2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
63 static bool devices_handle_discard_safely
= false;
64 module_param(devices_handle_discard_safely
, bool, 0644);
65 MODULE_PARM_DESC(devices_handle_discard_safely
,
66 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 #define NR_STRIPES 256
72 #define STRIPE_SIZE PAGE_SIZE
73 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
74 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
75 #define IO_THRESHOLD 1
76 #define BYPASS_THRESHOLD 1
77 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
78 #define HASH_MASK (NR_HASH - 1)
80 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
82 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
83 return &conf
->stripe_hashtbl
[hash
];
86 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
87 * order without overlap. There may be several bio's per stripe+device, and
88 * a bio could span several devices.
89 * When walking this list for a particular stripe+device, we must never proceed
90 * beyond a bio that extends past this device, as the next bio might no longer
92 * This function is used to determine the 'next' bio in the list, given the sector
93 * of the current stripe+device
95 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
97 int sectors
= bio_sectors(bio
);
98 if (bio
->bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
105 * We maintain a biased count of active stripes in the bottom 16 bits of
106 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
108 static inline int raid5_bi_processed_stripes(struct bio
*bio
)
110 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
111 return (atomic_read(segments
) >> 16) & 0xffff;
114 static inline int raid5_dec_bi_active_stripes(struct bio
*bio
)
116 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
117 return atomic_sub_return(1, segments
) & 0xffff;
120 static inline void raid5_inc_bi_active_stripes(struct bio
*bio
)
122 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
123 atomic_inc(segments
);
126 static inline void raid5_set_bi_processed_stripes(struct bio
*bio
,
129 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
133 old
= atomic_read(segments
);
134 new = (old
& 0xffff) | (cnt
<< 16);
135 } while (atomic_cmpxchg(segments
, old
, new) != old
);
138 static inline void raid5_set_bi_stripes(struct bio
*bio
, unsigned int cnt
)
140 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
141 atomic_set(segments
, cnt
);
144 /* Find first data disk in a raid6 stripe */
145 static inline int raid6_d0(struct stripe_head
*sh
)
148 /* ddf always start from first device */
150 /* md starts just after Q block */
151 if (sh
->qd_idx
== sh
->disks
- 1)
154 return sh
->qd_idx
+ 1;
156 static inline int raid6_next_disk(int disk
, int raid_disks
)
159 return (disk
< raid_disks
) ? disk
: 0;
162 /* When walking through the disks in a raid5, starting at raid6_d0,
163 * We need to map each disk to a 'slot', where the data disks are slot
164 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
165 * is raid_disks-1. This help does that mapping.
167 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
168 int *count
, int syndrome_disks
)
174 if (idx
== sh
->pd_idx
)
175 return syndrome_disks
;
176 if (idx
== sh
->qd_idx
)
177 return syndrome_disks
+ 1;
183 static void return_io(struct bio
*return_bi
)
185 struct bio
*bi
= return_bi
;
188 return_bi
= bi
->bi_next
;
191 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
198 static void print_raid5_conf (struct r5conf
*conf
);
200 static int stripe_operations_active(struct stripe_head
*sh
)
202 return sh
->check_state
|| sh
->reconstruct_state
||
203 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
204 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
207 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
209 BUG_ON(!list_empty(&sh
->lru
));
210 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
211 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
212 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
213 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
214 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
215 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
216 sh
->bm_seq
- conf
->seq_write
> 0)
217 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
219 clear_bit(STRIPE_DELAYED
, &sh
->state
);
220 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
221 list_add_tail(&sh
->lru
, &conf
->handle_list
);
223 md_wakeup_thread(conf
->mddev
->thread
);
225 BUG_ON(stripe_operations_active(sh
));
226 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
227 if (atomic_dec_return(&conf
->preread_active_stripes
)
229 md_wakeup_thread(conf
->mddev
->thread
);
230 atomic_dec(&conf
->active_stripes
);
231 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
232 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
233 wake_up(&conf
->wait_for_stripe
);
234 if (conf
->retry_read_aligned
)
235 md_wakeup_thread(conf
->mddev
->thread
);
240 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
242 if (atomic_dec_and_test(&sh
->count
))
243 do_release_stripe(conf
, sh
);
246 static void release_stripe(struct stripe_head
*sh
)
248 struct r5conf
*conf
= sh
->raid_conf
;
251 local_irq_save(flags
);
252 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
253 do_release_stripe(conf
, sh
);
254 spin_unlock(&conf
->device_lock
);
256 local_irq_restore(flags
);
259 static inline void remove_hash(struct stripe_head
*sh
)
261 pr_debug("remove_hash(), stripe %llu\n",
262 (unsigned long long)sh
->sector
);
264 hlist_del_init(&sh
->hash
);
267 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
269 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
271 pr_debug("insert_hash(), stripe %llu\n",
272 (unsigned long long)sh
->sector
);
274 hlist_add_head(&sh
->hash
, hp
);
278 /* find an idle stripe, make sure it is unhashed, and return it. */
279 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
)
281 struct stripe_head
*sh
= NULL
;
282 struct list_head
*first
;
284 if (list_empty(&conf
->inactive_list
))
286 first
= conf
->inactive_list
.next
;
287 sh
= list_entry(first
, struct stripe_head
, lru
);
288 list_del_init(first
);
290 atomic_inc(&conf
->active_stripes
);
295 static void shrink_buffers(struct stripe_head
*sh
)
299 int num
= sh
->raid_conf
->pool_size
;
301 for (i
= 0; i
< num
; i
++) {
305 sh
->dev
[i
].page
= NULL
;
310 static int grow_buffers(struct stripe_head
*sh
)
313 int num
= sh
->raid_conf
->pool_size
;
315 for (i
= 0; i
< num
; i
++) {
318 if (!(page
= alloc_page(GFP_KERNEL
))) {
321 sh
->dev
[i
].page
= page
;
326 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
327 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
328 struct stripe_head
*sh
);
330 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
332 struct r5conf
*conf
= sh
->raid_conf
;
335 BUG_ON(atomic_read(&sh
->count
) != 0);
336 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
337 BUG_ON(stripe_operations_active(sh
));
339 pr_debug("init_stripe called, stripe %llu\n",
340 (unsigned long long)sh
->sector
);
344 sh
->generation
= conf
->generation
- previous
;
345 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
347 stripe_set_idx(sector
, conf
, previous
, sh
);
351 for (i
= sh
->disks
; i
--; ) {
352 struct r5dev
*dev
= &sh
->dev
[i
];
354 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
355 test_bit(R5_LOCKED
, &dev
->flags
)) {
356 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
357 (unsigned long long)sh
->sector
, i
, dev
->toread
,
358 dev
->read
, dev
->towrite
, dev
->written
,
359 test_bit(R5_LOCKED
, &dev
->flags
));
363 raid5_build_block(sh
, i
, previous
);
365 insert_hash(conf
, sh
);
368 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
371 struct stripe_head
*sh
;
373 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
374 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
375 if (sh
->sector
== sector
&& sh
->generation
== generation
)
377 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
382 * Need to check if array has failed when deciding whether to:
384 * - remove non-faulty devices
387 * This determination is simple when no reshape is happening.
388 * However if there is a reshape, we need to carefully check
389 * both the before and after sections.
390 * This is because some failed devices may only affect one
391 * of the two sections, and some non-in_sync devices may
392 * be insync in the section most affected by failed devices.
394 static int calc_degraded(struct r5conf
*conf
)
396 int degraded
, degraded2
;
401 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
402 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
403 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
404 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
405 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
407 else if (test_bit(In_sync
, &rdev
->flags
))
410 /* not in-sync or faulty.
411 * If the reshape increases the number of devices,
412 * this is being recovered by the reshape, so
413 * this 'previous' section is not in_sync.
414 * If the number of devices is being reduced however,
415 * the device can only be part of the array if
416 * we are reverting a reshape, so this section will
419 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
423 if (conf
->raid_disks
== conf
->previous_raid_disks
)
427 for (i
= 0; i
< conf
->raid_disks
; i
++) {
428 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
429 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
430 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
431 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
433 else if (test_bit(In_sync
, &rdev
->flags
))
436 /* not in-sync or faulty.
437 * If reshape increases the number of devices, this
438 * section has already been recovered, else it
439 * almost certainly hasn't.
441 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
445 if (degraded2
> degraded
)
450 static int has_failed(struct r5conf
*conf
)
454 if (conf
->mddev
->reshape_position
== MaxSector
)
455 return conf
->mddev
->degraded
> conf
->max_degraded
;
457 degraded
= calc_degraded(conf
);
458 if (degraded
> conf
->max_degraded
)
463 static struct stripe_head
*
464 get_active_stripe(struct r5conf
*conf
, sector_t sector
,
465 int previous
, int noblock
, int noquiesce
)
467 struct stripe_head
*sh
;
469 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
471 spin_lock_irq(&conf
->device_lock
);
474 wait_event_lock_irq(conf
->wait_for_stripe
,
475 conf
->quiesce
== 0 || noquiesce
,
477 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
479 if (!conf
->inactive_blocked
)
480 sh
= get_free_stripe(conf
);
481 if (noblock
&& sh
== NULL
)
484 conf
->inactive_blocked
= 1;
485 wait_event_lock_irq(conf
->wait_for_stripe
,
486 !list_empty(&conf
->inactive_list
) &&
487 (atomic_read(&conf
->active_stripes
)
488 < (conf
->max_nr_stripes
*3/4)
489 || !conf
->inactive_blocked
),
491 conf
->inactive_blocked
= 0;
493 init_stripe(sh
, sector
, previous
);
495 if (atomic_read(&sh
->count
)) {
496 BUG_ON(!list_empty(&sh
->lru
)
497 && !test_bit(STRIPE_EXPANDING
, &sh
->state
)
498 && !test_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
));
500 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
501 atomic_inc(&conf
->active_stripes
);
502 if (list_empty(&sh
->lru
) &&
503 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
505 list_del_init(&sh
->lru
);
508 } while (sh
== NULL
);
511 atomic_inc(&sh
->count
);
513 spin_unlock_irq(&conf
->device_lock
);
517 /* Determine if 'data_offset' or 'new_data_offset' should be used
518 * in this stripe_head.
520 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
522 sector_t progress
= conf
->reshape_progress
;
523 /* Need a memory barrier to make sure we see the value
524 * of conf->generation, or ->data_offset that was set before
525 * reshape_progress was updated.
528 if (progress
== MaxSector
)
530 if (sh
->generation
== conf
->generation
- 1)
532 /* We are in a reshape, and this is a new-generation stripe,
533 * so use new_data_offset.
539 raid5_end_read_request(struct bio
*bi
, int error
);
541 raid5_end_write_request(struct bio
*bi
, int error
);
543 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
545 struct r5conf
*conf
= sh
->raid_conf
;
546 int i
, disks
= sh
->disks
;
550 for (i
= disks
; i
--; ) {
552 int replace_only
= 0;
553 struct bio
*bi
, *rbi
;
554 struct md_rdev
*rdev
, *rrdev
= NULL
;
555 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
556 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
560 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
562 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
564 else if (test_and_clear_bit(R5_WantReplace
,
565 &sh
->dev
[i
].flags
)) {
570 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
573 bi
= &sh
->dev
[i
].req
;
574 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
577 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
578 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
579 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
588 /* We raced and saw duplicates */
591 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
) && rrdev
)
596 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
599 atomic_inc(&rdev
->nr_pending
);
600 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
603 atomic_inc(&rrdev
->nr_pending
);
606 /* We have already checked bad blocks for reads. Now
607 * need to check for writes. We never accept write errors
608 * on the replacement, so we don't to check rrdev.
610 while ((rw
& WRITE
) && rdev
&&
611 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
614 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
615 &first_bad
, &bad_sectors
);
620 set_bit(BlockedBadBlocks
, &rdev
->flags
);
621 if (!conf
->mddev
->external
&&
622 conf
->mddev
->flags
) {
623 /* It is very unlikely, but we might
624 * still need to write out the
625 * bad block log - better give it
627 md_check_recovery(conf
->mddev
);
630 * Because md_wait_for_blocked_rdev
631 * will dec nr_pending, we must
632 * increment it first.
634 atomic_inc(&rdev
->nr_pending
);
635 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
637 /* Acknowledged bad block - skip the write */
638 rdev_dec_pending(rdev
, conf
->mddev
);
644 if (s
->syncing
|| s
->expanding
|| s
->expanded
646 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
648 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
651 bi
->bi_bdev
= rdev
->bdev
;
653 bi
->bi_end_io
= (rw
& WRITE
)
654 ? raid5_end_write_request
655 : raid5_end_read_request
;
658 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
659 __func__
, (unsigned long long)sh
->sector
,
661 atomic_inc(&sh
->count
);
662 if (use_new_offset(conf
, sh
))
663 bi
->bi_sector
= (sh
->sector
664 + rdev
->new_data_offset
);
666 bi
->bi_sector
= (sh
->sector
667 + rdev
->data_offset
);
668 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
669 bi
->bi_rw
|= REQ_FLUSH
;
672 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
673 bi
->bi_io_vec
[0].bv_offset
= 0;
674 bi
->bi_size
= STRIPE_SIZE
;
676 * If this is discard request, set bi_vcnt 0. We don't
677 * want to confuse SCSI because SCSI will replace payload
679 if (rw
& REQ_DISCARD
)
682 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
684 if (conf
->mddev
->gendisk
)
685 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
686 bi
, disk_devt(conf
->mddev
->gendisk
),
688 generic_make_request(bi
);
691 if (s
->syncing
|| s
->expanding
|| s
->expanded
693 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
695 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
698 rbi
->bi_bdev
= rrdev
->bdev
;
700 BUG_ON(!(rw
& WRITE
));
701 rbi
->bi_end_io
= raid5_end_write_request
;
702 rbi
->bi_private
= sh
;
704 pr_debug("%s: for %llu schedule op %ld on "
705 "replacement disc %d\n",
706 __func__
, (unsigned long long)sh
->sector
,
708 atomic_inc(&sh
->count
);
709 if (use_new_offset(conf
, sh
))
710 rbi
->bi_sector
= (sh
->sector
711 + rrdev
->new_data_offset
);
713 rbi
->bi_sector
= (sh
->sector
714 + rrdev
->data_offset
);
716 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
717 rbi
->bi_io_vec
[0].bv_offset
= 0;
718 rbi
->bi_size
= STRIPE_SIZE
;
720 * If this is discard request, set bi_vcnt 0. We don't
721 * want to confuse SCSI because SCSI will replace payload
723 if (rw
& REQ_DISCARD
)
725 if (conf
->mddev
->gendisk
)
726 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
727 rbi
, disk_devt(conf
->mddev
->gendisk
),
729 generic_make_request(rbi
);
731 if (!rdev
&& !rrdev
) {
733 set_bit(STRIPE_DEGRADED
, &sh
->state
);
734 pr_debug("skip op %ld on disc %d for sector %llu\n",
735 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
736 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
737 set_bit(STRIPE_HANDLE
, &sh
->state
);
742 static struct dma_async_tx_descriptor
*
743 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
744 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
747 struct page
*bio_page
;
750 struct async_submit_ctl submit
;
751 enum async_tx_flags flags
= 0;
753 if (bio
->bi_sector
>= sector
)
754 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
756 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
759 flags
|= ASYNC_TX_FENCE
;
760 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
762 bio_for_each_segment(bvl
, bio
, i
) {
763 int len
= bvl
->bv_len
;
767 if (page_offset
< 0) {
768 b_offset
= -page_offset
;
769 page_offset
+= b_offset
;
773 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
774 clen
= STRIPE_SIZE
- page_offset
;
779 b_offset
+= bvl
->bv_offset
;
780 bio_page
= bvl
->bv_page
;
782 tx
= async_memcpy(page
, bio_page
, page_offset
,
783 b_offset
, clen
, &submit
);
785 tx
= async_memcpy(bio_page
, page
, b_offset
,
786 page_offset
, clen
, &submit
);
788 /* chain the operations */
789 submit
.depend_tx
= tx
;
791 if (clen
< len
) /* hit end of page */
799 static void ops_complete_biofill(void *stripe_head_ref
)
801 struct stripe_head
*sh
= stripe_head_ref
;
802 struct bio
*return_bi
= NULL
;
805 pr_debug("%s: stripe %llu\n", __func__
,
806 (unsigned long long)sh
->sector
);
808 /* clear completed biofills */
809 for (i
= sh
->disks
; i
--; ) {
810 struct r5dev
*dev
= &sh
->dev
[i
];
812 /* acknowledge completion of a biofill operation */
813 /* and check if we need to reply to a read request,
814 * new R5_Wantfill requests are held off until
815 * !STRIPE_BIOFILL_RUN
817 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
818 struct bio
*rbi
, *rbi2
;
823 while (rbi
&& rbi
->bi_sector
<
824 dev
->sector
+ STRIPE_SECTORS
) {
825 rbi2
= r5_next_bio(rbi
, dev
->sector
);
826 if (!raid5_dec_bi_active_stripes(rbi
)) {
827 rbi
->bi_next
= return_bi
;
834 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
836 return_io(return_bi
);
838 set_bit(STRIPE_HANDLE
, &sh
->state
);
842 static void ops_run_biofill(struct stripe_head
*sh
)
844 struct dma_async_tx_descriptor
*tx
= NULL
;
845 struct async_submit_ctl submit
;
848 pr_debug("%s: stripe %llu\n", __func__
,
849 (unsigned long long)sh
->sector
);
851 for (i
= sh
->disks
; i
--; ) {
852 struct r5dev
*dev
= &sh
->dev
[i
];
853 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
855 spin_lock_irq(&sh
->stripe_lock
);
856 dev
->read
= rbi
= dev
->toread
;
858 spin_unlock_irq(&sh
->stripe_lock
);
859 while (rbi
&& rbi
->bi_sector
<
860 dev
->sector
+ STRIPE_SECTORS
) {
861 tx
= async_copy_data(0, rbi
, dev
->page
,
863 rbi
= r5_next_bio(rbi
, dev
->sector
);
868 atomic_inc(&sh
->count
);
869 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
870 async_trigger_callback(&submit
);
873 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
880 tgt
= &sh
->dev
[target
];
881 set_bit(R5_UPTODATE
, &tgt
->flags
);
882 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
883 clear_bit(R5_Wantcompute
, &tgt
->flags
);
886 static void ops_complete_compute(void *stripe_head_ref
)
888 struct stripe_head
*sh
= stripe_head_ref
;
890 pr_debug("%s: stripe %llu\n", __func__
,
891 (unsigned long long)sh
->sector
);
893 /* mark the computed target(s) as uptodate */
894 mark_target_uptodate(sh
, sh
->ops
.target
);
895 mark_target_uptodate(sh
, sh
->ops
.target2
);
897 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
898 if (sh
->check_state
== check_state_compute_run
)
899 sh
->check_state
= check_state_compute_result
;
900 set_bit(STRIPE_HANDLE
, &sh
->state
);
904 /* return a pointer to the address conversion region of the scribble buffer */
905 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
906 struct raid5_percpu
*percpu
)
908 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
911 static struct dma_async_tx_descriptor
*
912 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
914 int disks
= sh
->disks
;
915 struct page
**xor_srcs
= percpu
->scribble
;
916 int target
= sh
->ops
.target
;
917 struct r5dev
*tgt
= &sh
->dev
[target
];
918 struct page
*xor_dest
= tgt
->page
;
920 struct dma_async_tx_descriptor
*tx
;
921 struct async_submit_ctl submit
;
924 pr_debug("%s: stripe %llu block: %d\n",
925 __func__
, (unsigned long long)sh
->sector
, target
);
926 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
928 for (i
= disks
; i
--; )
930 xor_srcs
[count
++] = sh
->dev
[i
].page
;
932 atomic_inc(&sh
->count
);
934 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
935 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
936 if (unlikely(count
== 1))
937 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
939 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
944 /* set_syndrome_sources - populate source buffers for gen_syndrome
945 * @srcs - (struct page *) array of size sh->disks
946 * @sh - stripe_head to parse
948 * Populates srcs in proper layout order for the stripe and returns the
949 * 'count' of sources to be used in a call to async_gen_syndrome. The P
950 * destination buffer is recorded in srcs[count] and the Q destination
951 * is recorded in srcs[count+1]].
