2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
44 struct pipe_buffer
*buf
)
46 struct page
*page
= buf
->page
;
47 struct address_space
*mapping
;
51 mapping
= page_mapping(page
);
53 WARN_ON(!PageUptodate(page
));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
63 wait_on_page_writeback(page
);
65 if (page_has_private(page
) &&
66 !try_to_release_page(page
, GFP_KERNEL
))
70 * If we succeeded in removing the mapping, set LRU flag
73 if (remove_mapping(mapping
, page
)) {
74 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
88 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
89 struct pipe_buffer
*buf
)
91 page_cache_release(buf
->page
);
92 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info
*pipe
,
100 struct pipe_buffer
*buf
)
102 struct page
*page
= buf
->page
;
105 if (!PageUptodate(page
)) {
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page
->mapping
) {
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page
)) {
126 * Page is ok afterall, we are done.
137 const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
139 .map
= generic_pipe_buf_map
,
140 .unmap
= generic_pipe_buf_unmap
,
141 .confirm
= page_cache_pipe_buf_confirm
,
142 .release
= page_cache_pipe_buf_release
,
143 .steal
= page_cache_pipe_buf_steal
,
144 .get
= generic_pipe_buf_get
,
147 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
148 struct pipe_buffer
*buf
)
150 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
153 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
154 return generic_pipe_buf_steal(pipe
, buf
);
157 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
159 .map
= generic_pipe_buf_map
,
160 .unmap
= generic_pipe_buf_unmap
,
161 .confirm
= generic_pipe_buf_confirm
,
162 .release
= page_cache_pipe_buf_release
,
163 .steal
= user_page_pipe_buf_steal
,
164 .get
= generic_pipe_buf_get
,
167 static void wakeup_pipe_readers(struct pipe_inode_info
*pipe
)
170 if (waitqueue_active(&pipe
->wait
))
171 wake_up_interruptible(&pipe
->wait
);
172 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
176 * splice_to_pipe - fill passed data into a pipe
177 * @pipe: pipe to fill
181 * @spd contains a map of pages and len/offset tuples, along with
182 * the struct pipe_buf_operations associated with these pages. This
183 * function will link that data to the pipe.
186 ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
187 struct splice_pipe_desc
*spd
)
189 unsigned int spd_pages
= spd
->nr_pages
;
190 int ret
, do_wakeup
, page_nr
;
199 if (!pipe
->readers
) {
200 send_sig(SIGPIPE
, current
, 0);
206 if (pipe
->nrbufs
< pipe
->buffers
) {
207 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (pipe
->buffers
- 1);
208 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
210 buf
->page
= spd
->pages
[page_nr
];
211 buf
->offset
= spd
->partial
[page_nr
].offset
;
212 buf
->len
= spd
->partial
[page_nr
].len
;
213 buf
->private = spd
->partial
[page_nr
].private;
215 if (spd
->flags
& SPLICE_F_GIFT
)
216 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
225 if (!--spd
->nr_pages
)
227 if (pipe
->nrbufs
< pipe
->buffers
)
233 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
239 if (signal_pending(current
)) {
247 if (waitqueue_active(&pipe
->wait
))
248 wake_up_interruptible_sync(&pipe
->wait
);
249 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
253 pipe
->waiting_writers
++;
255 pipe
->waiting_writers
--;
261 wakeup_pipe_readers(pipe
);
263 while (page_nr
< spd_pages
)
264 spd
->spd_release(spd
, page_nr
++);
269 void spd_release_page(struct splice_pipe_desc
*spd
, unsigned int i
)
271 page_cache_release(spd
->pages
[i
]);
275 * Check if we need to grow the arrays holding pages and partial page
278 int splice_grow_spd(const struct pipe_inode_info
*pipe
, struct splice_pipe_desc
*spd
)
280 unsigned int buffers
= ACCESS_ONCE(pipe
->buffers
);
282 spd
->nr_pages_max
= buffers
;
283 if (buffers
<= PIPE_DEF_BUFFERS
)
286 spd
->pages
= kmalloc(buffers
* sizeof(struct page
*), GFP_KERNEL
);
287 spd
->partial
= kmalloc(buffers
* sizeof(struct partial_page
), GFP_KERNEL
);
289 if (spd
->pages
&& spd
->partial
)
297 void splice_shrink_spd(struct splice_pipe_desc
*spd
)
299 if (spd
->nr_pages_max
<= PIPE_DEF_BUFFERS
)
307 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
308 struct pipe_inode_info
*pipe
, size_t len
,
311 struct address_space
*mapping
= in
->f_mapping
;
312 unsigned int loff
, nr_pages
, req_pages
;
313 struct page
*pages
[PIPE_DEF_BUFFERS
];
314 struct partial_page partial
[PIPE_DEF_BUFFERS
];
316 pgoff_t index
, end_index
;
319 struct splice_pipe_desc spd
= {
322 .nr_pages_max
= PIPE_DEF_BUFFERS
,
324 .ops
= &page_cache_pipe_buf_ops
,
325 .spd_release
= spd_release_page
,
328 if (splice_grow_spd(pipe
, &spd
))
331 index
= *ppos
>> PAGE_CACHE_SHIFT
;
332 loff
= *ppos
& ~PAGE_CACHE_MASK
;
333 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
334 nr_pages
= min(req_pages
, spd
.nr_pages_max
);
337 * Lookup the (hopefully) full range of pages we need.
