x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / fs / xfs / linux-2.6 / xfs_aops.c
blobc2e30eea74dc2cd6344dd6710806465b029db422
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
47 * Prime number of hash buckets since address is used as the key.
49 #define NVSYNC 37
50 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
53 void __init
54 xfs_ioend_init(void)
56 int i;
58 for (i = 0; i < NVSYNC; i++)
59 init_waitqueue_head(&xfs_ioend_wq[i]);
62 void
63 xfs_ioend_wait(
64 xfs_inode_t *ip)
66 wait_queue_head_t *wq = to_ioend_wq(ip);
68 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
71 STATIC void
72 xfs_ioend_wake(
73 xfs_inode_t *ip)
75 if (atomic_dec_and_test(&ip->i_iocount))
76 wake_up(to_ioend_wq(ip));
79 STATIC void
80 xfs_count_page_state(
81 struct page *page,
82 int *delalloc,
83 int *unmapped,
84 int *unwritten)
86 struct buffer_head *bh, *head;
88 *delalloc = *unmapped = *unwritten = 0;
90 bh = head = page_buffers(page);
91 do {
92 if (buffer_uptodate(bh) && !buffer_mapped(bh))
93 (*unmapped) = 1;
94 else if (buffer_unwritten(bh))
95 (*unwritten) = 1;
96 else if (buffer_delay(bh))
97 (*delalloc) = 1;
98 } while ((bh = bh->b_this_page) != head);
101 #if defined(XFS_RW_TRACE)
102 void
103 xfs_page_trace(
104 int tag,
105 struct inode *inode,
106 struct page *page,
107 unsigned long pgoff)
109 xfs_inode_t *ip;
110 loff_t isize = i_size_read(inode);
111 loff_t offset = page_offset(page);
112 int delalloc = -1, unmapped = -1, unwritten = -1;
114 if (page_has_buffers(page))
115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
117 ip = XFS_I(inode);
118 if (!ip->i_rwtrace)
119 return;
121 ktrace_enter(ip->i_rwtrace,
122 (void *)((unsigned long)tag),
123 (void *)ip,
124 (void *)inode,
125 (void *)page,
126 (void *)pgoff,
127 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
129 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize & 0xffffffff)),
131 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset & 0xffffffff)),
133 (void *)((unsigned long)delalloc),
134 (void *)((unsigned long)unmapped),
135 (void *)((unsigned long)unwritten),
136 (void *)((unsigned long)current_pid()),
137 (void *)NULL);
139 #else
140 #define xfs_page_trace(tag, inode, page, pgoff)
141 #endif
143 STATIC struct block_device *
144 xfs_find_bdev_for_inode(
145 struct xfs_inode *ip)
147 struct xfs_mount *mp = ip->i_mount;
149 if (XFS_IS_REALTIME_INODE(ip))
150 return mp->m_rtdev_targp->bt_bdev;
151 else
152 return mp->m_ddev_targp->bt_bdev;
156 * We're now finished for good with this ioend structure.
157 * Update the page state via the associated buffer_heads,
158 * release holds on the inode and bio, and finally free
159 * up memory. Do not use the ioend after this.
161 STATIC void
162 xfs_destroy_ioend(
163 xfs_ioend_t *ioend)
165 struct buffer_head *bh, *next;
166 struct xfs_inode *ip = XFS_I(ioend->io_inode);
168 for (bh = ioend->io_buffer_head; bh; bh = next) {
169 next = bh->b_private;
170 bh->b_end_io(bh, !ioend->io_error);
174 * Volume managers supporting multiple paths can send back ENODEV
175 * when the final path disappears. In this case continuing to fill
176 * the page cache with dirty data which cannot be written out is
177 * evil, so prevent that.
179 if (unlikely(ioend->io_error == -ENODEV)) {
180 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
181 __FILE__, __LINE__);
184 xfs_ioend_wake(ip);
185 mempool_free(ioend, xfs_ioend_pool);
189 * If the end of the current ioend is beyond the current EOF,
190 * return the new EOF value, otherwise zero.
192 STATIC xfs_fsize_t
193 xfs_ioend_new_eof(
194 xfs_ioend_t *ioend)
196 xfs_inode_t *ip = XFS_I(ioend->io_inode);
197 xfs_fsize_t isize;
198 xfs_fsize_t bsize;
200 bsize = ioend->io_offset + ioend->io_size;
201 isize = MAX(ip->i_size, ip->i_new_size);
202 isize = MIN(isize, bsize);
203 return isize > ip->i_d.di_size ? isize : 0;
207 * Update on-disk file size now that data has been written to disk.
208 * The current in-memory file size is i_size. If a write is beyond
209 * eof i_new_size will be the intended file size until i_size is
210 * updated. If this write does not extend all the way to the valid
211 * file size then restrict this update to the end of the write.
214 STATIC void
215 xfs_setfilesize(
216 xfs_ioend_t *ioend)
218 xfs_inode_t *ip = XFS_I(ioend->io_inode);
219 xfs_fsize_t isize;
221 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
222 ASSERT(ioend->io_type != IOMAP_READ);
224 if (unlikely(ioend->io_error))
225 return;
227 xfs_ilock(ip, XFS_ILOCK_EXCL);
228 isize = xfs_ioend_new_eof(ioend);
229 if (isize) {
230 ip->i_d.di_size = isize;
231 xfs_mark_inode_dirty_sync(ip);
234 xfs_iunlock(ip, XFS_ILOCK_EXCL);
238 * Buffered IO write completion for delayed allocate extents.
