Linux 2.6.32.42
[linux/fpc-iii.git] / kernel / rcutree.c
blob683c4f3b87e0a62e391d179171018769c95ccd0e
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
50 #include "rcutree.h"
52 /* Data structures. */
54 #define RCU_STATE_INITIALIZER(name) { \
55 .level = { &name.node[0] }, \
56 .levelcnt = { \
57 NUM_RCU_LVL_0, /* root of hierarchy. */ \
58 NUM_RCU_LVL_1, \
59 NUM_RCU_LVL_2, \
60 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
61 }, \
62 .signaled = RCU_GP_IDLE, \
63 .gpnum = -300, \
64 .completed = -300, \
65 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
66 .orphan_cbs_list = NULL, \
67 .orphan_cbs_tail = &name.orphan_cbs_list, \
68 .orphan_qlen = 0, \
69 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
70 .n_force_qs = 0, \
71 .n_force_qs_ngp = 0, \
74 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
75 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
77 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
78 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
82 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
83 * permit this function to be invoked without holding the root rcu_node
84 * structure's ->lock, but of course results can be subject to change.
86 static int rcu_gp_in_progress(struct rcu_state *rsp)
88 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
92 * Note a quiescent state. Because we do not need to know
93 * how many quiescent states passed, just if there was at least
94 * one since the start of the grace period, this just sets a flag.
96 void rcu_sched_qs(int cpu)
98 struct rcu_data *rdp;
100 rdp = &per_cpu(rcu_sched_data, cpu);
101 rdp->passed_quiesc_completed = rdp->completed;
102 barrier();
103 rdp->passed_quiesc = 1;
104 rcu_preempt_note_context_switch(cpu);
107 void rcu_bh_qs(int cpu)
109 struct rcu_data *rdp;
111 rdp = &per_cpu(rcu_bh_data, cpu);
112 rdp->passed_quiesc_completed = rdp->completed;
113 barrier();
114 rdp->passed_quiesc = 1;
117 #ifdef CONFIG_NO_HZ
118 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
119 .dynticks_nesting = 1,
120 .dynticks = 1,
122 #endif /* #ifdef CONFIG_NO_HZ */
124 static int blimit = 10; /* Maximum callbacks per softirq. */
125 static int qhimark = 10000; /* If this many pending, ignore blimit. */
126 static int qlowmark = 100; /* Once only this many pending, use blimit. */
128 module_param(blimit, int, 0);
129 module_param(qhimark, int, 0);
130 module_param(qlowmark, int, 0);
132 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
133 static int rcu_pending(int cpu);
136 * Return the number of RCU-sched batches processed thus far for debug & stats.
138 long rcu_batches_completed_sched(void)
140 return rcu_sched_state.completed;
142 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
145 * Return the number of RCU BH batches processed thus far for debug & stats.
147 long rcu_batches_completed_bh(void)
149 return rcu_bh_state.completed;
151 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
154 * Does the CPU have callbacks ready to be invoked?
156 static int
157 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
159 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
163 * Does the current CPU require a yet-as-unscheduled grace period?
165 static int
166 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
168 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
172 * Return the root node of the specified rcu_state structure.
174 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
176 return &rsp->node[0];
180 * Record the specified "completed" value, which is later used to validate
181 * dynticks counter manipulations and CPU-offline checks. Specify
182 * "rsp->completed - 1" to unconditionally invalidate any future dynticks
183 * manipulations and CPU-offline checks. Such invalidation is useful at
184 * the beginning of a grace period.
186 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
188 rsp->dynticks_completed = comp;
191 #ifdef CONFIG_SMP
194 * Recall the previously recorded value of the completion for dynticks.
196 static long dyntick_recall_completed(struct rcu_state *rsp)
198 return rsp->dynticks_completed;
202 * If the specified CPU is offline, tell the caller that it is in
203 * a quiescent state. Otherwise, whack it with a reschedule IPI.
204 * Grace periods can end up waiting on an offline CPU when that
205 * CPU is in the process of coming online -- it will be added to the
206 * rcu_node bitmasks before it actually makes it online. The same thing
207 * can happen while a CPU is in the process of coming online. Because this
208 * race is quite rare, we check for it after detecting that the grace
209 * period has been delayed rather than checking each and every CPU
210 * each and every time we start a new grace period.