953 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
955 int disks
= sh
->disks
;
956 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
957 int d0_idx
= raid6_d0(sh
);
961 for (i
= 0; i
< disks
; i
++)
967 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
969 srcs
[slot
] = sh
->dev
[i
].page
;
970 i
= raid6_next_disk(i
, disks
);
971 } while (i
!= d0_idx
);
973 return syndrome_disks
;
976 static struct dma_async_tx_descriptor
*
977 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
979 int disks
= sh
->disks
;
980 struct page
**blocks
= percpu
->scribble
;
982 int qd_idx
= sh
->qd_idx
;
983 struct dma_async_tx_descriptor
*tx
;
984 struct async_submit_ctl submit
;
990 if (sh
->ops
.target
< 0)
991 target
= sh
->ops
.target2
;
992 else if (sh
->ops
.target2
< 0)
993 target
= sh
->ops
.target
;
995 /* we should only have one valid target */
998 pr_debug("%s: stripe %llu block: %d\n",
999 __func__
, (unsigned long long)sh
->sector
, target
);
1001 tgt
= &sh
->dev
[target
];
1002 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1005 atomic_inc(&sh
->count
);
1007 if (target
== qd_idx
) {
1008 count
= set_syndrome_sources(blocks
, sh
);
1009 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1010 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1011 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1012 ops_complete_compute
, sh
,
1013 to_addr_conv(sh
, percpu
));
1014 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1016 /* Compute any data- or p-drive using XOR */
1018 for (i
= disks
; i
-- ; ) {
1019 if (i
== target
|| i
== qd_idx
)
1021 blocks
[count
++] = sh
->dev
[i
].page
;
1024 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1025 NULL
, ops_complete_compute
, sh
,
1026 to_addr_conv(sh
, percpu
));
1027 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1033 static struct dma_async_tx_descriptor
*
1034 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1036 int i
, count
, disks
= sh
->disks
;
1037 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1038 int d0_idx
= raid6_d0(sh
);
1039 int faila
= -1, failb
= -1;
1040 int target
= sh
->ops
.target
;
1041 int target2
= sh
->ops
.target2
;
1042 struct r5dev
*tgt
= &sh
->dev
[target
];
1043 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1044 struct dma_async_tx_descriptor
*tx
;
1045 struct page
**blocks
= percpu
->scribble
;
1046 struct async_submit_ctl submit
;
1048 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1049 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1050 BUG_ON(target
< 0 || target2
< 0);
1051 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1052 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1054 /* we need to open-code set_syndrome_sources to handle the
1055 * slot number conversion for 'faila' and 'failb'
1057 for (i
= 0; i
< disks
; i
++)
1062 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1064 blocks
[slot
] = sh
->dev
[i
].page
;
1070 i
= raid6_next_disk(i
, disks
);
1071 } while (i
!= d0_idx
);
1073 BUG_ON(faila
== failb
);
1076 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1077 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1079 atomic_inc(&sh
->count
);
1081 if (failb
== syndrome_disks
+1) {
1082 /* Q disk is one of the missing disks */
1083 if (faila
== syndrome_disks
) {
1084 /* Missing P+Q, just recompute */
1085 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1086 ops_complete_compute
, sh
,
1087 to_addr_conv(sh
, percpu
));
1088 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1089 STRIPE_SIZE
, &submit
);
1093 int qd_idx
= sh
->qd_idx
;
1095 /* Missing D+Q: recompute D from P, then recompute Q */
1096 if (target
== qd_idx
)
1097 data_target
= target2
;
1099 data_target
= target
;
1102 for (i
= disks
; i
-- ; ) {
1103 if (i
== data_target
|| i
== qd_idx
)
1105 blocks
[count
++] = sh
->dev
[i
].page
;
1107 dest
= sh
->dev
[data_target
].page
;
1108 init_async_submit(&submit
,
1109 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1111 to_addr_conv(sh
, percpu
));
1112 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1115 count
= set_syndrome_sources(blocks
, sh
);
1116 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1117 ops_complete_compute
, sh
,
1118 to_addr_conv(sh
, percpu
));
1119 return async_gen_syndrome(blocks
, 0, count
+2,
1120 STRIPE_SIZE
, &submit
);
1123 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1124 ops_complete_compute
, sh
,
1125 to_addr_conv(sh
, percpu
));
1126 if (failb
== syndrome_disks
) {
1127 /* We're missing D+P. */
1128 return async_raid6_datap_recov(syndrome_disks
+2,
1132 /* We're missing D+D. */
1133 return async_raid6_2data_recov(syndrome_disks
+2,
1134 STRIPE_SIZE
, faila
, failb
,
1141 static void ops_complete_prexor(void *stripe_head_ref
)
1143 struct stripe_head
*sh
= stripe_head_ref
;
1145 pr_debug("%s: stripe %llu\n", __func__
,
1146 (unsigned long long)sh
->sector
);
1149 static struct dma_async_tx_descriptor
*
1150 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1151 struct dma_async_tx_descriptor
*tx
)
1153 int disks
= sh
->disks
;
1154 struct page
**xor_srcs
= percpu
->scribble
;
1155 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1156 struct async_submit_ctl submit
;
1158 /* existing parity data subtracted */
1159 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1161 pr_debug("%s: stripe %llu\n", __func__
,
1162 (unsigned long long)sh
->sector
);
1164 for (i
= disks
; i
--; ) {
1165 struct r5dev
*dev
= &sh
->dev
[i
];
1166 /* Only process blocks that are known to be uptodate */
1167 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1168 xor_srcs
[count
++] = dev
->page
;
1171 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1172 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
1173 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1178 static struct dma_async_tx_descriptor
*
1179 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1181 int disks
= sh
->disks
;
1184 pr_debug("%s: stripe %llu\n", __func__
,
1185 (unsigned long long)sh
->sector
);
1187 for (i
= disks
; i
--; ) {
1188 struct r5dev
*dev
= &sh
->dev
[i
];
1191 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
1194 spin_lock_irq(&sh
->stripe_lock
);
1195 chosen
= dev
->towrite
;
1196 dev
->towrite
= NULL
;
1197 BUG_ON(dev
->written
);
1198 wbi
= dev
->written
= chosen
;
1199 spin_unlock_irq(&sh
->stripe_lock
);
1201 while (wbi
&& wbi
->bi_sector
<
1202 dev
->sector
+ STRIPE_SECTORS
) {
1203 if (wbi
->bi_rw
& REQ_FUA
)
1204 set_bit(R5_WantFUA
, &dev
->flags
);
1205 if (wbi
->bi_rw
& REQ_SYNC
)
1206 set_bit(R5_SyncIO
, &dev
->flags
);
1207 if (wbi
->bi_rw
& REQ_DISCARD
)
1208 set_bit(R5_Discard
, &dev
->flags
);
1210 tx
= async_copy_data(1, wbi
, dev
->page
,
1212 wbi
= r5_next_bio(wbi
, dev
->sector
);
1220 static void ops_complete_reconstruct(void *stripe_head_ref
)
1222 struct stripe_head
*sh
= stripe_head_ref
;
1223 int disks
= sh
->disks
;
1224 int pd_idx
= sh
->pd_idx
;
1225 int qd_idx
= sh
->qd_idx
;
1227 bool fua
= false, sync
= false, discard
= false;
1229 pr_debug("%s: stripe %llu\n", __func__
,
1230 (unsigned long long)sh
->sector
);
1232 for (i
= disks
; i
--; ) {
1233 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1234 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1235 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1238 for (i
= disks
; i
--; ) {
1239 struct r5dev
*dev
= &sh
->dev
[i
];
1241 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1243 set_bit(R5_UPTODATE
, &dev
->flags
);
1245 set_bit(R5_WantFUA
, &dev
->flags
);
1247 set_bit(R5_SyncIO
, &dev
->flags
);
1251 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1252 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1253 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1254 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1256 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1257 sh
->reconstruct_state
= reconstruct_state_result
;
1260 set_bit(STRIPE_HANDLE
, &sh
->state
);
1265 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1266 struct dma_async_tx_descriptor
*tx
)
1268 int disks
= sh
->disks
;
1269 struct page
**xor_srcs
= percpu
->scribble
;
1270 struct async_submit_ctl submit
;
1271 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1272 struct page
*xor_dest
;
1274 unsigned long flags
;
1276 pr_debug("%s: stripe %llu\n", __func__
,
1277 (unsigned long long)sh
->sector
);
1279 for (i
= 0; i
< sh
->disks
; i
++) {
1282 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1285 if (i
>= sh
->disks
) {
1286 atomic_inc(&sh
->count
);
1287 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1288 ops_complete_reconstruct(sh
);
1291 /* check if prexor is active which means only process blocks
1292 * that are part of a read-modify-write (written)
1294 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1296 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1297 for (i
= disks
; i
--; ) {
1298 struct r5dev
*dev
= &sh
->dev
[i
];
1300 xor_srcs
[count
++] = dev
->page
;
1303 xor_dest
= sh
->dev
[pd_idx
].page
;
1304 for (i
= disks
; i
--; ) {
1305 struct r5dev
*dev
= &sh
->dev
[i
];
1307 xor_srcs
[count
++] = dev
->page
;
1311 /* 1/ if we prexor'd then the dest is reused as a source
1312 * 2/ if we did not prexor then we are redoing the parity
1313 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1314 * for the synchronous xor case
1316 flags
= ASYNC_TX_ACK
|
1317 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1319 atomic_inc(&sh
->count
);
1321 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1322 to_addr_conv(sh
, percpu
));
1323 if (unlikely(count
== 1))
1324 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1326 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1330 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1331 struct dma_async_tx_descriptor
*tx
)
1333 struct async_submit_ctl submit
;
1334 struct page
**blocks
= percpu
->scribble
;
1337 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1339 for (i
= 0; i
< sh
->disks
; i
++) {
1340 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1342 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1345 if (i
>= sh
->disks
) {
1346 atomic_inc(&sh
->count
);
1347 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1348 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1349 ops_complete_reconstruct(sh
);
1353 count
= set_syndrome_sources(blocks
, sh
);
1355 atomic_inc(&sh
->count
);
1357 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1358 sh
, to_addr_conv(sh
, percpu
));
1359 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1362 static void ops_complete_check(void *stripe_head_ref
)
1364 struct stripe_head
*sh
= stripe_head_ref
;
1366 pr_debug("%s: stripe %llu\n", __func__
,
1367 (unsigned long long)sh
->sector
);
1369 sh
->check_state
= check_state_check_result
;
1370 set_bit(STRIPE_HANDLE
, &sh
->state
);
1374 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1376 int disks
= sh
->disks
;
1377 int pd_idx
= sh
->pd_idx
;
1378 int qd_idx
= sh
->qd_idx
;
1379 struct page
*xor_dest
;
1380 struct page
**xor_srcs
= percpu
->scribble
;
1381 struct dma_async_tx_descriptor
*tx
;
1382 struct async_submit_ctl submit
;
1386 pr_debug("%s: stripe %llu\n", __func__
,
1387 (unsigned long long)sh
->sector
);
1390 xor_dest
= sh
->dev
[pd_idx
].page
;
1391 xor_srcs
[count
++] = xor_dest
;
1392 for (i
= disks
; i
--; ) {
1393 if (i
== pd_idx
|| i
== qd_idx
)
1395 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1398 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1399 to_addr_conv(sh
, percpu
));
1400 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1401 &sh
->ops
.zero_sum_result
, &submit
);
1403 atomic_inc(&sh
->count
);
1404 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1405 tx
= async_trigger_callback(&submit
);
1408 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1410 struct page
**srcs
= percpu
->scribble
;
1411 struct async_submit_ctl submit
;
1414 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1415 (unsigned long long)sh
->sector
, checkp
);
1417 count
= set_syndrome_sources(srcs
, sh
);
1421 atomic_inc(&sh
->count
);
1422 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1423 sh
, to_addr_conv(sh
, percpu
));
1424 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1425 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1428 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1430 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1431 struct dma_async_tx_descriptor
*tx
= NULL
;
1432 struct r5conf
*conf
= sh
->raid_conf
;
1433 int level
= conf
->level
;
1434 struct raid5_percpu
*percpu
;
1438 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1439 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1440 ops_run_biofill(sh
);
1444 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1446 tx
= ops_run_compute5(sh
, percpu
);
1448 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1449 tx
= ops_run_compute6_1(sh
, percpu
);
1451 tx
= ops_run_compute6_2(sh
, percpu
);
1453 /* terminate the chain if reconstruct is not set to be run */
1454 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1458 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1459 tx
= ops_run_prexor(sh
, percpu
, tx
);
1461 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1462 tx
= ops_run_biodrain(sh
, tx
);
1466 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1468 ops_run_reconstruct5(sh
, percpu
, tx
);
1470 ops_run_reconstruct6(sh
, percpu
, tx
);
1473 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1474 if (sh
->check_state
== check_state_run
)
1475 ops_run_check_p(sh
, percpu
);
1476 else if (sh
->check_state
== check_state_run_q
)
1477 ops_run_check_pq(sh
, percpu
, 0);
1478 else if (sh
->check_state
== check_state_run_pq
)
1479 ops_run_check_pq(sh
, percpu
, 1);
1485 for (i
= disks
; i
--; ) {
1486 struct r5dev
*dev
= &sh
->dev
[i
];
1487 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1488 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1493 static int grow_one_stripe(struct r5conf
*conf
)
1495 struct stripe_head
*sh
;
1496 sh
= kmem_cache_zalloc(conf
->slab_cache
, GFP_KERNEL
);
1500 sh
->raid_conf
= conf
;
1502 spin_lock_init(&sh
->stripe_lock
);
1504 if (grow_buffers(sh
)) {
1506 kmem_cache_free(conf
->slab_cache
, sh
);
1509 /* we just created an active stripe so... */
1510 atomic_set(&sh
->count
, 1);
1511 atomic_inc(&conf
->active_stripes
);
1512 INIT_LIST_HEAD(&sh
->lru
);
1517 static int grow_stripes(struct r5conf
*conf
, int num
)
1519 struct kmem_cache
*sc
;
1520 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1522 if (conf
->mddev
->gendisk
)
1523 sprintf(conf
->cache_name
[0],
1524 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1526 sprintf(conf
->cache_name
[0],
1527 "raid%d-%p", conf
->level
, conf
->mddev
);
1528 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
1530 conf
->active_name
= 0;
1531 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1532 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1536 conf
->slab_cache
= sc
;
1537 conf
->pool_size
= devs
;
1539 if (!grow_one_stripe(conf
))
1545 * scribble_len - return the required size of the scribble region
1546 * @num - total number of disks in the array
1548 * The size must be enough to contain:
1549 * 1/ a struct page pointer for each device in the array +2
1550 * 2/ room to convert each entry in (1) to its corresponding dma
1551 * (dma_map_page()) or page (page_address()) address.
1553 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1554 * calculate over all devices (not just the data blocks), using zeros in place
1555 * of the P and Q blocks.
1557 static size_t scribble_len(int num
)
1561 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1566 static int resize_stripes(struct r5conf
*conf
, int newsize
)
1568 /* Make all the stripes able to hold 'newsize' devices.
1569 * New slots in each stripe get 'page' set to a new page.
1571 * This happens in stages:
1572 * 1/ create a new kmem_cache and allocate the required number of
1574 * 2/ gather all the old stripe_heads and transfer the pages across
1575 * to the new stripe_heads. This will have the side effect of
1576 * freezing the array as once all stripe_heads have been collected,
1577 * no IO will be possible. Old stripe heads are freed once their
1578 * pages have been transferred over, and the old kmem_cache is
1579 * freed when all stripes are done.
1580 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1581 * we simple return a failre status - no need to clean anything up.
1582 * 4/ allocate new pages for the new slots in the new stripe_heads.
1583 * If this fails, we don't bother trying the shrink the
1584 * stripe_heads down again, we just leave them as they are.
1585 * As each stripe_head is processed the new one is released into
1588 * Once step2 is started, we cannot afford to wait for a write,
1589 * so we use GFP_NOIO allocations.
1591 struct stripe_head
*osh
, *nsh
;
1592 LIST_HEAD(newstripes
);
1593 struct disk_info
*ndisks
;
1596 struct kmem_cache
*sc
;
1599 if (newsize
<= conf
->pool_size
)
1600 return 0; /* never bother to shrink */
1602 err
= md_allow_write(conf
->mddev
);
1607 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1608 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1613 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1614 nsh
= kmem_cache_zalloc(sc
, GFP_KERNEL
);
1618 nsh
->raid_conf
= conf
;
1619 spin_lock_init(&nsh
->stripe_lock
);
1621 list_add(&nsh
->lru
, &newstripes
);
1624 /* didn't get enough, give up */
1625 while (!list_empty(&newstripes
)) {
1626 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1627 list_del(&nsh
->lru
);
1628 kmem_cache_free(sc
, nsh
);
1630 kmem_cache_destroy(sc
);
1633 /* Step 2 - Must use GFP_NOIO now.
1634 * OK, we have enough stripes, start collecting inactive
1635 * stripes and copying them over
1637 list_for_each_entry(nsh
, &newstripes
, lru
) {
1638 spin_lock_irq(&conf
->device_lock
);
1639 wait_event_lock_irq(conf
->wait_for_stripe
,
1640 !list_empty(&conf
->inactive_list
),
1642 osh
= get_free_stripe(conf
);
1643 spin_unlock_irq(&conf
->device_lock
);
1644 atomic_set(&nsh
->count
, 1);
1645 for(i
=0; i
<conf
->pool_size
; i
++)
1646 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1647 for( ; i
<newsize
; i
++)
1648 nsh
->dev
[i
].page
= NULL
;
1649 kmem_cache_free(conf
->slab_cache
, osh
);
1651 kmem_cache_destroy(conf
->slab_cache
);
1654 * At this point, we are holding all the stripes so the array
1655 * is completely stalled, so now is a good time to resize
1656 * conf->disks and the scribble region
1658 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1660 for (i
=0; i
<conf
->raid_disks
; i
++)
1661 ndisks
[i
] = conf
->disks
[i
];
1663 conf
->disks
= ndisks
;
1668 conf
->scribble_len
= scribble_len(newsize
);
1669 for_each_present_cpu(cpu
) {
1670 struct raid5_percpu
*percpu
;
1673 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1674 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1677 kfree(percpu
->scribble
);
1678 percpu
->scribble
= scribble
;
1686 /* Step 4, return new stripes to service */
1687 while(!list_empty(&newstripes
)) {
1688 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1689 list_del_init(&nsh
->lru
);
1691 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1692 if (nsh
->dev
[i
].page
== NULL
) {
1693 struct page
*p
= alloc_page(GFP_NOIO
);
1694 nsh
->dev
[i
].page
= p
;
1698 release_stripe(nsh
);
1700 /* critical section pass, GFP_NOIO no longer needed */
1702 conf
->slab_cache
= sc
;
1703 conf
->active_name
= 1-conf
->active_name
;
1705 conf
->pool_size
= newsize
;
1709 static int drop_one_stripe(struct r5conf
*conf
)
1711 struct stripe_head
*sh
;
1713 spin_lock_irq(&conf
->device_lock
);
1714 sh
= get_free_stripe(conf
);
1715 spin_unlock_irq(&conf
->device_lock
);
1718 BUG_ON(atomic_read(&sh
->count
));
1720 kmem_cache_free(conf
->slab_cache
, sh
);
1721 atomic_dec(&conf
->active_stripes
);
1725 static void shrink_stripes(struct r5conf
*conf
)
1727 while (drop_one_stripe(conf
))
1730 if (conf
->slab_cache
)
1731 kmem_cache_destroy(conf
->slab_cache
);
1732 conf
->slab_cache
= NULL
;
1735 static void raid5_end_read_request(struct bio
* bi
, int error
)
1737 struct stripe_head
*sh
= bi
->bi_private
;
1738 struct r5conf
*conf
= sh
->raid_conf
;
1739 int disks
= sh
->disks
, i
;
1740 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1741 char b
[BDEVNAME_SIZE
];
1742 struct md_rdev
*rdev
= NULL
;
1745 for (i
=0 ; i
<disks
; i
++)
1746 if (bi
== &sh
->dev
[i
].req
)
1749 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1750 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1756 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
1757 /* If replacement finished while this request was outstanding,
1758 * 'replacement' might be NULL already.
1759 * In that case it moved down to 'rdev'.
1760 * rdev is not removed until all requests are finished.