240 STATIC void
241 xfs_end_bio_delalloc(
242 struct work_struct *work)
244 xfs_ioend_t *ioend =
245 container_of(work, xfs_ioend_t, io_work);
247 xfs_setfilesize(ioend);
248 xfs_destroy_ioend(ioend);
252 * Buffered IO write completion for regular, written extents.
254 STATIC void
255 xfs_end_bio_written(
256 struct work_struct *work)
258 xfs_ioend_t *ioend =
259 container_of(work, xfs_ioend_t, io_work);
261 xfs_setfilesize(ioend);
262 xfs_destroy_ioend(ioend);
266 * IO write completion for unwritten extents.
268 * Issue transactions to convert a buffer range from unwritten
269 * to written extents.
271 STATIC void
272 xfs_end_bio_unwritten(
273 struct work_struct *work)
275 xfs_ioend_t *ioend =
276 container_of(work, xfs_ioend_t, io_work);
277 struct xfs_inode *ip = XFS_I(ioend->io_inode);
278 xfs_off_t offset = ioend->io_offset;
279 size_t size = ioend->io_size;
281 if (likely(!ioend->io_error)) {
282 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
283 int error;
284 error = xfs_iomap_write_unwritten(ip, offset, size);
285 if (error)
286 ioend->io_error = error;
288 xfs_setfilesize(ioend);
290 xfs_destroy_ioend(ioend);
294 * IO read completion for regular, written extents.
296 STATIC void
297 xfs_end_bio_read(
298 struct work_struct *work)
300 xfs_ioend_t *ioend =
301 container_of(work, xfs_ioend_t, io_work);
303 xfs_destroy_ioend(ioend);
307 * Schedule IO completion handling on a xfsdatad if this was
308 * the final hold on this ioend. If we are asked to wait,
309 * flush the workqueue.
311 STATIC void
312 xfs_finish_ioend(
313 xfs_ioend_t *ioend,
314 int wait)
316 if (atomic_dec_and_test(&ioend->io_remaining)) {
317 struct workqueue_struct *wq = xfsdatad_workqueue;
318 if (ioend->io_work.func == xfs_end_bio_unwritten)
319 wq = xfsconvertd_workqueue;
321 queue_work(wq, &ioend->io_work);
322 if (wait)
323 flush_workqueue(wq);
328 * Allocate and initialise an IO completion structure.
329 * We need to track unwritten extent write completion here initially.
330 * We'll need to extend this for updating the ondisk inode size later
331 * (vs. incore size).
333 STATIC xfs_ioend_t *
334 xfs_alloc_ioend(
335 struct inode *inode,
336 unsigned int type)
338 xfs_ioend_t *ioend;
340 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
343 * Set the count to 1 initially, which will prevent an I/O
344 * completion callback from happening before we have started
345 * all the I/O from calling the completion routine too early.
347 atomic_set(&ioend->io_remaining, 1);
348 ioend->io_error = 0;
349 ioend->io_list = NULL;
350 ioend->io_type = type;
351 ioend->io_inode = inode;
352 ioend->io_buffer_head = NULL;
353 ioend->io_buffer_tail = NULL;
354 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
355 ioend->io_offset = 0;
356 ioend->io_size = 0;
358 if (type == IOMAP_UNWRITTEN)
359 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
360 else if (type == IOMAP_DELAY)
361 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
362 else if (type == IOMAP_READ)
363 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
364 else
365 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
367 return ioend;
370 STATIC int
371 xfs_map_blocks(
372 struct inode *inode,
373 loff_t offset,
374 ssize_t count,
375 xfs_iomap_t *mapp,
376 int flags)
378 int nmaps = 1;
380 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
383 STATIC_INLINE int
384 xfs_iomap_valid(
385 xfs_iomap_t *iomapp,
386 loff_t offset)
388 return offset >= iomapp->iomap_offset &&
389 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
393 * BIO completion handler for buffered IO.
395 STATIC void
396 xfs_end_bio(
397 struct bio *bio,
398 int error)
400 xfs_ioend_t *ioend = bio->bi_private;
402 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
403 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
405 /* Toss bio and pass work off to an xfsdatad thread */
406 bio->bi_private = NULL;
407 bio->bi_end_io = NULL;
408 bio_put(bio);
410 xfs_finish_ioend(ioend, 0);
413 STATIC void
414 xfs_submit_ioend_bio(
415 xfs_ioend_t *ioend,
416 struct bio *bio)
418 atomic_inc(&ioend->io_remaining);
419 bio->bi_private = ioend;
420 bio->bi_end_io = xfs_end_bio;
423 * If the I/O is beyond EOF we mark the inode dirty immediately
424 * but don't update the inode size until I/O completion.
