x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / fs / xfs / xfs_inode_item.c
blob9794b876d6ff65e34336e390a9becca46fa8e330
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_rw.h"
43 #include "xfs_error.h"
46 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
49 * This returns the number of iovecs needed to log the given inode item.
51 * We need one iovec for the inode log format structure, one for the
52 * inode core, and possibly one for the inode data/extents/b-tree root
53 * and one for the inode attribute data/extents/b-tree root.
55 STATIC uint
56 xfs_inode_item_size(
57 xfs_inode_log_item_t *iip)
59 uint nvecs;
60 xfs_inode_t *ip;
62 ip = iip->ili_inode;
63 nvecs = 2;
66 * Only log the data/extents/b-tree root if there is something
67 * left to log.
69 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
71 switch (ip->i_d.di_format) {
72 case XFS_DINODE_FMT_EXTENTS:
73 iip->ili_format.ilf_fields &=
74 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
75 XFS_ILOG_DEV | XFS_ILOG_UUID);
76 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
77 (ip->i_d.di_nextents > 0) &&
78 (ip->i_df.if_bytes > 0)) {
79 ASSERT(ip->i_df.if_u1.if_extents != NULL);
80 nvecs++;
81 } else {
82 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
84 break;
86 case XFS_DINODE_FMT_BTREE:
87 ASSERT(ip->i_df.if_ext_max ==
88 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
89 iip->ili_format.ilf_fields &=
90 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
91 XFS_ILOG_DEV | XFS_ILOG_UUID);
92 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
93 (ip->i_df.if_broot_bytes > 0)) {
94 ASSERT(ip->i_df.if_broot != NULL);
95 nvecs++;
96 } else {
97 ASSERT(!(iip->ili_format.ilf_fields &
98 XFS_ILOG_DBROOT));
99 #ifdef XFS_TRANS_DEBUG
100 if (iip->ili_root_size > 0) {
101 ASSERT(iip->ili_root_size ==
102 ip->i_df.if_broot_bytes);
103 ASSERT(memcmp(iip->ili_orig_root,
104 ip->i_df.if_broot,
105 iip->ili_root_size) == 0);
106 } else {
107 ASSERT(ip->i_df.if_broot_bytes == 0);
109 #endif
110 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
112 break;
114 case XFS_DINODE_FMT_LOCAL:
115 iip->ili_format.ilf_fields &=
116 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
117 XFS_ILOG_DEV | XFS_ILOG_UUID);
118 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
119 (ip->i_df.if_bytes > 0)) {
120 ASSERT(ip->i_df.if_u1.if_data != NULL);
121 ASSERT(ip->i_d.di_size > 0);
122 nvecs++;
123 } else {
124 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
126 break;
128 case XFS_DINODE_FMT_DEV:
129 iip->ili_format.ilf_fields &=
130 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
131 XFS_ILOG_DEXT | XFS_ILOG_UUID);
132 break;
134 case XFS_DINODE_FMT_UUID:
135 iip->ili_format.ilf_fields &=
136 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
137 XFS_ILOG_DEXT | XFS_ILOG_DEV);
138 break;
140 default:
141 ASSERT(0);
142 break;
146 * If there are no attributes associated with this file,
147 * then there cannot be anything more to log.
148 * Clear all attribute-related log flags.
150 if (!XFS_IFORK_Q(ip)) {
151 iip->ili_format.ilf_fields &=
152 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
153 return nvecs;
157 * Log any necessary attribute data.