339 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, spd
.pages
);
340 index
+= spd
.nr_pages
;
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
346 if (spd
.nr_pages
< nr_pages
)
347 page_cache_sync_readahead(mapping
, &in
->f_ra
, in
,
348 index
, req_pages
- spd
.nr_pages
);
351 while (spd
.nr_pages
< nr_pages
) {
353 * Page could be there, find_get_pages_contig() breaks on
356 page
= find_get_page(mapping
, index
);
359 * page didn't exist, allocate one.
361 page
= page_cache_alloc_cold(mapping
);
365 error
= add_to_page_cache_lru(page
, mapping
, index
,
367 if (unlikely(error
)) {
368 page_cache_release(page
);
369 if (error
== -EEXIST
)
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
380 spd
.pages
[spd
.nr_pages
++] = page
;
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
388 index
= *ppos
>> PAGE_CACHE_SHIFT
;
389 nr_pages
= spd
.nr_pages
;
391 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
392 unsigned int this_len
;
398 * this_len is the max we'll use from this page
400 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
401 page
= spd
.pages
[page_nr
];
403 if (PageReadahead(page
))
404 page_cache_async_readahead(mapping
, &in
->f_ra
, in
,
405 page
, index
, req_pages
- page_nr
);
408 * If the page isn't uptodate, we may need to start io on it
410 if (!PageUptodate(page
)) {
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
419 if (!page
->mapping
) {
421 page
= find_or_create_page(mapping
, index
,
422 mapping_gfp_mask(mapping
));
428 page_cache_release(spd
.pages
[page_nr
]);
429 spd
.pages
[page_nr
] = page
;
432 * page was already under io and is now done, great
434 if (PageUptodate(page
)) {
440 * need to read in the page
442 error
= mapping
->a_ops
->readpage(in
, page
);
443 if (unlikely(error
)) {
445 * We really should re-lookup the page here,
446 * but it complicates things a lot. Instead
447 * lets just do what we already stored, and
448 * we'll get it the next time we are called.
450 if (error
== AOP_TRUNCATED_PAGE
)
458 * i_size must be checked after PageUptodate.
460 isize
= i_size_read(mapping
->host
);
461 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
462 if (unlikely(!isize
|| index
> end_index
))
466 * if this is the last page, see if we need to shrink
467 * the length and stop
469 if (end_index
== index
) {
473 * max good bytes in this page
475 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
480 * force quit after adding this page
482 this_len
= min(this_len
, plen
- loff
);
486 spd
.partial
[page_nr
].offset
= loff
;
487 spd
.partial
[page_nr
].len
= this_len
;
495 * Release any pages at the end, if we quit early. 'page_nr' is how far
496 * we got, 'nr_pages' is how many pages are in the map.
498 while (page_nr
< nr_pages
)
499 page_cache_release(spd
.pages
[page_nr
++]);
500 in
->f_ra
.prev_pos
= (loff_t
)index
<< PAGE_CACHE_SHIFT
;
503 error
= splice_to_pipe(pipe
, &spd
);
505 splice_shrink_spd(&spd
);
510 * generic_file_splice_read - splice data from file to a pipe
511 * @in: file to splice from
512 * @ppos: position in @in
513 * @pipe: pipe to splice to
514 * @len: number of bytes to splice
515 * @flags: splice modifier flags
518 * Will read pages from given file and fill them into a pipe. Can be
519 * used as long as the address_space operations for the source implements
523 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
524 struct pipe_inode_info
*pipe
, size_t len
,
530 isize
= i_size_read(in
->f_mapping
->host
);
531 if (unlikely(*ppos
>= isize
))
534 left
= isize
- *ppos
;
535 if (unlikely(left
< len
))
538 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
546 EXPORT_SYMBOL(generic_file_splice_read
);
548 static const struct pipe_buf_operations default_pipe_buf_ops
= {
550 .map
= generic_pipe_buf_map
,
551 .unmap
= generic_pipe_buf_unmap
,
552 .confirm
= generic_pipe_buf_confirm
,
553 .release
= generic_pipe_buf_release
,
554 .steal
= generic_pipe_buf_steal
,
555 .get
= generic_pipe_buf_get
,
558 static int generic_pipe_buf_nosteal(struct pipe_inode_info
*pipe
,
559 struct pipe_buffer
*buf
)
564 /* Pipe buffer operations for a socket and similar. */
565 const struct pipe_buf_operations nosteal_pipe_buf_ops
= {
567 .map
= generic_pipe_buf_map
,
568 .unmap
= generic_pipe_buf_unmap
,
569 .confirm
= generic_pipe_buf_confirm
,
570 .release
= generic_pipe_buf_release
,
571 .steal
= generic_pipe_buf_nosteal
,
572 .get
= generic_pipe_buf_get
,
574 EXPORT_SYMBOL(nosteal_pipe_buf_ops
);
576 static ssize_t
kernel_readv(struct file
*file
, const struct iovec
*vec
,
577 unsigned long vlen
, loff_t offset
)
585 /* The cast to a user pointer is valid due to the set_fs() */
586 res
= vfs_readv(file
, (const struct iovec __user
*)vec
, vlen
, &pos
);
592 ssize_t
kernel_write(struct file
*file
, const char *buf
, size_t count
,
600 /* The cast to a user pointer is valid due to the set_fs() */
601 res