1762 rdev
= conf
->disks
[i
].replacement
;
1764 rdev
= conf
->disks
[i
].rdev
;
1766 if (use_new_offset(conf
, sh
))
1767 s
= sh
->sector
+ rdev
->new_data_offset
;
1769 s
= sh
->sector
+ rdev
->data_offset
;
1771 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1772 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1773 /* Note that this cannot happen on a
1774 * replacement device. We just fail those on
1779 "md/raid:%s: read error corrected"
1780 " (%lu sectors at %llu on %s)\n",
1781 mdname(conf
->mddev
), STRIPE_SECTORS
,
1782 (unsigned long long)s
,
1783 bdevname(rdev
->bdev
, b
));
1784 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1785 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1786 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1787 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
1788 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
1790 if (atomic_read(&rdev
->read_errors
))
1791 atomic_set(&rdev
->read_errors
, 0);
1793 const char *bdn
= bdevname(rdev
->bdev
, b
);
1797 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1798 atomic_inc(&rdev
->read_errors
);
1799 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
1802 "md/raid:%s: read error on replacement device "
1803 "(sector %llu on %s).\n",
1804 mdname(conf
->mddev
),
1805 (unsigned long long)s
,
1807 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
1811 "md/raid:%s: read error not correctable "
1812 "(sector %llu on %s).\n",
1813 mdname(conf
->mddev
),
1814 (unsigned long long)s
,
1816 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
1821 "md/raid:%s: read error NOT corrected!! "
1822 "(sector %llu on %s).\n",
1823 mdname(conf
->mddev
),
1824 (unsigned long long)s
,
1826 } else if (atomic_read(&rdev
->read_errors
)
1827 > conf
->max_nr_stripes
)
1829 "md/raid:%s: Too many read errors, failing device %s.\n",
1830 mdname(conf
->mddev
), bdn
);
1834 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
1835 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1836 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
1838 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
1840 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1841 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1843 && test_bit(In_sync
, &rdev
->flags
)
1844 && rdev_set_badblocks(
1845 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
1846 md_error(conf
->mddev
, rdev
);
1849 rdev_dec_pending(rdev
, conf
->mddev
);
1850 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1851 set_bit(STRIPE_HANDLE
, &sh
->state
);
1855 static void raid5_end_write_request(struct bio
*bi
, int error
)
1857 struct stripe_head
*sh
= bi
->bi_private
;
1858 struct r5conf
*conf
= sh
->raid_conf
;
1859 int disks
= sh
->disks
, i
;
1860 struct md_rdev
*uninitialized_var(rdev
);
1861 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1864 int replacement
= 0;
1866 for (i
= 0 ; i
< disks
; i
++) {
1867 if (bi
== &sh
->dev
[i
].req
) {
1868 rdev
= conf
->disks
[i
].rdev
;
1871 if (bi
== &sh
->dev
[i
].rreq
) {
1872 rdev
= conf
->disks
[i
].replacement
;
1876 /* rdev was removed and 'replacement'
1877 * replaced it. rdev is not removed
1878 * until all requests are finished.
1880 rdev
= conf
->disks
[i
].rdev
;
1884 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1885 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1894 md_error(conf
->mddev
, rdev
);
1895 else if (is_badblock(rdev
, sh
->sector
,
1897 &first_bad
, &bad_sectors
))
1898 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
1901 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1902 set_bit(WriteErrorSeen
, &rdev
->flags
);
1903 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
1904 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1905 set_bit(MD_RECOVERY_NEEDED
,
1906 &rdev
->mddev
->recovery
);
1907 } else if (is_badblock(rdev
, sh
->sector
,
1909 &first_bad
, &bad_sectors
)) {
1910 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
1911 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
1912 /* That was a successful write so make
1913 * sure it looks like we already did
1916 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1919 rdev_dec_pending(rdev
, conf
->mddev
);
1921 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
1922 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1923 set_bit(STRIPE_HANDLE
, &sh
->state
);
1927 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1929 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1931 struct r5dev
*dev
= &sh
->dev
[i
];
1933 bio_init(&dev
->req
);
1934 dev
->req
.bi_io_vec
= &dev
->vec
;
1936 dev
->req
.bi_max_vecs
++;
1937 dev
->req
.bi_private
= sh
;
1938 dev
->vec
.bv_page
= dev
->page
;
1940 bio_init(&dev
->rreq
);
1941 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
1942 dev
->rreq
.bi_vcnt
++;
1943 dev
->rreq
.bi_max_vecs
++;
1944 dev
->rreq
.bi_private
= sh
;
1945 dev
->rvec
.bv_page
= dev
->page
;
1948 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1951 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1953 char b
[BDEVNAME_SIZE
];
1954 struct r5conf
*conf
= mddev
->private;
1955 unsigned long flags
;
1956 pr_debug("raid456: error called\n");
1958 spin_lock_irqsave(&conf
->device_lock
, flags
);
1959 clear_bit(In_sync
, &rdev
->flags
);
1960 mddev
->degraded
= calc_degraded(conf
);
1961 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1962 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1964 set_bit(Blocked
, &rdev
->flags
);
1965 set_bit(Faulty
, &rdev
->flags
);
1966 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1968 "md/raid:%s: Disk failure on %s, disabling device.\n"
1969 "md/raid:%s: Operation continuing on %d devices.\n",
1971 bdevname(rdev
->bdev
, b
),
1973 conf
->raid_disks
- mddev
->degraded
);
1977 * Input: a 'big' sector number,
1978 * Output: index of the data and parity disk, and the sector # in them.
1980 static sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
1981 int previous
, int *dd_idx
,
1982 struct stripe_head
*sh
)
1984 sector_t stripe
, stripe2
;
1985 sector_t chunk_number
;
1986 unsigned int chunk_offset
;
1989 sector_t new_sector
;
1990 int algorithm
= previous
? conf
->prev_algo
1992 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1993 : conf
->chunk_sectors
;
1994 int raid_disks
= previous
? conf
->previous_raid_disks
1996 int data_disks
= raid_disks
- conf
->max_degraded
;
1998 /* First compute the information on this sector */
2001 * Compute the chunk number and the sector offset inside the chunk
2003 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2004 chunk_number
= r_sector
;
2007 * Compute the stripe number
2009 stripe
= chunk_number
;
2010 *dd_idx
= sector_div(stripe
, data_disks
);
2013 * Select the parity disk based on the user selected algorithm.
2015 pd_idx
= qd_idx
= -1;
2016 switch(conf
->level
) {
2018 pd_idx
= data_disks
;
2021 switch (algorithm
) {
2022 case ALGORITHM_LEFT_ASYMMETRIC
:
2023 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2024 if (*dd_idx
>= pd_idx
)
2027 case ALGORITHM_RIGHT_ASYMMETRIC
:
2028 pd_idx
= sector_div(stripe2
, raid_disks
);
2029 if (*dd_idx
>= pd_idx
)
2032 case ALGORITHM_LEFT_SYMMETRIC
:
2033 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2034 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2036 case ALGORITHM_RIGHT_SYMMETRIC
:
2037 pd_idx
= sector_div(stripe2
, raid_disks
);
2038 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2040 case ALGORITHM_PARITY_0
:
2044 case ALGORITHM_PARITY_N
:
2045 pd_idx
= data_disks
;
2053 switch (algorithm
) {
2054 case ALGORITHM_LEFT_ASYMMETRIC
:
2055 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2056 qd_idx
= pd_idx
+ 1;
2057 if (pd_idx
== raid_disks
-1) {
2058 (*dd_idx
)++; /* Q D D D P */
2060 } else if (*dd_idx
>= pd_idx
)
2061 (*dd_idx
) += 2; /* D D P Q D */
2063 case ALGORITHM_RIGHT_ASYMMETRIC
:
2064 pd_idx
= sector_div(stripe2
, raid_disks
);
2065 qd_idx
= pd_idx
+ 1;
2066 if (pd_idx
== raid_disks
-1) {
2067 (*dd_idx
)++; /* Q D D D P */
2069 } else if (*dd_idx
>= pd_idx
)
2070 (*dd_idx
) += 2; /* D D P Q D */
2072 case ALGORITHM_LEFT_SYMMETRIC
:
2073 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2074 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2075 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2077 case ALGORITHM_RIGHT_SYMMETRIC
:
2078 pd_idx
= sector_div(stripe2
, raid_disks
);
2079 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2080 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2083 case ALGORITHM_PARITY_0
:
2088 case ALGORITHM_PARITY_N
:
2089 pd_idx
= data_disks
;
2090 qd_idx
= data_disks
+ 1;
2093 case ALGORITHM_ROTATING_ZERO_RESTART
:
2094 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2095 * of blocks for computing Q is different.
2097 pd_idx
= sector_div(stripe2
, raid_disks
);
2098 qd_idx
= pd_idx
+ 1;
2099 if (pd_idx
== raid_disks
-1) {
2100 (*dd_idx
)++; /* Q D D D P */
2102 } else if (*dd_idx
>= pd_idx
)
2103 (*dd_idx
) += 2; /* D D P Q D */
2107 case ALGORITHM_ROTATING_N_RESTART
:
2108 /* Same a left_asymmetric, by first stripe is
2109 * D D D P Q rather than
2113 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2114 qd_idx
= pd_idx
+ 1;
2115 if (pd_idx
== raid_disks
-1) {
2116 (*dd_idx
)++; /* Q D D D P */
2118 } else if (*dd_idx
>= pd_idx
)
2119 (*dd_idx
) += 2; /* D D P Q D */
2123 case ALGORITHM_ROTATING_N_CONTINUE
:
2124 /* Same as left_symmetric but Q is before P */
2125 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2126 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2127 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2131 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2132 /* RAID5 left_asymmetric, with Q on last device */
2133 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2134 if (*dd_idx
>= pd_idx
)
2136 qd_idx
= raid_disks
- 1;
2139 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2140 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2141 if (*dd_idx
>= pd_idx
)
2143 qd_idx
= raid_disks
- 1;
2146 case ALGORITHM_LEFT_SYMMETRIC_6
:
2147 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2148 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2149 qd_idx
= raid_disks
- 1;
2152 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2153 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2154 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2155 qd_idx
= raid_disks
- 1;
2158 case ALGORITHM_PARITY_0_6
:
2161 qd_idx
= raid_disks
- 1;
2171 sh
->pd_idx
= pd_idx
;
2172 sh
->qd_idx
= qd_idx
;
2173 sh
->ddf_layout
= ddf_layout
;
2176 * Finally, compute the new sector number
2178 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2183 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2185 struct r5conf
*conf
= sh
->raid_conf
;
2186 int raid_disks
= sh
->disks
;
2187 int data_disks
= raid_disks
- conf
->max_degraded
;
2188 sector_t new_sector
= sh
->sector
, check
;
2189 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2190 : conf
->chunk_sectors
;
2191 int algorithm
= previous
? conf
->prev_algo
2195 sector_t chunk_number
;
2196 int dummy1
, dd_idx
= i
;
2198 struct stripe_head sh2
;
2201 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2202 stripe
= new_sector
;
2204 if (i
== sh
->pd_idx
)
2206 switch(conf
->level
) {
2209 switch (algorithm
) {
2210 case ALGORITHM_LEFT_ASYMMETRIC
:
2211 case ALGORITHM_RIGHT_ASYMMETRIC
:
2215 case ALGORITHM_LEFT_SYMMETRIC
:
2216 case ALGORITHM_RIGHT_SYMMETRIC
:
2219 i
-= (sh
->pd_idx
+ 1);
2221 case ALGORITHM_PARITY_0
:
2224 case ALGORITHM_PARITY_N
:
2231 if (i
== sh
->qd_idx
)
2232 return 0; /* It is the Q disk */
2233 switch (algorithm
) {
2234 case ALGORITHM_LEFT_ASYMMETRIC
:
2235 case ALGORITHM_RIGHT_ASYMMETRIC
:
2236 case ALGORITHM_ROTATING_ZERO_RESTART
:
2237 case ALGORITHM_ROTATING_N_RESTART
:
2238 if (sh
->pd_idx
== raid_disks
-1)
2239 i
--; /* Q D D D P */
2240 else if (i
> sh
->pd_idx
)
2241 i
-= 2; /* D D P Q D */
2243 case ALGORITHM_LEFT_SYMMETRIC
:
2244 case ALGORITHM_RIGHT_SYMMETRIC
:
2245 if (sh
->pd_idx
== raid_disks
-1)
2246 i
--; /* Q D D D P */
2251 i
-= (sh
->pd_idx
+ 2);
2254 case ALGORITHM_PARITY_0
:
2257 case ALGORITHM_PARITY_N
:
2259 case ALGORITHM_ROTATING_N_CONTINUE
:
2260 /* Like left_symmetric, but P is before Q */
2261 if (sh
->pd_idx
== 0)
2262 i
--; /* P D D D Q */
2267 i
-= (sh
->pd_idx
+ 1);
2270 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2271 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2275 case ALGORITHM_LEFT_SYMMETRIC_6
:
2276 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2278 i
+= data_disks
+ 1;
2279 i
-= (sh
->pd_idx
+ 1);
2281 case ALGORITHM_PARITY_0_6
:
2290 chunk_number
= stripe
* data_disks
+ i
;
2291 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2293 check
= raid5_compute_sector(conf
, r_sector
,
2294 previous
, &dummy1
, &sh2
);
2295 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2296 || sh2
.qd_idx
!= sh
->qd_idx
) {
2297 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2298 mdname(conf
->mddev
));
2306 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2307 int rcw
, int expand
)
2309 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
2310 struct r5conf
*conf
= sh
->raid_conf
;
2311 int level
= conf
->level
;
2315 for (i
= disks
; i
--; ) {
2316 struct r5dev
*dev
= &sh
->dev
[i
];
2319 set_bit(R5_LOCKED
, &dev
->flags
);
2320 set_bit(R5_Wantdrain
, &dev
->flags
);
2322 clear_bit(R5_UPTODATE
, &dev
->flags
);
2326 /* if we are not expanding this is a proper write request, and
2327 * there will be bios with new data to be drained into the
2332 /* False alarm, nothing to do */
2334 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2335 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2337 sh
->reconstruct_state
= reconstruct_state_run
;
2339 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2341 if (s
->locked
+ conf
->max_degraded
== disks
)
2342 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2343 atomic_inc(&conf
->pending_full_writes
);
2346 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2347 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2349 for (i
= disks
; i
--; ) {
2350 struct r5dev
*dev
= &sh
->dev
[i
];
2355 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2356 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2357 set_bit(R5_Wantdrain
, &dev
->flags
);
2358 set_bit(R5_LOCKED
, &dev
->flags
);
2359 clear_bit(R5_UPTODATE
, &dev
->flags
);
2364 /* False alarm - nothing to do */
2366 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2367 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2368 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2369 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2372 /* keep the parity disk(s) locked while asynchronous operations
2375 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2376 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2380 int qd_idx
= sh
->qd_idx
;
2381 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2383 set_bit(R5_LOCKED
, &dev
->flags
);
2384 clear_bit(R5_UPTODATE
, &dev
->flags
);
2388 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2389 __func__
, (unsigned long long)sh
->sector
,
2390 s
->locked
, s
->ops_request
);
2394 * Each stripe/dev can have one or more bion attached.
2395 * toread/towrite point to the first in a chain.
2396 * The bi_next chain must be in order.
2398 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2401 struct r5conf
*conf
= sh
->raid_conf
;
2404 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2405 (unsigned long long)bi
->bi_sector
,
2406 (unsigned long long)sh
->sector
);
2409 * If several bio share a stripe. The bio bi_phys_segments acts as a
2410 * reference count to avoid race. The reference count should already be
2411 * increased before this function is called (for example, in
2412 * make_request()), so other bio sharing this stripe will not free the
2413 * stripe. If a stripe is owned by one stripe, the stripe lock will
2416 spin_lock_irq(&sh
->stripe_lock
);
2418 bip
= &sh
->dev
[dd_idx
].towrite
;
2422 bip
= &sh
->dev
[dd_idx
].toread
;
2423 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2424 if (bio_end_sector(*bip
) > bi
->bi_sector
)
2426 bip
= & (*bip
)->bi_next
;
2428 if (*bip
&& (*bip
)->bi_sector
< bio_end_sector(bi
))
2431 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2435 raid5_inc_bi_active_stripes(bi
);
2438 /* check if page is covered */
2439 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2440 for (bi
=sh
->dev
[dd_idx
].towrite
;
2441 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2442 bi
&& bi
->bi_sector
<= sector
;
2443 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2444 if (bio_end_sector(bi
) >= sector
)
2445 sector
= bio_end_sector(bi
);
2447 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2448 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2451 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2452 (unsigned long long)(*bip
)->bi_sector
,
2453 (unsigned long long)sh
->sector
, dd_idx
);
2454 spin_unlock_irq(&sh
->stripe_lock
);
2456 if (conf
->mddev
->bitmap
&& firstwrite
) {
2457 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2459 sh
->bm_seq
= conf
->seq_flush
+1;
2460 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2465 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2466 spin_unlock_irq(&sh
->stripe_lock
);
2470 static void end_reshape(struct r5conf
*conf
);
2472 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
2473 struct stripe_head
*sh
)
2475 int sectors_per_chunk
=
2476 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2478 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2479 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2481 raid5_compute_sector(conf
,
2482 stripe
* (disks
- conf
->max_degraded
)
2483 *sectors_per_chunk
+ chunk_offset
,
2489 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
2490 struct stripe_head_state
*s
, int disks
,
2491 struct bio
**return_bi
)
2494 for (i
= disks
; i
--; ) {
2498 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2499 struct md_rdev
*rdev
;
2501 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2502 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2503 atomic_inc(&rdev
->nr_pending
);
2508 if (!rdev_set_badblocks(
2512 md_error(conf
->mddev
, rdev
);
2513 rdev_dec_pending(rdev
, conf
->mddev
);
2516 spin_lock_irq(&sh
->stripe_lock
);
2517 /* fail all writes first */
2518 bi
= sh
->dev
[i
].towrite
;
2519 sh
->dev
[i
].towrite
= NULL
;
2520 spin_unlock_irq(&sh
->stripe_lock
);
2524 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2525 wake_up(&conf
->wait_for_overlap
);
2527 while (bi
&& bi
->bi_sector
<
2528 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2529 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2530 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2531 if (!raid5_dec_bi_active_stripes(bi
)) {
2532 md_write_end(conf
->mddev
);
2533 bi
->bi_next
= *return_bi
;
2539 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2540 STRIPE_SECTORS
, 0, 0);
2542 /* and fail all 'written' */
2543 bi
= sh
->dev
[i
].written
;
2544 sh
->dev
[i
].written
= NULL
;
2545 if (bi
) bitmap_end
= 1;
2546 while (bi
&& bi
->bi_sector
<
2547 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2548 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2549 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2550 if (!raid5_dec_bi_active_stripes(bi
)) {
2551 md_write_end(conf
->mddev
);
2552 bi
->bi_next
= *return_bi
;
2558 /* fail any reads if this device is non-operational and
2559 * the data has not reached the cache yet.
2561 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2562 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2563 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2564 spin_lock_irq(&sh
->stripe_lock
);
2565 bi
= sh
->dev
[i
].toread
;
2566 sh
->dev
[i
].toread
= NULL
;
2567 spin_unlock_irq(&sh
->stripe_lock
);
2568 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2569 wake_up(&conf
->wait_for_overlap
);
2570 while (bi
&& bi
->bi_sector
<
2571 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2572 struct bio
*nextbi
=
2573 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2574 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2575 if (!raid5_dec_bi_active_stripes(bi
)) {
2576 bi
->bi_next
= *return_bi
;
2583 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2584 STRIPE_SECTORS
, 0, 0);
2585 /* If we were in the middle of a write the parity block might
2586 * still be locked - so just clear all R5_LOCKED flags
2588 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2591 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2592 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2593 md_wakeup_thread(conf
->mddev
->thread
);
2597 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
2598 struct stripe_head_state
*s
)
2603 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2604 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
2605 wake_up(&conf
->wait_for_overlap
);
2608 /* There is nothing more to do for sync/check/repair.
2609 * Don't even need to abort as that is handled elsewhere
2610 * if needed, and not always wanted e.g. if there is a known
2612 * For recover/replace we need to record a bad block on all
2613 * non-sync devices, or abort the recovery
2615 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
2616 /* During recovery devices cannot be removed, so
2617 * locking and refcounting of rdevs is not needed
2619 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2620 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
2622 && !test_bit(Faulty
, &rdev
->flags
)
2623 && !test_bit(In_sync
, &rdev
->flags
)
2624 && !rdev_set_badblocks(rdev
, sh
->sector
,
2627 rdev
= conf
->disks
[i
].replacement
;
2629 && !test_bit(Faulty
, &rdev
->flags
)
2630 && !test_bit(In_sync
, &rdev
->flags
)
2631 && !rdev_set_badblocks(rdev
, sh
->sector
,
2636 conf
->recovery_disabled
=
2637 conf
->mddev
->recovery_disabled
;
2639 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
2642 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
2644 struct md_rdev
*rdev
;
2646 /* Doing recovery so rcu locking not required */
2647 rdev
= sh
->raid_conf
->disks
[disk_idx
].replacement
;
2649 && !test_bit(Faulty
, &rdev
->flags
)
2650 && !test_bit(In_sync
, &rdev
->flags
)
2651 && (rdev
->recovery_offset
<= sh
->sector
2652 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
2658 /* fetch_block - checks the given member device to see if its data needs
2659 * to be read or computed to satisfy a request.