159 switch (ip->i_d.di_aformat) {
160 case XFS_DINODE_FMT_EXTENTS:
161 iip->ili_format.ilf_fields &=
162 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
163 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
164 (ip->i_d.di_anextents > 0) &&
165 (ip->i_afp->if_bytes > 0)) {
166 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
167 nvecs++;
168 } else {
169 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
171 break;
173 case XFS_DINODE_FMT_BTREE:
174 iip->ili_format.ilf_fields &=
175 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
176 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
177 (ip->i_afp->if_broot_bytes > 0)) {
178 ASSERT(ip->i_afp->if_broot != NULL);
179 nvecs++;
180 } else {
181 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
183 break;
185 case XFS_DINODE_FMT_LOCAL:
186 iip->ili_format.ilf_fields &=
187 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
188 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
189 (ip->i_afp->if_bytes > 0)) {
190 ASSERT(ip->i_afp->if_u1.if_data != NULL);
191 nvecs++;
192 } else {
193 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
195 break;
197 default:
198 ASSERT(0);
199 break;
202 return nvecs;
206 * This is called to fill in the vector of log iovecs for the
207 * given inode log item. It fills the first item with an inode
208 * log format structure, the second with the on-disk inode structure,
209 * and a possible third and/or fourth with the inode data/extents/b-tree
210 * root and inode attributes data/extents/b-tree root.
212 STATIC void
213 xfs_inode_item_format(
214 xfs_inode_log_item_t *iip,
215 xfs_log_iovec_t *log_vector)
217 uint nvecs;
218 xfs_log_iovec_t *vecp;
219 xfs_inode_t *ip;
220 size_t data_bytes;
221 xfs_bmbt_rec_t *ext_buffer;
222 int nrecs;
223 xfs_mount_t *mp;
225 ip = iip->ili_inode;
226 vecp = log_vector;
228 vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
229 vecp->i_len = sizeof(xfs_inode_log_format_t);
230 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
231 vecp++;
232 nvecs = 1;
235 * Make sure the linux inode is dirty. We do this before
236 * clearing i_update_core as the VFS will call back into
237 * XFS here and set i_update_core, so we need to dirty the
238 * inode first so that the ordering of i_update_core and
239 * unlogged modifications still works as described below.
241 xfs_mark_inode_dirty_sync(ip);
244 * Clear i_update_core if the timestamps (or any other
245 * non-transactional modification) need flushing/logging
246 * and we're about to log them with the rest of the core.
248 * This is the same logic as xfs_iflush() but this code can't
249 * run at the same time as xfs_iflush because we're in commit
250 * processing here and so we have the inode lock held in
251 * exclusive mode. Although it doesn't really matter
252 * for the timestamps if both routines were to grab the
253 * timestamps or not. That would be ok.
255 * We clear i_update_core before copying out the data.
256 * This is for coordination with our timestamp updates
257 * that don't hold the inode lock. They will always
258 * update the timestamps BEFORE setting i_update_core,
259 * so if we clear i_update_core after they set it we
260 * are guaranteed to see their updates to the timestamps
261 * either here. Likewise, if they set it after we clear it
262 * here, we'll see it either on the next commit of this
263 * inode or the next time the inode gets flushed via
264 * xfs_iflush(). This depends on strongly ordered memory
265 * semantics, but we have that. We use the SYNCHRONIZE
266 * macro to make sure that the compiler does not reorder
267 * the i_update_core access below the data copy below.
269 if (ip->i_update_core) {
270 ip->i_update_core = 0;
271 SYNCHRONIZE();
275 * Make sure to get the latest timestamps from the Linux inode.
277 xfs_synchronize_times(ip);
279 vecp->i_addr = (xfs_caddr_t)&ip->i_d;
280 vecp->i_len = sizeof(struct xfs_icdinode);
281 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
282 vecp++;
283 nvecs++;
284 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
287 * If this is really an old format inode, then we need to
288 * log it as such. This means that we have to copy the link
289 * count from the new field to the old. We don't have to worry
290 * about the new fields, because nothing trusts them as long as
291 * the old inode version number is there. If the superblock already
292 * has a new version number, then we don't bother converting back.
294 mp = ip->i_mount;
295 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
296 if (ip->i_d.di_version == 1) {
297 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
299 * Convert it back.
301 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
302 ip->i_d.di_onlink = ip->i_d.di_nlink;
303 } else {
305 * The superblock version has already been bumped,
306 * so just make the conversion to the new inode
307 * format permanent.