= vfs_write(file
, (__force
const char __user
*)buf
, count
, &pos
);
606 EXPORT_SYMBOL(kernel_write
);
608 ssize_t
default_file_splice_read(struct file
*in
, loff_t
*ppos
,
609 struct pipe_inode_info
*pipe
, size_t len
,
612 unsigned int nr_pages
;
613 unsigned int nr_freed
;
615 struct page
*pages
[PIPE_DEF_BUFFERS
];
616 struct partial_page partial
[PIPE_DEF_BUFFERS
];
617 struct iovec
*vec
, __vec
[PIPE_DEF_BUFFERS
];
622 struct splice_pipe_desc spd
= {
625 .nr_pages_max
= PIPE_DEF_BUFFERS
,
627 .ops
= &default_pipe_buf_ops
,
628 .spd_release
= spd_release_page
,
631 if (splice_grow_spd(pipe
, &spd
))
636 if (spd
.nr_pages_max
> PIPE_DEF_BUFFERS
) {
637 vec
= kmalloc(spd
.nr_pages_max
* sizeof(struct iovec
), GFP_KERNEL
);
642 offset
= *ppos
& ~PAGE_CACHE_MASK
;
643 nr_pages
= (len
+ offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
645 for (i
= 0; i
< nr_pages
&& i
< spd
.nr_pages_max
&& len
; i
++) {
648 page
= alloc_page(GFP_USER
);
653 this_len
= min_t(size_t, len
, PAGE_CACHE_SIZE
- offset
);
654 vec
[i
].iov_base
= (void __user
*) page_address(page
);
655 vec
[i
].iov_len
= this_len
;
662 res
= kernel_readv(in
, vec
, spd
.nr_pages
, *ppos
);
673 for (i
= 0; i
< spd
.nr_pages
; i
++) {
674 this_len
= min_t(size_t, vec
[i
].iov_len
, res
);
675 spd
.partial
[i
].offset
= 0;
676 spd
.partial
[i
].len
= this_len
;
678 __free_page(spd
.pages
[i
]);
684 spd
.nr_pages
-= nr_freed
;
686 res
= splice_to_pipe(pipe
, &spd
);
693 splice_shrink_spd(&spd
);
697 for (i
= 0; i
< spd
.nr_pages
; i
++)
698 __free_page(spd
.pages
[i
]);
703 EXPORT_SYMBOL(default_file_splice_read
);
706 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
707 * using sendpage(). Return the number of bytes sent.
709 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
710 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
712 struct file
*file
= sd
->u
.file
;
713 loff_t pos
= sd
->pos
;
716 if (!likely(file
->f_op
&& file
->f_op
->sendpage
))
719 more
= (sd
->flags
& SPLICE_F_MORE
) ? MSG_MORE
: 0;
721 if (sd
->len
< sd
->total_len
&& pipe
->nrbufs
> 1)
722 more
|= MSG_SENDPAGE_NOTLAST
;
724 return file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
725 sd
->len
, &pos
, more
);
729 * This is a little more tricky than the file -> pipe splicing. There are
730 * basically three cases:
732 * - Destination page already exists in the address space and there
733 * are users of it. For that case we have no other option that
734 * copying the data. Tough luck.
735 * - Destination page already exists in the address space, but there
736 * are no users of it. Make sure it's uptodate, then drop it. Fall
737 * through to last case.
738 * - Destination page does not exist, we can add the pipe page to
739 * the page cache and avoid the copy.
741 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
742 * sd->flags), we attempt to migrate pages from the pipe to the output
743 * file address space page cache. This is possible if no one else has
744 * the pipe page referenced outside of the pipe and page cache. If
745 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
746 * a new page in the output file page cache and fill/dirty that.
748 int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
749 struct splice_desc
*sd
)
751 struct file
*file
= sd
->u
.file
;
752 struct address_space
*mapping
= file
->f_mapping
;
753 unsigned int offset
, this_len
;
758 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
761 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
762 this_len
= PAGE_CACHE_SIZE
- offset
;
764 ret
= pagecache_write_begin(file
, mapping
, sd
->pos
, this_len
,
765 AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
769 if (buf
->page
!= page
) {
770 char *src
= buf
->ops
->map(pipe
, buf
, 1);
771 char *dst
= kmap_atomic(page
);
773 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
774 flush_dcache_page(page
);
776 buf
->ops
->unmap(pipe
, buf
, src
);
778 ret
= pagecache_write_end(file
, mapping
, sd
->pos
, this_len
, this_len
,
783 EXPORT_SYMBOL(pipe_to_file
);
785 static void wakeup_pipe_writers(struct pipe_inode_info
*pipe
)
788 if (waitqueue_active(&pipe
->wait
))
789 wake_up_interruptible(&pipe
->wait
);
790 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
794 * splice_from_pipe_feed - feed available data from a pipe to a file
795 * @pipe: pipe to splice from
796 * @sd: information to @actor
797 * @actor: handler that splices the data
800 * This function loops over the pipe and calls @actor to do the
801 * actual moving of a single struct pipe_buffer to the desired
802 * destination. It returns when there's no more buffers left in
803 * the pipe or if the requested number of bytes (@sd->total_len)
804 * have been copied. It returns a positive number (one) if the
805 * pipe needs to be filled with more data, zero if the required
806 * number of bytes have been copied and -errno on error.
