state of an inode while it is in use..
88 DEFINE_SPINLOCK(inode_lock);
91 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
92 * icache shrinking path, and the umount path. Without this exclusion,
93 * by the time prune_icache calls iput for the inode whose pages it has
94 * been invalidating, or by the time it calls clear_inode & destroy_inode
95 * from its final dispose_list, the struct super_block they refer to
96 * (for inode->i_sb->s_op) may already have been freed and reused.
98 * We make this an rwsem because the fastpath is icache shrinking. In
99 * some cases a filesystem may be doing a significant amount of work in
100 * its inode reclaim code, so this should improve parallelism.
102 static DECLARE_RWSEM(iprune_sem);
105 * Statistics gathering..
107 struct inodes_stat_t inodes_stat;
109 static struct kmem_cache *inode_cachep __read_mostly;
111 static void wake_up_inode(struct inode *inode)
114 * Prevent speculative execution through spin_unlock(&inode_lock);
116 smp_mb();
117 wake_up_bit(&inode->i_state, __I_LOCK);
121 * inode_init_always - perform inode structure intialisation
122 * @sb: superblock inode belongs to
123 * @inode: inode to initialise
125 * These are initializations that need to be done on every inode
126 * allocation as the fields are not initialised by slab allocation.
128 int inode_init_always(struct super_block *sb, struct inode *inode)
130 static const struct address_space_operations empty_aops;
131 static const struct inode_operations empty_iops;
132 static const struct file_operations empty_fops;
133 struct address_space *const mapping = &inode->i_data;
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &empty_fops;
141 inode->i_nlink = 1;
142 inode->i_uid = 0;
143 inode->i_gid = 0;
144 atomic_set(&inode->i_writecount, 0);
145 inode->i_size = 0;
146 inode->i_blocks = 0;
147 inode->i_bytes = 0;
148 inode->i_generation = 0;
149 #ifdef CONFIG_QUOTA
150 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
151 #endif
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_rdev = 0;
156 inode->dirtied_when = 0;
158 if (security_inode_alloc(inode))
159 goto out;
161 /* allocate and initialize an i_integrity */
162 if (ima_inode_alloc(inode))
163 goto out_free_security;
165 spin_lock_init(&inode->i_lock);
166 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168 mutex_init(&inode->i_mutex);
169 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
171 init_rwsem(&inode->i_alloc_sem);
172 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
174 mapping->a_ops = &empty_aops;
175 mapping->host = inode;
176 mapping->flags = 0;
177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 mapping->assoc_mapping = NULL;
179 mapping->backing_dev_info = &default_backing_dev_info;
180 mapping->writeback_index = 0;
183 * If the block_device provides a backing_dev_info for client
184 * inodes then use that. Otherwise the inode share the bdev's
185 * backing_dev_info.
187 if (sb->s_bdev) {
188 struct backing_dev_info *bdi;
190 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
191 mapping->backing_dev_info = bdi;
193 inode->i_private = NULL;
194 inode->i_mapping = mapping;
195 #ifdef CONFIG_FS_POSIX_ACL
196 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
197 #endif
199 #ifdef CONFIG_FSNOTIFY
200 inode->i_fsnotify_mask = 0;
201 #endif
203 return 0;
205 out_free_security:
206 security_inode_free(inode);
207 out:
208 return -ENOMEM;
210 EXPORT_SYMBOL(inode_init_always);
212 static struct inode *alloc_inode(struct super_block *sb)
214 struct inode *inode;
216 if (sb->s_op->alloc_inode)
217 inode = sb->s_op->alloc_inode(sb);
218 else
219 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
221 if (!inode)
222 return NULL;
224 if (unlikely(inode_init_always(sb, inode))) {
225 if (inode->i_sb->s_op->destroy_inode)
226 inode->i_sb->s_op->destroy_inode(inode);
227 else
228 kmem_cache_free(inode_cachep, inode);
229 return NULL;
232 return inode;
235 void __destroy_inode(struct inode *inode)
237 BUG_ON(inode_has_buffers(inode));
238 ima_inode_free(inode);
239 security_inode_free(inode);
240 fsnotify_inode_delete(inode);
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 posix_acl_release(inode->i_acl);
244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_default_acl);
246 #endif
248 EXPORT_SYMBOL(__destroy_inode);
250 void destroy_inode(struct inode *inode)
252 __destroy_inode(inode);
253 if (inode->i_sb->s_op->destroy_inode)
254 inode->i_sb->s_op->destroy_inode(inode);
255 else
256 kmem_cache_free(inode_cachep, (inode));
260 * These are initializations that only need to be done
261 * once, because the fields are idempotent across use
262 * of the inode, so let the slab aware of that.