2661 * Returns 1 when no more member devices need to be checked, otherwise returns
2662 * 0 to tell the loop in handle_stripe_fill to continue
2664 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2665 int disk_idx
, int disks
)
2667 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2668 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
2669 &sh
->dev
[s
->failed_num
[1]] };
2671 /* is the data in this block needed, and can we get it? */
2672 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2673 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2675 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2676 s
->syncing
|| s
->expanding
||
2677 (s
->replacing
&& want_replace(sh
, disk_idx
)) ||
2678 (s
->failed
>= 1 && fdev
[0]->toread
) ||
2679 (s
->failed
>= 2 && fdev
[1]->toread
) ||
2680 (sh
->raid_conf
->level
<= 5 && s
->failed
&& fdev
[0]->towrite
&&
2681 !test_bit(R5_OVERWRITE
, &fdev
[0]->flags
)) ||
2682 ((sh
->raid_conf
->level
== 6 || sh
->sector
>= sh
->raid_conf
->mddev
->recovery_cp
)
2683 && s
->failed
&& s
->to_write
))) {
2684 /* we would like to get this block, possibly by computing it,
2685 * otherwise read it if the backing disk is insync
2687 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2688 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2689 if ((s
->uptodate
== disks
- 1) &&
2690 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
2691 disk_idx
== s
->failed_num
[1]))) {
2692 /* have disk failed, and we're requested to fetch it;
2695 pr_debug("Computing stripe %llu block %d\n",
2696 (unsigned long long)sh
->sector
, disk_idx
);
2697 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2698 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2699 set_bit(R5_Wantcompute
, &dev
->flags
);
2700 sh
->ops
.target
= disk_idx
;
2701 sh
->ops
.target2
= -1; /* no 2nd target */
2703 /* Careful: from this point on 'uptodate' is in the eye
2704 * of raid_run_ops which services 'compute' operations
2705 * before writes. R5_Wantcompute flags a block that will
2706 * be R5_UPTODATE by the time it is needed for a
2707 * subsequent operation.
2711 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2712 /* Computing 2-failure is *very* expensive; only
2713 * do it if failed >= 2
2716 for (other
= disks
; other
--; ) {
2717 if (other
== disk_idx
)
2719 if (!test_bit(R5_UPTODATE
,
2720 &sh
->dev
[other
].flags
))
2724 pr_debug("Computing stripe %llu blocks %d,%d\n",
2725 (unsigned long long)sh
->sector
,
2727 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2728 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2729 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2730 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2731 sh
->ops
.target
= disk_idx
;
2732 sh
->ops
.target2
= other
;
2736 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2737 set_bit(R5_LOCKED
, &dev
->flags
);
2738 set_bit(R5_Wantread
, &dev
->flags
);
2740 pr_debug("Reading block %d (sync=%d)\n",
2741 disk_idx
, s
->syncing
);
2749 * handle_stripe_fill - read or compute data to satisfy pending requests.
2751 static void handle_stripe_fill(struct stripe_head
*sh
,
2752 struct stripe_head_state
*s
,
2757 /* look for blocks to read/compute, skip this if a compute
2758 * is already in flight, or if the stripe contents are in the
2759 * midst of changing due to a write
2761 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2762 !sh
->reconstruct_state
)
2763 for (i
= disks
; i
--; )
2764 if (fetch_block(sh
, s
, i
, disks
))
2766 set_bit(STRIPE_HANDLE
, &sh
->state
);
2770 /* handle_stripe_clean_event
2771 * any written block on an uptodate or failed drive can be returned.
2772 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2773 * never LOCKED, so we don't need to test 'failed' directly.
2775 static void handle_stripe_clean_event(struct r5conf
*conf
,
2776 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2780 int discard_pending
= 0;
2782 for (i
= disks
; i
--; )
2783 if (sh
->dev
[i
].written
) {
2785 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2786 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2787 test_bit(R5_Discard
, &dev
->flags
))) {
2788 /* We can return any write requests */
2789 struct bio
*wbi
, *wbi2
;
2790 pr_debug("Return write for disc %d\n", i
);
2791 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
2792 clear_bit(R5_UPTODATE
, &dev
->flags
);
2794 dev
->written
= NULL
;
2795 while (wbi
&& wbi
->bi_sector
<
2796 dev
->sector
+ STRIPE_SECTORS
) {
2797 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2798 if (!raid5_dec_bi_active_stripes(wbi
)) {
2799 md_write_end(conf
->mddev
);
2800 wbi
->bi_next
= *return_bi
;
2805 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2807 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2809 } else if (test_bit(R5_Discard
, &dev
->flags
))
2810 discard_pending
= 1;
2812 if (!discard_pending
&&
2813 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
2814 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
2815 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2816 if (sh
->qd_idx
>= 0) {
2817 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
2818 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
2820 /* now that discard is done we can proceed with any sync */
2821 clear_bit(STRIPE_DISCARD
, &sh
->state
);
2823 * SCSI discard will change some bio fields and the stripe has
2824 * no updated data, so remove it from hash list and the stripe
2825 * will be reinitialized
2827 spin_lock_irq(&conf
->device_lock
);
2829 spin_unlock_irq(&conf
->device_lock
);
2830 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
2831 set_bit(STRIPE_HANDLE
, &sh
->state
);
2835 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2836 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2837 md_wakeup_thread(conf
->mddev
->thread
);
2840 static void handle_stripe_dirtying(struct r5conf
*conf
,
2841 struct stripe_head
*sh
,
2842 struct stripe_head_state
*s
,
2845 int rmw
= 0, rcw
= 0, i
;
2846 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
2848 /* RAID6 requires 'rcw' in current implementation.
2849 * Otherwise, check whether resync is now happening or should start.
2850 * If yes, then the array is dirty (after unclean shutdown or
2851 * initial creation), so parity in some stripes might be inconsistent.
2852 * In this case, we need to always do reconstruct-write, to ensure
2853 * that in case of drive failure or read-error correction, we
2854 * generate correct data from the parity.
2856 if (conf
->max_degraded
== 2 ||
2857 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
2859 /* Calculate the real rcw later - for now make it
2860 * look like rcw is cheaper
2863 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2864 conf
->max_degraded
, (unsigned long long)recovery_cp
,
2865 (unsigned long long)sh
->sector
);
2866 } else for (i
= disks
; i
--; ) {
2867 /* would I have to read this buffer for read_modify_write */
2868 struct r5dev
*dev
= &sh
->dev
[i
];
2869 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2870 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2871 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2872 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2873 if (test_bit(R5_Insync
, &dev
->flags
))
2876 rmw
+= 2*disks
; /* cannot read it */
2878 /* Would I have to read this buffer for reconstruct_write */
2879 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2880 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2881 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2882 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2883 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2888 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2889 (unsigned long long)sh
->sector
, rmw
, rcw
);
2890 set_bit(STRIPE_HANDLE
, &sh
->state
);
2891 if (rmw
< rcw
&& rmw
> 0) {
2892 /* prefer read-modify-write, but need to get some data */
2893 if (conf
->mddev
->queue
)
2894 blk_add_trace_msg(conf
->mddev
->queue
,
2895 "raid5 rmw %llu %d",
2896 (unsigned long long)sh
->sector
, rmw
);
2897 for (i
= disks
; i
--; ) {
2898 struct r5dev
*dev
= &sh
->dev
[i
];
2899 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2900 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2901 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2902 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2903 test_bit(R5_Insync
, &dev
->flags
)) {
2905 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2906 pr_debug("Read_old block "
2907 "%d for r-m-w\n", i
);
2908 set_bit(R5_LOCKED
, &dev
->flags
);
2909 set_bit(R5_Wantread
, &dev
->flags
);
2912 set_bit(STRIPE_DELAYED
, &sh
->state
);
2913 set_bit(STRIPE_HANDLE
, &sh
->state
);
2918 if (rcw
<= rmw
&& rcw
> 0) {
2919 /* want reconstruct write, but need to get some data */
2922 for (i
= disks
; i
--; ) {
2923 struct r5dev
*dev
= &sh
->dev
[i
];
2924 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2925 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
2926 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2927 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2928 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2930 if (!test_bit(R5_Insync
, &dev
->flags
))
2931 continue; /* it's a failed drive */
2933 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2934 pr_debug("Read_old block "
2935 "%d for Reconstruct\n", i
);
2936 set_bit(R5_LOCKED
, &dev
->flags
);
2937 set_bit(R5_Wantread
, &dev
->flags
);
2941 set_bit(STRIPE_DELAYED
, &sh
->state
);
2942 set_bit(STRIPE_HANDLE
, &sh
->state
);
2946 if (rcw
&& conf
->mddev
->queue
)
2947 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
2948 (unsigned long long)sh
->sector
,
2949 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
2951 /* now if nothing is locked, and if we have enough data,
2952 * we can start a write request
2954 /* since handle_stripe can be called at any time we need to handle the
2955 * case where a compute block operation has been submitted and then a
2956 * subsequent call wants to start a write request. raid_run_ops only
2957 * handles the case where compute block and reconstruct are requested
2958 * simultaneously. If this is not the case then new writes need to be
2959 * held off until the compute completes.
2961 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2962 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2963 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2964 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2967 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
2968 struct stripe_head_state
*s
, int disks
)
2970 struct r5dev
*dev
= NULL
;
2972 set_bit(STRIPE_HANDLE
, &sh
->state
);
2974 switch (sh
->check_state
) {
2975 case check_state_idle
:
2976 /* start a new check operation if there are no failures */
2977 if (s
->failed
== 0) {
2978 BUG_ON(s
->uptodate
!= disks
);
2979 sh
->check_state
= check_state_run
;
2980 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2981 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2985 dev
= &sh
->dev
[s
->failed_num
[0]];
2987 case check_state_compute_result
:
2988 sh
->check_state
= check_state_idle
;
2990 dev
= &sh
->dev
[sh
->pd_idx
];
2992 /* check that a write has not made the stripe insync */
2993 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2996 /* either failed parity check, or recovery is happening */
2997 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2998 BUG_ON(s
->uptodate
!= disks
);
3000 set_bit(R5_LOCKED
, &dev
->flags
);
3002 set_bit(R5_Wantwrite
, &dev
->flags
);
3004 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3005 set_bit(STRIPE_INSYNC
, &sh
->state
);
3007 case check_state_run
:
3008 break; /* we will be called again upon completion */
3009 case check_state_check_result
:
3010 sh
->check_state
= check_state_idle
;
3012 /* if a failure occurred during the check operation, leave
3013 * STRIPE_INSYNC not set and let the stripe be handled again
3018 /* handle a successful check operation, if parity is correct
3019 * we are done. Otherwise update the mismatch count and repair
3020 * parity if !MD_RECOVERY_CHECK
3022 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3023 /* parity is correct (on disc,
3024 * not in buffer any more)
3026 set_bit(STRIPE_INSYNC
, &sh
->state
);
3028 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3029 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3030 /* don't try to repair!! */
3031 set_bit(STRIPE_INSYNC
, &sh
->state
);
3033 sh
->check_state
= check_state_compute_run
;
3034 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3035 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3036 set_bit(R5_Wantcompute
,
3037 &sh
->dev
[sh
->pd_idx
].flags
);
3038 sh
->ops
.target
= sh
->pd_idx
;
3039 sh
->ops
.target2
= -1;
3044 case check_state_compute_run
:
3047 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3048 __func__
, sh
->check_state
,
3049 (unsigned long long) sh
->sector
);
3055 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3056 struct stripe_head_state
*s
,
3059 int pd_idx
= sh
->pd_idx
;
3060 int qd_idx
= sh
->qd_idx
;
3063 set_bit(STRIPE_HANDLE
, &sh
->state
);
3065 BUG_ON(s
->failed
> 2);
3067 /* Want to check and possibly repair P and Q.
3068 * However there could be one 'failed' device, in which
3069 * case we can only check one of them, possibly using the
3070 * other to generate missing data
3073 switch (sh
->check_state
) {
3074 case check_state_idle
:
3075 /* start a new check operation if there are < 2 failures */
3076 if (s
->failed
== s
->q_failed
) {
3077 /* The only possible failed device holds Q, so it
3078 * makes sense to check P (If anything else were failed,
3079 * we would have used P to recreate it).
3081 sh
->check_state
= check_state_run
;
3083 if (!s
->q_failed
&& s
->failed
< 2) {
3084 /* Q is not failed, and we didn't use it to generate
3085 * anything, so it makes sense to check it
3087 if (sh
->check_state
== check_state_run
)
3088 sh
->check_state
= check_state_run_pq
;
3090 sh
->check_state
= check_state_run_q
;
3093 /* discard potentially stale zero_sum_result */
3094 sh
->ops
.zero_sum_result
= 0;
3096 if (sh
->check_state
== check_state_run
) {
3097 /* async_xor_zero_sum destroys the contents of P */
3098 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3101 if (sh
->check_state
>= check_state_run
&&
3102 sh
->check_state
<= check_state_run_pq
) {
3103 /* async_syndrome_zero_sum preserves P and Q, so
3104 * no need to mark them !uptodate here
3106 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3110 /* we have 2-disk failure */
3111 BUG_ON(s
->failed
!= 2);
3113 case check_state_compute_result
:
3114 sh
->check_state
= check_state_idle
;
3116 /* check that a write has not made the stripe insync */
3117 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3120 /* now write out any block on a failed drive,
3121 * or P or Q if they were recomputed
3123 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3124 if (s
->failed
== 2) {
3125 dev
= &sh
->dev
[s
->failed_num
[1]];
3127 set_bit(R5_LOCKED
, &dev
->flags
);
3128 set_bit(R5_Wantwrite
, &dev
->flags
);
3130 if (s
->failed
>= 1) {
3131 dev
= &sh
->dev
[s
->failed_num
[0]];
3133 set_bit(R5_LOCKED
, &dev
->flags
);
3134 set_bit(R5_Wantwrite
, &dev
->flags
);
3136 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3137 dev
= &sh
->dev
[pd_idx
];
3139 set_bit(R5_LOCKED
, &dev
->flags
);
3140 set_bit(R5_Wantwrite
, &dev
->flags
);
3142 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3143 dev
= &sh
->dev
[qd_idx
];
3145 set_bit(R5_LOCKED
, &dev
->flags
);
3146 set_bit(R5_Wantwrite
, &dev
->flags
);
3148 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3150 set_bit(STRIPE_INSYNC
, &sh
->state
);
3152 case check_state_run
:
3153 case check_state_run_q
:
3154 case check_state_run_pq
:
3155 break; /* we will be called again upon completion */
3156 case check_state_check_result
:
3157 sh
->check_state
= check_state_idle
;
3159 /* handle a successful check operation, if parity is correct
3160 * we are done. Otherwise update the mismatch count and repair
3161 * parity if !MD_RECOVERY_CHECK
3163 if (sh
->ops
.zero_sum_result
== 0) {
3164 /* both parities are correct */
3166 set_bit(STRIPE_INSYNC
, &sh
->state
);
3168 /* in contrast to the raid5 case we can validate
3169 * parity, but still have a failure to write
3172 sh
->check_state
= check_state_compute_result
;
3173 /* Returning at this point means that we may go
3174 * off and bring p and/or q uptodate again so
3175 * we make sure to check zero_sum_result again
3176 * to verify if p or q need writeback
3180 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3181 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3182 /* don't try to repair!! */
3183 set_bit(STRIPE_INSYNC
, &sh
->state
);
3185 int *target
= &sh
->ops
.target
;
3187 sh
->ops
.target
= -1;
3188 sh
->ops
.target2
= -1;
3189 sh
->check_state
= check_state_compute_run
;
3190 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3191 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3192 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3193 set_bit(R5_Wantcompute
,
3194 &sh
->dev
[pd_idx
].flags
);
3196 target
= &sh
->ops
.target2
;
3199 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3200 set_bit(R5_Wantcompute
,
3201 &sh
->dev
[qd_idx
].flags
);
3208 case check_state_compute_run
:
3211 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3212 __func__
, sh
->check_state
,
3213 (unsigned long long) sh
->sector
);
3218 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3222 /* We have read all the blocks in this stripe and now we need to
3223 * copy some of them into a target stripe for expand.
3225 struct dma_async_tx_descriptor
*tx
= NULL
;
3226 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3227 for (i
= 0; i
< sh
->disks
; i
++)
3228 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
3230 struct stripe_head
*sh2
;
3231 struct async_submit_ctl submit
;
3233 sector_t bn
= compute_blocknr(sh
, i
, 1);
3234 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
3236 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
3238 /* so far only the early blocks of this stripe
3239 * have been requested. When later blocks
3240 * get requested, we will try again
3243 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
3244 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
3245 /* must have already done this block */
3246 release_stripe(sh2
);
3250 /* place all the copies on one channel */
3251 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
3252 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
3253 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
3256 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
3257 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
3258 for (j
= 0; j
< conf
->raid_disks
; j
++)
3259 if (j
!= sh2
->pd_idx
&&
3261 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
3263 if (j
== conf
->raid_disks
) {
3264 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
3265 set_bit(STRIPE_HANDLE
, &sh2
->state
);
3267 release_stripe(sh2
);
3270 /* done submitting copies, wait for them to complete */
3271 async_tx_quiesce(&tx
);
3275 * handle_stripe - do things to a stripe.
3277 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3278 * state of various bits to see what needs to be done.
3280 * return some read requests which now have data
3281 * return some write requests which are safely on storage
3282 * schedule a read on some buffers
3283 * schedule a write of some buffers
3284 * return confirmation of parity correctness
3288 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
3290 struct r5conf
*conf
= sh
->raid_conf
;
3291 int disks
= sh
->disks
;
3294 int do_recovery
= 0;
3296 memset(s
, 0, sizeof(*s
));
3298 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3299 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3300 s
->failed_num
[0] = -1;
3301 s
->failed_num
[1] = -1;
3303 /* Now to look around and see what can be done */
3305 for (i
=disks
; i
--; ) {
3306 struct md_rdev
*rdev
;
3313 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3315 dev
->toread
, dev
->towrite
, dev
->written
);
3316 /* maybe we can reply to a read
3318 * new wantfill requests are only permitted while
3319 * ops_complete_biofill is guaranteed to be inactive
3321 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3322 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3323 set_bit(R5_Wantfill
, &dev
->flags
);
3325 /* now count some things */
3326 if (test_bit(R5_LOCKED
, &dev
->flags
))
3328 if (test_bit(R5_UPTODATE
, &dev
->flags
))
3330 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3332 BUG_ON(s
->compute
> 2);
3335 if (test_bit(R5_Wantfill
, &dev
->flags
))
3337 else if (dev
->toread
)
3341 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3346 /* Prefer to use the replacement for reads, but only
3347 * if it is recovered enough and has no bad blocks.
3349 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3350 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
3351 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
3352 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3353 &first_bad
, &bad_sectors
))
3354 set_bit(R5_ReadRepl
, &dev
->flags
);
3357 set_bit(R5_NeedReplace
, &dev
->flags
);
3358 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3359 clear_bit(R5_ReadRepl
, &dev
->flags
);
3361 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3364 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3365 &first_bad
, &bad_sectors
);
3366 if (s
->blocked_rdev
== NULL
3367 && (test_bit(Blocked
, &rdev
->flags
)
3370 set_bit(BlockedBadBlocks
,
3372 s
->blocked_rdev
= rdev
;
3373 atomic_inc(&rdev
->nr_pending
);
3376 clear_bit(R5_Insync
, &dev
->flags
);
3380 /* also not in-sync */
3381 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
3382 test_bit(R5_UPTODATE
, &dev
->flags
)) {
3383 /* treat as in-sync, but with a read error
3384 * which we can now try to correct
3386 set_bit(R5_Insync
, &dev
->flags
);
3387 set_bit(R5_ReadError
, &dev
->flags
);
3389 } else if (test_bit(In_sync
, &rdev
->flags
))
3390 set_bit(R5_Insync
, &dev
->flags
);
3391 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3392 /* in sync if before recovery_offset */
3393 set_bit(R5_Insync
, &dev
->flags
);
3394 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
3395 test_bit(R5_Expanded
, &dev
->flags
))
3396 /* If we've reshaped into here, we assume it is Insync.
