x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / mm / mlock.c
blobbd6f0e466f6c4f1c51b4bbbe1e605140bb3e6493
1 /*
2 * linux/mm/mlock.c
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
22 #include "internal.h"
24 int can_do_mlock(void)
26 if (capable(CAP_IPC_LOCK))
27 return 1;
28 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
29 return 1;
30 return 0;
32 EXPORT_SYMBOL(can_do_mlock);
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
37 * statistics.
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
48 * (see mm/rmap.c).
52 * LRU accounting for clear_page_mlock()
54 void __clear_page_mlock(struct page *page)
56 VM_BUG_ON(!PageLocked(page));
58 if (!page->mapping) { /* truncated ? */
59 return;
62 dec_zone_page_state(page, NR_MLOCK);
63 count_vm_event(UNEVICTABLE_PGCLEARED);
64 if (!isolate_lru_page(page)) {
65 putback_lru_page(page);
66 } else {
68 * We lost the race. the page already moved to evictable list.
70 if (PageUnevictable(page))
71 count_vm_event(UNEVICTABLE_PGSTRANDED);
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
79 void mlock_vma_page(struct page *page)
81 BUG_ON(!PageLocked(page));
83 if (!TestSetPageMlocked(page)) {
84 inc_zone_page_state(page, NR_MLOCK);
85 count_vm_event(UNEVICTABLE_PGMLOCKED);
86 if (!isolate_lru_page(page))
87 putback_lru_page(page);
92 * called from munlock()/munmap() path with page supposedly on the LRU.
94 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
95 * [in try_to_munlock()] and then attempt to isolate the page. We must
96 * isolate the page to keep others from messing with its unevictable
97 * and mlocked state while trying to munlock. However, we pre-clear the
98 * mlocked state anyway as we might lose the isolation race and we might
99 * not get another chance to clear PageMlocked. If we successfully
100 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
101 * mapping the page, it will restore the PageMlocked state, unless the page
102 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
103 * perhaps redundantly.
104 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
105 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
106 * either of which will restore the PageMlocked state by calling
107 * mlock_vma_page() above, if it can grab the vma's mmap sem.
109 static void munlock_vma_page(struct page *page)
111 BUG_ON(!PageLocked(page));
113 if (TestClearPageMlocked(page)) {
114 dec_zone_page_state(page, NR_MLOCK);
115 if (!isolate_lru_page(page)) {
116 int ret = try_to_munlock(page);
118 * did try_to_unlock() succeed or punt?
120 if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
121 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
123 putback_lru_page(page);
124 } else {
126 * We lost the race. let try_to_unmap() deal
127 * with it. At least we get the page state and
128 * mlock stats right. However, page is still on
129 * the noreclaim list. We'll fix that up when
130 * the page is eventually freed or we scan the
131 * noreclaim list.
133 if (PageUnevictable(page))
134 count_vm_event(UNEVICTABLE_PGSTRANDED);
135 else
136 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
142 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
143 * @vma: target vma
144 * @start: start address
145 * @end: end address
147 * This takes care of making the pages present too.
149 * return 0 on success, negative error code on error.
151 * vma->vm_mm->mmap_sem must be held for at least read.
153 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
154 unsigned long start, unsigned long end)
156 struct mm_struct *mm = vma->vm_mm;
157 unsigned long addr = start;
158 struct page *pages[16]; /* 16 gives a reasonable batch */
159 int nr_pages = (end - start) / PAGE_SIZE;
160 int ret = 0;
161 int gup_flags;
163 VM_BUG_ON(start & ~PAGE_MASK);
164 VM_BUG_ON(end & ~PAGE_MASK);
165 VM_BUG_ON(start < vma->vm_start);
166 VM_BUG_ON(end > vma->vm_end);
167 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
169 gup_flags = FOLL_TOUCH | FOLL_GET;
170 if (vma->vm_flags & VM_WRITE)
171 gup_flags |= FOLL_WRITE;
173 while (nr_pages > 0) {
174 int i;
176 cond_resched();
179 * get_user_pages makes pages present if we are
180 * setting mlock. and this extra reference count will
181 * disable migration of this page. However, page may
182 * still be truncated out from under us.