212 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
215 * If the CPU is offline, it is in a quiescent state. We can
216 * trust its state not to change because interrupts are disabled.
218 if (cpu_is_offline(rdp->cpu)) {
219 rdp->offline_fqs++;
220 return 1;
223 /* If preemptable RCU, no point in sending reschedule IPI. */
224 if (rdp->preemptable)
225 return 0;
227 /* The CPU is online, so send it a reschedule IPI. */
228 if (rdp->cpu != smp_processor_id())
229 smp_send_reschedule(rdp->cpu);
230 else
231 set_need_resched();
232 rdp->resched_ipi++;
233 return 0;
236 #endif /* #ifdef CONFIG_SMP */
238 #ifdef CONFIG_NO_HZ
241 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
243 * Enter nohz mode, in other words, -leave- the mode in which RCU
244 * read-side critical sections can occur. (Though RCU read-side
245 * critical sections can occur in irq handlers in nohz mode, a possibility
246 * handled by rcu_irq_enter() and rcu_irq_exit()).
248 void rcu_enter_nohz(void)
250 unsigned long flags;
251 struct rcu_dynticks *rdtp;
253 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
254 local_irq_save(flags);
255 rdtp = &__get_cpu_var(rcu_dynticks);
256 rdtp->dynticks++;
257 rdtp->dynticks_nesting--;
258 WARN_ON_ONCE(rdtp->dynticks & 0x1);
259 local_irq_restore(flags);
263 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
265 * Exit nohz mode, in other words, -enter- the mode in which RCU
266 * read-side critical sections normally occur.
268 void rcu_exit_nohz(void)
270 unsigned long flags;
271 struct rcu_dynticks *rdtp;
273 local_irq_save(flags);
274 rdtp = &__get_cpu_var(rcu_dynticks);
275 rdtp->dynticks++;
276 rdtp->dynticks_nesting++;
277 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
278 local_irq_restore(flags);
279 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
283 * rcu_nmi_enter - inform RCU of entry to NMI context
285 * If the CPU was idle with dynamic ticks active, and there is no
286 * irq handler running, this updates rdtp->dynticks_nmi to let the
287 * RCU grace-period handling know that the CPU is active.
289 void rcu_nmi_enter(void)
291 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
293 if (rdtp->dynticks & 0x1)
294 return;
295 rdtp->dynticks_nmi++;
296 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
297 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
301 * rcu_nmi_exit - inform RCU of exit from NMI context
303 * If the CPU was idle with dynamic ticks active, and there is no
304 * irq handler running, this updates rdtp->dynticks_nmi to let the
305 * RCU grace-period handling know that the CPU is no longer active.
307 void rcu_nmi_exit(void)
309 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
311 if (rdtp->dynticks & 0x1)
312 return;
313 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
314 rdtp->dynticks_nmi++;
315 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
319 * rcu_irq_enter - inform RCU of entry to hard irq context
321 * If the CPU was idle with dynamic ticks active, this updates the
322 * rdtp->dynticks to let the RCU handling know that the CPU is active.
324 void rcu_irq_enter(void)
326 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
328 if (rdtp->dynticks_nesting++)
329 return;
330 rdtp->dynticks++;
331 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
332 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
336 * rcu_irq_exit - inform RCU of exit from hard irq context
338 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
339 * to put let the RCU handling be aware that the CPU is going back to idle
340 * with no ticks.
342 void rcu_irq_exit(void)
344 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
346 if (--rdtp->dynticks_nesting)
347 return;
348 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
349 rdtp->dynticks++;
350 WARN_ON_ONCE(rdtp->dynticks & 0x1);
352 /* If the interrupt queued a callback, get out of dyntick mode. */
353 if (__get_cpu_var(rcu_sched_data).nxtlist ||
354 __get_cpu_var(rcu_bh_data).nxtlist)
355 set_need_resched();
358 #ifdef CONFIG_SMP
361 * Snapshot the specified CPU's dynticks counter so that we can later
362 * credit them with an implicit quiescent state. Return 1 if this CPU
363 * is in dynticks idle mode, which is an extended quiescent state.