426 if (xfs_ioend_new_eof(ioend))
427 xfs_mark_inode_dirty_sync(XFS_I(ioend->io_inode));
429 submit_bio(WRITE, bio);
430 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
431 bio_put(bio);
434 STATIC struct bio *
435 xfs_alloc_ioend_bio(
436 struct buffer_head *bh)
438 struct bio *bio;
439 int nvecs = bio_get_nr_vecs(bh->b_bdev);
441 do {
442 bio = bio_alloc(GFP_NOIO, nvecs);
443 nvecs >>= 1;
444 } while (!bio);
446 ASSERT(bio->bi_private == NULL);
447 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
448 bio->bi_bdev = bh->b_bdev;
449 bio_get(bio);
450 return bio;
453 STATIC void
454 xfs_start_buffer_writeback(
455 struct buffer_head *bh)
457 ASSERT(buffer_mapped(bh));
458 ASSERT(buffer_locked(bh));
459 ASSERT(!buffer_delay(bh));
460 ASSERT(!buffer_unwritten(bh));
462 mark_buffer_async_write(bh);
463 set_buffer_uptodate(bh);
464 clear_buffer_dirty(bh);
467 STATIC void
468 xfs_start_page_writeback(
469 struct page *page,
470 int clear_dirty,
471 int buffers)
473 ASSERT(PageLocked(page));
474 ASSERT(!PageWriteback(page));
475 if (clear_dirty)
476 clear_page_dirty_for_io(page);
477 set_page_writeback(page);
478 unlock_page(page);
479 /* If no buffers on the page are to be written, finish it here */
480 if (!buffers)
481 end_page_writeback(page);
484 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
486 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
490 * Submit all of the bios for all of the ioends we have saved up, covering the
491 * initial writepage page and also any probed pages.
493 * Because we may have multiple ioends spanning a page, we need to start
494 * writeback on all the buffers before we submit them for I/O. If we mark the
495 * buffers as we got, then we can end up with a page that only has buffers
496 * marked async write and I/O complete on can occur before we mark the other
497 * buffers async write.
499 * The end result of this is that we trip a bug in end_page_writeback() because
500 * we call it twice for the one page as the code in end_buffer_async_write()
501 * assumes that all buffers on the page are started at the same time.
503 * The fix is two passes across the ioend list - one to start writeback on the
504 * buffer_heads, and then submit them for I/O on the second pass.
506 STATIC void
507 xfs_submit_ioend(
508 xfs_ioend_t *ioend)
510 xfs_ioend_t *head = ioend;
511 xfs_ioend_t *next;
512 struct buffer_head *bh;
513 struct bio *bio;
514 sector_t lastblock = 0;
516 /* Pass 1 - start writeback */
517 do {
518 next = ioend->io_list;
519 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
520 xfs_start_buffer_writeback(bh);
522 } while ((ioend = next) != NULL);
524 /* Pass 2 - submit I/O */
525 ioend = head;
526 do {
527 next = ioend->io_list;
528 bio = NULL;
530 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
532 if (!bio) {
533 retry:
534 bio = xfs_alloc_ioend_bio(bh);
535 } else if (bh->b_blocknr != lastblock + 1) {
536 xfs_submit_ioend_bio(ioend, bio);
537 goto retry;
540 if (bio_add_buffer(bio, bh) != bh->b_size) {
541 xfs_submit_ioend_bio(ioend, bio);
542 goto retry;
545 lastblock = bh->b_blocknr;
547 if (bio)
548 xfs_submit_ioend_bio(ioend, bio);
549 xfs_finish_ioend(ioend, 0);
550 } while ((ioend = next) != NULL);
554 * Cancel submission of all buffer_heads so far in this endio.
555 * Toss the endio too. Only ever called for the initial page
556 * in a writepage request, so only ever one page.
558 STATIC void
559 xfs_cancel_ioend(
560 xfs_ioend_t *ioend)
562 xfs_ioend_t *next;
563 struct buffer_head *bh, *next_bh;
565 do {
566 next = ioend->io_list;
567 bh = ioend->io_buffer_head;
568 do {
569 next_bh = bh->b_private;
570 clear_buffer_async_write(bh);
571 unlock_buffer(bh);
572 } while ((bh = next_bh) != NULL);
574 xfs_ioend_wake(XFS_I(ioend->io_inode));
575 mempool_free(ioend, xfs_ioend_pool);
576 } while ((ioend = next) != NULL);
580 * Test to see if we've been building up a completion structure for
581 * earlier buffers -- if so, we try to append to this ioend if we
582 * can, otherwise we finish off any current ioend and start another.
583 * Return true if we've finished the given ioend.
585 STATIC void
586 xfs_add_to_ioend(
587 struct inode *inode,
588 struct buffer_head *bh,
589 xfs_off_t offset,
590 unsigned int type,
591 xfs_ioend_t **result,
592 int need_ioend)
594 xfs_ioend_t *ioend = *result;
596 if (!ioend || need_ioend || type != ioend->io_type) {
597 xfs_ioend_t *previous = *result;
599 ioend = xfs_alloc_ioend(inode, type);
600 ioend->io_offset = offset;
601 ioend->io_buffer_head = bh;
602 ioend->io_buffer_tail = bh;
603 if (previous)
604 previous->io_list = ioend;
605 *result = ioend;
606 } else {
607 ioend->io_buffer_tail->b_private = bh;
608 ioend->io_buffer_tail = bh;
611 bh->b_private = NULL;
612 ioend->io_size += bh->b_size;
615 STATIC void
616 xfs_map_buffer(
617 struct buffer_head *bh,
618 xfs_iomap_t *mp,
619 xfs_off_t offset,
620 uint block_bits)
622 sector_t bn;
624 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
626 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
627 ((offset - mp->iomap_offset) >> block_bits);
629 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
631 bh->b_blocknr = bn;
632 set_buffer_mapped(bh);
635 STATIC void
636 xfs_map_at_offset(
637 struct buffer_head *bh,
638 loff_t offset,
639 int block_bits,
640 xfs_iomap_t *iomapp)
642 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
643 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
645 lock_buffer(bh);
646 xfs_map_buffer(bh, iomapp, offset, block_bits);
647 bh->b_bdev = iomapp->iomap_target->bt_bdev;
648 set_buffer_mapped(bh);
649 clear_buffer_delay(bh);
650 clear_buffer_unwritten(bh);
654 * Look for a page at index that is suitable for clustering.