264 void inode_init_once(struct inode *inode)
266 memset(inode, 0, sizeof(*inode));
267 INIT_HLIST_NODE(&inode->i_hash);
268 INIT_LIST_HEAD(&inode->i_dentry);
269 INIT_LIST_HEAD(&inode->i_devices);
270 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
271 spin_lock_init(&inode->i_data.tree_lock);
272 spin_lock_init(&inode->i_data.i_mmap_lock);
273 INIT_LIST_HEAD(&inode->i_data.private_list);
274 spin_lock_init(&inode->i_data.private_lock);
275 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
276 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
277 i_size_ordered_init(inode);
278 #ifdef CONFIG_INOTIFY
279 INIT_LIST_HEAD(&inode->inotify_watches);
280 mutex_init(&inode->inotify_mutex);
281 #endif
282 #ifdef CONFIG_FSNOTIFY
283 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
284 #endif
286 EXPORT_SYMBOL(inode_init_once);
288 static void init_once(void *foo)
290 struct inode *inode = (struct inode *) foo;
292 inode_init_once(inode);
296 * inode_lock must be held
298 void __iget(struct inode *inode)
300 if (atomic_read(&inode->i_count)) {
301 atomic_inc(&inode->i_count);
302 return;
304 atomic_inc(&inode->i_count);
305 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
306 list_move(&inode->i_list, &inode_in_use);
307 inodes_stat.nr_unused--;
311 * clear_inode - clear an inode
312 * @inode: inode to clear
314 * This is called by the filesystem to tell us
315 * that the inode is no longer useful. We just
316 * terminate it with extreme prejudice.
318 void clear_inode(struct inode *inode)
320 might_sleep();
321 invalidate_inode_buffers(inode);
323 BUG_ON(inode->i_data.nrpages);
324 BUG_ON(!(inode->i_state & I_FREEING));
325 BUG_ON(inode->i_state & I_CLEAR);
326 inode_sync_wait(inode);
327 vfs_dq_drop(inode);
328 if (inode->i_sb->s_op->clear_inode)
329 inode->i_sb->s_op->clear_inode(inode);
330 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
331 bd_forget(inode);
332 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
333 cd_forget(inode);
334 inode->i_state = I_CLEAR;
336 EXPORT_SYMBOL(clear_inode);
339 * dispose_list - dispose of the contents of a local list
340 * @head: the head of the list to free
342 * Dispose-list gets a local list with local inodes in it, so it doesn't
343 * need to worry about list corruption and SMP locks.
345 static void dispose_list(struct list_head *head)
347 int nr_disposed = 0;
349 while (!list_empty(head)) {
350 struct inode *inode;
352 inode = list_first_entry(head, struct inode, i_list);
353 list_del(&inode->i_list);
355 if (inode->i_data.nrpages)
356 truncate_inode_pages(&inode->i_data, 0);
357 clear_inode(inode);
359 spin_lock(&inode_lock);
360 hlist_del_init(&inode->i_hash);
361 list_del_init(&inode->i_sb_list);
362 spin_unlock(&inode_lock);
364 wake_up_inode(inode);
365 destroy_inode(inode);
366 nr_disposed++;
368 spin_lock(&inode_lock);
369 inodes_stat.nr_inodes -= nr_disposed;
370 spin_unlock(&inode_lock);
374 * Invalidate all inodes for a device.
376 static int invalidate_list(struct list_head *head, struct list_head *dispose)
378 struct list_head *next;
379 int busy = 0, count = 0;
381 next = head->next;
382 for (;;) {
383 struct list_head *tmp = next;
384 struct inode *inode;
387 * We can reschedule here without worrying about the list's
388 * consistency because the per-sb list of inodes must not
389 * change during umount anymore, and because iprune_sem keeps
390 * shrink_icache_memory() away.
392 cond_resched_lock(&inode_lock);
394 next = next->next;
395 if (tmp == head)
396 break;
397 inode = list_entry(tmp, struct inode, i_sb_list);
398 if (inode->i_state & I_NEW)
399 continue;
400 invalidate_inode_buffers(inode);
401 if (!atomic_read(&inode->i_count)) {
402 list_move(&inode->i_list, dispose);
403 WARN_ON(inode->i_state & I_NEW);
404 inode->i_state |= I_FREEING;
405 count++;
406 continue;
408 busy = 1;
410 /* only unused inodes may be cached with i_count zero */
411 inodes_stat.nr_unused -= count;
412 return busy;
416 * invalidate_inodes - discard the inodes on a device
417 * @sb: superblock
419 * Discard all of the inodes for a given superblock. If the discard
420 * fails because there are busy inodes then a non zero value is returned.
421 * If the discard is successful all the inodes have been discarded.
423 int invalidate_inodes(struct super_block *sb)
425 int busy;
426 LIST_HEAD(throw_away);
428 down_write(&iprune_sem);
429 spin_lock(&inode_lock);
430 inotify_unmount_inodes(&sb->s_inodes);
431 fsnotify_unmount_inodes(&sb->s_inodes);
432 busy = invalidate_list(&sb->s_inodes, &throw_away);
433 spin_unlock(&inode_lock);
435 dispose_list(&throw_away);
436 up_write(&iprune_sem);
438 return busy;
440 EXPORT_SYMBOL(invalidate_inodes);
442 static int can_unuse(struct inode *inode)
444 if (inode->i_state)
445 return 0;
446 if (inode_has_buffers(inode))
447 return 0;
448 if (atomic_read(&inode->i_count))
449 return 0;
450 if (inode->i_data.nrpages)
451 return 0;
452 return 1;
456 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
457 * a temporary list and then are freed outside inode_lock by dispose_list().
459 * Any inodes which are pinned purely because of attached pagecache have their
460 * pagecache removed. We expect the final iput() on that inode to add it to
461 * the front of the inode_unused list. So look for it there and if the
462 * inode is still freeable, proceed. The right inode is found 99.9% of the
463 * time in testing on a 4-way.
465 * If the inode has metadata buffers attached to mapping->private_list then
466 * try to remove them.