365 static int dyntick_save_progress_counter(struct rcu_data *rdp)
367 int ret;
368 int snap;
369 int snap_nmi;
371 snap = rdp->dynticks->dynticks;
372 snap_nmi = rdp->dynticks->dynticks_nmi;
373 smp_mb(); /* Order sampling of snap with end of grace period. */
374 rdp->dynticks_snap = snap;
375 rdp->dynticks_nmi_snap = snap_nmi;
376 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
377 if (ret)
378 rdp->dynticks_fqs++;
379 return ret;
383 * Return true if the specified CPU has passed through a quiescent
384 * state by virtue of being in or having passed through an dynticks
385 * idle state since the last call to dyntick_save_progress_counter()
386 * for this same CPU.
388 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
390 long curr;
391 long curr_nmi;
392 long snap;
393 long snap_nmi;
395 curr = rdp->dynticks->dynticks;
396 snap = rdp->dynticks_snap;
397 curr_nmi = rdp->dynticks->dynticks_nmi;
398 snap_nmi = rdp->dynticks_nmi_snap;
399 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
402 * If the CPU passed through or entered a dynticks idle phase with
403 * no active irq/NMI handlers, then we can safely pretend that the CPU
404 * already acknowledged the request to pass through a quiescent
405 * state. Either way, that CPU cannot possibly be in an RCU
406 * read-side critical section that started before the beginning
407 * of the current RCU grace period.
409 if ((curr != snap || (curr & 0x1) == 0) &&
410 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
411 rdp->dynticks_fqs++;
412 return 1;
415 /* Go check for the CPU being offline. */
416 return rcu_implicit_offline_qs(rdp);
419 #endif /* #ifdef CONFIG_SMP */
421 #else /* #ifdef CONFIG_NO_HZ */
423 #ifdef CONFIG_SMP
425 static int dyntick_save_progress_counter(struct rcu_data *rdp)
427 return 0;
430 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
432 return rcu_implicit_offline_qs(rdp);
435 #endif /* #ifdef CONFIG_SMP */
437 #endif /* #else #ifdef CONFIG_NO_HZ */
439 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
441 static void record_gp_stall_check_time(struct rcu_state *rsp)
443 rsp->gp_start = jiffies;
444 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
447 static void print_other_cpu_stall(struct rcu_state *rsp)
449 int cpu;
450 long delta;
451 unsigned long flags;
452 struct rcu_node *rnp = rcu_get_root(rsp);
454 /* Only let one CPU complain about others per time interval. */
456 spin_lock_irqsave(&rnp->lock, flags);
457 delta = jiffies - rsp->jiffies_stall;
458 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
459 spin_unlock_irqrestore(&rnp->lock, flags);
460 return;
462 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
465 * Now rat on any tasks that got kicked up to the root rcu_node
466 * due to CPU offlining.
468 rcu_print_task_stall(rnp);
469 spin_unlock_irqrestore(&rnp->lock, flags);
471 /* OK, time to rat on our buddy... */
473 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
474 rcu_for_each_leaf_node(rsp, rnp) {
475 rcu_print_task_stall(rnp);
476 if (rnp->qsmask == 0)
477 continue;
478 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
479 if (rnp->qsmask & (1UL << cpu))
480 printk(" %d", rnp->grplo + cpu);
482 printk(" (detected by %d, t=%ld jiffies)\n",
483 smp_processor_id(), (long)(jiffies - rsp->gp_start));
484 trigger_all_cpu_backtrace();
486 force_quiescent_state(rsp, 0); /* Kick them all. */
489 static void print_cpu_stall(struct rcu_state *rsp)
491 unsigned long flags;
492 struct rcu_node *rnp = rcu_get_root(rsp);
494 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
495 smp_processor_id(), jiffies - rsp->gp_start);
496 trigger_all_cpu_backtrace();
498 spin_lock_irqsave(&rnp->lock, flags);
499 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
500 rsp->jiffies_stall =
501 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
502 spin_unlock_irqrestore(&rnp->lock, flags);
504 set_need_resched(); /* kick ourselves to get things going. */
507 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
509 long delta;
510 struct rcu_node *rnp;
512 delta = jiffies - rsp->jiffies_stall;
513 rnp = rdp->mynode;
514 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
516 /* We haven't checked in, so go dump stack. */
517 print_cpu_stall(rsp);
519 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
521 /* They had two time units to dump stack, so complain. */
522 print_other_cpu_stall(rsp);
526 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
528 static void record_gp_stall_check_time(struct rcu_state *rsp)
532 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
536 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
539 * Update CPU-local rcu_data state to record the newly noticed grace period.