309 ip->i_d.di_version = 2;
310 ip->i_d.di_onlink = 0;
311 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
315 switch (ip->i_d.di_format) {
316 case XFS_DINODE_FMT_EXTENTS:
317 ASSERT(!(iip->ili_format.ilf_fields &
318 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
319 XFS_ILOG_DEV | XFS_ILOG_UUID)));
320 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
321 ASSERT(ip->i_df.if_bytes > 0);
322 ASSERT(ip->i_df.if_u1.if_extents != NULL);
323 ASSERT(ip->i_d.di_nextents > 0);
324 ASSERT(iip->ili_extents_buf == NULL);
325 nrecs = ip->i_df.if_bytes /
326 (uint)sizeof(xfs_bmbt_rec_t);
327 ASSERT(nrecs > 0);
328 #ifdef XFS_NATIVE_HOST
329 if (nrecs == ip->i_d.di_nextents) {
331 * There are no delayed allocation
332 * extents, so just point to the
333 * real extents array.
335 vecp->i_addr =
336 (char *)(ip->i_df.if_u1.if_extents);
337 vecp->i_len = ip->i_df.if_bytes;
338 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
339 } else
340 #endif
343 * There are delayed allocation extents
344 * in the inode, or we need to convert
345 * the extents to on disk format.
346 * Use xfs_iextents_copy()
347 * to copy only the real extents into
348 * a separate buffer. We'll free the
349 * buffer in the unlock routine.
351 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
352 KM_SLEEP);
353 iip->ili_extents_buf = ext_buffer;
354 vecp->i_addr = (xfs_caddr_t)ext_buffer;
355 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
356 XFS_DATA_FORK);
357 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
359 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
360 iip->ili_format.ilf_dsize = vecp->i_len;
361 vecp++;
362 nvecs++;
364 break;
366 case XFS_DINODE_FMT_BTREE:
367 ASSERT(!(iip->ili_format.ilf_fields &
368 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
369 XFS_ILOG_DEV | XFS_ILOG_UUID)));
370 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
371 ASSERT(ip->i_df.if_broot_bytes > 0);
372 ASSERT(ip->i_df.if_broot != NULL);
373 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
374 vecp->i_len = ip->i_df.if_broot_bytes;
375 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
376 vecp++;
377 nvecs++;
378 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
380 break;
382 case XFS_DINODE_FMT_LOCAL:
383 ASSERT(!(iip->ili_format.ilf_fields &
384 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
385 XFS_ILOG_DEV | XFS_ILOG_UUID)));
386 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
387 ASSERT(ip->i_df.if_bytes > 0);
388 ASSERT(ip->i_df.if_u1.if_data != NULL);
389 ASSERT(ip->i_d.di_size > 0);
391 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
393 * Round i_bytes up to a word boundary.
394 * The underlying memory is guaranteed to
395 * to be there by xfs_idata_realloc().
397 data_bytes = roundup(ip->i_df.if_bytes, 4);
398 ASSERT((ip->i_df.if_real_bytes == 0) ||
399 (ip->i_df.if_real_bytes == data_bytes));
400 vecp->i_len = (int)data_bytes;
401 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
402 vecp++;
403 nvecs++;
404 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
406 break;
408 case XFS_DINODE_FMT_DEV:
409 ASSERT(!(iip->ili_format.ilf_fields &
410 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
411 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
412 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
413 iip->ili_format.ilf_u.ilfu_rdev =
414 ip->i_df.if_u2.if_rdev;
416 break;
418 case XFS_DINODE_FMT_UUID:
419 ASSERT(!(iip->ili_format.ilf_fields &
420 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
421 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
422 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
423 iip->ili_format.ilf_u.ilfu_uuid =
424 ip->i_df.if_u2.if_uuid;
426 break;
428 default:
429 ASSERT(0);
430 break;
434 * If there are no attributes associated with the file,
435 * then we're done.
436 * Assert that no attribute-related log flags are set.