656 STATIC unsigned int
657 xfs_probe_page(
658 struct page *page,
659 unsigned int pg_offset,
660 int mapped)
662 int ret = 0;
664 if (PageWriteback(page))
665 return 0;
667 if (page->mapping && PageDirty(page)) {
668 if (page_has_buffers(page)) {
669 struct buffer_head *bh, *head;
671 bh = head = page_buffers(page);
672 do {
673 if (!buffer_uptodate(bh))
674 break;
675 if (mapped != buffer_mapped(bh))
676 break;
677 ret += bh->b_size;
678 if (ret >= pg_offset)
679 break;
680 } while ((bh = bh->b_this_page) != head);
681 } else
682 ret = mapped ? 0 : PAGE_CACHE_SIZE;
685 return ret;
688 STATIC size_t
689 xfs_probe_cluster(
690 struct inode *inode,
691 struct page *startpage,
692 struct buffer_head *bh,
693 struct buffer_head *head,
694 int mapped)
696 struct pagevec pvec;
697 pgoff_t tindex, tlast, tloff;
698 size_t total = 0;
699 int done = 0, i;
701 /* First sum forwards in this page */
702 do {
703 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
704 return total;
705 total += bh->b_size;
706 } while ((bh = bh->b_this_page) != head);
708 /* if we reached the end of the page, sum forwards in following pages */
709 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
710 tindex = startpage->index + 1;
712 /* Prune this back to avoid pathological behavior */
713 tloff = min(tlast, startpage->index + 64);
715 pagevec_init(&pvec, 0);
716 while (!done && tindex <= tloff) {
717 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
719 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
720 break;
722 for (i = 0; i < pagevec_count(&pvec); i++) {
723 struct page *page = pvec.pages[i];
724 size_t pg_offset, pg_len = 0;
726 if (tindex == tlast) {
727 pg_offset =
728 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
729 if (!pg_offset) {
730 done = 1;
731 break;
733 } else
734 pg_offset = PAGE_CACHE_SIZE;
736 if (page->index == tindex && trylock_page(page)) {
737 pg_len = xfs_probe_page(page, pg_offset, mapped);
738 unlock_page(page);
741 if (!pg_len) {
742 done = 1;
743 break;
746 total += pg_len;
747 tindex++;
750 pagevec_release(&pvec);
751 cond_resched();
754 return total;
758 * Test if a given page is suitable for writing as part of an unwritten
759 * or delayed allocate extent.
761 STATIC int
762 xfs_is_delayed_page(
763 struct page *page,
764 unsigned int type)
766 if (PageWriteback(page))
767 return 0;
769 if (page->mapping && page_has_buffers(page)) {
770 struct buffer_head *bh, *head;
771 int acceptable = 0;
773 bh = head = page_buffers(page);
774 do {
775 if (buffer_unwritten(bh))
776 acceptable = (type == IOMAP_UNWRITTEN);
777 else if (buffer_delay(bh))
778 acceptable = (type == IOMAP_DELAY);
779 else if (buffer_dirty(bh) && buffer_mapped(bh))
780 acceptable = (type == IOMAP_NEW);
781 else
782 break;
783 } while ((bh = bh->b_this_page) != head);
785 if (acceptable)
786 return 1;
789 return 0;
793 * Allocate & map buffers for page given the extent map. Write it out.
794 * except for the original page of a writepage, this is called on
795 * delalloc/unwritten pages only, for the original page it is possible
796 * that the page has no mapping at all.
798 STATIC int
799 xfs_convert_page(
800 struct inode *inode,
801 struct page *page,
802 loff_t tindex,
803 xfs_iomap_t *mp,
804 xfs_ioend_t **ioendp,
805 struct writeback_control *wbc,
806 int startio,
807 int all_bh)
809 struct buffer_head *bh, *head;
810 xfs_off_t end_offset;
811 unsigned long p_offset;
812 unsigned int type;
813 int bbits = inode->i_blkbits;
814 int len, page_dirty;
815 int count = 0, done = 0, uptodate = 1;
816 xfs_off_t offset = page_offset(page);
818 if (page->index != tindex)
819 goto fail;
820 if (!trylock_page(page))
821 goto fail;
822 if (PageWriteback(page))
823 goto fail_unlock_page;
824 if (page->mapping != inode->i_mapping)
825 goto fail_unlock_page;
826 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
827 goto fail_unlock_page;
830 * page_dirty is initially a count of buffers on the page before
831 * EOF and is decremented as we move each into a cleanable state.
833 * Derivation:
835 * End offset is the highest offset that this page should represent.
836 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
837 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
838 * hence give us the correct page_dirty count. On any other page,
839 * it will be zero and in that case we need page_dirty to be the
840 * count of buffers on the page.