184 ret = __get_user_pages(current, mm, addr,
185 min_t(int, nr_pages, ARRAY_SIZE(pages)),
186 gup_flags, pages, NULL);
188 * This can happen for, e.g., VM_NONLINEAR regions before
189 * a page has been allocated and mapped at a given offset,
190 * or for addresses that map beyond end of a file.
191 * We'll mlock the pages if/when they get faulted in.
193 if (ret < 0)
194 break;
196 lru_add_drain(); /* push cached pages to LRU */
198 for (i = 0; i < ret; i++) {
199 struct page *page = pages[i];
201 if (page->mapping) {
203 * That preliminary check is mainly to avoid
204 * the pointless overhead of lock_page on the
205 * ZERO_PAGE: which might bounce very badly if
206 * there is contention. However, we're still
207 * dirtying its cacheline with get/put_page:
208 * we'll add another __get_user_pages flag to
209 * avoid it if that case turns out to matter.
211 lock_page(page);
213 * Because we lock page here and migration is
214 * blocked by the elevated reference, we need
215 * only check for file-cache page truncation.
217 if (page->mapping)
218 mlock_vma_page(page);
219 unlock_page(page);
221 put_page(page); /* ref from get_user_pages() */
224 addr += ret * PAGE_SIZE;
225 nr_pages -= ret;
226 ret = 0;
229 return ret; /* 0 or negative error code */
233 * convert get_user_pages() return value to posix mlock() error
235 static int __mlock_posix_error_return(long retval)
237 if (retval == -EFAULT)
238 retval = -ENOMEM;
239 else if (retval == -ENOMEM)
240 retval = -EAGAIN;
241 return retval;
245 * mlock_vma_pages_range() - mlock pages in specified vma range.
246 * @vma - the vma containing the specfied address range
247 * @start - starting address in @vma to mlock
248 * @end - end address [+1] in @vma to mlock
250 * For mmap()/mremap()/expansion of mlocked vma.
252 * return 0 on success for "normal" vmas.
254 * return number of pages [> 0] to be removed from locked_vm on success
255 * of "special" vmas.
257 long mlock_vma_pages_range(struct vm_area_struct *vma,
258 unsigned long start, unsigned long end)
260 int nr_pages = (end - start) / PAGE_SIZE;
261 BUG_ON(!(vma->vm_flags & VM_LOCKED));
264 * filter unlockable vmas
266 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
267 goto no_mlock;
269 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
270 is_vm_hugetlb_page(vma) ||
271 vma == get_gate_vma(current))) {
273 __mlock_vma_pages_range(vma, start, end);
275 /* Hide errors from mmap() and other callers */
276 return 0;
280 * User mapped kernel pages or huge pages:
281 * make these pages present to populate the ptes, but
282 * fall thru' to reset VM_LOCKED--no need to unlock, and
283 * return nr_pages so these don't get counted against task's
284 * locked limit. huge pages are already counted against
285 * locked vm limit.
287 make_pages_present(start, end);
289 no_mlock:
290 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
291 return nr_pages; /* error or pages NOT mlocked */
295 * munlock_vma_pages_range() - munlock all pages in the vma range.'
296 * @vma - vma containing range to be munlock()ed.
297 * @start - start address in @vma of the range
298 * @end - end of range in @vma.
300 * For mremap(), munmap() and exit().
302 * Called with @vma VM_LOCKED.
304 * Returns with VM_LOCKED cleared. Callers must be prepared to
305 * deal with this.
307 * We don't save and restore VM_LOCKED here because pages are
308 * still on lru. In unmap path, pages might be scanned by reclaim
309 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
310 * free them. This will result in freeing mlocked pages.