438 if (!XFS_IFORK_Q(ip)) {
439 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
440 iip->ili_format.ilf_size = nvecs;
441 ASSERT(!(iip->ili_format.ilf_fields &
442 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
443 return;
446 switch (ip->i_d.di_aformat) {
447 case XFS_DINODE_FMT_EXTENTS:
448 ASSERT(!(iip->ili_format.ilf_fields &
449 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
450 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
451 ASSERT(ip->i_afp->if_bytes > 0);
452 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
453 ASSERT(ip->i_d.di_anextents > 0);
454 #ifdef DEBUG
455 nrecs = ip->i_afp->if_bytes /
456 (uint)sizeof(xfs_bmbt_rec_t);
457 #endif
458 ASSERT(nrecs > 0);
459 ASSERT(nrecs == ip->i_d.di_anextents);
460 #ifdef XFS_NATIVE_HOST
462 * There are not delayed allocation extents
463 * for attributes, so just point at the array.
465 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
466 vecp->i_len = ip->i_afp->if_bytes;
467 #else
468 ASSERT(iip->ili_aextents_buf == NULL);
470 * Need to endian flip before logging
472 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
473 KM_SLEEP);
474 iip->ili_aextents_buf = ext_buffer;
475 vecp->i_addr = (xfs_caddr_t)ext_buffer;
476 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
477 XFS_ATTR_FORK);
478 #endif
479 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
480 iip->ili_format.ilf_asize = vecp->i_len;
481 vecp++;
482 nvecs++;
484 break;
486 case XFS_DINODE_FMT_BTREE:
487 ASSERT(!(iip->ili_format.ilf_fields &
488 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
489 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
490 ASSERT(ip->i_afp->if_broot_bytes > 0);
491 ASSERT(ip->i_afp->if_broot != NULL);
492 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
493 vecp->i_len = ip->i_afp->if_broot_bytes;
494 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
495 vecp++;
496 nvecs++;
497 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
499 break;
501 case XFS_DINODE_FMT_LOCAL:
502 ASSERT(!(iip->ili_format.ilf_fields &
503 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
504 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
505 ASSERT(ip->i_afp->if_bytes > 0);
506 ASSERT(ip->i_afp->if_u1.if_data != NULL);
508 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
510 * Round i_bytes up to a word boundary.
511 * The underlying memory is guaranteed to
512 * to be there by xfs_idata_realloc().
514 data_bytes = roundup(ip->i_afp->if_bytes, 4);
515 ASSERT((ip->i_afp->if_real_bytes == 0) ||
516 (ip->i_afp->if_real_bytes == data_bytes));
517 vecp->i_len = (int)data_bytes;
518 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
519 vecp++;
520 nvecs++;
521 iip->ili_format.ilf_asize = (unsigned)data_bytes;
523 break;
525 default:
526 ASSERT(0);
527 break;
530 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
531 iip->ili_format.ilf_size = nvecs;
536 * This is called to pin the inode associated with the inode log
537 * item in memory so it cannot be written out. Do this by calling
538 * xfs_ipin() to bump the pin count in the inode while holding the
539 * inode pin lock.
541 STATIC void
542 xfs_inode_item_pin(
543 xfs_inode_log_item_t *iip)
545 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
546 xfs_ipin(iip->ili_inode);
551 * This is called to unpin the inode associated with the inode log
552 * item which was previously pinned with a call to xfs_inode_item_pin().
553 * Just call xfs_iunpin() on the inode to do this.
555 /* ARGSUSED */
556 STATIC void
557 xfs_inode_item_unpin(
558 xfs_inode_log_item_t *iip,
559 int stale)
561 xfs_iunpin(iip->ili_inode);
564 /* ARGSUSED */
565 STATIC void
566 xfs_inode_item_unpin_remove(
567 xfs_inode_log_item_t *iip,
568 xfs_trans_t *tp)
570 xfs_iunpin(iip->ili_inode);
574 * This is called to attempt to lock the inode associated with this
575 * inode log item, in preparation for the push routine which does the actual
576 * iflush. Don't sleep on the inode lock or the flush lock.