842 end_offset = min_t(unsigned long long,
843 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
844 i_size_read(inode));
846 len = 1 << inode->i_blkbits;
847 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
848 PAGE_CACHE_SIZE);
849 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
850 page_dirty = p_offset / len;
852 bh = head = page_buffers(page);
853 do {
854 if (offset >= end_offset)
855 break;
856 if (!buffer_uptodate(bh))
857 uptodate = 0;
858 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
859 done = 1;
860 continue;
863 if (buffer_unwritten(bh) || buffer_delay(bh)) {
864 if (buffer_unwritten(bh))
865 type = IOMAP_UNWRITTEN;
866 else
867 type = IOMAP_DELAY;
869 if (!xfs_iomap_valid(mp, offset)) {
870 done = 1;
871 continue;
874 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
875 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
877 xfs_map_at_offset(bh, offset, bbits, mp);
878 if (startio) {
879 xfs_add_to_ioend(inode, bh, offset,
880 type, ioendp, done);
881 } else {
882 set_buffer_dirty(bh);
883 unlock_buffer(bh);
884 mark_buffer_dirty(bh);
886 page_dirty--;
887 count++;
888 } else {
889 type = IOMAP_NEW;
890 if (buffer_mapped(bh) && all_bh && startio) {
891 lock_buffer(bh);
892 xfs_add_to_ioend(inode, bh, offset,
893 type, ioendp, done);
894 count++;
895 page_dirty--;
896 } else {
897 done = 1;
900 } while (offset += len, (bh = bh->b_this_page) != head);
902 if (uptodate && bh == head)
903 SetPageUptodate(page);
905 if (startio) {
906 if (count) {
907 struct backing_dev_info *bdi;
909 bdi = inode->i_mapping->backing_dev_info;
910 wbc->nr_to_write--;
911 if (bdi_write_congested(bdi)) {
912 wbc->encountered_congestion = 1;
913 done = 1;
914 } else if (wbc->nr_to_write <= 0) {
915 done = 1;
918 xfs_start_page_writeback(page, !page_dirty, count);
921 return done;
922 fail_unlock_page:
923 unlock_page(page);
924 fail:
925 return 1;
929 * Convert & write out a cluster of pages in the same extent as defined
930 * by mp and following the start page.
932 STATIC void
933 xfs_cluster_write(
934 struct inode *inode,
935 pgoff_t tindex,
936 xfs_iomap_t *iomapp,
937 xfs_ioend_t **ioendp,
938 struct writeback_control *wbc,
939 int startio,
940 int all_bh,
941 pgoff_t tlast)
943 struct pagevec pvec;
944 int done = 0, i;
946 pagevec_init(&pvec, 0);
947 while (!done && tindex <= tlast) {
948 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
950 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
951 break;
953 for (i = 0; i < pagevec_count(&pvec); i++) {
954 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
955 iomapp, ioendp, wbc, startio, all_bh);
956 if (done)
957 break;
960 pagevec_release(&pvec);
961 cond_resched();
966 * Calling this without startio set means we are being asked to make a dirty
967 * page ready for freeing it's buffers. When called with startio set then
968 * we are coming from writepage.
970 * When called with startio set it is important that we write the WHOLE
971 * page if possible.
972 * The bh->b_state's cannot know if any of the blocks or which block for
973 * that matter are dirty due to mmap writes, and therefore bh uptodate is
974 * only valid if the page itself isn't completely uptodate. Some layers
975 * may clear the page dirty flag prior to calling write page, under the
976 * assumption the entire page will be written out; by not writing out the
977 * whole page the page can be reused before all valid dirty data is
978 * written out. Note: in the case of a page that has been dirty'd by
979 * mapwrite and but partially setup by block_prepare_write the
980 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
981 * valid state, thus the whole page must be written out thing.
984 STATIC int
985 xfs_page_state_convert(
986 struct inode *inode,
987 struct page *page,
988 struct writeback_control *wbc,
989 int startio,
990 int unmapped) /* also implies page uptodate */
992 struct buffer_head *bh, *head;
993 xfs_iomap_t iomap;
994 xfs_ioend_t *ioend = NULL, *iohead = NULL;
995 loff_t offset;
996 unsigned long p_offset = 0;
997 unsigned int type;
998 __uint64_t end_offset;
999 pgoff_t end_index, last_index, tlast;
1000 ssize_t size, len;
1001 int flags, err, iomap_valid = 0, uptodate = 1;
1002 int page_dirty, count = 0;
1003 int trylock = 0;
1004 int all_bh = unmapped;
1006 if (startio) {
1007 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1008 trylock |= BMAPI_TRYLOCK;
1011 /* Is this page beyond the end of the file? */
1012 offset = i_size_read(inode);
1013 end_index = offset >> PAGE_CACHE_SHIFT;
1014 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1015 if (page->index >= end_index) {
1016 if ((page->index >= end_index + 1) ||
1017 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
1018 if (startio)
1019 unlock_page(page);
1020 return 0;
1025 * page_dirty is initially a count of buffers on the page before
1026 * EOF and is decremented as we move each into a cleanable state.
1028 * Derivation:
1030 * End offset is the highest offset that this page should represent.
1031 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1032 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1033 * hence give us the correct page_dirty count. On any other page,
1034 * it will be zero and in that case we need page_dirty to be the
1035 * count of buffers on the page.
1037 end_offset = min_t(unsigned long long,
1038 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
1039 len = 1 << inode->i_blkbits;
1040 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1041 PAGE_CACHE_SIZE);
1042 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
1043 page_dirty = p_offset / len;
1045 bh = head = page_buffers(page);
1046 offset = page_offset(page);
1047 flags = BMAPI_READ;
1048 type = IOMAP_NEW;
1050 /* TODO: cleanup count and page_dirty */
1052 do {
1053 if (offset >= end_offset)
1054 break;
1055 if (!buffer_uptodate(bh))
1056 uptodate = 0;
1057 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1059 * the iomap is actually still valid, but the ioend
1060 * isn't. shouldn't happen too often.
1062 iomap_valid = 0;
1063 continue;
1066 if (iomap_valid)
1067 iomap_valid = xfs_iomap_valid(&iomap, offset);
1070 * First case, map an unwritten extent and prepare for
1071 * extent state conversion transaction on completion.