468 static void prune_icache(int nr_to_scan)
470 LIST_HEAD(freeable);
471 int nr_pruned = 0;
472 int nr_scanned;
473 unsigned long reap = 0;
475 down_read(&iprune_sem);
476 spin_lock(&inode_lock);
477 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
478 struct inode *inode;
480 if (list_empty(&inode_unused))
481 break;
483 inode = list_entry(inode_unused.prev, struct inode, i_list);
485 if (inode->i_state || atomic_read(&inode->i_count)) {
486 list_move(&inode->i_list, &inode_unused);
487 continue;
489 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
490 __iget(inode);
491 spin_unlock(&inode_lock);
492 if (remove_inode_buffers(inode))
493 reap += invalidate_mapping_pages(&inode->i_data,
494 0, -1);
495 iput(inode);
496 spin_lock(&inode_lock);
498 if (inode != list_entry(inode_unused.next,
499 struct inode, i_list))
500 continue; /* wrong inode or list_empty */
501 if (!can_unuse(inode))
502 continue;
504 list_move(&inode->i_list, &freeable);
505 WARN_ON(inode->i_state & I_NEW);
506 inode->i_state |= I_FREEING;
507 nr_pruned++;
509 inodes_stat.nr_unused -= nr_pruned;
510 if (current_is_kswapd())
511 __count_vm_events(KSWAPD_INODESTEAL, reap);
512 else
513 __count_vm_events(PGINODESTEAL, reap);
514 spin_unlock(&inode_lock);
516 dispose_list(&freeable);
517 up_read(&iprune_sem);
521 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
522 * "unused" means that no dentries are referring to the inodes: the files are
523 * not open and the dcache references to those inodes have already been
524 * reclaimed.
526 * This function is passed the number of inodes to scan, and it returns the
527 * total number of remaining possibly-reclaimable inodes.
529 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
531 if (nr) {
533 * Nasty deadlock avoidance. We may hold various FS locks,
534 * and we don't want to recurse into the FS that called us
535 * in clear_inode() and friends..
537 if (!(gfp_mask & __GFP_FS))
538 return -1;
539 prune_icache(nr);
541 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
544 static struct shrinker icache_shrinker = {
545 .shrink = shrink_icache_memory,
546 .seeks = DEFAULT_SEEKS,
549 static void __wait_on_freeing_inode(struct inode *inode);
551 * Called with the inode lock held.
552 * NOTE: we are not increasing the inode-refcount, you must call __iget()
553 * by hand after calling find_inode now! This simplifies iunique and won't
554 * add any additional branch in the common code.
556 static struct inode *find_inode(struct super_block *sb,
557 struct hlist_head *head,
558 int (*test)(struct inode *, void *),
559 void *data)
561 struct hlist_node *node;
562 struct inode *inode = NULL;
564 repeat:
565 hlist_for_each_entry(inode, node, head, i_hash) {
566 if (inode->i_sb != sb)
567 continue;
568 if (!test(inode, data))
569 continue;
570 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
571 __wait_on_freeing_inode(inode);
572 goto repeat;
574 break;
576 return node ? inode : NULL;
580 * find_inode_fast is the fast path version of find_inode, see the comment at
581 * iget_locked for details.
583 static struct inode *find_inode_fast(struct super_block *sb,
584 struct hlist_head *head, unsigned long ino)
586 struct hlist_node *node;
587 struct inode *inode = NULL;
589 repeat:
590 hlist_for_each_entry(inode, node, head, i_hash) {
591 if (inode->i_ino != ino)
592 continue;
593 if (inode->i_sb != sb)
594 continue;
595 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
596 __wait_on_freeing_inode(inode);
597 goto repeat;
599 break;
601 return node ? inode : NULL;
604 static unsigned long hash(struct super_block *sb, unsigned long hashval)
606 unsigned long tmp;
608 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
609 L1_CACHE_BYTES;
610 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
611 return tmp & I_HASHMASK;
614 static inline void
615 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
616 struct inode *inode)
618 inodes_stat.nr_inodes++;
619 list_add(&inode->i_list, &inode_in_use);
620 list_add(&inode->i_sb_list, &sb->s_inodes);
621 if (head)
622 hlist_add_head(&inode->i_hash, head);
626 * inode_add_to_lists - add a new inode to relevant lists
627 * @sb: superblock inode belongs to
628 * @inode: inode to mark in use
630 * When an inode is allocated it needs to be accounted for, added to the in use
631 * list, the owning superblock and the inode hash. This needs to be done under
632 * the inode_lock, so export a function to do this rather than the inode lock
633 * itself. We calculate the hash list to add to here so it is all internal
634 * which requires the caller to have already set up the inode number in the
635 * inode to add.
637 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
639 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
641 spin_lock(&inode_lock);
642 __inode_add_to_lists(sb, head, inode);
643 spin_unlock(&inode_lock);
645 EXPORT_SYMBOL_GPL(inode_add_to_lists);
648 * new_inode - obtain an inode
649 * @sb: superblock
651 * Allocates a new inode for given superblock. The default gfp_mask
652 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
653 * If HIGHMEM pages are unsuitable or it is known that pages allocated
654 * for the page cache are not reclaimable or migratable,
655 * mapping_set_gfp_mask() must be called with suitable flags on the
656 * newly created inode's mapping
659 struct inode *new_inode(struct super_block *sb)
662 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
663 * error if st_ino won't fit in target struct field. Use 32bit counter
664 * here to attempt to avoid that.