808 * This, together with splice_from_pipe_{begin,end,next}, may be
809 * used to implement the functionality of __splice_from_pipe() when
810 * locking is required around copying the pipe buffers to the
813 int splice_from_pipe_feed(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
818 while (pipe
->nrbufs
) {
819 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
820 const struct pipe_buf_operations
*ops
= buf
->ops
;
823 if (sd
->len
> sd
->total_len
)
824 sd
->len
= sd
->total_len
;
826 ret
= buf
->ops
->confirm(pipe
, buf
);
833 ret
= actor(pipe
, buf
, sd
);
840 sd
->num_spliced
+= ret
;
843 sd
->total_len
-= ret
;
847 ops
->release(pipe
, buf
);
848 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (pipe
->buffers
- 1);
851 sd
->need_wakeup
= true;
860 EXPORT_SYMBOL(splice_from_pipe_feed
);
863 * splice_from_pipe_next - wait for some data to splice from
864 * @pipe: pipe to splice from
865 * @sd: information about the splice operation
868 * This function will wait for some data and return a positive
869 * value (one) if pipe buffers are available. It will return zero
870 * or -errno if no more data needs to be spliced.
872 int splice_from_pipe_next(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
874 while (!pipe
->nrbufs
) {
878 if (!pipe
->waiting_writers
&& sd
->num_spliced
)
881 if (sd
->flags
& SPLICE_F_NONBLOCK
)
884 if (signal_pending(current
))
887 if (sd
->need_wakeup
) {
888 wakeup_pipe_writers(pipe
);
889 sd
->need_wakeup
= false;
897 EXPORT_SYMBOL(splice_from_pipe_next
);
900 * splice_from_pipe_begin - start splicing from pipe
901 * @sd: information about the splice operation
904 * This function should be called before a loop containing
905 * splice_from_pipe_next() and splice_from_pipe_feed() to
906 * initialize the necessary fields of @sd.
908 void splice_from_pipe_begin(struct splice_desc
*sd
)
911 sd
->need_wakeup
= false;
913 EXPORT_SYMBOL(splice_from_pipe_begin
);
916 * splice_from_pipe_end - finish splicing from pipe
917 * @pipe: pipe to splice from
918 * @sd: information about the splice operation
921 * This function will wake up pipe writers if necessary. It should
922 * be called after a loop containing splice_from_pipe_next() and
923 * splice_from_pipe_feed().
925 void splice_from_pipe_end(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
928 wakeup_pipe_writers(pipe
);
930 EXPORT_SYMBOL(splice_from_pipe_end
);
933 * __splice_from_pipe - splice data from a pipe to given actor
934 * @pipe: pipe to splice from
935 * @sd: information to @actor
936 * @actor: handler that splices the data
939 * This function does little more than loop over the pipe and call
940 * @actor to do the actual moving of a single struct pipe_buffer to
941 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
945 ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
950 splice_from_pipe_begin(sd
);
952 ret
= splice_from_pipe_next(pipe
, sd
);
954 ret
= splice_from_pipe_feed(pipe
, sd
, actor
);
956 splice_from_pipe_end(pipe
, sd
);
958 return sd
->num_spliced
? sd
->num_spliced
: ret
;
960 EXPORT_SYMBOL(__splice_from_pipe
);
963 * splice_from_pipe - splice data from a pipe to a file
964 * @pipe: pipe to splice from
965 * @out: file to splice to
966 * @ppos: position in @out
967 * @len: how many bytes to splice
968 * @flags: splice modifier flags
969 * @actor: handler that splices the data
972 * See __splice_from_pipe. This function locks the pipe inode,
973 * otherwise it's identical to __splice_from_pipe().
976 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
977 loff_t
*ppos
, size_t len
, unsigned int flags
,
981 struct splice_desc sd
= {
989 ret
= __splice_from_pipe(pipe
, &sd
, actor
);
996 * generic_file_splice_write - splice data from a pipe to a file
998 * @out: file to write to
999 * @ppos: position in @out
1000 * @len: number of bytes to splice
1001 * @flags: splice modifier flags
1004 * Will either move or copy pages (determined by @flags options) from
1005 * the given pipe inode to the given file.