1073 * Second case, allocate space for a delalloc buffer.
1074 * We can return EAGAIN here in the release page case.
1076 * Third case, an unmapped buffer was found, and we are
1077 * in a path where we need to write the whole page out.
1079 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1080 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1081 !buffer_mapped(bh) && (unmapped || startio))) {
1082 int new_ioend = 0;
1085 * Make sure we don't use a read-only iomap
1087 if (flags == BMAPI_READ)
1088 iomap_valid = 0;
1090 if (buffer_unwritten(bh)) {
1091 type = IOMAP_UNWRITTEN;
1092 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1093 } else if (buffer_delay(bh)) {
1094 type = IOMAP_DELAY;
1095 flags = BMAPI_ALLOCATE | trylock;
1096 } else {
1097 type = IOMAP_NEW;
1098 flags = BMAPI_WRITE | BMAPI_MMAP;
1101 if (!iomap_valid) {
1103 * if we didn't have a valid mapping then we
1104 * need to ensure that we put the new mapping
1105 * in a new ioend structure. This needs to be
1106 * done to ensure that the ioends correctly
1107 * reflect the block mappings at io completion
1108 * for unwritten extent conversion.
1110 new_ioend = 1;
1111 if (type == IOMAP_NEW) {
1112 size = xfs_probe_cluster(inode,
1113 page, bh, head, 0);
1114 } else {
1115 size = len;
1118 err = xfs_map_blocks(inode, offset, size,
1119 &iomap, flags);
1120 if (err)
1121 goto error;
1122 iomap_valid = xfs_iomap_valid(&iomap, offset);
1124 if (iomap_valid) {
1125 xfs_map_at_offset(bh, offset,
1126 inode->i_blkbits, &iomap);
1127 if (startio) {
1128 xfs_add_to_ioend(inode, bh, offset,
1129 type, &ioend,
1130 new_ioend);
1131 } else {
1132 set_buffer_dirty(bh);
1133 unlock_buffer(bh);
1134 mark_buffer_dirty(bh);
1136 page_dirty--;
1137 count++;
1139 } else if (buffer_uptodate(bh) && startio) {
1141 * we got here because the buffer is already mapped.
1142 * That means it must already have extents allocated
1143 * underneath it. Map the extent by reading it.
1145 if (!iomap_valid || flags != BMAPI_READ) {
1146 flags = BMAPI_READ;
1147 size = xfs_probe_cluster(inode, page, bh,
1148 head, 1);
1149 err = xfs_map_blocks(inode, offset, size,
1150 &iomap, flags);
1151 if (err)
1152 goto error;
1153 iomap_valid = xfs_iomap_valid(&iomap, offset);
1157 * We set the type to IOMAP_NEW in case we are doing a
1158 * small write at EOF that is extending the file but
1159 * without needing an allocation. We need to update the
1160 * file size on I/O completion in this case so it is
1161 * the same case as having just allocated a new extent
1162 * that we are writing into for the first time.
1164 type = IOMAP_NEW;
1165 if (trylock_buffer(bh)) {
1166 ASSERT(buffer_mapped(bh));
1167 if (iomap_valid)
1168 all_bh = 1;
1169 xfs_add_to_ioend(inode, bh, offset, type,
1170 &ioend, !iomap_valid);
1171 page_dirty--;
1172 count++;
1173 } else {
1174 iomap_valid = 0;
1176 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1177 (unmapped || startio)) {
1178 iomap_valid = 0;
1181 if (!iohead)
1182 iohead = ioend;
1184 } while (offset += len, ((bh = bh->b_this_page) != head));
1186 if (uptodate && bh == head)
1187 SetPageUptodate(page);
1189 if (startio)
1190 xfs_start_page_writeback(page, 1, count);
1192 if (ioend && iomap_valid) {
1193 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1194 PAGE_CACHE_SHIFT;
1195 tlast = min_t(pgoff_t, offset, last_index);
1196 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1197 wbc, startio, all_bh, tlast);
1200 if (iohead)
1201 xfs_submit_ioend(iohead);
1203 return page_dirty;
1205 error:
1206 if (iohead)
1207 xfs_cancel_ioend(iohead);
1210 * If it's delalloc and we have nowhere to put it,
1211 * throw it away, unless the lower layers told
1212 * us to try again.
1214 if (err != -EAGAIN) {
1215 if (!unmapped)
1216 block_invalidatepage(page, 0);
1217 ClearPageUptodate(page);
1219 return err;
1223 * writepage: Called from one of two places:
1225 * 1. we are flushing a delalloc buffer head.
1227 * 2. we are writing out a dirty page. Typically the page dirty
1228 * state is cleared before we get here. In this case is it
1229 * conceivable we have no buffer heads.
1231 * For delalloc space on the page we need to allocate space and
1232 * flush it. For unmapped buffer heads on the page we should
1233 * allocate space if the page is uptodate. For any other dirty
1234 * buffer heads on the page we should flush them.
1236 * If we detect that a transaction would be required to flush
1237 * the page, we have to check the process flags first, if we
1238 * are already in a transaction or disk I/O during allocations
1239 * is off, we need to fail the writepage and redirty the page.