578 * If the flush lock is already held, indicating that the inode has
579 * been or is in the process of being flushed, then (ideally) we'd like to
580 * see if the inode's buffer is still incore, and if so give it a nudge.
581 * We delay doing so until the pushbuf routine, though, to avoid holding
582 * the AIL lock across a call to the blackhole which is the buffer cache.
583 * Also we don't want to sleep in any device strategy routines, which can happen
584 * if we do the subsequent bawrite in here.
586 STATIC uint
587 xfs_inode_item_trylock(
588 xfs_inode_log_item_t *iip)
590 register xfs_inode_t *ip;
592 ip = iip->ili_inode;
594 if (xfs_ipincount(ip) > 0) {
595 return XFS_ITEM_PINNED;
598 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
599 return XFS_ITEM_LOCKED;
602 if (!xfs_iflock_nowait(ip)) {
604 * If someone else isn't already trying to push the inode
605 * buffer, we get to do it.
607 if (iip->ili_pushbuf_flag == 0) {
608 iip->ili_pushbuf_flag = 1;
609 #ifdef DEBUG
610 iip->ili_push_owner = current_pid();
611 #endif
613 * Inode is left locked in shared mode.
614 * Pushbuf routine gets to unlock it.
616 return XFS_ITEM_PUSHBUF;
617 } else {
619 * We hold the AIL lock, so we must specify the
620 * NONOTIFY flag so that we won't double trip.
622 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
623 return XFS_ITEM_FLUSHING;
625 /* NOTREACHED */
628 /* Stale items should force out the iclog */
629 if (ip->i_flags & XFS_ISTALE) {
630 xfs_ifunlock(ip);
631 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
632 return XFS_ITEM_PINNED;
635 #ifdef DEBUG
636 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
637 ASSERT(iip->ili_format.ilf_fields != 0);
638 ASSERT(iip->ili_logged == 0);
639 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
641 #endif
642 return XFS_ITEM_SUCCESS;
646 * Unlock the inode associated with the inode log item.
647 * Clear the fields of the inode and inode log item that
648 * are specific to the current transaction. If the
649 * hold flags is set, do not unlock the inode.
651 STATIC void
652 xfs_inode_item_unlock(
653 xfs_inode_log_item_t *iip)
655 uint hold;
656 uint iolocked;
657 uint lock_flags;
658 xfs_inode_t *ip;
660 ASSERT(iip != NULL);
661 ASSERT(iip->ili_inode->i_itemp != NULL);
662 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
663 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
664 XFS_ILI_IOLOCKED_EXCL)) ||
665 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL));
666 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
667 XFS_ILI_IOLOCKED_SHARED)) ||
668 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED));
670 * Clear the transaction pointer in the inode.
672 ip = iip->ili_inode;
673 ip->i_transp = NULL;
676 * If the inode needed a separate buffer with which to log
677 * its extents, then free it now.
679 if (iip->ili_extents_buf != NULL) {
680 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
681 ASSERT(ip->i_d.di_nextents > 0);
682 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
683 ASSERT(ip->i_df.if_bytes > 0);
684 kmem_free(iip->ili_extents_buf);
685 iip->ili_extents_buf = NULL;
687 if (iip->ili_aextents_buf != NULL) {
688 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
689 ASSERT(ip->i_d.di_anextents > 0);
690 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
691 ASSERT(ip->i_afp->if_bytes > 0);
692 kmem_free(iip->ili_aextents_buf);
693 iip->ili_aextents_buf = NULL;
697 * Figure out if we should unlock the inode or not.
699 hold = iip->ili_flags & XFS_ILI_HOLD;
702 * Before clearing out the flags, remember whether we
703 * are holding the inode's IO lock.
705 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
708 * Clear out the fields of the inode log item particular
709 * to the current transaction.
711 iip->ili_flags = 0;
714 * Unlock the inode if XFS_ILI_HOLD was not set.