1009 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
1010 loff_t
*ppos
, size_t len
, unsigned int flags
)
1012 struct address_space
*mapping
= out
->f_mapping
;
1013 struct inode
*inode
= mapping
->host
;
1014 struct splice_desc sd
= {
1020 ret
= generic_write_checks(out
, ppos
, &len
, S_ISBLK(inode
->i_mode
));
1028 splice_from_pipe_begin(&sd
);
1030 ret
= splice_from_pipe_next(pipe
, &sd
);
1034 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1035 ret
= file_remove_suid(out
);
1037 ret
= file_update_time(out
);
1039 ret
= splice_from_pipe_feed(pipe
, &sd
,
1042 mutex_unlock(&inode
->i_mutex
);
1044 splice_from_pipe_end(pipe
, &sd
);
1049 ret
= sd
.num_spliced
;
1054 err
= generic_write_sync(out
, *ppos
, ret
);
1059 balance_dirty_pages_ratelimited(mapping
);
1065 EXPORT_SYMBOL(generic_file_splice_write
);
1067 static int write_pipe_buf(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1068 struct splice_desc
*sd
)
1072 loff_t tmp
= sd
->pos
;
1074 data
= buf
->ops
->map(pipe
, buf
, 0);
1075 ret
= __kernel_write(sd
->u
.file
, data
+ buf
->offset
, sd
->len
, &tmp
);
1076 buf
->ops
->unmap(pipe
, buf
, data
);
1081 static ssize_t
default_file_splice_write(struct pipe_inode_info
*pipe
,
1082 struct file
*out
, loff_t
*ppos
,
1083 size_t len
, unsigned int flags
)
1087 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, write_pipe_buf
);
1095 * generic_splice_sendpage - splice data from a pipe to a socket
1096 * @pipe: pipe to splice from
1097 * @out: socket to write to
1098 * @ppos: position in @out
1099 * @len: number of bytes to splice
1100 * @flags: splice modifier flags
1103 * Will send @len bytes from the pipe to a network socket. No data copying
1107 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
1108 loff_t
*ppos
, size_t len
, unsigned int flags
)
1110 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
1113 EXPORT_SYMBOL(generic_splice_sendpage
);
1116 * Attempt to initiate a splice from pipe to file.
1118 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
1119 loff_t
*ppos
, size_t len
, unsigned int flags
)
1121 ssize_t (*splice_write
)(struct pipe_inode_info
*, struct file
*,
1122 loff_t
*, size_t, unsigned int);
1125 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
1128 if (unlikely(out
->f_flags
& O_APPEND
))
1131 ret
= rw_verify_area(WRITE
, out
, ppos
, len
);
1132 if (unlikely(ret
< 0))
1135 if (out
->f_op
&& out
->f_op
->splice_write
)
1136 splice_write
= out
->f_op
->splice_write
;
1138 splice_write
= default_file_splice_write
;
1140 file_start_write(out
);
1141 ret
= splice_write(pipe
, out
, ppos
, len
, flags
);
1142 file_end_write(out
);
1147 * Attempt to initiate a splice from a file to a pipe.
1149 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
1150 struct pipe_inode_info
*pipe
, size_t len
,
1153 ssize_t (*splice_read
)(struct file
*, loff_t
*,
1154 struct pipe_inode_info
*, size_t, unsigned int);
1157 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
1160 ret
= rw_verify_area(READ
, in
, ppos
, len
);
1161 if (unlikely(ret
< 0))
1164 if (in
->f_op
&& in
->f_op
->splice_read
)
1165 splice_read
= in
->f_op
->splice_read
;
1167 splice_read
= default_file_splice_read
;
1169 return splice_read(in
, ppos
, pipe
, len
, flags
);
1173 * splice_direct_to_actor - splices data directly between two non-pipes
1174 * @in: file to splice from
1175 * @sd: actor information on where to splice to
1176 * @actor: handles the data splicing
1179 * This is a special case helper to splice directly between two
1180 * points, without requiring an explicit pipe. Internally an allocated
1181 * pipe is cached in the process, and reused during the lifetime of
1185 ssize_t
splice_direct_to_actor(struct file
*in
, struct splice_desc
*sd
,
1186 splice_direct_actor
*actor
)
1188 struct pipe_inode_info
*pipe
;
1195 * We require the input being a regular file, as we don't want to
1196 * randomly drop data for eg socket -> socket splicing. Use the
1197 * piped splicing for that!
1199 i_mode
= file_inode(in
)->i_mode
;
1200 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
1204 * neither in nor out is a pipe, setup an internal pipe attached to
1205 * 'out' and transfer the wanted data from 'in' to 'out' through that
1207 pipe
= current
->splice_pipe
;
1208 if (unlikely(!pipe
)) {
1209 pipe
= alloc_pipe_info();
1214 * We don't have an immediate reader, but we'll read the stuff
1215 * out of the pipe right after the splice_to_pipe(). So set
1216 * PIPE_READERS appropriately.
1220 current
->splice_pipe
= pipe
;
1228 len
= sd
->total_len
;
1232 * Don't block on output, we have to drain the direct pipe.
1234 sd
->flags
&= ~SPLICE_F_NONBLOCK
;
1238 loff_t pos
= sd
->pos
, prev_pos
= pos
;
1240 ret
= do_splice_to(in
, &pos
, pipe
, len
, flags
);
1241 if (unlikely(ret
<= 0))
1245 sd
->total_len
= read_len
;
1248 * NOTE: nonblocking mode only applies to the input. We
1249 * must not do the output in nonblocking mode as then we
1250 * could get stuck data in the internal pipe:
1252 ret
= actor(pipe
, sd
);
1253 if (unlikely(ret
<= 0)) {
1262 if (ret
< read_len
) {
1263 sd
->pos
= prev_pos
+ ret
;
1269 pipe
->nrbufs
= pipe
->curbuf
= 0;
1275 * If we did an incomplete transfer we must release
1276 * the pipe buffers in question:
1278 for (i
= 0; i
< pipe
->buffers
; i
++) {
1279 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1282 buf
->ops
->release(pipe
, buf
);
1292 EXPORT_SYMBOL(splice_direct_to_actor
);
1294 static int direct_splice_actor(struct pipe_inode_info
*pipe
,
1295 struct splice_desc
*sd
)
1297 struct file
*file
= sd
->u
.file
;
1299 return do_splice_from(pipe
, file
, sd
->opos
, sd
->total_len
,
1304 * do_splice_direct - splices data directly between two files
1305 * @in: file to splice from
1306 * @ppos: input file offset
1307 * @out: file to splice to
1308 * @opos: output file offset
1309 * @len: number of bytes to splice
1310 * @flags: splice modifier flags
1313 * For use by do_sendfile(). splice can easily emulate sendfile, but
1314 * doing it in the application would incur an extra system call
1315 * (splice in + splice out, as compared to just sendfile()). So this helper
1316 * can splice directly through a process-private pipe.