312 void munlock_vma_pages_range(struct vm_area_struct *vma,
313 unsigned long start, unsigned long end)
315 unsigned long addr;
317 lru_add_drain();
318 vma->vm_flags &= ~VM_LOCKED;
320 for (addr = start; addr < end; addr += PAGE_SIZE) {
321 struct page *page;
323 * Although FOLL_DUMP is intended for get_dump_page(),
324 * it just so happens that its special treatment of the
325 * ZERO_PAGE (returning an error instead of doing get_page)
326 * suits munlock very well (and if somehow an abnormal page
327 * has sneaked into the range, we won't oops here: great).
329 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
330 if (page && !IS_ERR(page)) {
331 lock_page(page);
333 * Like in __mlock_vma_pages_range(),
334 * because we lock page here and migration is
335 * blocked by the elevated reference, we need
336 * only check for file-cache page truncation.
338 if (page->mapping)
339 munlock_vma_page(page);
340 unlock_page(page);
341 put_page(page);
343 cond_resched();
348 * mlock_fixup - handle mlock[all]/munlock[all] requests.
350 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
351 * munlock is a no-op. However, for some special vmas, we go ahead and
352 * populate the ptes via make_pages_present().
354 * For vmas that pass the filters, merge/split as appropriate.
356 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
357 unsigned long start, unsigned long end, unsigned int newflags)
359 struct mm_struct *mm = vma->vm_mm;
360 pgoff_t pgoff;
361 int nr_pages;
362 int ret = 0;
363 int lock = newflags & VM_LOCKED;
365 if (newflags == vma->vm_flags ||
366 (vma->vm_flags & (VM_IO | VM_PFNMAP)))
367 goto out; /* don't set VM_LOCKED, don't count */
369 if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
370 is_vm_hugetlb_page(vma) ||
371 vma == get_gate_vma(current)) {
372 if (lock)
373 make_pages_present(start, end);
374 goto out; /* don't set VM_LOCKED, don't count */
377 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
378 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
379 vma->vm_file, pgoff, vma_policy(vma));
380 if (*prev) {
381 vma = *prev;
382 goto success;
385 if (start != vma->vm_start) {
386 ret = split_vma(mm, vma, start, 1);
387 if (ret)
388 goto out;
391 if (end != vma->vm_end) {
392 ret = split_vma(mm, vma, end, 0);
393 if (ret)
394 goto out;
397 success:
399 * Keep track of amount of locked VM.
401 nr_pages = (end - start) >> PAGE_SHIFT;
402 if (!lock)
403 nr_pages = -nr_pages;
404 mm->locked_vm += nr_pages;
407 * vm_flags is protected by the mmap_sem held in write mode.
408 * It's okay if try_to_unmap_one unmaps a page just after we
409 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
412 if (lock) {
413 vma->vm_flags = newflags;
414 ret = __mlock_vma_pages_range(vma, start, end);
415 if (ret < 0)
416 ret = __mlock_posix_error_return(ret);
417 } else {
418 munlock_vma_pages_range(vma, start, end);
421 out:
422 *prev = vma;
423 return ret;
426 static int do_mlock(unsigned long start, size_t len, int on)
428 unsigned long nstart, end, tmp;
429 struct vm_area_struct * vma, * prev;
430 int error;
432 len = PAGE_ALIGN(len);
433 end = start + len;
434 if (end < start)
435 return -EINVAL;
436 if (end == start)
437 return 0;
438 vma = find_vma_prev(current->mm, start, &prev);
439 if (!vma || vma->vm_start > start)
440 return -ENOMEM;
442 if (start > vma->vm_start)
443 prev = vma;
445 for (nstart = start ; ; ) {
446 unsigned int newflags;
448 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
450 newflags = vma->vm_flags | VM_LOCKED;
451 if (!on)
452 newflags &= ~VM_LOCKED;
454 tmp = vma->vm_end;
455 if (tmp > end)
456 tmp = end;
457 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
458 if (error)
459 break;
460 nstart = tmp;
461 if (nstart < prev->vm_end)
462 nstart = prev->vm_end;
463 if (nstart >= end)
464 break;
466 vma = prev->vm_next;
467 if (!vma || vma->vm_start != nstart) {
468 error = -ENOMEM;
469 break;
472 return error;
475 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
477 unsigned long locked;