716 if (!hold) {
717 lock_flags = XFS_ILOCK_EXCL;
718 if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
719 lock_flags |= XFS_IOLOCK_EXCL;
720 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
721 lock_flags |= XFS_IOLOCK_SHARED;
723 xfs_iput(iip->ili_inode, lock_flags);
728 * This is called to find out where the oldest active copy of the
729 * inode log item in the on disk log resides now that the last log
730 * write of it completed at the given lsn. Since we always re-log
731 * all dirty data in an inode, the latest copy in the on disk log
732 * is the only one that matters. Therefore, simply return the
733 * given lsn.
735 /*ARGSUSED*/
736 STATIC xfs_lsn_t
737 xfs_inode_item_committed(
738 xfs_inode_log_item_t *iip,
739 xfs_lsn_t lsn)
741 return (lsn);
745 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
746 * failed to get the inode flush lock but did get the inode locked SHARED.
747 * Here we're trying to see if the inode buffer is incore, and if so whether it's
748 * marked delayed write. If that's the case, we'll initiate a bawrite on that
749 * buffer to expedite the process.
751 * We aren't holding the AIL lock (or the flush lock) when this gets called,
752 * so it is inherently race-y.
754 STATIC void
755 xfs_inode_item_pushbuf(
756 xfs_inode_log_item_t *iip)
758 xfs_inode_t *ip;
759 xfs_mount_t *mp;
760 xfs_buf_t *bp;
761 uint dopush;
763 ip = iip->ili_inode;
765 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
768 * The ili_pushbuf_flag keeps others from
769 * trying to duplicate our effort.
771 ASSERT(iip->ili_pushbuf_flag != 0);
772 ASSERT(iip->ili_push_owner == current_pid());
775 * If a flush is not in progress anymore, chances are that the
776 * inode was taken off the AIL. So, just get out.
778 if (completion_done(&ip->i_flush) ||
779 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
780 iip->ili_pushbuf_flag = 0;
781 xfs_iunlock(ip, XFS_ILOCK_SHARED);
782 return;
785 mp = ip->i_mount;
786 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
787 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
789 if (bp != NULL) {
790 if (XFS_BUF_ISDELAYWRITE(bp)) {
792 * We were racing with iflush because we don't hold
793 * the AIL lock or the flush lock. However, at this point,
794 * we have the buffer, and we know that it's dirty.
795 * So, it's possible that iflush raced with us, and
796 * this item is already taken off the AIL.
797 * If not, we can flush it async.
799 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
800 !completion_done(&ip->i_flush));
801 iip->ili_pushbuf_flag = 0;
802 xfs_iunlock(ip, XFS_ILOCK_SHARED);
803 xfs_buftrace("INODE ITEM PUSH", bp);
804 if (XFS_BUF_ISPINNED(bp)) {
805 xfs_log_force(mp, (xfs_lsn_t)0,
806 XFS_LOG_FORCE);
808 if (dopush) {
809 int error;
810 error = xfs_bawrite(mp, bp);
811 if (error)
812 xfs_fs_cmn_err(CE_WARN, mp,
813 "xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
814 error, iip, bp);
815 } else {
816 xfs_buf_relse(bp);
818 } else {
819 iip->ili_pushbuf_flag = 0;
820 xfs_iunlock(ip, XFS_ILOCK_SHARED);
821 xfs_buf_relse(bp);
823 return;
826 * We have to be careful about resetting pushbuf flag too early (above).
827 * Even though in theory we can do it as soon as we have the buflock,
828 * we don't want others to be doing work needlessly. They'll come to
829 * this function thinking that pushing the buffer is their
830 * responsibility only to find that the buffer is still locked by
831 * another doing the same thing
833 iip->ili_pushbuf_flag = 0;
834 xfs_iunlock(ip, XFS_ILOCK_SHARED);
835 return;
840 * This is called to asynchronously write the inode associated with this
841 * inode log item out to disk. The inode will already have been locked by
842 * a successful call to xfs_inode_item_trylock().