1242 STATIC int
1243 xfs_vm_writepage(
1244 struct page *page,
1245 struct writeback_control *wbc)
1247 int error;
1248 int need_trans;
1249 int delalloc, unmapped, unwritten;
1250 struct inode *inode = page->mapping->host;
1252 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1255 * We need a transaction if:
1256 * 1. There are delalloc buffers on the page
1257 * 2. The page is uptodate and we have unmapped buffers
1258 * 3. The page is uptodate and we have no buffers
1259 * 4. There are unwritten buffers on the page
1262 if (!page_has_buffers(page)) {
1263 unmapped = 1;
1264 need_trans = 1;
1265 } else {
1266 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1267 if (!PageUptodate(page))
1268 unmapped = 0;
1269 need_trans = delalloc + unmapped + unwritten;
1273 * If we need a transaction and the process flags say
1274 * we are already in a transaction, or no IO is allowed
1275 * then mark the page dirty again and leave the page
1276 * as is.
1278 if (current_test_flags(PF_FSTRANS) && need_trans)
1279 goto out_fail;
1282 * Delay hooking up buffer heads until we have
1283 * made our go/no-go decision.
1285 if (!page_has_buffers(page))
1286 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1290 * VM calculation for nr_to_write seems off. Bump it way
1291 * up, this gets simple streaming writes zippy again.
1292 * To be reviewed again after Jens' writeback changes.
1294 wbc->nr_to_write *= 4;
1297 * Convert delayed allocate, unwritten or unmapped space
1298 * to real space and flush out to disk.
1300 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1301 if (error == -EAGAIN)
1302 goto out_fail;
1303 if (unlikely(error < 0))
1304 goto out_unlock;
1306 return 0;
1308 out_fail:
1309 redirty_page_for_writepage(wbc, page);
1310 unlock_page(page);
1311 return 0;
1312 out_unlock:
1313 unlock_page(page);
1314 return error;
1317 STATIC int
1318 xfs_vm_writepages(
1319 struct address_space *mapping,
1320 struct writeback_control *wbc)
1322 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1323 return generic_writepages(mapping, wbc);
1327 * Called to move a page into cleanable state - and from there
1328 * to be released. Possibly the page is already clean. We always
1329 * have buffer heads in this call.
1331 * Returns 0 if the page is ok to release, 1 otherwise.
1333 * Possible scenarios are:
1335 * 1. We are being called to release a page which has been written
1336 * to via regular I/O. buffer heads will be dirty and possibly
1337 * delalloc. If no delalloc buffer heads in this case then we
1338 * can just return zero.
1340 * 2. We are called to release a page which has been written via
1341 * mmap, all we need to do is ensure there is no delalloc
1342 * state in the buffer heads, if not we can let the caller
1343 * free them and we should come back later via writepage.
1345 STATIC int
1346 xfs_vm_releasepage(
1347 struct page *page,
1348 gfp_t gfp_mask)
1350 struct inode *inode = page->mapping->host;
1351 int dirty, delalloc, unmapped, unwritten;
1352 struct writeback_control wbc = {
1353 .sync_mode = WB_SYNC_ALL,
1354 .nr_to_write = 1,
1357 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1359 if (!page_has_buffers(page))
1360 return 0;
1362 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1363 if (!delalloc && !unwritten)
1364 goto free_buffers;
1366 if (!(gfp_mask & __GFP_FS))
1367 return 0;
1369 /* If we are already inside a transaction or the thread cannot
1370 * do I/O, we cannot release this page.
1372 if (current_test_flags(PF_FSTRANS))
1373 return 0;
1376 * Convert delalloc space to real space, do not flush the
1377 * data out to disk, that will be done by the caller.
1378 * Never need to allocate space here - we will always
1379 * come back to writepage in that case.
1381 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1382 if (dirty == 0 && !unwritten)
1383 goto free_buffers;
1384 return 0;
1386 free_buffers:
1387 return try_to_free_buffers(page);
1390 STATIC int
1391 __xfs_get_blocks(
1392 struct inode *inode,
1393 sector_t iblock,
1394 struct buffer_head *bh_result,
1395 int create,
1396 int direct,
1397 bmapi_flags_t flags)
1399 xfs_iomap_t iomap;
1400 xfs_off_t offset;
1401 ssize_t size;
1402 int niomap = 1;
1403 int error;
1405 offset = (xfs_off_t)iblock << inode->i_blkbits;
1406 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1407 size = bh_result->b_size;
1409 if (!create && direct && offset >= i_size_read(inode))
1410 return 0;
1412 error = xfs_iomap(XFS_I(inode), offset, size,
1413 create ? flags : BMAPI_READ, &iomap, &niomap);
1414 if (error)
1415 return -error;
1416 if (niomap == 0)
1417 return 0;
1419 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1421 * For unwritten extents do not report a disk address on
1422 * the read case (treat as if we're reading into a hole).
1424 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1425 xfs_map_buffer(bh_result, &iomap, offset,
1426 inode->i_blkbits);
1428 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1429 if (direct)
1430 bh_result->b_private = inode;
1431 set_buffer_unwritten(bh_result);
1436 * If this is a realtime file, data may be on a different device.
1437 * to that pointed to from the buffer_head b_bdev currently.
1439 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1442 * If we previously allocated a block out beyond eof and we are now
1443 * coming back to use it then we will need to flag it as new even if it
1444 * has a disk address.
1446 * With sub-block writes into unwritten extents we also need to mark
1447 * the buffer as new so that the unwritten parts of the buffer gets
1448 * correctly zeroed.