666 static unsigned int last_ino;
667 struct inode *inode;
669 spin_lock_prefetch(&inode_lock);
671 inode = alloc_inode(sb);
672 if (inode) {
673 spin_lock(&inode_lock);
674 __inode_add_to_lists(sb, NULL, inode);
675 inode->i_ino = ++last_ino;
676 inode->i_state = 0;
677 spin_unlock(&inode_lock);
679 return inode;
681 EXPORT_SYMBOL(new_inode);
683 void unlock_new_inode(struct inode *inode)
685 #ifdef CONFIG_DEBUG_LOCK_ALLOC
686 if (inode->i_mode & S_IFDIR) {
687 struct file_system_type *type = inode->i_sb->s_type;
689 /* Set new key only if filesystem hasn't already changed it */
690 if (!lockdep_match_class(&inode->i_mutex,
691 &type->i_mutex_key)) {
693 * ensure nobody is actually holding i_mutex
695 mutex_destroy(&inode->i_mutex);
696 mutex_init(&inode->i_mutex);
697 lockdep_set_class(&inode->i_mutex,
698 &type->i_mutex_dir_key);
701 #endif
703 * This is special! We do not need the spinlock when clearing I_LOCK,
704 * because we're guaranteed that nobody else tries to do anything about
705 * the state of the inode when it is locked, as we just created it (so
706 * there can be no old holders that haven't tested I_LOCK).
707 * However we must emit the memory barrier so that other CPUs reliably
708 * see the clearing of I_LOCK after the other inode initialisation has
709 * completed.
711 smp_mb();
712 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
713 inode->i_state &= ~(I_LOCK|I_NEW);
714 wake_up_inode(inode);
716 EXPORT_SYMBOL(unlock_new_inode);
719 * This is called without the inode lock held.. Be careful.
721 * We no longer cache the sb_flags in i_flags - see fs.h
722 * -- rmk@arm.uk.linux.org
724 static struct inode *get_new_inode(struct super_block *sb,
725 struct hlist_head *head,
726 int (*test)(struct inode *, void *),
727 int (*set)(struct inode *, void *),
728 void *data)
730 struct inode *inode;
732 inode = alloc_inode(sb);
733 if (inode) {
734 struct inode *old;
736 spin_lock(&inode_lock);
737 /* We released the lock, so.. */
738 old = find_inode(sb, head, test, data);
739 if (!old) {
740 if (set(inode, data))
741 goto set_failed;
743 __inode_add_to_lists(sb, head, inode);
744 inode->i_state = I_LOCK|I_NEW;
745 spin_unlock(&inode_lock);
747 /* Return the locked inode with I_NEW set, the
748 * caller is responsible for filling in the contents
750 return inode;
754 * Uhhuh, somebody else created the same inode under
755 * us. Use the old inode instead of the one we just
756 * allocated.
758 __iget(old);
759 spin_unlock(&inode_lock);
760 destroy_inode(inode);
761 inode = old;
762 wait_on_inode(inode);
764 return inode;
766 set_failed:
767 spin_unlock(&inode_lock);
768 destroy_inode(inode);
769 return NULL;
773 * get_new_inode_fast is the fast path version of get_new_inode, see the
774 * comment at iget_locked for details.
776 static struct inode *get_new_inode_fast(struct super_block *sb,
777 struct hlist_head *head, unsigned long ino)
779 struct inode *inode;
781 inode = alloc_inode(sb);
782 if (inode) {
783 struct inode *old;
785 spin_lock(&inode_lock);
786 /* We released the lock, so.. */
787 old = find_inode_fast(sb, head, ino);
788 if (!old) {
789 inode->i_ino = ino;
790 __inode_add_to_lists(sb, head, inode);
791 inode->i_state = I_LOCK|I_NEW;
792 spin_unlock(&inode_lock);
794 /* Return the locked inode with I_NEW set, the
795 * caller is responsible for filling in the contents
797 return inode;
801 * Uhhuh, somebody else created the same inode under
802 * us. Use the old inode instead of the one we just
803 * allocated.
805 __iget(old);
806 spin_unlock(&inode_lock);
807 destroy_inode(inode);
808 inode = old;
809 wait_on_inode(inode);
811 return inode;
815 * iunique - get a unique inode number
816 * @sb: superblock
817 * @max_reserved: highest reserved inode number
819 * Obtain an inode number that is unique on the system for a given
820 * superblock. This is used by file systems that have no natural
821 * permanent inode numbering system. An inode number is returned that
822 * is higher than the reserved limit but unique.
824 * BUGS:
825 * With a large number of inodes live on the file system this function
826 * currently becomes quite slow.
828 ino_t iunique(struct super_block *sb, ino_t max_reserved)
831 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
832 * error if st_ino won't fit in target struct field. Use 32bit counter
833 * here to attempt to avoid that.
835 static unsigned int counter;
836 struct inode *inode;
837 struct hlist_head *head;
838 ino_t res;
840 spin_lock(&inode_lock);
841 do {
842 if (counter <= max_reserved)
843 counter = max_reserved + 1;
844 res = counter++;
845 head = inode_hashtable + hash(sb, res);
846 inode = find_inode_fast(sb, head, res);
847 } while (inode != NULL);
848 spin_unlock(&inode_lock);
850 return res;
852 EXPORT_SYMBOL(iunique);
854 struct inode *igrab(struct inode *inode)
856 spin_lock(&inode_lock);
857 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
858 __iget(inode);
859 else
861 * Handle the case where s_op->clear_inode is not been
862 * called yet, and somebody is calling igrab
863 * while the inode is getting freed.