844 STATIC void
845 xfs_inode_item_push(
846 xfs_inode_log_item_t *iip)
848 xfs_inode_t *ip;
850 ip = iip->ili_inode;
852 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
853 ASSERT(!completion_done(&ip->i_flush));
855 * Since we were able to lock the inode's flush lock and
856 * we found it on the AIL, the inode must be dirty. This
857 * is because the inode is removed from the AIL while still
858 * holding the flush lock in xfs_iflush_done(). Thus, if
859 * we found it in the AIL and were able to obtain the flush
860 * lock without sleeping, then there must not have been
861 * anyone in the process of flushing the inode.
863 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
864 iip->ili_format.ilf_fields != 0);
867 * Write out the inode. The completion routine ('iflush_done') will
868 * pull it from the AIL, mark it clean, unlock the flush lock.
870 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
871 xfs_iunlock(ip, XFS_ILOCK_SHARED);
873 return;
877 * XXX rcc - this one really has to do something. Probably needs
878 * to stamp in a new field in the incore inode.
880 /* ARGSUSED */
881 STATIC void
882 xfs_inode_item_committing(
883 xfs_inode_log_item_t *iip,
884 xfs_lsn_t lsn)
886 iip->ili_last_lsn = lsn;
887 return;
891 * This is the ops vector shared by all buf log items.
893 static struct xfs_item_ops xfs_inode_item_ops = {
894 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
895 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
896 xfs_inode_item_format,
897 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
898 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
899 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
900 xfs_inode_item_unpin_remove,
901 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
902 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
903 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
904 xfs_inode_item_committed,
905 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push,
906 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
907 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
908 xfs_inode_item_committing
913 * Initialize the inode log item for a newly allocated (in-core) inode.
915 void
916 xfs_inode_item_init(
917 xfs_inode_t *ip,
918 xfs_mount_t *mp)
920 xfs_inode_log_item_t *iip;
922 ASSERT(ip->i_itemp == NULL);
923 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
925 iip->ili_item.li_type = XFS_LI_INODE;
926 iip->ili_item.li_ops = &xfs_inode_item_ops;
927 iip->ili_item.li_mountp = mp;
928 iip->ili_item.li_ailp = mp->m_ail;
929 iip->ili_inode = ip;
932 We have zeroed memory. No need ...
933 iip->ili_extents_buf = NULL;
934 iip->ili_pushbuf_flag = 0;
937 iip->ili_format.ilf_type = XFS_LI_INODE;
938 iip->ili_format.ilf_ino = ip->i_ino;
939 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
940 iip->ili_format.ilf_len = ip->i_imap.im_len;
941 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
945 * Free the inode log item and any memory hanging off of it.
947 void
948 xfs_inode_item_destroy(
949 xfs_inode_t *ip)
951 #ifdef XFS_TRANS_DEBUG
952 if (ip->i_itemp->ili_root_size != 0) {
953 kmem_free(ip->i_itemp->ili_orig_root);
955 #endif
956 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
961 * This is the inode flushing I/O completion routine. It is called
962 * from interrupt level when the buffer containing the inode is
963 * flushed to disk. It is responsible for removing the inode item
964 * from the AIL if it has not been re-logged, and unlocking the inode's
965 * flush lock.
967 /*ARGSUSED*/
968 void
969 xfs_iflush_done(
970 xfs_buf_t *bp,
971 xfs_inode_log_item_t *iip)
973 xfs_inode_t *ip = iip->ili_inode;
974 struct xfs_ail *ailp = iip->ili_item.li_ailp;
977 * We only want to pull the item from the AIL if it is
978 * actually there and its location in the log has not
979 * changed since we started the flush. Thus, we only bother
980 * if the ili_logged flag is set and the inode's lsn has not
981 * changed. First we check the lsn outside
982 * the lock since it's cheaper, and then we recheck while
983 * holding the lock before removing the inode from the AIL.