1450 if (create &&
1451 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1452 (offset >= i_size_read(inode)) ||
1453 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1454 set_buffer_new(bh_result);
1456 if (iomap.iomap_flags & IOMAP_DELAY) {
1457 BUG_ON(direct);
1458 if (create) {
1459 set_buffer_uptodate(bh_result);
1460 set_buffer_mapped(bh_result);
1461 set_buffer_delay(bh_result);
1465 if (direct || size > (1 << inode->i_blkbits)) {
1466 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1467 offset = min_t(xfs_off_t,
1468 iomap.iomap_bsize - iomap.iomap_delta, size);
1469 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1472 return 0;
1476 xfs_get_blocks(
1477 struct inode *inode,
1478 sector_t iblock,
1479 struct buffer_head *bh_result,
1480 int create)
1482 return __xfs_get_blocks(inode, iblock,
1483 bh_result, create, 0, BMAPI_WRITE);
1486 STATIC int
1487 xfs_get_blocks_direct(
1488 struct inode *inode,
1489 sector_t iblock,
1490 struct buffer_head *bh_result,
1491 int create)
1493 return __xfs_get_blocks(inode, iblock,
1494 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1497 STATIC void
1498 xfs_end_io_direct(
1499 struct kiocb *iocb,
1500 loff_t offset,
1501 ssize_t size,
1502 void *private)
1504 xfs_ioend_t *ioend = iocb->private;
1507 * Non-NULL private data means we need to issue a transaction to
1508 * convert a range from unwritten to written extents. This needs
1509 * to happen from process context but aio+dio I/O completion
1510 * happens from irq context so we need to defer it to a workqueue.
1511 * This is not necessary for synchronous direct I/O, but we do
1512 * it anyway to keep the code uniform and simpler.
1514 * Well, if only it were that simple. Because synchronous direct I/O
1515 * requires extent conversion to occur *before* we return to userspace,
1516 * we have to wait for extent conversion to complete. Look at the
1517 * iocb that has been passed to us to determine if this is AIO or
1518 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1519 * workqueue and wait for it to complete.
1521 * The core direct I/O code might be changed to always call the
1522 * completion handler in the future, in which case all this can
1523 * go away.
1525 ioend->io_offset = offset;
1526 ioend->io_size = size;
1527 if (ioend->io_type == IOMAP_READ) {
1528 xfs_finish_ioend(ioend, 0);
1529 } else if (private && size > 0) {
1530 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1531 } else {
1533 * A direct I/O write ioend starts it's life in unwritten
1534 * state in case they map an unwritten extent. This write
1535 * didn't map an unwritten extent so switch it's completion
1536 * handler.
1538 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1539 xfs_finish_ioend(ioend, 0);
1543 * blockdev_direct_IO can return an error even after the I/O
1544 * completion handler was called. Thus we need to protect
1545 * against double-freeing.
1547 iocb->private = NULL;
1550 STATIC ssize_t
1551 xfs_vm_direct_IO(
1552 int rw,
1553 struct kiocb *iocb,
1554 const struct iovec *iov,
1555 loff_t offset,
1556 unsigned long nr_segs)
1558 struct file *file = iocb->ki_filp;
1559 struct inode *inode = file->f_mapping->host;
1560 struct block_device *bdev;
1561 ssize_t ret;
1563 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1565 if (rw == WRITE) {
1566 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1567 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1568 bdev, iov, offset, nr_segs,
1569 xfs_get_blocks_direct,
1570 xfs_end_io_direct);
1571 } else {
1572 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1573 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1574 bdev, iov, offset, nr_segs,
1575 xfs_get_blocks_direct,
1576 xfs_end_io_direct);
1579 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1580 xfs_destroy_ioend(iocb->private);
1581 return ret;
1584 STATIC int
1585 xfs_vm_write_begin(
1586 struct file *file,
1587 struct address_space *mapping,
1588 loff_t pos,
1589 unsigned len,
1590 unsigned flags,
1591 struct page **pagep,
1592 void **fsdata)
1594 *pagep = NULL;
1595 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1596 xfs_get_blocks);
1599 STATIC sector_t
1600 xfs_vm_bmap(
1601 struct address_space *mapping,
1602 sector_t block)
1604 struct inode *inode = (struct inode *)mapping->host;
1605 struct xfs_inode *ip = XFS_I(inode);
1607 xfs_itrace_entry(XFS_I(inode));
1608 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1609 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1610 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1611 return generic_block_bmap(mapping, block, xfs_get_blocks);
1614 STATIC int
1615 xfs_vm_readpage(
1616 struct file *unused,
1617 struct page *page)
1619 return mpage_readpage(page, xfs_get_blocks);
1622 STATIC int
1623 xfs_vm_readpages(
1624 struct file *unused,
1625 struct address_space *mapping,
1626 struct list_head *pages,
1627 unsigned nr_pages)
1629 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1632 STATIC void
1633 xfs_vm_invalidatepage(
1634 struct page *page,
1635 unsigned long offset)
1637 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1638 page->mapping->host, page, offset);
1639 block_invalidatepage(page, offset);
1642 const struct address_space_operations xfs_address_space_operations = {
1643 .readpage = xfs_vm_readpage,
1644 .readpages = xfs_vm_readpages,
1645 .writepage = xfs_vm_writepage,
1646 .writepages = xfs_vm_writepages,
1647 .sync_page = block_sync_page,
1648 .releasepage = xfs_vm_releasepage,
1649 .invalidatepage = xfs_vm_invalidatepage,
1650 .write_begin = xfs_vm_write_begin,
1651 .write_end = generic_write_end,
1652 .bmap = xfs_vm_bmap,
1653 .direct_IO = xfs_vm_direct_IO,
1654 .migratepage = buffer_migrate_page,
1655 .is_partially_uptodate = block_is_partially_uptodate,
1656 .error_remove_page = generic_error_remove_page,