865 inode = NULL;
866 spin_unlock(&inode_lock);
867 return inode;
869 EXPORT_SYMBOL(igrab);
872 * ifind - internal function, you want ilookup5() or iget5().
873 * @sb: super block of file system to search
874 * @head: the head of the list to search
875 * @test: callback used for comparisons between inodes
876 * @data: opaque data pointer to pass to @test
877 * @wait: if true wait for the inode to be unlocked, if false do not
879 * ifind() searches for the inode specified by @data in the inode
880 * cache. This is a generalized version of ifind_fast() for file systems where
881 * the inode number is not sufficient for unique identification of an inode.
883 * If the inode is in the cache, the inode is returned with an incremented
884 * reference count.
886 * Otherwise NULL is returned.
888 * Note, @test is called with the inode_lock held, so can't sleep.
890 static struct inode *ifind(struct super_block *sb,
891 struct hlist_head *head, int (*test)(struct inode *, void *),
892 void *data, const int wait)
894 struct inode *inode;
896 spin_lock(&inode_lock);
897 inode = find_inode(sb, head, test, data);
898 if (inode) {
899 __iget(inode);
900 spin_unlock(&inode_lock);
901 if (likely(wait))
902 wait_on_inode(inode);
903 return inode;
905 spin_unlock(&inode_lock);
906 return NULL;
910 * ifind_fast - internal function, you want ilookup() or iget().
911 * @sb: super block of file system to search
912 * @head: head of the list to search
913 * @ino: inode number to search for
915 * ifind_fast() searches for the inode @ino in the inode cache. This is for
916 * file systems where the inode number is sufficient for unique identification
917 * of an inode.
919 * If the inode is in the cache, the inode is returned with an incremented
920 * reference count.
922 * Otherwise NULL is returned.
924 static struct inode *ifind_fast(struct super_block *sb,
925 struct hlist_head *head, unsigned long ino)
927 struct inode *inode;
929 spin_lock(&inode_lock);
930 inode = find_inode_fast(sb, head, ino);
931 if (inode) {
932 __iget(inode);
933 spin_unlock(&inode_lock);
934 wait_on_inode(inode);
935 return inode;
937 spin_unlock(&inode_lock);
938 return NULL;
942 * ilookup5_nowait - search for an inode in the inode cache
943 * @sb: super block of file system to search
944 * @hashval: hash value (usually inode number) to search for
945 * @test: callback used for comparisons between inodes
946 * @data: opaque data pointer to pass to @test
948 * ilookup5() uses ifind() to search for the inode specified by @hashval and
949 * @data in the inode cache. This is a generalized version of ilookup() for
950 * file systems where the inode number is not sufficient for unique
951 * identification of an inode.
953 * If the inode is in the cache, the inode is returned with an incremented
954 * reference count. Note, the inode lock is not waited upon so you have to be
955 * very careful what you do with the returned inode. You probably should be
956 * using ilookup5() instead.
958 * Otherwise NULL is returned.
960 * Note, @test is called with the inode_lock held, so can't sleep.
962 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
963 int (*test)(struct inode *, void *), void *data)
965 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
967 return ifind(sb, head, test, data, 0);
969 EXPORT_SYMBOL(ilookup5_nowait);
972 * ilookup5 - search for an inode in the inode cache
973 * @sb: super block of file system to search
974 * @hashval: hash value (usually inode number) to search for
975 * @test: callback used for comparisons between inodes
976 * @data: opaque data pointer to pass to @test
978 * ilookup5() uses ifind() to search for the inode specified by @hashval and
979 * @data in the inode cache. This is a generalized version of ilookup() for
980 * file systems where the inode number is not sufficient for unique
981 * identification of an inode.
983 * If the inode is in the cache, the inode lock is waited upon and the inode is
984 * returned with an incremented reference count.
986 * Otherwise NULL is returned.
988 * Note, @test is called with the inode_lock held, so can't sleep.
990 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
991 int (*test)(struct inode *, void *), void *data)
993 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
995 return ifind(sb, head, test, data, 1);
997 EXPORT_SYMBOL(ilookup5);
1000 * ilookup - search for an inode in the inode cache
1001 * @sb: super block of file system to search
1002 * @ino: inode number to search for
1004 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1005 * This is for file systems where the inode number is sufficient for unique
1006 * identification of an inode.
1008 * If the inode is in the cache, the inode is returned with an incremented
1009 * reference count.
1011 * Otherwise NULL is returned.
1013 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1015 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1017 return ifind_fast(sb, head, ino);
1019 EXPORT_SYMBOL(ilookup);
1022 * iget5_locked - obtain an inode from a mounted file system
1023 * @sb: super block of file system
1024 * @hashval: hash value (usually inode number) to get
1025 * @test: callback used for comparisons between inodes
1026 * @set: callback used to initialize a new struct inode
1027 * @data: opaque data pointer to pass to @test and @set
1029 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1030 * and @data in the inode cache and if present it is returned with an increased
1031 * reference count. This is a generalized version of iget_locked() for file
1032 * systems where the inode number is not sufficient for unique identification
1033 * of an inode.
1035 * If the inode is not in cache, get_new_inode() is called to allocate a new
1036 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1037 * file system gets to fill it in before unlocking it via unlock_new_inode().