478 unsigned long lock_limit;
479 int error = -ENOMEM;
481 if (!can_do_mlock())
482 return -EPERM;
484 lru_add_drain_all(); /* flush pagevec */
486 down_write(&current->mm->mmap_sem);
487 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
488 start &= PAGE_MASK;
490 locked = len >> PAGE_SHIFT;
491 locked += current->mm->locked_vm;
493 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
494 lock_limit >>= PAGE_SHIFT;
496 /* check against resource limits */
497 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
498 error = do_mlock(start, len, 1);
499 up_write(&current->mm->mmap_sem);
500 return error;
503 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
505 int ret;
507 down_write(&current->mm->mmap_sem);
508 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
509 start &= PAGE_MASK;
510 ret = do_mlock(start, len, 0);
511 up_write(&current->mm->mmap_sem);
512 return ret;
515 static int do_mlockall(int flags)
517 struct vm_area_struct * vma, * prev = NULL;
518 unsigned int def_flags = 0;
520 if (flags & MCL_FUTURE)
521 def_flags = VM_LOCKED;
522 current->mm->def_flags = def_flags;
523 if (flags == MCL_FUTURE)
524 goto out;
526 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
527 unsigned int newflags;
529 newflags = vma->vm_flags | VM_LOCKED;
530 if (!(flags & MCL_CURRENT))
531 newflags &= ~VM_LOCKED;
533 /* Ignore errors */
534 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
536 out:
537 return 0;
540 SYSCALL_DEFINE1(mlockall, int, flags)
542 unsigned long lock_limit;
543 int ret = -EINVAL;
545 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
546 goto out;
548 ret = -EPERM;
549 if (!can_do_mlock())
550 goto out;
552 lru_add_drain_all(); /* flush pagevec */
554 down_write(&current->mm->mmap_sem);
556 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
557 lock_limit >>= PAGE_SHIFT;
559 ret = -ENOMEM;
560 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
561 capable(CAP_IPC_LOCK))
562 ret = do_mlockall(flags);
563 up_write(&current->mm->mmap_sem);
564 out:
565 return ret;
568 SYSCALL_DEFINE0(munlockall)
570 int ret;
572 down_write(&current->mm->mmap_sem);
573 ret = do_mlockall(0);
574 up_write(&current->mm->mmap_sem);
575 return ret;
579 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
580 * shm segments) get accounted against the user_struct instead.
582 static DEFINE_SPINLOCK(shmlock_user_lock);
584 int user_shm_lock(size_t size, struct user_struct *user)
586 unsigned long lock_limit, locked;
587 int allowed = 0;
589 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
590 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
591 if (lock_limit == RLIM_INFINITY)
592 allowed = 1;
593 lock_limit >>= PAGE_SHIFT;
594 spin_lock(&shmlock_user_lock);
595 if (!allowed &&
596 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
597 goto out;
598 get_uid(user);
599 user->locked_shm += locked;
600 allowed = 1;
601 out:
602 spin_unlock(&shmlock_user_lock);
603 return allowed;
606 void user_shm_unlock(size_t size, struct user_struct *user)
608 spin_lock(&shmlock_user_lock);
609 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
610 spin_unlock(&shmlock_user_lock);
611 free_uid(user);
614 int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
615 size_t size)
617 unsigned long lim, vm, pgsz;
618 int error = -ENOMEM;
620 pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
622 down_write(&mm->mmap_sem);
624 lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
625 vm = mm->total_vm + pgsz;
626 if (lim < vm)
627 goto out;
629 lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
630 vm = mm->locked_vm + pgsz;
631 if (lim < vm)
632 goto out;
634 mm->total_vm += pgsz;
635 mm->locked_vm += pgsz;
637 error = 0;
638 out:
639 up_write(&mm->mmap_sem);
640 return error;
643 void refund_locked_memory(struct mm_struct *mm, size_t size)
645 unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
647 down_write(&mm->mmap_sem);
649 mm->total_vm -= pgsz;
650 mm->locked_vm -= pgsz;
652 up_write(&mm->mmap_sem);