985 if (iip->ili_logged &&
986 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
987 spin_lock(&ailp->xa_lock);
988 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
989 /* xfs_trans_ail_delete() drops the AIL lock. */
990 xfs_trans_ail_delete(ailp, (xfs_log_item_t*)iip);
991 } else {
992 spin_unlock(&ailp->xa_lock);
996 iip->ili_logged = 0;
999 * Clear the ili_last_fields bits now that we know that the
1000 * data corresponding to them is safely on disk.
1002 iip->ili_last_fields = 0;
1005 * Release the inode's flush lock since we're done with it.
1007 xfs_ifunlock(ip);
1009 return;
1013 * This is the inode flushing abort routine. It is called
1014 * from xfs_iflush when the filesystem is shutting down to clean
1015 * up the inode state.
1016 * It is responsible for removing the inode item
1017 * from the AIL if it has not been re-logged, and unlocking the inode's
1018 * flush lock.
1020 void
1021 xfs_iflush_abort(
1022 xfs_inode_t *ip)
1024 xfs_inode_log_item_t *iip = ip->i_itemp;
1025 xfs_mount_t *mp;
1027 iip = ip->i_itemp;
1028 mp = ip->i_mount;
1029 if (iip) {
1030 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1031 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1032 spin_lock(&ailp->xa_lock);
1033 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1034 /* xfs_trans_ail_delete() drops the AIL lock. */
1035 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
1036 } else
1037 spin_unlock(&ailp->xa_lock);
1039 iip->ili_logged = 0;
1041 * Clear the ili_last_fields bits now that we know that the
1042 * data corresponding to them is safely on disk.
1044 iip->ili_last_fields = 0;
1046 * Clear the inode logging fields so no more flushes are
1047 * attempted.
1049 iip->ili_format.ilf_fields = 0;
1052 * Release the inode's flush lock since we're done with it.
1054 xfs_ifunlock(ip);
1057 void
1058 xfs_istale_done(
1059 xfs_buf_t *bp,
1060 xfs_inode_log_item_t *iip)
1062 xfs_iflush_abort(iip->ili_inode);
1066 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1067 * (which can have different field alignments) to the native version
1070 xfs_inode_item_format_convert(
1071 xfs_log_iovec_t *buf,
1072 xfs_inode_log_format_t *in_f)
1074 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1075 xfs_inode_log_format_32_t *in_f32;
1077 in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1078 in_f->ilf_type = in_f32->ilf_type;
1079 in_f->ilf_size = in_f32->ilf_size;
1080 in_f->ilf_fields = in_f32->ilf_fields;
1081 in_f->ilf_asize = in_f32->ilf_asize;
1082 in_f->ilf_dsize = in_f32->ilf_dsize;
1083 in_f->ilf_ino = in_f32->ilf_ino;
1084 /* copy biggest field of ilf_u */
1085 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1086 in_f32->ilf_u.ilfu_uuid.__u_bits,
1087 sizeof(uuid_t));
1088 in_f->ilf_blkno = in_f32->ilf_blkno;
1089 in_f->ilf_len = in_f32->ilf_len;
1090 in_f->ilf_boffset = in_f32->ilf_boffset;
1091 return 0;
1092 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1093 xfs_inode_log_format_64_t *in_f64;
1095 in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1096 in_f->ilf_type = in_f64->ilf_type;
1097 in_f->ilf_size = in_f64->ilf_size;
1098 in_f->ilf_fields = in_f64->ilf_fields;
1099 in_f->ilf_asize = in_f64->ilf_asize;
1100 in_f->ilf_dsize = in_f64->ilf_dsize;
1101 in_f->ilf_ino = in_f64->ilf_ino;
1102 /* copy biggest field of ilf_u */
1103 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1104 in_f64->ilf_u.ilfu_uuid.__u_bits,
1105 sizeof(uuid_t));
1106 in_f->ilf_blkno = in_f64->ilf_blkno;
1107 in_f->ilf_len = in_f64->ilf_len;
1108 in_f->ilf_boffset = in_f64->ilf_boffset;
1109 return 0;
1111 return EFSCORRUPTED;