3397 * We will shortly update recovery_offset to make
3400 set_bit(R5_Insync
, &dev
->flags
);
3402 if (test_bit(R5_WriteError
, &dev
->flags
)) {
3403 /* This flag does not apply to '.replacement'
3404 * only to .rdev, so make sure to check that*/
3405 struct md_rdev
*rdev2
= rcu_dereference(
3406 conf
->disks
[i
].rdev
);
3408 clear_bit(R5_Insync
, &dev
->flags
);
3409 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3410 s
->handle_bad_blocks
= 1;
3411 atomic_inc(&rdev2
->nr_pending
);
3413 clear_bit(R5_WriteError
, &dev
->flags
);
3415 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
3416 /* This flag does not apply to '.replacement'
3417 * only to .rdev, so make sure to check that*/
3418 struct md_rdev
*rdev2
= rcu_dereference(
3419 conf
->disks
[i
].rdev
);
3420 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3421 s
->handle_bad_blocks
= 1;
3422 atomic_inc(&rdev2
->nr_pending
);
3424 clear_bit(R5_MadeGood
, &dev
->flags
);
3426 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
3427 struct md_rdev
*rdev2
= rcu_dereference(
3428 conf
->disks
[i
].replacement
);
3429 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3430 s
->handle_bad_blocks
= 1;
3431 atomic_inc(&rdev2
->nr_pending
);
3433 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
3435 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3436 /* The ReadError flag will just be confusing now */
3437 clear_bit(R5_ReadError
, &dev
->flags
);
3438 clear_bit(R5_ReWrite
, &dev
->flags
);
3440 if (test_bit(R5_ReadError
, &dev
->flags
))
3441 clear_bit(R5_Insync
, &dev
->flags
);
3442 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3444 s
->failed_num
[s
->failed
] = i
;
3446 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
3450 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
3451 /* If there is a failed device being replaced,
3452 * we must be recovering.
3453 * else if we are after recovery_cp, we must be syncing
3454 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3455 * else we can only be replacing
3456 * sync and recovery both need to read all devices, and so
3457 * use the same flag.
3460 sh
->sector
>= conf
->mddev
->recovery_cp
||
3461 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
3469 static void handle_stripe(struct stripe_head
*sh
)
3471 struct stripe_head_state s
;
3472 struct r5conf
*conf
= sh
->raid_conf
;
3475 int disks
= sh
->disks
;
3476 struct r5dev
*pdev
, *qdev
;
3478 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3479 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
3480 /* already being handled, ensure it gets handled
3481 * again when current action finishes */
3482 set_bit(STRIPE_HANDLE
, &sh
->state
);
3486 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3487 spin_lock(&sh
->stripe_lock
);
3488 /* Cannot process 'sync' concurrently with 'discard' */
3489 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
3490 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3491 set_bit(STRIPE_SYNCING
, &sh
->state
);
3492 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3493 clear_bit(STRIPE_REPLACED
, &sh
->state
);
3495 spin_unlock(&sh
->stripe_lock
);
3497 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3499 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3500 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3501 (unsigned long long)sh
->sector
, sh
->state
,
3502 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
3503 sh
->check_state
, sh
->reconstruct_state
);
3505 analyse_stripe(sh
, &s
);
3507 if (s
.handle_bad_blocks
) {
3508 set_bit(STRIPE_HANDLE
, &sh
->state
);
3512 if (unlikely(s
.blocked_rdev
)) {
3513 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3514 s
.replacing
|| s
.to_write
|| s
.written
) {
3515 set_bit(STRIPE_HANDLE
, &sh
->state
);
3518 /* There is nothing for the blocked_rdev to block */
3519 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
3520 s
.blocked_rdev
= NULL
;
3523 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3524 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3525 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3528 pr_debug("locked=%d uptodate=%d to_read=%d"
3529 " to_write=%d failed=%d failed_num=%d,%d\n",
3530 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3531 s
.failed_num
[0], s
.failed_num
[1]);
3532 /* check if the array has lost more than max_degraded devices and,
3533 * if so, some requests might need to be failed.
3535 if (s
.failed
> conf
->max_degraded
) {
3536 sh
->check_state
= 0;
3537 sh
->reconstruct_state
= 0;
3538 if (s
.to_read
+s
.to_write
+s
.written
)
3539 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
3540 if (s
.syncing
+ s
.replacing
)
3541 handle_failed_sync(conf
, sh
, &s
);
3544 /* Now we check to see if any write operations have recently
3548 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3550 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3551 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3552 sh
->reconstruct_state
= reconstruct_state_idle
;
3554 /* All the 'written' buffers and the parity block are ready to
3555 * be written back to disk
3557 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
3558 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
3559 BUG_ON(sh
->qd_idx
>= 0 &&
3560 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
3561 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
3562 for (i
= disks
; i
--; ) {
3563 struct r5dev
*dev
= &sh
->dev
[i
];
3564 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3565 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3567 pr_debug("Writing block %d\n", i
);
3568 set_bit(R5_Wantwrite
, &dev
->flags
);
3573 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3574 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3576 set_bit(STRIPE_INSYNC
, &sh
->state
);
3579 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3580 s
.dec_preread_active
= 1;
3584 * might be able to return some write requests if the parity blocks
3585 * are safe, or on a failed drive
3587 pdev
= &sh
->dev
[sh
->pd_idx
];
3588 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
3589 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
3590 qdev
= &sh
->dev
[sh
->qd_idx
];
3591 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
3592 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
3596 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3597 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3598 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
3599 test_bit(R5_Discard
, &pdev
->flags
))))) &&
3600 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3601 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3602 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
3603 test_bit(R5_Discard
, &qdev
->flags
))))))
3604 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
3606 /* Now we might consider reading some blocks, either to check/generate
3607 * parity, or to satisfy requests
3608 * or to load a block that is being partially written.
3610 if (s
.to_read
|| s
.non_overwrite
3611 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
3612 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
3615 handle_stripe_fill(sh
, &s
, disks
);
3617 /* Now to consider new write requests and what else, if anything
3618 * should be read. We do not handle new writes when:
3619 * 1/ A 'write' operation (copy+xor) is already in flight.
3620 * 2/ A 'check' operation is in flight, as it may clobber the parity
3623 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3624 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
3626 /* maybe we need to check and possibly fix the parity for this stripe
3627 * Any reads will already have been scheduled, so we just see if enough
3628 * data is available. The parity check is held off while parity
3629 * dependent operations are in flight.
3631 if (sh
->check_state
||
3632 (s
.syncing
&& s
.locked
== 0 &&
3633 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3634 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
3635 if (conf
->level
== 6)
3636 handle_parity_checks6(conf
, sh
, &s
, disks
);
3638 handle_parity_checks5(conf
, sh
, &s
, disks
);
3641 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
3642 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
3643 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
3644 /* Write out to replacement devices where possible */
3645 for (i
= 0; i
< conf
->raid_disks
; i
++)
3646 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
3647 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3648 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
3649 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3653 set_bit(STRIPE_INSYNC
, &sh
->state
);
3654 set_bit(STRIPE_REPLACED
, &sh
->state
);
3656 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
3657 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3658 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3659 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3660 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3661 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3662 wake_up(&conf
->wait_for_overlap
);
3665 /* If the failed drives are just a ReadError, then we might need
3666 * to progress the repair/check process
3668 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
3669 for (i
= 0; i
< s
.failed
; i
++) {
3670 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
3671 if (test_bit(R5_ReadError
, &dev
->flags
)
3672 && !test_bit(R5_LOCKED
, &dev
->flags
)
3673 && test_bit(R5_UPTODATE
, &dev
->flags
)
3675 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3676 set_bit(R5_Wantwrite
, &dev
->flags
);
3677 set_bit(R5_ReWrite
, &dev
->flags
);
3678 set_bit(R5_LOCKED
, &dev
->flags
);
3681 /* let's read it back */
3682 set_bit(R5_Wantread
, &dev
->flags
);
3683 set_bit(R5_LOCKED
, &dev
->flags
);
3690 /* Finish reconstruct operations initiated by the expansion process */
3691 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3692 struct stripe_head
*sh_src
3693 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3694 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
3695 /* sh cannot be written until sh_src has been read.
3696 * so arrange for sh to be delayed a little
3698 set_bit(STRIPE_DELAYED
, &sh
->state
);
3699 set_bit(STRIPE_HANDLE
, &sh
->state
);
3700 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3702 atomic_inc(&conf
->preread_active_stripes
);
3703 release_stripe(sh_src
);
3707 release_stripe(sh_src
);
3709 sh
->reconstruct_state
= reconstruct_state_idle
;
3710 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3711 for (i
= conf
->raid_disks
; i
--; ) {
3712 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3713 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3718 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3719 !sh
->reconstruct_state
) {
3720 /* Need to write out all blocks after computing parity */
3721 sh
->disks
= conf
->raid_disks
;
3722 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3723 schedule_reconstruction(sh
, &s
, 1, 1);
3724 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3725 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3726 atomic_dec(&conf
->reshape_stripes
);
3727 wake_up(&conf
->wait_for_overlap
);
3728 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3731 if (s
.expanding
&& s
.locked
== 0 &&
3732 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3733 handle_stripe_expansion(conf
, sh
);
3736 /* wait for this device to become unblocked */
3737 if (unlikely(s
.blocked_rdev
)) {
3738 if (conf
->mddev
->external
)
3739 md_wait_for_blocked_rdev(s
.blocked_rdev
,
3742 /* Internal metadata will immediately
3743 * be written by raid5d, so we don't
3744 * need to wait here.
3746 rdev_dec_pending(s
.blocked_rdev
,
3750 if (s
.handle_bad_blocks
)
3751 for (i
= disks
; i
--; ) {
3752 struct md_rdev
*rdev
;
3753 struct r5dev
*dev
= &sh
->dev
[i
];
3754 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
3755 /* We own a safe reference to the rdev */
3756 rdev
= conf
->disks
[i
].rdev
;
3757 if (!rdev_set_badblocks(rdev
, sh
->sector
,
3759 md_error(conf
->mddev
, rdev
);
3760 rdev_dec_pending(rdev
, conf
->mddev
);
3762 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
3763 rdev
= conf
->disks
[i
].rdev
;
3764 rdev_clear_badblocks(rdev
, sh
->sector
,
3766 rdev_dec_pending(rdev
, conf
->mddev
);
3768 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
3769 rdev
= conf
->disks
[i
].replacement
;
3771 /* rdev have been moved down */
3772 rdev
= conf
->disks
[i
].rdev
;
3773 rdev_clear_badblocks(rdev
, sh
->sector
,
3775 rdev_dec_pending(rdev
, conf
->mddev
);
3780 raid_run_ops(sh
, s
.ops_request
);
3784 if (s
.dec_preread_active
) {
3785 /* We delay this until after ops_run_io so that if make_request
3786 * is waiting on a flush, it won't continue until the writes
3787 * have actually been submitted.
3789 atomic_dec(&conf
->preread_active_stripes
);
3790 if (atomic_read(&conf
->preread_active_stripes
) <
3792 md_wakeup_thread(conf
->mddev
->thread
);
3795 return_io(s
.return_bi
);
3797 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
3800 static void raid5_activate_delayed(struct r5conf
*conf
)
3802 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3803 while (!list_empty(&conf
->delayed_list
)) {
3804 struct list_head
*l
= conf
->delayed_list
.next
;
3805 struct stripe_head
*sh
;
3806 sh
= list_entry(l
, struct stripe_head
, lru
);
3808 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3809 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3810 atomic_inc(&conf
->preread_active_stripes
);
3811 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3816 static void activate_bit_delay(struct r5conf
*conf
)
3818 /* device_lock is held */
3819 struct list_head head
;
3820 list_add(&head
, &conf
->bitmap_list
);
3821 list_del_init(&conf
->bitmap_list
);
3822 while (!list_empty(&head
)) {
3823 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3824 list_del_init(&sh
->lru
);
3825 atomic_inc(&sh
->count
);
3826 __release_stripe(conf
, sh
);
3830 int md_raid5_congested(struct mddev
*mddev
, int bits
)
3832 struct r5conf
*conf
= mddev
->private;
3834 /* No difference between reads and writes. Just check
3835 * how busy the stripe_cache is
3838 if (conf
->inactive_blocked
)
3842 if (list_empty_careful(&conf
->inactive_list
))
3847 EXPORT_SYMBOL_GPL(md_raid5_congested
);
3849 static int raid5_congested(void *data
, int bits
)
3851 struct mddev
*mddev
= data
;
3853 return mddev_congested(mddev
, bits
) ||
3854 md_raid5_congested(mddev
, bits
);
3857 /* We want read requests to align with chunks where possible,
3858 * but write requests don't need to.
3860 static int raid5_mergeable_bvec(struct request_queue
*q
,
3861 struct bvec_merge_data
*bvm
,
3862 struct bio_vec
*biovec
)
3864 struct mddev
*mddev
= q
->queuedata
;
3865 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3867 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3868 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3870 if ((bvm
->bi_rw
& 1) == WRITE
)
3871 return biovec
->bv_len
; /* always allow writes to be mergeable */
3873 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3874 chunk_sectors
= mddev
->new_chunk_sectors
;
3875 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3876 if (max
< 0) max
= 0;
3877 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3878 return biovec
->bv_len
;
3884 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
3886 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3887 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3888 unsigned int bio_sectors
= bio_sectors(bio
);
3890 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3891 chunk_sectors
= mddev
->new_chunk_sectors
;
3892 return chunk_sectors
>=
3893 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3897 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3898 * later sampled by raid5d.
3900 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
3902 unsigned long flags
;
3904 spin_lock_irqsave(&conf
->device_lock
, flags
);
3906 bi
->bi_next
= conf
->retry_read_aligned_list
;
3907 conf
->retry_read_aligned_list
= bi
;
3909 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3910 md_wakeup_thread(conf
->mddev
->thread
);
3914 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
3918 bi
= conf
->retry_read_aligned
;
3920 conf
->retry_read_aligned
= NULL
;
3923 bi
= conf
->retry_read_aligned_list
;
3925 conf
->retry_read_aligned_list
= bi
->bi_next
;
3928 * this sets the active strip count to 1 and the processed
3929 * strip count to zero (upper 8 bits)
3931 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
3939 * The "raid5_align_endio" should check if the read succeeded and if it
3940 * did, call bio_endio on the original bio (having bio_put the new bio
3942 * If the read failed..
3944 static void raid5_align_endio(struct bio
*bi
, int error
)
3946 struct bio
* raid_bi
= bi
->bi_private
;
3947 struct mddev
*mddev
;
3948 struct r5conf
*conf
;
3949 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3950 struct md_rdev
*rdev
;
3954 rdev
= (void*)raid_bi
->bi_next
;
3955 raid_bi
->bi_next
= NULL
;
3956 mddev
= rdev
->mddev
;
3957 conf
= mddev
->private;
3959 rdev_dec_pending(rdev
, conf
->mddev
);
3961 if (!error
&& uptodate
) {
3962 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
3964 bio_endio(raid_bi
, 0);
3965 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3966 wake_up(&conf
->wait_for_stripe
);
3971 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3973 add_bio_to_retry(raid_bi
, conf
);
3976 static int bio_fits_rdev(struct bio
*bi
)
3978 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3980 if (bio_sectors(bi
) > queue_max_sectors(q
))
3982 blk_recount_segments(q
, bi
);
3983 if (bi
->bi_phys_segments
> queue_max_segments(q
))
3986 if (q
->merge_bvec_fn
)
3987 /* it's too hard to apply the merge_bvec_fn at this stage,
3996 static int chunk_aligned_read(struct mddev
*mddev
, struct bio
* raid_bio
)
3998 struct r5conf
*conf
= mddev
->private;
4000 struct bio
* align_bi
;
4001 struct md_rdev
*rdev
;
4002 sector_t end_sector
;
4004 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4005 pr_debug("chunk_aligned_read : non aligned\n");
4009 * use bio_clone_mddev to make a copy of the bio
4011 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4015 * set bi_end_io to a new function, and set bi_private to the
4018 align_bi
->bi_end_io
= raid5_align_endio
;
4019 align_bi
->bi_private
= raid_bio
;
4023 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
4027 end_sector
= bio_end_sector(align_bi
);
4029 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4030 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4031 rdev
->recovery_offset
< end_sector
) {
4032 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4034 (test_bit(Faulty
, &rdev
->flags
) ||
4035 !(test_bit(In_sync
, &rdev
->flags
) ||
4036 rdev
->recovery_offset
>= end_sector
)))
4043 atomic_inc(&rdev
->nr_pending
);
4045 raid_bio
->bi_next
= (void*)rdev
;
4046 align_bi
->bi_bdev
= rdev
->bdev
;
4047 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
4049 if (!bio_fits_rdev(align_bi
) ||
4050 is_badblock(rdev
, align_bi
->bi_sector
, bio_sectors(align_bi
),
4051 &first_bad
, &bad_sectors
)) {
4052 /* too big in some way, or has a known bad block */
4054 rdev_dec_pending(rdev
, mddev
);
4058 /* No reshape active, so we can trust rdev->data_offset */
4059 align_bi
->bi_sector
+= rdev
->data_offset
;
4061 spin_lock_irq(&conf
->device_lock
);
4062 wait_event_lock_irq(conf
->wait_for_stripe
,
4065 atomic_inc(&conf
->active_aligned_reads
);
4066 spin_unlock_irq(&conf
->device_lock
);
4069 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4070 align_bi
, disk_devt(mddev
->gendisk
),
4071 raid_bio
->bi_sector
);
4072 generic_make_request(align_bi
);
4081 /* __get_priority_stripe - get the next stripe to process
4083 * Full stripe writes are allowed to pass preread active stripes up until
4084 * the bypass_threshold is exceeded. In general the bypass_count
4085 * increments when the handle_list is handled before the hold_list; however, it
4086 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4087 * stripe with in flight i/o. The bypass_count will be reset when the
4088 * head of the hold_list has changed, i.e. the head was promoted to the
4091 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
)
4093 struct stripe_head
*sh
;
4095 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4097 list_empty(&conf
->handle_list
) ? "empty" : "busy",
4098 list_empty(&conf
->hold_list
) ? "empty" : "busy",
4099 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
4101 if (!list_empty(&conf
->handle_list
)) {
4102 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
4104 if (list_empty(&conf
->hold_list
))
4105 conf
->bypass_count
= 0;
4106 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
4107 if (conf
->hold_list
.next
== conf
->last_hold
)
4108 conf
->bypass_count
++;
4110 conf
->last_hold
= conf
->hold_list
.next
;
4111 conf
->bypass_count
-= conf
->bypass_threshold
;
4112 if (conf
->bypass_count
< 0)
4113 conf
->bypass_count
= 0;
4116 } else if (!list_empty(&conf
->hold_list
) &&
4117 ((conf
->bypass_threshold
&&
4118 conf
->bypass_count
> conf
->bypass_threshold
) ||
4119 atomic_read(&conf
->pending_full_writes
) == 0)) {
4120 sh
= list_entry(conf
->hold_list
.next
,
4122 conf
->bypass_count
-= conf
->bypass_threshold
;
4123 if (conf
->bypass_count
< 0)
4124 conf
->bypass_count
= 0;
4128 list_del_init(&sh
->lru
);
4129 atomic_inc(&sh
->count
);
4130 BUG_ON(atomic_read(&sh
->count
) != 1);
4134 struct raid5_plug_cb
{
4135 struct blk_plug_cb cb
;
4136 struct list_head list
;
4139 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
4141 struct raid5_plug_cb
*cb
= container_of(
4142 blk_cb
, struct raid5_plug_cb
, cb
);
4143 struct stripe_head
*sh
;
4144 struct mddev
*mddev
= cb
->cb
.data
;
4145 struct r5conf
*conf
= mddev
->private;
4148 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
4149 spin_lock_irq(&conf
->device_lock
);
4150 while (!list_empty(&cb
->list
)) {
4151 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
4152 list_del_init(&sh
->lru
);
4154 * avoid race release_stripe_plug() sees
4155 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4156 * is still in our list
4158 smp_mb__before_clear_bit();
4159 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
4160 __release_stripe(conf
, sh
);
4163 spin_unlock_irq(&conf
->device_lock
);
4166 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
4170 static void release_stripe_plug(struct mddev
*mddev
,
4171 struct stripe_head
*sh
)
4173 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
4174 raid5_unplug
, mddev
,
4175 sizeof(struct raid5_plug_cb
));
4176 struct raid5_plug_cb
*cb
;
4183 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
4185 if (cb
->list
.next
== NULL
)
4186 INIT_LIST_HEAD(&cb
->list
);
4188 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
4189 list_add_tail(&sh
->lru
, &cb
->list
);
4194 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
4196 struct r5conf
*conf
= mddev
->private;
4197 sector_t logical_sector
, last_sector
;
4198 struct stripe_head
*sh
;
4202 if (mddev
->reshape_position
!= MaxSector
)
4203 /* Skip discard while reshape is happening */
4206 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4207 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
4210 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
4212 stripe_sectors
= conf
->chunk_sectors
*
4213 (conf
->raid_disks
- conf
->max_degraded
);
4214 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
4216 sector_div(last_sector
, stripe_sectors
);
4218 logical_sector
*= conf
->chunk_sectors
;
4219 last_sector
*= conf
->chunk_sectors
;
4221 for (; logical_sector
< last_sector
;
4222 logical_sector
+= STRIPE_SECTORS
) {
4226 sh
= get_active_stripe(conf
, logical_sector
, 0, 0, 0);
4227 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
4228 TASK_UNINTERRUPTIBLE
);
4229 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
4230 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4235 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
4236 spin_lock_irq(&sh
->stripe_lock
);
4237 for (d
= 0; d
< conf
->raid_disks
; d
++) {
4238 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
4240 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
4241 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
4242 spin_unlock_irq(&sh
->stripe_lock
);
4248 set_bit(STRIPE_DISCARD
, &sh
->state
);
4249 finish_wait(&conf
->wait_for_overlap
, &w
);
4250 for (d
= 0; d
< conf
->raid_disks
; d
++) {
4251 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
4253 sh
->dev
[d
].towrite
= bi
;
4254 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
4255 raid5_inc_bi_active_stripes(bi
);
4257 spin_unlock_irq(&sh
->stripe_lock
);
4258 if (conf
->mddev
->bitmap
) {
4260 d
< conf
->raid_disks
- conf
->max_degraded
;
4262 bitmap_startwrite(mddev
->bitmap
,
4266 sh
->bm_seq
= conf
->seq_flush
+ 1;
4267 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
4270 set_bit(STRIPE_HANDLE
, &sh
->state
);
4271 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4272 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4273 atomic_inc(&conf
->preread_active_stripes
);
4274 release_stripe_plug(mddev
, sh
);
4277 remaining
= raid5_dec_bi_active_stripes(bi
);
4278 if (remaining
== 0) {
4279 md_write_end(mddev
);
4284 static void make_request(struct mddev
*mddev
, struct bio
* bi
)
4286 struct r5conf
*conf
= mddev
->private;
4288 sector_t new_sector
;
4289 sector_t logical_sector
, last_sector
;
4290 struct stripe_head
*sh
;
4291 const int rw
= bio_data_dir(bi
);
4294 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
4295 md_flush_request(mddev
, bi
);
4299 md_write_start(mddev
, bi
);
4302 mddev
->reshape_position
== MaxSector
&&
4303 chunk_aligned_read(mddev
,bi
))
4306 if (unlikely(bi
->bi_rw
& REQ_DISCARD
)) {
4307 make_discard_request(mddev
, bi
);
4311 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4312 last_sector
= bio_end_sector(bi
);
4314 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
4316 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
4322 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
4323 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
4324 /* spinlock is needed as reshape_progress may be
4325 * 64bit on a 32bit platform, and so it might be
4326 * possible to see a half-updated value
4327 * Of course reshape_progress could change after
4328 * the lock is dropped, so once we get a reference
4329 * to the stripe that we think it is, we will have
4332 spin_lock_irq(&conf
->device_lock
);
4333 if (mddev
->reshape_backwards
4334 ? logical_sector
< conf
->reshape_progress
4335 : logical_sector
>= conf
->reshape_progress
) {
4338 if (mddev
->reshape_backwards
4339 ? logical_sector
< conf
->reshape_safe
4340 : logical_sector
>= conf
->reshape_safe
) {
4341 spin_unlock_irq(&conf
->device_lock
);
4346 spin_unlock_irq(&conf
->device_lock
);
4349 new_sector
= raid5_compute_sector(conf
, logical_sector
,
4352 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4353 (unsigned long long)new_sector
,
4354 (unsigned long long)logical_sector
);
4356 sh
= get_active_stripe(conf
, new_sector
, previous
,
4357 (bi
->bi_rw
&RWA_MASK
), 0);
4359 if (unlikely(previous
)) {
4360 /* expansion might have moved on while waiting for a
4361 * stripe, so we must do the range check again.