1039 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1041 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1042 int (*test)(struct inode *, void *),
1043 int (*set)(struct inode *, void *), void *data)
1045 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1046 struct inode *inode;
1048 inode = ifind(sb, head, test, data, 1);
1049 if (inode)
1050 return inode;
1052 * get_new_inode() will do the right thing, re-trying the search
1053 * in case it had to block at any point.
1055 return get_new_inode(sb, head, test, set, data);
1057 EXPORT_SYMBOL(iget5_locked);
1060 * iget_locked - obtain an inode from a mounted file system
1061 * @sb: super block of file system
1062 * @ino: inode number to get
1064 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1065 * the inode cache and if present it is returned with an increased reference
1066 * count. This is for file systems where the inode number is sufficient for
1067 * unique identification of an inode.
1069 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1070 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1071 * The file system gets to fill it in before unlocking it via
1072 * unlock_new_inode().
1074 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1076 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1077 struct inode *inode;
1079 inode = ifind_fast(sb, head, ino);
1080 if (inode)
1081 return inode;
1083 * get_new_inode_fast() will do the right thing, re-trying the search
1084 * in case it had to block at any point.
1086 return get_new_inode_fast(sb, head, ino);
1088 EXPORT_SYMBOL(iget_locked);
1090 int insert_inode_locked(struct inode *inode)
1092 struct super_block *sb = inode->i_sb;
1093 ino_t ino = inode->i_ino;
1094 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1096 inode->i_state |= I_LOCK|I_NEW;
1097 while (1) {
1098 struct hlist_node *node;
1099 struct inode *old = NULL;
1100 spin_lock(&inode_lock);
1101 hlist_for_each_entry(old, node, head, i_hash) {
1102 if (old->i_ino != ino)
1103 continue;
1104 if (old->i_sb != sb)
1105 continue;
1106 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1107 continue;
1108 break;
1110 if (likely(!node)) {
1111 hlist_add_head(&inode->i_hash, head);
1112 spin_unlock(&inode_lock);
1113 return 0;
1115 __iget(old);
1116 spin_unlock(&inode_lock);
1117 wait_on_inode(old);
1118 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1119 iput(old);
1120 return -EBUSY;
1122 iput(old);
1125 EXPORT_SYMBOL(insert_inode_locked);
1127 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1128 int (*test)(struct inode *, void *), void *data)
1130 struct super_block *sb = inode->i_sb;
1131 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1133 inode->i_state |= I_LOCK|I_NEW;
1135 while (1) {
1136 struct hlist_node *node;
1137 struct inode *old = NULL;
1139 spin_lock(&inode_lock);
1140 hlist_for_each_entry(old, node, head, i_hash) {
1141 if (old->i_sb != sb)
1142 continue;
1143 if (!test(old, data))
1144 continue;
1145 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1146 continue;
1147 break;
1149 if (likely(!node)) {
1150 hlist_add_head(&inode->i_hash, head);
1151 spin_unlock(&inode_lock);
1152 return 0;
1154 __iget(old);
1155 spin_unlock(&inode_lock);
1156 wait_on_inode(old);
1157 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1158 iput(old);
1159 return -EBUSY;
1161 iput(old);
1164 EXPORT_SYMBOL(insert_inode_locked4);
1167 * __insert_inode_hash - hash an inode
1168 * @inode: unhashed inode
1169 * @hashval: unsigned long value used to locate this object in the
1170 * inode_hashtable.
1172 * Add an inode to the inode hash for this superblock.
1174 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1176 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1177 spin_lock(&inode_lock);
1178 hlist_add_head(&inode->i_hash, head);
1179 spin_unlock(&inode_lock);
1181 EXPORT_SYMBOL(__insert_inode_hash);
1184 * remove_inode_hash - remove an inode from the hash
1185 * @inode: inode to unhash
1187 * Remove an inode from the superblock.
1189 void remove_inode_hash(struct inode *inode)
1191 spin_lock(&inode_lock);
1192 hlist_del_init(&inode->i_hash);
1193 spin_unlock(&inode_lock);
1195 EXPORT_SYMBOL(remove_inode_hash);
1198 * Tell the filesystem that this inode is no longer of any interest and should
1199 * be completely destroyed.
1201 * We leave the inode in the inode hash table until *after* the filesystem's
1202 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1203 * instigate) will always find up-to-date information either in the hash or on
1204 * disk.
1206 * I_FREEING is set so that no-one will take a new reference to the inode while
1207 * it is being deleted.
1209 void generic_delete_inode(struct inode *inode)
1211 const struct super_operations *op = inode->i_sb->s_op;
1213 list_del_init(&inode->i_list);
1214 list_del_init(&inode->i_sb_list);
1215 WARN_ON(inode->i_state & I_NEW);
1216 inode->i_state |= I_FREEING;
1217 inodes_stat.nr_inodes--;
1218 spin_unlock(&inode_lock);
1220 security_inode_delete(inode);
1222 if (op->delete_inode) {
1223 void (*delete)(struct inode *) = op->delete_inode;
1224 if (!is_bad_inode(inode))
1225 vfs_dq_init(inode);
1226 /* Filesystems implementing their own
1227 * s_op->delete_inode are required to call
1228 * truncate_inode_pages and clear_inode()
1229 * internally */
1230 delete(inode);
1231 } else {
1232 truncate_inode_pages(&inode->i_data, 0);
1233 clear_inode(inode);
1235 spin_lock(&inode_lock);
1236 hlist_del_init(&inode->i_hash);
1237 spin_unlock(&inode_lock);
1238 wake_up_inode(inode);
1239 BUG_ON(inode->i_state != I_CLEAR);
1240 destroy_inode(inode);
1242 EXPORT_SYMBOL(generic_delete_inode);
1245 * generic_detach_inode - remove inode from inode lists
1246 * @inode: inode to remove
1248 * Remove inode from inode lists, write it if it's dirty. This is just an
1249 * internal VFS helper exported for hugetlbfs. Do not use!