540 * This is used both when we started the grace period and when we notice
541 * that someone else started the grace period. The caller must hold the
542 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
543 * and must have irqs disabled.
545 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
547 if (rdp->gpnum != rnp->gpnum) {
548 rdp->qs_pending = 1;
549 rdp->passed_quiesc = 0;
550 rdp->gpnum = rnp->gpnum;
554 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
556 unsigned long flags;
557 struct rcu_node *rnp;
559 local_irq_save(flags);
560 rnp = rdp->mynode;
561 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
562 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
563 local_irq_restore(flags);
564 return;
566 __note_new_gpnum(rsp, rnp, rdp);
567 spin_unlock_irqrestore(&rnp->lock, flags);
571 * Did someone else start a new RCU grace period start since we last
572 * checked? Update local state appropriately if so. Must be called
573 * on the CPU corresponding to rdp.
575 static int
576 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
578 unsigned long flags;
579 int ret = 0;
581 local_irq_save(flags);
582 if (rdp->gpnum != rsp->gpnum) {
583 note_new_gpnum(rsp, rdp);
584 ret = 1;
586 local_irq_restore(flags);
587 return ret;
591 * Advance this CPU's callbacks, but only if the current grace period
592 * has ended. This may be called only from the CPU to whom the rdp
593 * belongs. In addition, the corresponding leaf rcu_node structure's
594 * ->lock must be held by the caller, with irqs disabled.
596 static void
597 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
599 /* Did another grace period end? */
600 if (rdp->completed != rnp->completed) {
602 /* Advance callbacks. No harm if list empty. */
603 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
604 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
605 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
607 /* Remember that we saw this grace-period completion. */
608 rdp->completed = rnp->completed;
613 * Advance this CPU's callbacks, but only if the current grace period
614 * has ended. This may be called only from the CPU to whom the rdp
615 * belongs.
617 static void
618 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
620 unsigned long flags;
621 struct rcu_node *rnp;
623 local_irq_save(flags);
624 rnp = rdp->mynode;
625 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
626 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
627 local_irq_restore(flags);
628 return;
630 __rcu_process_gp_end(rsp, rnp, rdp);
631 spin_unlock_irqrestore(&rnp->lock, flags);
635 * Do per-CPU grace-period initialization for running CPU. The caller
636 * must hold the lock of the leaf rcu_node structure corresponding to
637 * this CPU.
639 static void
640 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
642 /* Prior grace period ended, so advance callbacks for current CPU. */
643 __rcu_process_gp_end(rsp, rnp, rdp);
646 * Because this CPU just now started the new grace period, we know
647 * that all of its callbacks will be covered by this upcoming grace
648 * period, even the ones that were registered arbitrarily recently.
649 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
651 * Other CPUs cannot be sure exactly when the grace period started.
652 * Therefore, their recently registered callbacks must pass through
653 * an additional RCU_NEXT_READY stage, so that they will be handled
654 * by the next RCU grace period.
656 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
657 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
659 /* Set state so that this CPU will detect the next quiescent state. */
660 __note_new_gpnum(rsp, rnp, rdp);
664 * Start a new RCU grace period if warranted, re-initializing the hierarchy
665 * in preparation for detecting the next grace period. The caller must hold
666 * the root node's ->lock, which is released before return. Hard irqs must
667 * be disabled.