4362 * Expansion could still move past after this
4363 * test, but as we are holding a reference to
4364 * 'sh', we know that if that happens,
4365 * STRIPE_EXPANDING will get set and the expansion
4366 * won't proceed until we finish with the stripe.
4369 spin_lock_irq(&conf
->device_lock
);
4370 if (mddev
->reshape_backwards
4371 ? logical_sector
>= conf
->reshape_progress
4372 : logical_sector
< conf
->reshape_progress
)
4373 /* mismatch, need to try again */
4375 spin_unlock_irq(&conf
->device_lock
);
4384 logical_sector
>= mddev
->suspend_lo
&&
4385 logical_sector
< mddev
->suspend_hi
) {
4387 /* As the suspend_* range is controlled by
4388 * userspace, we want an interruptible
4391 flush_signals(current
);
4392 prepare_to_wait(&conf
->wait_for_overlap
,
4393 &w
, TASK_INTERRUPTIBLE
);
4394 if (logical_sector
>= mddev
->suspend_lo
&&
4395 logical_sector
< mddev
->suspend_hi
)
4400 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
4401 !add_stripe_bio(sh
, bi
, dd_idx
, rw
)) {
4402 /* Stripe is busy expanding or
4403 * add failed due to overlap. Flush everything
4406 md_wakeup_thread(mddev
->thread
);
4411 finish_wait(&conf
->wait_for_overlap
, &w
);
4412 set_bit(STRIPE_HANDLE
, &sh
->state
);
4413 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4414 if ((bi
->bi_rw
& REQ_SYNC
) &&
4415 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4416 atomic_inc(&conf
->preread_active_stripes
);
4417 release_stripe_plug(mddev
, sh
);
4419 /* cannot get stripe for read-ahead, just give-up */
4420 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4421 finish_wait(&conf
->wait_for_overlap
, &w
);
4426 remaining
= raid5_dec_bi_active_stripes(bi
);
4427 if (remaining
== 0) {
4430 md_write_end(mddev
);
4432 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
4438 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
4440 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
4442 /* reshaping is quite different to recovery/resync so it is
4443 * handled quite separately ... here.
4445 * On each call to sync_request, we gather one chunk worth of
4446 * destination stripes and flag them as expanding.
4447 * Then we find all the source stripes and request reads.
4448 * As the reads complete, handle_stripe will copy the data
4449 * into the destination stripe and release that stripe.
4451 struct r5conf
*conf
= mddev
->private;
4452 struct stripe_head
*sh
;
4453 sector_t first_sector
, last_sector
;
4454 int raid_disks
= conf
->previous_raid_disks
;
4455 int data_disks
= raid_disks
- conf
->max_degraded
;
4456 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
4459 sector_t writepos
, readpos
, safepos
;
4460 sector_t stripe_addr
;
4461 int reshape_sectors
;
4462 struct list_head stripes
;
4464 if (sector_nr
== 0) {
4465 /* If restarting in the middle, skip the initial sectors */
4466 if (mddev
->reshape_backwards
&&
4467 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4468 sector_nr
= raid5_size(mddev
, 0, 0)
4469 - conf
->reshape_progress
;
4470 } else if (!mddev
->reshape_backwards
&&
4471 conf
->reshape_progress
> 0)
4472 sector_nr
= conf
->reshape_progress
;
4473 sector_div(sector_nr
, new_data_disks
);
4475 mddev
->curr_resync_completed
= sector_nr
;
4476 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4482 /* We need to process a full chunk at a time.
4483 * If old and new chunk sizes differ, we need to process the
4486 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4487 reshape_sectors
= mddev
->new_chunk_sectors
;
4489 reshape_sectors
= mddev
->chunk_sectors
;
4491 /* We update the metadata at least every 10 seconds, or when
4492 * the data about to be copied would over-write the source of
4493 * the data at the front of the range. i.e. one new_stripe
4494 * along from reshape_progress new_maps to after where
4495 * reshape_safe old_maps to
4497 writepos
= conf
->reshape_progress
;
4498 sector_div(writepos
, new_data_disks
);
4499 readpos
= conf
->reshape_progress
;
4500 sector_div(readpos
, data_disks
);
4501 safepos
= conf
->reshape_safe
;
4502 sector_div(safepos
, data_disks
);
4503 if (mddev
->reshape_backwards
) {
4504 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4505 readpos
+= reshape_sectors
;
4506 safepos
+= reshape_sectors
;
4508 writepos
+= reshape_sectors
;
4509 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4510 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4513 /* Having calculated the 'writepos' possibly use it
4514 * to set 'stripe_addr' which is where we will write to.
4516 if (mddev
->reshape_backwards
) {
4517 BUG_ON(conf
->reshape_progress
== 0);
4518 stripe_addr
= writepos
;
4519 BUG_ON((mddev
->dev_sectors
&
4520 ~((sector_t
)reshape_sectors
- 1))
4521 - reshape_sectors
- stripe_addr
4524 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4525 stripe_addr
= sector_nr
;
4528 /* 'writepos' is the most advanced device address we might write.
4529 * 'readpos' is the least advanced device address we might read.
4530 * 'safepos' is the least address recorded in the metadata as having
4532 * If there is a min_offset_diff, these are adjusted either by
4533 * increasing the safepos/readpos if diff is negative, or
4534 * increasing writepos if diff is positive.
4535 * If 'readpos' is then behind 'writepos', there is no way that we can
4536 * ensure safety in the face of a crash - that must be done by userspace
4537 * making a backup of the data. So in that case there is no particular
4538 * rush to update metadata.
4539 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4540 * update the metadata to advance 'safepos' to match 'readpos' so that
4541 * we can be safe in the event of a crash.
4542 * So we insist on updating metadata if safepos is behind writepos and
4543 * readpos is beyond writepos.
4544 * In any case, update the metadata every 10 seconds.
4545 * Maybe that number should be configurable, but I'm not sure it is
4546 * worth it.... maybe it could be a multiple of safemode_delay???
4548 if (conf
->min_offset_diff
< 0) {
4549 safepos
+= -conf
->min_offset_diff
;
4550 readpos
+= -conf
->min_offset_diff
;
4552 writepos
+= conf
->min_offset_diff
;
4554 if ((mddev
->reshape_backwards
4555 ? (safepos
> writepos
&& readpos
< writepos
)
4556 : (safepos
< writepos
&& readpos
> writepos
)) ||
4557 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4558 /* Cannot proceed until we've updated the superblock... */
4559 wait_event(conf
->wait_for_overlap
,
4560 atomic_read(&conf
->reshape_stripes
)==0);
4561 mddev
->reshape_position
= conf
->reshape_progress
;
4562 mddev
->curr_resync_completed
= sector_nr
;
4563 conf
->reshape_checkpoint
= jiffies
;
4564 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4565 md_wakeup_thread(mddev
->thread
);
4566 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4567 kthread_should_stop());
4568 spin_lock_irq(&conf
->device_lock
);
4569 conf
->reshape_safe
= mddev
->reshape_position
;
4570 spin_unlock_irq(&conf
->device_lock
);
4571 wake_up(&conf
->wait_for_overlap
);
4572 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4575 INIT_LIST_HEAD(&stripes
);
4576 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4578 int skipped_disk
= 0;
4579 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4580 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4581 atomic_inc(&conf
->reshape_stripes
);
4582 /* If any of this stripe is beyond the end of the old
4583 * array, then we need to zero those blocks
4585 for (j
=sh
->disks
; j
--;) {
4587 if (j
== sh
->pd_idx
)
4589 if (conf
->level
== 6 &&
4592 s
= compute_blocknr(sh
, j
, 0);
4593 if (s
< raid5_size(mddev
, 0, 0)) {
4597 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4598 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4599 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4601 if (!skipped_disk
) {
4602 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4603 set_bit(STRIPE_HANDLE
, &sh
->state
);
4605 list_add(&sh
->lru
, &stripes
);
4607 spin_lock_irq(&conf
->device_lock
);
4608 if (mddev
->reshape_backwards
)
4609 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4611 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4612 spin_unlock_irq(&conf
->device_lock
);
4613 /* Ok, those stripe are ready. We can start scheduling
4614 * reads on the source stripes.
4615 * The source stripes are determined by mapping the first and last
4616 * block on the destination stripes.
4619 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4622 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4623 * new_data_disks
- 1),
4625 if (last_sector
>= mddev
->dev_sectors
)
4626 last_sector
= mddev
->dev_sectors
- 1;
4627 while (first_sector
<= last_sector
) {
4628 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4629 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4630 set_bit(STRIPE_HANDLE
, &sh
->state
);
4632 first_sector
+= STRIPE_SECTORS
;
4634 /* Now that the sources are clearly marked, we can release
4635 * the destination stripes
4637 while (!list_empty(&stripes
)) {
4638 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4639 list_del_init(&sh
->lru
);
4642 /* If this takes us to the resync_max point where we have to pause,
4643 * then we need to write out the superblock.
4645 sector_nr
+= reshape_sectors
;
4646 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4647 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4648 /* Cannot proceed until we've updated the superblock... */
4649 wait_event(conf
->wait_for_overlap
,
4650 atomic_read(&conf
->reshape_stripes
) == 0);
4651 mddev
->reshape_position
= conf
->reshape_progress
;
4652 mddev
->curr_resync_completed
= sector_nr
;
4653 conf
->reshape_checkpoint
= jiffies
;
4654 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4655 md_wakeup_thread(mddev
->thread
);
4656 wait_event(mddev
->sb_wait
,
4657 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4658 || kthread_should_stop());
4659 spin_lock_irq(&conf
->device_lock
);
4660 conf
->reshape_safe
= mddev
->reshape_position
;
4661 spin_unlock_irq(&conf
->device_lock
);
4662 wake_up(&conf
->wait_for_overlap
);
4663 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4665 return reshape_sectors
;
4668 /* FIXME go_faster isn't used */
4669 static inline sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4671 struct r5conf
*conf
= mddev
->private;
4672 struct stripe_head
*sh
;
4673 sector_t max_sector
= mddev
->dev_sectors
;
4674 sector_t sync_blocks
;
4675 int still_degraded
= 0;
4678 if (sector_nr
>= max_sector
) {
4679 /* just being told to finish up .. nothing much to do */
4681 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4686 if (mddev
->curr_resync
< max_sector
) /* aborted */
4687 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4689 else /* completed sync */
4691 bitmap_close_sync(mddev
->bitmap
);
4696 /* Allow raid5_quiesce to complete */
4697 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4699 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4700 return reshape_request(mddev
, sector_nr
, skipped
);
4702 /* No need to check resync_max as we never do more than one
4703 * stripe, and as resync_max will always be on a chunk boundary,
4704 * if the check in md_do_sync didn't fire, there is no chance
4705 * of overstepping resync_max here
4708 /* if there is too many failed drives and we are trying
4709 * to resync, then assert that we are finished, because there is
4710 * nothing we can do.
4712 if (mddev
->degraded
>= conf
->max_degraded
&&
4713 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4714 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4718 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4720 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4721 sync_blocks
>= STRIPE_SECTORS
) {
4722 /* we can skip this block, and probably more */
4723 sync_blocks
/= STRIPE_SECTORS
;
4725 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4728 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4730 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4732 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4733 /* make sure we don't swamp the stripe cache if someone else
4734 * is trying to get access
4736 schedule_timeout_uninterruptible(1);
4738 /* Need to check if array will still be degraded after recovery/resync
4739 * We don't need to check the 'failed' flag as when that gets set,
4742 for (i
= 0; i
< conf
->raid_disks
; i
++)
4743 if (conf
->disks
[i
].rdev
== NULL
)
4746 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4748 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
4753 return STRIPE_SECTORS
;
4756 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
4758 /* We may not be able to submit a whole bio at once as there
4759 * may not be enough stripe_heads available.
4760 * We cannot pre-allocate enough stripe_heads as we may need
4761 * more than exist in the cache (if we allow ever large chunks).
4762 * So we do one stripe head at a time and record in
4763 * ->bi_hw_segments how many have been done.
4765 * We *know* that this entire raid_bio is in one chunk, so
4766 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4768 struct stripe_head
*sh
;
4770 sector_t sector
, logical_sector
, last_sector
;
4775 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4776 sector
= raid5_compute_sector(conf
, logical_sector
,
4778 last_sector
= bio_end_sector(raid_bio
);
4780 for (; logical_sector
< last_sector
;
4781 logical_sector
+= STRIPE_SECTORS
,
4782 sector
+= STRIPE_SECTORS
,
4785 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
4786 /* already done this stripe */
4789 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4792 /* failed to get a stripe - must wait */
4793 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
4794 conf
->retry_read_aligned
= raid_bio
;
4798 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4800 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
4801 conf
->retry_read_aligned
= raid_bio
;
4805 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
4810 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
4811 if (remaining
== 0) {
4812 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
4814 bio_endio(raid_bio
, 0);
4816 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4817 wake_up(&conf
->wait_for_stripe
);
4821 #define MAX_STRIPE_BATCH 8
4822 static int handle_active_stripes(struct r5conf
*conf
)
4824 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
4825 int i
, batch_size
= 0;
4827 while (batch_size
< MAX_STRIPE_BATCH
&&
4828 (sh
= __get_priority_stripe(conf
)) != NULL
)
4829 batch
[batch_size
++] = sh
;
4831 if (batch_size
== 0)
4833 spin_unlock_irq(&conf
->device_lock
);
4835 for (i
= 0; i
< batch_size
; i
++)
4836 handle_stripe(batch
[i
]);
4840 spin_lock_irq(&conf
->device_lock
);
4841 for (i
= 0; i
< batch_size
; i
++)
4842 __release_stripe(conf
, batch
[i
]);
4847 * This is our raid5 kernel thread.
4849 * We scan the hash table for stripes which can be handled now.
4850 * During the scan, completed stripes are saved for us by the interrupt
4851 * handler, so that they will not have to wait for our next wakeup.