1251 * Returns 1 if inode should be completely destroyed.
1253 int generic_detach_inode(struct inode *inode)
1255 struct super_block *sb = inode->i_sb;
1257 if (!hlist_unhashed(&inode->i_hash)) {
1258 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1259 list_move(&inode->i_list, &inode_unused);
1260 inodes_stat.nr_unused++;
1261 if (sb->s_flags & MS_ACTIVE) {
1262 spin_unlock(&inode_lock);
1263 return 0;
1265 WARN_ON(inode->i_state & I_NEW);
1266 inode->i_state |= I_WILL_FREE;
1267 spin_unlock(&inode_lock);
1268 write_inode_now(inode, 1);
1269 spin_lock(&inode_lock);
1270 WARN_ON(inode->i_state & I_NEW);
1271 inode->i_state &= ~I_WILL_FREE;
1272 inodes_stat.nr_unused--;
1273 hlist_del_init(&inode->i_hash);
1275 list_del_init(&inode->i_list);
1276 list_del_init(&inode->i_sb_list);
1277 WARN_ON(inode->i_state & I_NEW);
1278 inode->i_state |= I_FREEING;
1279 inodes_stat.nr_inodes--;
1280 spin_unlock(&inode_lock);
1281 return 1;
1283 EXPORT_SYMBOL_GPL(generic_detach_inode);
1285 static void generic_forget_inode(struct inode *inode)
1287 if (!generic_detach_inode(inode))
1288 return;
1289 if (inode->i_data.nrpages)
1290 truncate_inode_pages(&inode->i_data, 0);
1291 clear_inode(inode);
1292 wake_up_inode(inode);
1293 destroy_inode(inode);
1297 * Normal UNIX filesystem behaviour: delete the
1298 * inode when the usage count drops to zero, and
1299 * i_nlink is zero.
1301 void generic_drop_inode(struct inode *inode)
1303 if (!inode->i_nlink)
1304 generic_delete_inode(inode);
1305 else
1306 generic_forget_inode(inode);
1308 EXPORT_SYMBOL_GPL(generic_drop_inode);
1311 * Called when we're dropping the last reference
1312 * to an inode.
1314 * Call the FS "drop()" function, defaulting to
1315 * the legacy UNIX filesystem behaviour..
1317 * NOTE! NOTE! NOTE! We're called with the inode lock
1318 * held, and the drop function is supposed to release
1319 * the lock!
1321 static inline void iput_final(struct inode *inode)
1323 const struct super_operations *op = inode->i_sb->s_op;
1324 void (*drop)(struct inode *) = generic_drop_inode;
1326 if (op && op->drop_inode)
1327 drop = op->drop_inode;
1328 drop(inode);
1332 * iput - put an inode
1333 * @inode: inode to put
1335 * Puts an inode, dropping its usage count. If the inode use count hits
1336 * zero, the inode is then freed and may also be destroyed.
1338 * Consequently, iput() can sleep.
1340 void iput(struct inode *inode)
1342 if (inode) {
1343 BUG_ON(inode->i_state == I_CLEAR);
1345 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1346 iput_final(inode);
1349 EXPORT_SYMBOL(iput);
1352 * bmap - find a block number in a file
1353 * @inode: inode of file
1354 * @block: block to find
1356 * Returns the block number on the device holding the inode that
1357 * is the disk block number for the block of the file requested.
1358 * That is, asked for block 4 of inode 1 the function will return the
1359 * disk block relative to the disk start that holds that block of the
1360 * file.
1362 sector_t bmap(struct inode *inode, sector_t block)
1364 sector_t res = 0;
1365 if (inode->i_mapping->a_ops->bmap)
1366 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1367 return res;
1369 EXPORT_SYMBOL(bmap);
1372 * With relative atime, only update atime if the previous atime is
1373 * earlier than either the ctime or mtime or if at least a day has
1374 * passed since the last atime update.
1376 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1377 struct timespec now)
1380 if (!(mnt->mnt_flags & MNT_RELATIME))
1381 return 1;
1383 * Is mtime younger than atime? If yes, update atime:
1385 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1386 return 1;
1388 * Is ctime younger than atime? If yes, update atime:
1390 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1391 return 1;
1394 * Is the previous atime value older than a day? If yes,
1395 * update atime:
1397 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1398 return 1;
1400 * Good, we can skip the atime update:
1402 return 0;
1406 * touch_atime - update the access time
1407 * @mnt: mount the inode is accessed on
1408 * @dentry: dentry accessed
1410 * Update the accessed time on an inode and mark it for writeback.
1411 * This function automatically handles read only file systems and media,
1412 * as well as the "noatime" flag and inode specific "noatime" markers.