1319 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
1320 loff_t
*opos
, size_t len
, unsigned int flags
)
1322 struct splice_desc sd
= {
1332 ret
= splice_direct_to_actor(in
, &sd
, direct_splice_actor
);
1339 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1340 struct pipe_inode_info
*opipe
,
1341 size_t len
, unsigned int flags
);
1344 * Determine where to splice to/from.
1346 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1347 struct file
*out
, loff_t __user
*off_out
,
1348 size_t len
, unsigned int flags
)
1350 struct pipe_inode_info
*ipipe
;
1351 struct pipe_inode_info
*opipe
;
1355 ipipe
= get_pipe_info(in
);
1356 opipe
= get_pipe_info(out
);
1358 if (ipipe
&& opipe
) {
1359 if (off_in
|| off_out
)
1362 if (!(in
->f_mode
& FMODE_READ
))
1365 if (!(out
->f_mode
& FMODE_WRITE
))
1368 /* Splicing to self would be fun, but... */
1372 return splice_pipe_to_pipe(ipipe
, opipe
, len
, flags
);
1379 if (!(out
->f_mode
& FMODE_PWRITE
))
1381 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1384 offset
= out
->f_pos
;
1387 ret
= do_splice_from(ipipe
, out
, &offset
, len
, flags
);
1390 out
->f_pos
= offset
;
1391 else if (copy_to_user(off_out
, &offset
, sizeof(loff_t
)))
1401 if (!(in
->f_mode
& FMODE_PREAD
))
1403 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1409 ret
= do_splice_to(in
, &offset
, opipe
, len
, flags
);
1413 else if (copy_to_user(off_in
, &offset
, sizeof(loff_t
)))
1423 * Map an iov into an array of pages and offset/length tupples. With the
1424 * partial_page structure, we can map several non-contiguous ranges into
1425 * our ones pages[] map instead of splitting that operation into pieces.
1426 * Could easily be exported as a generic helper for other users, in which
1427 * case one would probably want to add a 'max_nr_pages' parameter as well.
1429 static int get_iovec_page_array(const struct iovec __user
*iov
,
1430 unsigned int nr_vecs
, struct page
**pages
,
1431 struct partial_page
*partial
, bool aligned
,
1432 unsigned int pipe_buffers
)
1434 int buffers
= 0, error
= 0;
1437 unsigned long off
, npages
;
1444 if (copy_from_user(&entry
, iov
, sizeof(entry
)))
1447 base
= entry
.iov_base
;
1448 len
= entry
.iov_len
;
1451 * Sanity check this iovec. 0 read succeeds.
1457 if (!access_ok(VERIFY_READ
, base
, len
))
1461 * Get this base offset and number of pages, then map
1462 * in the user pages.
1464 off
= (unsigned long) base
& ~PAGE_MASK
;
1467 * If asked for alignment, the offset must be zero and the
1468 * length a multiple of the PAGE_SIZE.
1471 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1474 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1475 if (npages
> pipe_buffers
- buffers
)
1476 npages
= pipe_buffers
- buffers
;
1478 error
= get_user_pages_fast((unsigned long)base
, npages
,
1479 0, &pages
[buffers
]);
1481 if (unlikely(error
<= 0))
1485 * Fill this contiguous range into the partial page map.
1487 for (i
= 0; i
< error
; i
++) {
1488 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1490 partial
[buffers
].offset
= off
;
1491 partial
[buffers
].len
= plen
;
1499 * We didn't complete this iov, stop here since it probably
1500 * means we have to move some of this into a pipe to
1501 * be able to continue.
1507 * Don't continue if we mapped fewer pages than we asked for,
1508 * or if we mapped the max number of pages that we have
1511 if (error
< npages
|| buffers
== pipe_buffers
)
1524 static int pipe_to_user(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1525 struct splice_desc
*sd
)
1531 * See if we can use the atomic maps, by prefaulting in the
1532 * pages and doing an atomic copy
1534 if (!fault_in_pages_writeable(sd
->u
.userptr
, sd
->len
)) {
1535 src
= buf
->ops
->map(pipe
, buf
, 1);
1536 ret
= __copy_to_user_inatomic(sd
->u
.userptr
, src
+ buf
->offset
,
1538 buf
->ops
->unmap(pipe
, buf
, src
);
1546 * No dice, use slow non-atomic map and copy
1548 src
= buf
->ops
->map(pipe
, buf
, 0);
1551 if (copy_to_user(sd
->u
.userptr
, src
+ buf
->offset
, sd
->len
))
1554 buf
->ops
->unmap(pipe
, buf
, src
);
1557 sd
->u
.userptr
+= ret
;
1562 * For lack of a better implementation, implement vmsplice() to userspace
1563 * as a simple copy of the pipes pages to the user iov.