4853 static void raid5d(struct md_thread
*thread
)
4855 struct mddev
*mddev
= thread
->mddev
;
4856 struct r5conf
*conf
= mddev
->private;
4858 struct blk_plug plug
;
4860 pr_debug("+++ raid5d active\n");
4862 md_check_recovery(mddev
);
4864 blk_start_plug(&plug
);
4866 spin_lock_irq(&conf
->device_lock
);
4872 !list_empty(&conf
->bitmap_list
)) {
4873 /* Now is a good time to flush some bitmap updates */
4875 spin_unlock_irq(&conf
->device_lock
);
4876 bitmap_unplug(mddev
->bitmap
);
4877 spin_lock_irq(&conf
->device_lock
);
4878 conf
->seq_write
= conf
->seq_flush
;
4879 activate_bit_delay(conf
);
4881 raid5_activate_delayed(conf
);
4883 while ((bio
= remove_bio_from_retry(conf
))) {
4885 spin_unlock_irq(&conf
->device_lock
);
4886 ok
= retry_aligned_read(conf
, bio
);
4887 spin_lock_irq(&conf
->device_lock
);
4893 batch_size
= handle_active_stripes(conf
);
4896 handled
+= batch_size
;
4898 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
)) {
4899 spin_unlock_irq(&conf
->device_lock
);
4900 md_check_recovery(mddev
);
4901 spin_lock_irq(&conf
->device_lock
);
4904 pr_debug("%d stripes handled\n", handled
);
4906 spin_unlock_irq(&conf
->device_lock
);
4908 async_tx_issue_pending_all();
4909 blk_finish_plug(&plug
);
4911 pr_debug("--- raid5d inactive\n");
4915 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
4917 struct r5conf
*conf
= mddev
->private;
4919 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4925 raid5_set_cache_size(struct mddev
*mddev
, int size
)
4927 struct r5conf
*conf
= mddev
->private;
4930 if (size
<= 16 || size
> 32768)
4932 while (size
< conf
->max_nr_stripes
) {
4933 if (drop_one_stripe(conf
))
4934 conf
->max_nr_stripes
--;
4938 err
= md_allow_write(mddev
);
4941 while (size
> conf
->max_nr_stripes
) {
4942 if (grow_one_stripe(conf
))
4943 conf
->max_nr_stripes
++;
4948 EXPORT_SYMBOL(raid5_set_cache_size
);
4951 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
4953 struct r5conf
*conf
= mddev
->private;
4957 if (len
>= PAGE_SIZE
)
4962 if (strict_strtoul(page
, 10, &new))
4964 err
= raid5_set_cache_size(mddev
, new);
4970 static struct md_sysfs_entry
4971 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4972 raid5_show_stripe_cache_size
,
4973 raid5_store_stripe_cache_size
);
4976 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
4978 struct r5conf
*conf
= mddev
->private;
4980 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4986 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
4988 struct r5conf
*conf
= mddev
->private;
4990 if (len
>= PAGE_SIZE
)
4995 if (strict_strtoul(page
, 10, &new))
4997 if (new > conf
->max_nr_stripes
)
4999 conf
->bypass_threshold
= new;
5003 static struct md_sysfs_entry
5004 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
5006 raid5_show_preread_threshold
,
5007 raid5_store_preread_threshold
);
5010 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
5012 struct r5conf
*conf
= mddev
->private;
5014 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
5019 static struct md_sysfs_entry
5020 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
5022 static struct attribute
*raid5_attrs
[] = {
5023 &raid5_stripecache_size
.attr
,
5024 &raid5_stripecache_active
.attr
,
5025 &raid5_preread_bypass_threshold
.attr
,
5028 static struct attribute_group raid5_attrs_group
= {
5030 .attrs
= raid5_attrs
,
5034 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
5036 struct r5conf
*conf
= mddev
->private;
5039 sectors
= mddev
->dev_sectors
;
5041 /* size is defined by the smallest of previous and new size */
5042 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
5044 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5045 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
5046 return sectors
* (raid_disks
- conf
->max_degraded
);
5049 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
5051 safe_put_page(percpu
->spare_page
);
5052 kfree(percpu
->scribble
);
5053 percpu
->spare_page
= NULL
;
5054 percpu
->scribble
= NULL
;
5057 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
5059 if (conf
->level
== 6 && !percpu
->spare_page
)
5060 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
5061 if (!percpu
->scribble
)
5062 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
5064 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
5065 free_scratch_buffer(conf
, percpu
);
5072 static void raid5_free_percpu(struct r5conf
*conf
)
5079 #ifdef CONFIG_HOTPLUG_CPU
5080 unregister_cpu_notifier(&conf
->cpu_notify
);
5084 for_each_possible_cpu(cpu
)
5085 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
5088 free_percpu(conf
->percpu
);
5091 static void free_conf(struct r5conf
*conf
)
5093 shrink_stripes(conf
);
5094 raid5_free_percpu(conf
);
5096 kfree(conf
->stripe_hashtbl
);
5100 #ifdef CONFIG_HOTPLUG_CPU
5101 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
5104 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
5105 long cpu
= (long)hcpu
;
5106 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
5109 case CPU_UP_PREPARE
:
5110 case CPU_UP_PREPARE_FROZEN
:
5111 if (alloc_scratch_buffer(conf
, percpu
)) {
5112 pr_err("%s: failed memory allocation for cpu%ld\n",
5114 return notifier_from_errno(-ENOMEM
);
5118 case CPU_DEAD_FROZEN
:
5119 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
5128 static int raid5_alloc_percpu(struct r5conf
*conf
)
5133 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
5137 #ifdef CONFIG_HOTPLUG_CPU
5138 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
5139 conf
->cpu_notify
.priority
= 0;
5140 err
= register_cpu_notifier(&conf
->cpu_notify
);
5146 for_each_present_cpu(cpu
) {
5147 err
= alloc_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
5149 pr_err("%s: failed memory allocation for cpu%ld\n",
5159 static struct r5conf
*setup_conf(struct mddev
*mddev
)
5161 struct r5conf
*conf
;
5162 int raid_disk
, memory
, max_disks
;
5163 struct md_rdev
*rdev
;
5164 struct disk_info
*disk
;
5167 if (mddev
->new_level
!= 5
5168 && mddev
->new_level
!= 4
5169 && mddev
->new_level
!= 6) {
5170 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5171 mdname(mddev
), mddev
->new_level
);
5172 return ERR_PTR(-EIO
);
5174 if ((mddev
->new_level
== 5
5175 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
5176 (mddev
->new_level
== 6
5177 && !algorithm_valid_raid6(mddev
->new_layout
))) {
5178 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
5179 mdname(mddev
), mddev
->new_layout
);
5180 return ERR_PTR(-EIO
);
5182 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
5183 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5184 mdname(mddev
), mddev
->raid_disks
);
5185 return ERR_PTR(-EINVAL
);
5188 if (!mddev
->new_chunk_sectors
||
5189 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
5190 !is_power_of_2(mddev
->new_chunk_sectors
)) {
5191 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
5192 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
5193 return ERR_PTR(-EINVAL
);
5196 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
5199 spin_lock_init(&conf
->device_lock
);
5200 init_waitqueue_head(&conf
->wait_for_stripe
);
5201 init_waitqueue_head(&conf
->wait_for_overlap
);
5202 INIT_LIST_HEAD(&conf
->handle_list
);
5203 INIT_LIST_HEAD(&conf
->hold_list
);
5204 INIT_LIST_HEAD(&conf
->delayed_list
);
5205 INIT_LIST_HEAD(&conf
->bitmap_list
);
5206 INIT_LIST_HEAD(&conf
->inactive_list
);
5207 atomic_set(&conf
->active_stripes
, 0);
5208 atomic_set(&conf
->preread_active_stripes
, 0);
5209 atomic_set(&conf
->active_aligned_reads
, 0);
5210 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
5211 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
5213 conf
->raid_disks
= mddev
->raid_disks
;
5214 if (mddev
->reshape_position
== MaxSector
)
5215 conf
->previous_raid_disks
= mddev
->raid_disks
;
5217 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
5218 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
5219 conf
->scribble_len
= scribble_len(max_disks
);
5221 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
5226 conf
->mddev
= mddev
;
5228 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
5231 conf
->level
= mddev
->new_level
;
5232 if (raid5_alloc_percpu(conf
) != 0)
5235 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
5237 rdev_for_each(rdev
, mddev
) {
5238 raid_disk
= rdev
->raid_disk
;
5239 if (raid_disk
>= max_disks
5242 disk
= conf
->disks
+ raid_disk
;
5244 if (test_bit(Replacement
, &rdev
->flags
)) {
5245 if (disk
->replacement
)
5247 disk
->replacement
= rdev
;
5254 if (test_bit(In_sync
, &rdev
->flags
)) {
5255 char b
[BDEVNAME_SIZE
];
5256 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
5258 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
5259 } else if (rdev
->saved_raid_disk
!= raid_disk
)
5260 /* Cannot rely on bitmap to complete recovery */
5264 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5265 conf
->level
= mddev
->new_level
;
5266 if (conf
->level
== 6)
5267 conf
->max_degraded
= 2;
5269 conf
->max_degraded
= 1;
5270 conf
->algorithm
= mddev
->new_layout
;
5271 conf
->max_nr_stripes
= NR_STRIPES
;
5272 conf
->reshape_progress
= mddev
->reshape_position
;
5273 if (conf
->reshape_progress
!= MaxSector
) {
5274 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
5275 conf
->prev_algo
= mddev
->layout
;
5278 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
5279 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
5280 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
5282 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5283 mdname(mddev
), memory
);
5286 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
5287 mdname(mddev
), memory
);
5289 sprintf(pers_name
, "raid%d", mddev
->new_level
);
5290 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
5291 if (!conf
->thread
) {
5293 "md/raid:%s: couldn't allocate thread.\n",
5303 return ERR_PTR(-EIO
);
5305 return ERR_PTR(-ENOMEM
);
5309 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
5312 case ALGORITHM_PARITY_0
:
5313 if (raid_disk
< max_degraded
)
5316 case ALGORITHM_PARITY_N
:
5317 if (raid_disk
>= raid_disks
- max_degraded
)
5320 case ALGORITHM_PARITY_0_6
:
5321 if (raid_disk
== 0 ||
5322 raid_disk
== raid_disks
- 1)
5325 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5326 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5327 case ALGORITHM_LEFT_SYMMETRIC_6
:
5328 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5329 if (raid_disk
== raid_disks
- 1)
5335 static int run(struct mddev
*mddev
)
5337 struct r5conf
*conf
;
5338 int working_disks
= 0;
5339 int dirty_parity_disks
= 0;
5340 struct md_rdev
*rdev
;
5341 sector_t reshape_offset
= 0;
5343 long long min_offset_diff
= 0;
5346 if (mddev
->recovery_cp
!= MaxSector
)
5347 printk(KERN_NOTICE
"md/raid:%s: not clean"
5348 " -- starting background reconstruction\n",
5351 rdev_for_each(rdev
, mddev
) {
5353 if (rdev
->raid_disk
< 0)
5355 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
5357 min_offset_diff
= diff
;
5359 } else if (mddev
->reshape_backwards
&&
5360 diff
< min_offset_diff
)
5361 min_offset_diff
= diff
;
5362 else if (!mddev
->reshape_backwards
&&
5363 diff
> min_offset_diff
)
5364 min_offset_diff
= diff
;
5367 if (mddev
->reshape_position
!= MaxSector
) {
5368 /* Check that we can continue the reshape.
5369 * Difficulties arise if the stripe we would write to
5370 * next is at or after the stripe we would read from next.
5371 * For a reshape that changes the number of devices, this
5372 * is only possible for a very short time, and mdadm makes
5373 * sure that time appears to have past before assembling
5374 * the array. So we fail if that time hasn't passed.
5375 * For a reshape that keeps the number of devices the same
5376 * mdadm must be monitoring the reshape can keeping the
5377 * critical areas read-only and backed up. It will start
5378 * the array in read-only mode, so we check for that.
5380 sector_t here_new
, here_old
;
5382 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
5384 if (mddev
->new_level
!= mddev
->level
) {
5385 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
5386 "required - aborting.\n",
5390 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
5391 /* reshape_position must be on a new-stripe boundary, and one
5392 * further up in new geometry must map after here in old
5395 here_new
= mddev
->reshape_position
;
5396 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
5397 (mddev
->raid_disks
- max_degraded
))) {
5398 printk(KERN_ERR
"md/raid:%s: reshape_position not "
5399 "on a stripe boundary\n", mdname(mddev
));
5402 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
5403 /* here_new is the stripe we will write to */
5404 here_old
= mddev
->reshape_position
;
5405 sector_div(here_old
, mddev
->chunk_sectors
*
5406 (old_disks
-max_degraded
));
5407 /* here_old is the first stripe that we might need to read
5409 if (mddev
->delta_disks
== 0) {
5410 if ((here_new
* mddev
->new_chunk_sectors
!=
5411 here_old
* mddev
->chunk_sectors
)) {
5412 printk(KERN_ERR
"md/raid:%s: reshape position is"
5413 " confused - aborting\n", mdname(mddev
));
5416 /* We cannot be sure it is safe to start an in-place
5417 * reshape. It is only safe if user-space is monitoring
5418 * and taking constant backups.
5419 * mdadm always starts a situation like this in
5420 * readonly mode so it can take control before
5421 * allowing any writes. So just check for that.
5423 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
5424 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
5425 /* not really in-place - so OK */;
5426 else if (mddev
->ro
== 0) {
5427 printk(KERN_ERR
"md/raid:%s: in-place reshape "
5428 "must be started in read-only mode "
5433 } else if (mddev
->reshape_backwards
5434 ? (here_new
* mddev
->new_chunk_sectors
+ min_offset_diff
<=
5435 here_old
* mddev
->chunk_sectors
)
5436 : (here_new
* mddev
->new_chunk_sectors
>=
5437 here_old
* mddev
->chunk_sectors
+ (-min_offset_diff
))) {
5438 /* Reading from the same stripe as writing to - bad */
5439 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
5440 "auto-recovery - aborting.\n",
5444 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
5446 /* OK, we should be able to continue; */
5448 BUG_ON(mddev
->level
!= mddev
->new_level
);
5449 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
5450 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
5451 BUG_ON(mddev
->delta_disks
!= 0);
5454 if (mddev
->private == NULL
)
5455 conf
= setup_conf(mddev
);
5457 conf
= mddev
->private;
5460 return PTR_ERR(conf
);
5462 conf
->min_offset_diff
= min_offset_diff
;
5463 mddev
->thread
= conf
->thread
;
5464 conf
->thread
= NULL
;
5465 mddev
->private = conf
;
5467 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
5469 rdev
= conf
->disks
[i
].rdev
;
5470 if (!rdev
&& conf
->disks
[i
].replacement
) {
5471 /* The replacement is all we have yet */
5472 rdev
= conf
->disks
[i
].replacement
;
5473 conf
->disks
[i
].replacement
= NULL
;
5474 clear_bit(Replacement
, &rdev
->flags
);
5475 conf
->disks
[i
].rdev
= rdev
;
5479 if (conf
->disks
[i
].replacement
&&
5480 conf
->reshape_progress
!= MaxSector
) {
5481 /* replacements and reshape simply do not mix. */
5482 printk(KERN_ERR
"md: cannot handle concurrent "
5483 "replacement and reshape.\n");
5486 if (test_bit(In_sync
, &rdev
->flags
)) {
5490 /* This disc is not fully in-sync. However if it
5491 * just stored parity (beyond the recovery_offset),
5492 * when we don't need to be concerned about the
5493 * array being dirty.
5494 * When reshape goes 'backwards', we never have
5495 * partially completed devices, so we only need
5496 * to worry about reshape going forwards.
5498 /* Hack because v0.91 doesn't store recovery_offset properly. */
5499 if (mddev
->major_version
== 0 &&
5500 mddev
->minor_version
> 90)
5501 rdev
->recovery_offset
= reshape_offset
;
5503 if (rdev
->recovery_offset
< reshape_offset
) {
5504 /* We need to check old and new layout */
5505 if (!only_parity(rdev
->raid_disk
,
5508 conf
->max_degraded
))
5511 if (!only_parity(rdev
->raid_disk
,
5513 conf
->previous_raid_disks
,
5514 conf
->max_degraded
))
5516 dirty_parity_disks
++;
5520 * 0 for a fully functional array, 1 or 2 for a degraded array.
5522 mddev
->degraded
= calc_degraded(conf
);
5524 if (has_failed(conf
)) {
5525 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
5526 " (%d/%d failed)\n",
5527 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
5531 /* device size must be a multiple of chunk size */
5532 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
5533 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
5535 if (mddev
->degraded
> dirty_parity_disks
&&
5536 mddev
->recovery_cp
!= MaxSector
) {
5537 if (mddev
->ok_start_degraded
)
5539 "md/raid:%s: starting dirty degraded array"
5540 " - data corruption possible.\n",
5544 "md/raid:%s: cannot start dirty degraded array.\n",
5550 if (mddev
->degraded
== 0)
5551 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
5552 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
5553 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
5556 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
5557 " out of %d devices, algorithm %d\n",
5558 mdname(mddev
), conf
->level
,
5559 mddev
->raid_disks
- mddev
->degraded
,
5560 mddev
->raid_disks
, mddev
->new_layout
);
5562 print_raid5_conf(conf
);
5564 if (conf
->reshape_progress
!= MaxSector
) {
5565 conf
->reshape_safe
= conf
->reshape_progress
;
5566 atomic_set(&conf
->reshape_stripes
, 0);
5567 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5568 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5569 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5570 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5571 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5576 /* Ok, everything is just fine now */
5577 if (mddev
->to_remove
== &raid5_attrs_group
)
5578 mddev
->to_remove
= NULL
;
5579 else if (mddev
->kobj
.sd
&&
5580 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
5582 "raid5: failed to create sysfs attributes for %s\n",
5584 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5588 bool discard_supported
= true;
5589 /* read-ahead size must cover two whole stripes, which
5590 * is 2 * (datadisks) * chunksize where 'n' is the
5591 * number of raid devices
5593 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
5594 int stripe
= data_disks
*
5595 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
5596 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5597 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5599 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
5601 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
5602 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
5604 chunk_size
= mddev
->chunk_sectors
<< 9;
5605 blk_queue_io_min(mddev
->queue
, chunk_size
);
5606 blk_queue_io_opt(mddev
->queue
, chunk_size
*
5607 (conf
->raid_disks
- conf
->max_degraded
));
5609 * We can only discard a whole stripe. It doesn't make sense to
5610 * discard data disk but write parity disk
5612 stripe
= stripe
* PAGE_SIZE
;
5613 /* Round up to power of 2, as discard handling
5614 * currently assumes that */
5615 while ((stripe
-1) & stripe
)
5616 stripe
= (stripe
| (stripe
-1)) + 1;
5617 mddev
->queue
->limits
.discard_alignment
= stripe
;
5618 mddev
->queue
->limits
.discard_granularity
= stripe
;
5620 * unaligned part of discard request will be ignored, so can't
5621 * guarantee discard_zeroes_data
5623 mddev
->queue
->limits
.discard_zeroes_data
= 0;
5625 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
5627 rdev_for_each(rdev
, mddev
) {
5628 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5629 rdev
->data_offset
<< 9);
5630 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5631 rdev
->new_data_offset
<< 9);
5633 * discard_zeroes_data is required, otherwise data
5634 * could be lost. Consider a scenario: discard a stripe
5635 * (the stripe could be inconsistent if
5636 * discard_zeroes_data is 0); write one disk of the
5637 * stripe (the stripe could be inconsistent again
5638 * depending on which disks are used to calculate
5639 * parity); the disk is broken; The stripe data of this
5642 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
5643 !bdev_get_queue(rdev
->bdev
)->
5644 limits
.discard_zeroes_data
)
5645 discard_supported
= false;
5646 /* Unfortunately, discard_zeroes_data is not currently
5647 * a guarantee - just a hint. So we only allow DISCARD
5648 * if the sysadmin has confirmed that only safe devices
5649 * are in use by setting a module parameter.
5651 if (!devices_handle_discard_safely
) {
5652 if (discard_supported
) {
5653 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
5654 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
5656 discard_supported
= false;
5660 if (discard_supported
&&
5661 mddev
->queue
->limits
.max_discard_sectors
>= stripe
&&
5662 mddev
->queue
->limits
.discard_granularity
>= stripe
)
5663 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
5666 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
5672 md_unregister_thread(&mddev
->thread
);
5673 print_raid5_conf(conf
);
5675 mddev
->private = NULL
;
5676 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
5680 static int stop(struct mddev
*mddev
)
5682 struct r5conf
*conf
= mddev
->private;
5684 md_unregister_thread(&mddev
->thread
);
5686 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5688 mddev
->private = NULL
;
5689 mddev
->to_remove
= &raid5_attrs_group
;
5693 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
5695 struct r5conf
*conf
= mddev
->private;
5698 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5699 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5700 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5701 for (i
= 0; i
< conf
->raid_disks
; i
++)
5702 seq_printf (seq
, "%s",
5703 conf
->disks
[i
].rdev
&&
5704 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5705 seq_printf (seq
, "]");
5708 static void print_raid5_conf (struct r5conf
*conf
)
5711 struct disk_info
*tmp
;
5713 printk(KERN_DEBUG
"RAID conf printout:\n");
5715 printk("(conf==NULL)\n");
5718 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
5720 conf
->raid_disks
- conf
->mddev
->degraded
);
5722 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5723 char b
[BDEVNAME_SIZE
];
5724 tmp
= conf
->disks
+ i
;
5726 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
5727 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5728 bdevname(tmp
->rdev
->bdev
, b
));
5732 static int raid5_spare_active(struct mddev
*mddev
)
5735 struct r5conf
*conf
= mddev
->private;
5736 struct disk_info
*tmp
;
5738 unsigned long flags
;
5740 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5741 tmp
= conf
->disks
+ i
;
5742 if (tmp
->replacement
5743 && tmp
->replacement
->recovery_offset
== MaxSector
5744 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
5745 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
5746 /* Replacement has just become active. */
5748 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
5751 /* Replaced device not technically faulty,
5752 * but we need to be sure it gets removed
5753 * and never re-added.
5755 set_bit(Faulty
, &tmp
->rdev
->flags
);
5756 sysfs_notify_dirent_safe(
5757 tmp
->rdev
->sysfs_state
);
5759 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
5760 } else if (tmp
->rdev
5761 && tmp
->rdev
->recovery_offset
== MaxSector
5762 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5763 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5765 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
5768 spin_lock_irqsave(&conf
->device_lock
, flags
);
5769 mddev
->degraded
= calc_degraded(conf
);
5770 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5771 print_raid5_conf(conf
);
5775 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
5777 struct r5conf
*conf
= mddev
->private;
5779 int number
= rdev
->raid_disk
;
5780 struct md_rdev
**rdevp
;
5781 struct disk_info
*p
= conf
->disks
+ number
;
5783 print_raid5_conf(conf
);
5784 if (rdev
== p
->rdev
)
5786 else if (rdev
== p
->replacement
)
5787 rdevp
= &p
->replacement
;
5791 if (number
>= conf
->raid_disks
&&
5792 conf
->reshape_progress
== MaxSector
)
5793 clear_bit(In_sync
, &rdev
->flags
);
5795 if (test_bit(In_sync
, &rdev
->flags
) ||
5796 atomic_read(&rdev
->nr_pending
)) {
5800 /* Only remove non-faulty devices if recovery
5803 if (!test_bit(Faulty
, &rdev
->flags
) &&
5804 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
5805 !has_failed(conf
) &&
5806 (!p
->replacement
|| p
->replacement
== rdev
) &&
5807 number
< conf
->raid_disks
) {
5813 if (atomic_read(&rdev
->nr_pending
)) {
5814 /* lost the race, try later */
5817 } else if (p
->replacement
) {
5818 /* We must have just cleared 'rdev' */
5819 p
->rdev
= p
->replacement
;
5820 clear_bit(Replacement
, &p
->replacement
->flags
);
5821 smp_mb(); /* Make sure other CPUs may see both as identical
5822 * but will never see neither - if they are careful
5824 p
->replacement
= NULL
;
5825 clear_bit(WantReplacement
, &rdev
->flags
);
5827 /* We might have just removed the Replacement as faulty-
5828 * clear the bit just in case
5830 clear_bit(WantReplacement
, &rdev
->flags
);
5833 print_raid5_conf(conf
);
5837 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
5839 struct r5conf
*conf
= mddev
->private;
5842 struct disk_info
*p
;
5844 int last
= conf
->raid_disks
- 1;
5846 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
5849 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
5850 /* no point adding a device */
5853 if (rdev
->raid_disk
>= 0)
5854 first
= last
= rdev
->raid_disk
;
5857 * find the disk ... but prefer rdev->saved_raid_disk
5860 if (rdev
->saved_raid_disk
>= 0 &&
5861 rdev
->saved_raid_disk
>= first
&&
5862 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5863 first
= rdev
->saved_raid_disk
;
5865 for (disk
= first
; disk
<= last
; disk
++) {
5866 p
= conf
->disks
+ disk
;
5867 if (p
->rdev
== NULL
) {
5868 clear_bit(In_sync
, &rdev
->flags
);
5869 rdev
->raid_disk
= disk
;
5871 if (rdev
->saved_raid_disk
!= disk
)
5873 rcu_assign_pointer(p
->rdev
, rdev
);
5877 for (disk
= first
; disk
<= last
; disk
++) {
5878 p
= conf
->disks
+ disk
;
5879 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
5880 p
->replacement
== NULL
) {
5881 clear_bit(In_sync
, &rdev
->flags
);
5882 set_bit(Replacement
, &rdev
->flags
);
5883 rdev
->raid_disk
= disk
;
5886 rcu_assign_pointer(p
->replacement
, rdev
);
5891 print_raid5_conf(conf
);
5895 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
5897 /* no resync is happening, and there is enough space
5898 * on all devices, so we can resize.