1414 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1416 struct inode *inode = dentry->d_inode;
1417 struct timespec now;
1419 if (inode->i_flags & S_NOATIME)
1420 return;
1421 if (IS_NOATIME(inode))
1422 return;
1423 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1424 return;
1426 if (mnt->mnt_flags & MNT_NOATIME)
1427 return;
1428 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1429 return;
1431 now = current_fs_time(inode->i_sb);
1433 if (!relatime_need_update(mnt, inode, now))
1434 return;
1436 if (timespec_equal(&inode->i_atime, &now))
1437 return;
1439 if (mnt_want_write(mnt))
1440 return;
1442 inode->i_atime = now;
1443 mark_inode_dirty_sync(inode);
1444 mnt_drop_write(mnt);
1446 EXPORT_SYMBOL(touch_atime);
1449 * file_update_time - update mtime and ctime time
1450 * @file: file accessed
1452 * Update the mtime and ctime members of an inode and mark the inode
1453 * for writeback. Note that this function is meant exclusively for
1454 * usage in the file write path of filesystems, and filesystems may
1455 * choose to explicitly ignore update via this function with the
1456 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1457 * timestamps are handled by the server.
1460 void file_update_time(struct file *file)
1462 struct inode *inode = file->f_path.dentry->d_inode;
1463 struct timespec now;
1464 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1466 /* First try to exhaust all avenues to not sync */
1467 if (IS_NOCMTIME(inode))
1468 return;
1470 now = current_fs_time(inode->i_sb);
1471 if (!timespec_equal(&inode->i_mtime, &now))
1472 sync_it = S_MTIME;
1474 if (!timespec_equal(&inode->i_ctime, &now))
1475 sync_it |= S_CTIME;
1477 if (IS_I_VERSION(inode))
1478 sync_it |= S_VERSION;
1480 if (!sync_it)
1481 return;
1483 /* Finally allowed to write? Takes lock. */
1484 if (mnt_want_write_file(file))
1485 return;
1487 /* Only change inode inside the lock region */
1488 if (sync_it & S_VERSION)
1489 inode_inc_iversion(inode);
1490 if (sync_it & S_CTIME)
1491 inode->i_ctime = now;
1492 if (sync_it & S_MTIME)
1493 inode->i_mtime = now;
1494 mark_inode_dirty_sync(inode);
1495 mnt_drop_write(file->f_path.mnt);
1497 EXPORT_SYMBOL(file_update_time);
1499 int inode_needs_sync(struct inode *inode)
1501 if (IS_SYNC(inode))
1502 return 1;
1503 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1504 return 1;
1505 return 0;
1507 EXPORT_SYMBOL(inode_needs_sync);
1509 int inode_wait(void *word)
1511 schedule();
1512 return 0;
1514 EXPORT_SYMBOL(inode_wait);
1517 * If we try to find an inode in the inode hash while it is being
1518 * deleted, we have to wait until the filesystem completes its
1519 * deletion before reporting that it isn't found. This function waits
1520 * until the deletion _might_ have completed. Callers are responsible
1521 * to recheck inode state.
1523 * It doesn't matter if I_LOCK is not set initially, a call to
1524 * wake_up_inode() after removing from the hash list will DTRT.
1526 * This is called with inode_lock held.
1528 static void __wait_on_freeing_inode(struct inode *inode)
1530 wait_queue_head_t *wq;
1531 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1532 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1533 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1534 spin_unlock(&inode_lock);
1535 schedule();
1536 finish_wait(wq, &wait.wait);
1537 spin_lock(&inode_lock);
1540 static __initdata unsigned long ihash_entries;
1541 static int __init set_ihash_entries(char *str)
1543 if (!str)
1544 return 0;
1545 ihash_entries = simple_strtoul(str, &str, 0);
1546 return 1;
1548 __setup("ihash_entries=", set_ihash_entries);
1551 * Initialize the waitqueues and inode hash table.
1553 void __init inode_init_early(void)
1555 int loop;
1557 /* If hashes are distributed across NUMA nodes, defer
1558 * hash allocation until vmalloc space is available.
1560 if (hashdist)
1561 return;
1563 inode_hashtable =
1564 alloc_large_system_hash("Inode-cache",
1565 sizeof(struct hlist_head),
1566 ihash_entries,
1568 HASH_EARLY,
1569 &i_hash_shift,
1570 &i_hash_mask,
1573 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1574 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1577 void __init inode_init(void)
1579 int loop;
1581 /* inode slab cache */
1582 inode_cachep = kmem_cache_create("inode_cache",
1583 sizeof(struct inode),
1585 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1586 SLAB_MEM_SPREAD),
1587 init_once);
1588 register_shrinker(&icache_shrinker);
1590 /* Hash may have been set up in inode_init_early */
1591 if (!hashdist)
1592 return;
1594 inode_hashtable =
1595 alloc_large_system_hash("Inode-cache",
1596 sizeof(struct hlist_head),
1597 ihash_entries,
1600 &i_hash_shift,
1601 &i_hash_mask,
1604 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1605 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1608 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1610 inode->i_mode = mode;
1611 if (S_ISCHR(mode)) {
1612 inode->i_fop = &def_chr_fops;
1613 inode->i_rdev = rdev;
1614 } else if (S_ISBLK(mode)) {
1615 inode->i_fop = &def_blk_fops;
1616 inode->i_rdev = rdev;
1617 } else if (S_ISFIFO(mode))
1618 inode->i_fop = &def_fifo_fops;
1619 else if (S_ISSOCK(mode))
1620 inode->i_fop = &bad_sock_fops;
1621 else
1622 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1623 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1624 inode->i_ino);
1626 EXPORT_SYMBOL(init_special_inode);