1565 static long vmsplice_to_user(struct file
*file
, const struct iovec __user
*iov
,
1566 unsigned long nr_segs
, unsigned int flags
)
1568 struct pipe_inode_info
*pipe
;
1569 struct splice_desc sd
;
1574 pipe
= get_pipe_info(file
);
1586 * Get user address base and length for this iovec.
1588 error
= get_user(base
, &iov
->iov_base
);
1589 if (unlikely(error
))
1591 error
= get_user(len
, &iov
->iov_len
);
1592 if (unlikely(error
))
1596 * Sanity check this iovec. 0 read succeeds.
1600 if (unlikely(!base
)) {
1605 if (unlikely(!access_ok(VERIFY_WRITE
, base
, len
))) {
1613 sd
.u
.userptr
= base
;
1616 size
= __splice_from_pipe(pipe
, &sd
, pipe_to_user
);
1642 * vmsplice splices a user address range into a pipe. It can be thought of
1643 * as splice-from-memory, where the regular splice is splice-from-file (or
1644 * to file). In both cases the output is a pipe, naturally.
1646 static long vmsplice_to_pipe(struct file
*file
, const struct iovec __user
*iov
,
1647 unsigned long nr_segs
, unsigned int flags
)
1649 struct pipe_inode_info
*pipe
;
1650 struct page
*pages
[PIPE_DEF_BUFFERS
];
1651 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1652 struct splice_pipe_desc spd
= {
1655 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1657 .ops
= &user_page_pipe_buf_ops
,
1658 .spd_release
= spd_release_page
,
1662 pipe
= get_pipe_info(file
);
1666 if (splice_grow_spd(pipe
, &spd
))
1669 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, spd
.pages
,
1672 if (spd
.nr_pages
<= 0)
1675 ret
= splice_to_pipe(pipe
, &spd
);
1677 splice_shrink_spd(&spd
);
1682 * Note that vmsplice only really supports true splicing _from_ user memory
1683 * to a pipe, not the other way around. Splicing from user memory is a simple
1684 * operation that can be supported without any funky alignment restrictions
1685 * or nasty vm tricks. We simply map in the user memory and fill them into
1686 * a pipe. The reverse isn't quite as easy, though. There are two possible
1687 * solutions for that:
1689 * - memcpy() the data internally, at which point we might as well just
1690 * do a regular read() on the buffer anyway.
1691 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1692 * has restriction limitations on both ends of the pipe).
1694 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1697 SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct iovec __user
*, iov
,
1698 unsigned long, nr_segs
, unsigned int, flags
)
1703 if (unlikely(nr_segs
> UIO_MAXIOV
))
1705 else if (unlikely(!nr_segs
))
1711 if (f
.file
->f_mode
& FMODE_WRITE
)
1712 error
= vmsplice_to_pipe(f
.file
, iov
, nr_segs
, flags
);
1713 else if (f
.file
->f_mode
& FMODE_READ
)
1714 error
= vmsplice_to_user(f
.file
, iov
, nr_segs
, flags
);
1722 #ifdef CONFIG_COMPAT
1723 COMPAT_SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct compat_iovec __user
*, iov32
,
1724 unsigned int, nr_segs
, unsigned int, flags
)
1727 struct iovec __user
*iov
;
1728 if (nr_segs
> UIO_MAXIOV
)
1730 iov
= compat_alloc_user_space(nr_segs
* sizeof(struct iovec
));
1731 for (i
= 0; i
< nr_segs
; i
++) {
1732 struct compat_iovec v
;
1733 if (get_user(v
.iov_base
, &iov32
[i
].iov_base
) ||
1734 get_user(v
.iov_len
, &iov32
[i
].iov_len
) ||
1735 put_user(compat_ptr(v
.iov_base
), &iov
[i
].iov_base
) ||
1736 put_user(v
.iov_len
, &iov
[i
].iov_len
))
1739 return sys_vmsplice(fd
, iov
, nr_segs
, flags
);
1743 SYSCALL_DEFINE6(splice
, int, fd_in
, loff_t __user
*, off_in
,
1744 int, fd_out
, loff_t __user
*, off_out
,
1745 size_t, len
, unsigned int, flags
)
1756 if (in
.file
->f_mode
& FMODE_READ
) {
1757 out
= fdget(fd_out
);
1759 if (out
.file
->f_mode
& FMODE_WRITE
)
1760 error
= do_splice(in
.file
, off_in
,
1772 * Make sure there's data to read. Wait for input if we can, otherwise
1773 * return an appropriate error.
1775 static int ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1780 * Check ->nrbufs without the inode lock first. This function
1781 * is speculative anyways, so missing one is ok.
1789 while (!pipe
->nrbufs
) {
1790 if (signal_pending(current
)) {
1796 if (!pipe
->waiting_writers
) {
1797 if (flags
& SPLICE_F_NONBLOCK
) {
1810 * Make sure there's writeable room. Wait for room if we can, otherwise
1811 * return an appropriate error.
1813 static int opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1818 * Check ->nrbufs without the inode lock first. This function
1819 * is speculative anyways, so missing one is ok.