5899 * We need to make sure resync covers any new space.
5900 * If the array is shrinking we should possibly wait until
5901 * any io in the removed space completes, but it hardly seems
5905 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5906 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
5907 if (mddev
->external_size
&&
5908 mddev
->array_sectors
> newsize
)
5910 if (mddev
->bitmap
) {
5911 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
5915 md_set_array_sectors(mddev
, newsize
);
5916 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5917 revalidate_disk(mddev
->gendisk
);
5918 if (sectors
> mddev
->dev_sectors
&&
5919 mddev
->recovery_cp
> mddev
->dev_sectors
) {
5920 mddev
->recovery_cp
= mddev
->dev_sectors
;
5921 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5923 mddev
->dev_sectors
= sectors
;
5924 mddev
->resync_max_sectors
= sectors
;
5928 static int check_stripe_cache(struct mddev
*mddev
)
5930 /* Can only proceed if there are plenty of stripe_heads.
5931 * We need a minimum of one full stripe,, and for sensible progress
5932 * it is best to have about 4 times that.
5933 * If we require 4 times, then the default 256 4K stripe_heads will
5934 * allow for chunk sizes up to 256K, which is probably OK.
5935 * If the chunk size is greater, user-space should request more
5936 * stripe_heads first.
5938 struct r5conf
*conf
= mddev
->private;
5939 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5940 > conf
->max_nr_stripes
||
5941 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5942 > conf
->max_nr_stripes
) {
5943 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5945 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5952 static int check_reshape(struct mddev
*mddev
)
5954 struct r5conf
*conf
= mddev
->private;
5956 if (mddev
->delta_disks
== 0 &&
5957 mddev
->new_layout
== mddev
->layout
&&
5958 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5959 return 0; /* nothing to do */
5960 if (has_failed(conf
))
5962 if (mddev
->delta_disks
< 0) {
5963 /* We might be able to shrink, but the devices must
5964 * be made bigger first.
5965 * For raid6, 4 is the minimum size.
5966 * Otherwise 2 is the minimum
5969 if (mddev
->level
== 6)
5971 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5975 if (!check_stripe_cache(mddev
))
5978 return resize_stripes(conf
, (conf
->previous_raid_disks
5979 + mddev
->delta_disks
));
5982 static int raid5_start_reshape(struct mddev
*mddev
)
5984 struct r5conf
*conf
= mddev
->private;
5985 struct md_rdev
*rdev
;
5987 unsigned long flags
;
5989 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5992 if (!check_stripe_cache(mddev
))
5995 if (has_failed(conf
))
5998 rdev_for_each(rdev
, mddev
) {
5999 if (!test_bit(In_sync
, &rdev
->flags
)
6000 && !test_bit(Faulty
, &rdev
->flags
))
6004 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
6005 /* Not enough devices even to make a degraded array
6010 /* Refuse to reduce size of the array. Any reductions in
6011 * array size must be through explicit setting of array_size
6014 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
6015 < mddev
->array_sectors
) {
6016 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
6017 "before number of disks\n", mdname(mddev
));
6021 atomic_set(&conf
->reshape_stripes
, 0);
6022 spin_lock_irq(&conf
->device_lock
);
6023 conf
->previous_raid_disks
= conf
->raid_disks
;
6024 conf
->raid_disks
+= mddev
->delta_disks
;
6025 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
6026 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6027 conf
->prev_algo
= conf
->algorithm
;
6028 conf
->algorithm
= mddev
->new_layout
;
6030 /* Code that selects data_offset needs to see the generation update
6031 * if reshape_progress has been set - so a memory barrier needed.
6034 if (mddev
->reshape_backwards
)
6035 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
6037 conf
->reshape_progress
= 0;
6038 conf
->reshape_safe
= conf
->reshape_progress
;
6039 spin_unlock_irq(&conf
->device_lock
);
6041 /* Add some new drives, as many as will fit.
6042 * We know there are enough to make the newly sized array work.
6043 * Don't add devices if we are reducing the number of
6044 * devices in the array. This is because it is not possible
6045 * to correctly record the "partially reconstructed" state of
6046 * such devices during the reshape and confusion could result.
6048 if (mddev
->delta_disks
>= 0) {
6049 rdev_for_each(rdev
, mddev
)
6050 if (rdev
->raid_disk
< 0 &&
6051 !test_bit(Faulty
, &rdev
->flags
)) {
6052 if (raid5_add_disk(mddev
, rdev
) == 0) {
6054 >= conf
->previous_raid_disks
)
6055 set_bit(In_sync
, &rdev
->flags
);
6057 rdev
->recovery_offset
= 0;
6059 if (sysfs_link_rdev(mddev
, rdev
))
6060 /* Failure here is OK */;
6062 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
6063 && !test_bit(Faulty
, &rdev
->flags
)) {
6064 /* This is a spare that was manually added */
6065 set_bit(In_sync
, &rdev
->flags
);
6068 /* When a reshape changes the number of devices,
6069 * ->degraded is measured against the larger of the
6070 * pre and post number of devices.
6072 spin_lock_irqsave(&conf
->device_lock
, flags
);
6073 mddev
->degraded
= calc_degraded(conf
);
6074 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
6076 mddev
->raid_disks
= conf
->raid_disks
;
6077 mddev
->reshape_position
= conf
->reshape_progress
;
6078 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
6080 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
6081 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
6082 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
6083 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
6084 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
6086 if (!mddev
->sync_thread
) {
6087 mddev
->recovery
= 0;
6088 spin_lock_irq(&conf
->device_lock
);
6089 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
6090 rdev_for_each(rdev
, mddev
)
6091 rdev
->new_data_offset
= rdev
->data_offset
;
6093 conf
->reshape_progress
= MaxSector
;
6094 mddev
->reshape_position
= MaxSector
;
6095 spin_unlock_irq(&conf
->device_lock
);
6098 conf
->reshape_checkpoint
= jiffies
;
6099 md_wakeup_thread(mddev
->sync_thread
);
6100 md_new_event(mddev
);
6104 /* This is called from the reshape thread and should make any
6105 * changes needed in 'conf'
6107 static void end_reshape(struct r5conf
*conf
)
6110 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
6111 struct md_rdev
*rdev
;
6113 spin_lock_irq(&conf
->device_lock
);
6114 conf
->previous_raid_disks
= conf
->raid_disks
;
6115 rdev_for_each(rdev
, conf
->mddev
)
6116 rdev
->data_offset
= rdev
->new_data_offset
;
6118 conf
->reshape_progress
= MaxSector
;
6119 spin_unlock_irq(&conf
->device_lock
);
6120 wake_up(&conf
->wait_for_overlap
);
6122 /* read-ahead size must cover two whole stripes, which is
6123 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6125 if (conf
->mddev
->queue
) {
6126 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
6127 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
6129 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
6130 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
6135 /* This is called from the raid5d thread with mddev_lock held.
6136 * It makes config changes to the device.
6138 static void raid5_finish_reshape(struct mddev
*mddev
)
6140 struct r5conf
*conf
= mddev
->private;
6142 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
6144 if (mddev
->delta_disks
> 0) {
6145 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
6146 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
6147 revalidate_disk(mddev
->gendisk
);
6150 spin_lock_irq(&conf
->device_lock
);
6151 mddev
->degraded
= calc_degraded(conf
);
6152 spin_unlock_irq(&conf
->device_lock
);
6153 for (d
= conf
->raid_disks
;
6154 d
< conf
->raid_disks
- mddev
->delta_disks
;
6156 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
6158 clear_bit(In_sync
, &rdev
->flags
);
6159 rdev
= conf
->disks
[d
].replacement
;
6161 clear_bit(In_sync
, &rdev
->flags
);
6164 mddev
->layout
= conf
->algorithm
;
6165 mddev
->chunk_sectors
= conf
->chunk_sectors
;
6166 mddev
->reshape_position
= MaxSector
;
6167 mddev
->delta_disks
= 0;
6168 mddev
->reshape_backwards
= 0;
6172 static void raid5_quiesce(struct mddev
*mddev
, int state
)
6174 struct r5conf
*conf
= mddev
->private;
6177 case 2: /* resume for a suspend */
6178 wake_up(&conf
->wait_for_overlap
);
6181 case 1: /* stop all writes */
6182 spin_lock_irq(&conf
->device_lock
);
6183 /* '2' tells resync/reshape to pause so that all
6184 * active stripes can drain
6187 wait_event_lock_irq(conf
->wait_for_stripe
,
6188 atomic_read(&conf
->active_stripes
) == 0 &&
6189 atomic_read(&conf
->active_aligned_reads
) == 0,
6192 spin_unlock_irq(&conf
->device_lock
);
6193 /* allow reshape to continue */
6194 wake_up(&conf
->wait_for_overlap
);
6197 case 0: /* re-enable writes */
6198 spin_lock_irq(&conf
->device_lock
);
6200 wake_up(&conf
->wait_for_stripe
);
6201 wake_up(&conf
->wait_for_overlap
);
6202 spin_unlock_irq(&conf
->device_lock
);
6208 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
6210 struct r0conf
*raid0_conf
= mddev
->private;
6213 /* for raid0 takeover only one zone is supported */
6214 if (raid0_conf
->nr_strip_zones
> 1) {
6215 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6217 return ERR_PTR(-EINVAL
);
6220 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
6221 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
6222 mddev
->dev_sectors
= sectors
;
6223 mddev
->new_level
= level
;
6224 mddev
->new_layout
= ALGORITHM_PARITY_N
;
6225 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
6226 mddev
->raid_disks
+= 1;
6227 mddev
->delta_disks
= 1;
6228 /* make sure it will be not marked as dirty */
6229 mddev
->recovery_cp
= MaxSector
;
6231 return setup_conf(mddev
);
6235 static void *raid5_takeover_raid1(struct mddev
*mddev
)
6239 if (mddev
->raid_disks
!= 2 ||
6240 mddev
->degraded
> 1)
6241 return ERR_PTR(-EINVAL
);
6243 /* Should check if there are write-behind devices? */
6245 chunksect
= 64*2; /* 64K by default */
6247 /* The array must be an exact multiple of chunksize */
6248 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
6251 if ((chunksect
<<9) < STRIPE_SIZE
)
6252 /* array size does not allow a suitable chunk size */
6253 return ERR_PTR(-EINVAL
);
6255 mddev
->new_level
= 5;
6256 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
6257 mddev
->new_chunk_sectors
= chunksect
;
6259 return setup_conf(mddev
);
6262 static void *raid5_takeover_raid6(struct mddev
*mddev
)
6266 switch (mddev
->layout
) {
6267 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6268 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
6270 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6271 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
6273 case ALGORITHM_LEFT_SYMMETRIC_6
:
6274 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
6276 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6277 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
6279 case ALGORITHM_PARITY_0_6
:
6280 new_layout
= ALGORITHM_PARITY_0
;
6282 case ALGORITHM_PARITY_N
:
6283 new_layout
= ALGORITHM_PARITY_N
;
6286 return ERR_PTR(-EINVAL
);
6288 mddev
->new_level
= 5;
6289 mddev
->new_layout
= new_layout
;
6290 mddev
->delta_disks
= -1;
6291 mddev
->raid_disks
-= 1;
6292 return setup_conf(mddev
);
6296 static int raid5_check_reshape(struct mddev
*mddev
)
6298 /* For a 2-drive array, the layout and chunk size can be changed
6299 * immediately as not restriping is needed.
6300 * For larger arrays we record the new value - after validation
6301 * to be used by a reshape pass.
6303 struct r5conf
*conf
= mddev
->private;
6304 int new_chunk
= mddev
->new_chunk_sectors
;
6306 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
6308 if (new_chunk
> 0) {
6309 if (!is_power_of_2(new_chunk
))
6311 if (new_chunk
< (PAGE_SIZE
>>9))
6313 if (mddev
->array_sectors
& (new_chunk
-1))
6314 /* not factor of array size */
6318 /* They look valid */
6320 if (mddev
->raid_disks
== 2) {
6321 /* can make the change immediately */
6322 if (mddev
->new_layout
>= 0) {
6323 conf
->algorithm
= mddev
->new_layout
;
6324 mddev
->layout
= mddev
->new_layout
;
6326 if (new_chunk
> 0) {
6327 conf
->chunk_sectors
= new_chunk
;
6328 mddev
->chunk_sectors
= new_chunk
;
6330 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
6331 md_wakeup_thread(mddev
->thread
);
6333 return check_reshape(mddev
);
6336 static int raid6_check_reshape(struct mddev
*mddev
)
6338 int new_chunk
= mddev
->new_chunk_sectors
;
6340 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
6342 if (new_chunk
> 0) {
6343 if (!is_power_of_2(new_chunk
))
6345 if (new_chunk
< (PAGE_SIZE
>> 9))
6347 if (mddev
->array_sectors
& (new_chunk
-1))
6348 /* not factor of array size */
6352 /* They look valid */
6353 return check_reshape(mddev
);
6356 static void *raid5_takeover(struct mddev
*mddev
)
6358 /* raid5 can take over:
6359 * raid0 - if there is only one strip zone - make it a raid4 layout
6360 * raid1 - if there are two drives. We need to know the chunk size
6361 * raid4 - trivial - just use a raid4 layout.
6362 * raid6 - Providing it is a *_6 layout
6364 if (mddev
->level
== 0)
6365 return raid45_takeover_raid0(mddev
, 5);
6366 if (mddev
->level
== 1)
6367 return raid5_takeover_raid1(mddev
);
6368 if (mddev
->level
== 4) {
6369 mddev
->new_layout
= ALGORITHM_PARITY_N
;
6370 mddev
->new_level
= 5;
6371 return setup_conf(mddev
);
6373 if (mddev
->level
== 6)
6374 return raid5_takeover_raid6(mddev
);
6376 return ERR_PTR(-EINVAL
);
6379 static void *raid4_takeover(struct mddev
*mddev
)
6381 /* raid4 can take over:
6382 * raid0 - if there is only one strip zone
6383 * raid5 - if layout is right
6385 if (mddev
->level
== 0)
6386 return raid45_takeover_raid0(mddev
, 4);
6387 if (mddev
->level
== 5 &&
6388 mddev
->layout
== ALGORITHM_PARITY_N
) {
6389 mddev
->new_layout
= 0;
6390 mddev
->new_level
= 4;
6391 return setup_conf(mddev
);
6393 return ERR_PTR(-EINVAL
);
6396 static struct md_personality raid5_personality
;
6398 static void *raid6_takeover(struct mddev
*mddev
)
6400 /* Currently can only take over a raid5. We map the
6401 * personality to an equivalent raid6 personality
6402 * with the Q block at the end.
6406 if (mddev
->pers
!= &raid5_personality
)
6407 return ERR_PTR(-EINVAL
);
6408 if (mddev
->degraded
> 1)
6409 return ERR_PTR(-EINVAL
);
6410 if (mddev
->raid_disks
> 253)
6411 return ERR_PTR(-EINVAL
);
6412 if (mddev
->raid_disks
< 3)
6413 return ERR_PTR(-EINVAL
);
6415 switch (mddev
->layout
) {
6416 case ALGORITHM_LEFT_ASYMMETRIC
:
6417 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
6419 case ALGORITHM_RIGHT_ASYMMETRIC
:
6420 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
6422 case ALGORITHM_LEFT_SYMMETRIC
:
6423 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
6425 case ALGORITHM_RIGHT_SYMMETRIC
:
6426 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
6428 case ALGORITHM_PARITY_0
:
6429 new_layout
= ALGORITHM_PARITY_0_6
;
6431 case ALGORITHM_PARITY_N
:
6432 new_layout
= ALGORITHM_PARITY_N
;
6435 return ERR_PTR(-EINVAL
);
6437 mddev
->new_level
= 6;
6438 mddev
->new_layout
= new_layout
;
6439 mddev
->delta_disks
= 1;
6440 mddev
->raid_disks
+= 1;
6441 return setup_conf(mddev
);
6445 static struct md_personality raid6_personality
=
6449 .owner
= THIS_MODULE
,
6450 .make_request
= make_request
,
6454 .error_handler
= error
,
6455 .hot_add_disk
= raid5_add_disk
,
6456 .hot_remove_disk
= raid5_remove_disk
,
6457 .spare_active
= raid5_spare_active
,
6458 .sync_request
= sync_request
,
6459 .resize
= raid5_resize
,
6461 .check_reshape
= raid6_check_reshape
,
6462 .start_reshape
= raid5_start_reshape
,
6463 .finish_reshape
= raid5_finish_reshape
,
6464 .quiesce
= raid5_quiesce
,
6465 .takeover
= raid6_takeover
,
6467 static struct md_personality raid5_personality
=
6471 .owner
= THIS_MODULE
,
6472 .make_request
= make_request
,
6476 .error_handler
= error
,
6477 .hot_add_disk
= raid5_add_disk
,
6478 .hot_remove_disk
= raid5_remove_disk
,
6479 .spare_active
= raid5_spare_active
,
6480 .sync_request
= sync_request
,
6481 .resize
= raid5_resize
,
6483 .check_reshape
= raid5_check_reshape
,
6484 .start_reshape
= raid5_start_reshape
,
6485 .finish_reshape
= raid5_finish_reshape
,
6486 .quiesce
= raid5_quiesce
,
6487 .takeover
= raid5_takeover
,
6490 static struct md_personality raid4_personality
=
6494 .owner
= THIS_MODULE
,
6495 .make_request
= make_request
,
6499 .error_handler
= error
,
6500 .hot_add_disk
= raid5_add_disk
,
6501 .hot_remove_disk
= raid5_remove_disk
,
6502 .spare_active
= raid5_spare_active
,
6503 .sync_request
= sync_request
,
6504 .resize
= raid5_resize
,
6506 .check_reshape
= raid5_check_reshape
,
6507 .start_reshape
= raid5_start_reshape
,
6508 .finish_reshape
= raid5_finish_reshape
,
6509 .quiesce
= raid5_quiesce
,
6510 .takeover
= raid4_takeover
,
6513 static int __init
raid5_init(void)
6515 register_md_personality(&raid6_personality
);
6516 register_md_personality(&raid5_personality
);
6517 register_md_personality(&raid4_personality
);
6521 static void raid5_exit(void)
6523 unregister_md_personality(&raid6_personality
);
6524 unregister_md_personality(&raid5_personality
);
6525 unregister_md_personality(&raid4_personality
);
6528 module_init(raid5_init
);
6529 module_exit(raid5_exit
);
6530 MODULE_LICENSE("GPL");
6531 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6532 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6533 MODULE_ALIAS("md-raid5");
6534 MODULE_ALIAS("md-raid4");
6535 MODULE_ALIAS("md-level-5");
6536 MODULE_ALIAS("md-level-4");
6537 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6538 MODULE_ALIAS("md-raid6");
6539 MODULE_ALIAS("md-level-6");
6541 /* This used to be two separate modules, they were: */
6542 MODULE_ALIAS("raid5");
6543 MODULE_ALIAS("raid6");