1821 if (pipe
->nrbufs
< pipe
->buffers
)
1827 while (pipe
->nrbufs
>= pipe
->buffers
) {
1828 if (!pipe
->readers
) {
1829 send_sig(SIGPIPE
, current
, 0);
1833 if (flags
& SPLICE_F_NONBLOCK
) {
1837 if (signal_pending(current
)) {
1841 pipe
->waiting_writers
++;
1843 pipe
->waiting_writers
--;
1851 * Splice contents of ipipe to opipe.
1853 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1854 struct pipe_inode_info
*opipe
,
1855 size_t len
, unsigned int flags
)
1857 struct pipe_buffer
*ibuf
, *obuf
;
1859 bool input_wakeup
= false;
1863 ret
= ipipe_prep(ipipe
, flags
);
1867 ret
= opipe_prep(opipe
, flags
);
1872 * Potential ABBA deadlock, work around it by ordering lock
1873 * grabbing by pipe info address. Otherwise two different processes
1874 * could deadlock (one doing tee from A -> B, the other from B -> A).
1876 pipe_double_lock(ipipe
, opipe
);
1879 if (!opipe
->readers
) {
1880 send_sig(SIGPIPE
, current
, 0);
1886 if (!ipipe
->nrbufs
&& !ipipe
->writers
)
1890 * Cannot make any progress, because either the input
1891 * pipe is empty or the output pipe is full.
1893 if (!ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
) {
1894 /* Already processed some buffers, break */
1898 if (flags
& SPLICE_F_NONBLOCK
) {
1904 * We raced with another reader/writer and haven't
1905 * managed to process any buffers. A zero return
1906 * value means EOF, so retry instead.
1913 ibuf
= ipipe
->bufs
+ ipipe
->curbuf
;
1914 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1915 obuf
= opipe
->bufs
+ nbuf
;
1917 if (len
>= ibuf
->len
) {
1919 * Simply move the whole buffer from ipipe to opipe
1924 ipipe
->curbuf
= (ipipe
->curbuf
+ 1) & (ipipe
->buffers
- 1);
1926 input_wakeup
= true;
1929 * Get a reference to this pipe buffer,
1930 * so we can copy the contents over.
1932 ibuf
->ops
->get(ipipe
, ibuf
);
1936 * Don't inherit the gift flag, we need to
1937 * prevent multiple steals of this page.
1939 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1943 ibuf
->offset
+= obuf
->len
;
1944 ibuf
->len
-= obuf
->len
;
1954 * If we put data in the output pipe, wakeup any potential readers.
1957 wakeup_pipe_readers(opipe
);
1960 wakeup_pipe_writers(ipipe
);
1966 * Link contents of ipipe to opipe.
1968 static int link_pipe(struct pipe_inode_info
*ipipe
,
1969 struct pipe_inode_info
*opipe
,
1970 size_t len
, unsigned int flags
)
1972 struct pipe_buffer
*ibuf
, *obuf
;
1973 int ret
= 0, i
= 0, nbuf
;
1976 * Potential ABBA deadlock, work around it by ordering lock
1977 * grabbing by pipe info address. Otherwise two different processes
1978 * could deadlock (one doing tee from A -> B, the other from B -> A).
1980 pipe_double_lock(ipipe
, opipe
);
1983 if (!opipe
->readers
) {
1984 send_sig(SIGPIPE
, current
, 0);
1991 * If we have iterated all input buffers or ran out of
1992 * output room, break.
1994 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
)
1997 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (ipipe
->buffers
-1));
1998 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
2001 * Get a reference to this pipe buffer,
2002 * so we can copy the contents over.
2004 ibuf
->ops
->get(ipipe
, ibuf
);
2006 obuf
= opipe
->bufs
+ nbuf
;
2010 * Don't inherit the gift flag, we need to
2011 * prevent multiple steals of this page.
2013 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
2015 if (obuf
->len
> len
)
2025 * return EAGAIN if we have the potential of some data in the
2026 * future, otherwise just return 0
2028 if (!ret
&& ipipe
->waiting_writers
&& (flags
& SPLICE_F_NONBLOCK
))
2035 * If we put data in the output pipe, wakeup any potential readers.
2038 wakeup_pipe_readers(opipe
);
2044 * This is a tee(1) implementation that works on pipes. It doesn't copy
2045 * any data, it simply references the 'in' pages on the 'out' pipe.
2046 * The 'flags' used are the SPLICE_F_* variants, currently the only
2047 * applicable one is SPLICE_F_NONBLOCK.
2049 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
2052 struct pipe_inode_info
*ipipe
= get_pipe_info(in
);
2053 struct pipe_inode_info
*opipe
= get_pipe_info(out
);
2057 * Duplicate the contents of ipipe to opipe without actually
2060 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
2062 * Keep going, unless we encounter an error. The ipipe/opipe
2063 * ordering doesn't really matter.
2065 ret
= ipipe_prep(ipipe
, flags
);
2067 ret
= opipe_prep(opipe
, flags
);
2069 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
2076 SYSCALL_DEFINE4(tee
, int, fdin
, int, fdout
, size_t, len
, unsigned int, flags
)
2087 if (in
.file
->f_mode
& FMODE_READ
) {
2088 struct fd out
= fdget(fdout
);
2090 if (out
.file
->f_mode
& FMODE_WRITE
)
2091 error
= do_tee(in
.file
, out
.file
,