669 static void
670 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
671 __releases(rcu_get_root(rsp)->lock)
673 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
674 struct rcu_node *rnp = rcu_get_root(rsp);
676 if (!cpu_needs_another_gp(rsp, rdp)) {
677 spin_unlock_irqrestore(&rnp->lock, flags);
678 return;
681 /* Advance to a new grace period and initialize state. */
682 rsp->gpnum++;
683 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
684 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
685 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
686 record_gp_stall_check_time(rsp);
687 dyntick_record_completed(rsp, rsp->completed - 1);
689 /* Special-case the common single-level case. */
690 if (NUM_RCU_NODES == 1) {
691 rcu_preempt_check_blocked_tasks(rnp);
692 rnp->qsmask = rnp->qsmaskinit;
693 rnp->gpnum = rsp->gpnum;
694 rnp->completed = rsp->completed;
695 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
696 rcu_start_gp_per_cpu(rsp, rnp, rdp);
697 spin_unlock_irqrestore(&rnp->lock, flags);
698 return;
701 spin_unlock(&rnp->lock); /* leave irqs disabled. */
704 /* Exclude any concurrent CPU-hotplug operations. */
705 spin_lock(&rsp->onofflock); /* irqs already disabled. */
708 * Set the quiescent-state-needed bits in all the rcu_node
709 * structures for all currently online CPUs in breadth-first
710 * order, starting from the root rcu_node structure. This
711 * operation relies on the layout of the hierarchy within the
712 * rsp->node[] array. Note that other CPUs will access only
713 * the leaves of the hierarchy, which still indicate that no
714 * grace period is in progress, at least until the corresponding
715 * leaf node has been initialized. In addition, we have excluded
716 * CPU-hotplug operations.
718 * Note that the grace period cannot complete until we finish
719 * the initialization process, as there will be at least one
720 * qsmask bit set in the root node until that time, namely the
721 * one corresponding to this CPU, due to the fact that we have
722 * irqs disabled.
724 rcu_for_each_node_breadth_first(rsp, rnp) {
725 spin_lock(&rnp->lock); /* irqs already disabled. */
726 rcu_preempt_check_blocked_tasks(rnp);
727 rnp->qsmask = rnp->qsmaskinit;
728 rnp->gpnum = rsp->gpnum;
729 rnp->completed = rsp->completed;
730 if (rnp == rdp->mynode)
731 rcu_start_gp_per_cpu(rsp, rnp, rdp);
732 spin_unlock(&rnp->lock); /* irqs remain disabled. */
735 rnp = rcu_get_root(rsp);
736 spin_lock(&rnp->lock); /* irqs already disabled. */
737 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
738 spin_unlock(&rnp->lock); /* irqs remain disabled. */
739 spin_unlock_irqrestore(&rsp->onofflock, flags);
743 * Clean up after the prior grace period and let rcu_start_gp() start up
744 * the next grace period if one is needed. Note that the caller must
745 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
747 static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
748 __releases(rcu_get_root(rsp)->lock)
750 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
751 rsp->completed = rsp->gpnum;
752 rsp->signaled = RCU_GP_IDLE;
753 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
757 * Similar to cpu_quiet(), for which it is a helper function. Allows
758 * a group of CPUs to be quieted at one go, though all the CPUs in the
759 * group must be represented by the same leaf rcu_node structure.
760 * That structure's lock must be held upon entry, and it is released
761 * before return.
763 static void
764 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
765 unsigned long flags)
766 __releases(rnp->lock)
768 struct rcu_node *rnp_c;
770 /* Walk up the rcu_node hierarchy. */
771 for (;;) {
772 if (!(rnp->qsmask & mask)) {
774 /* Our bit has already been cleared, so done. */
775 spin_unlock_irqrestore(&rnp->lock, flags);
776 return;
778 rnp->qsmask &= ~mask;
779 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
781 /* Other bits still set at this level, so done. */
782 spin_unlock_irqrestore(&rnp->lock, flags);
783 return;
785 mask = rnp->grpmask;
786 if (rnp->parent == NULL) {
788 /* No more levels. Exit loop holding root lock. */
790 break;
792 spin_unlock_irqrestore(&rnp->lock, flags);
793 rnp_c = rnp;
794 rnp = rnp->parent;
795 spin_lock_irqsave(&rnp->lock, flags);
796 WARN_ON_ONCE(rnp_c->qsmask);
800 * Get here if we are the last CPU to pass through a quiescent
801 * state for this grace period. Invoke cpu_quiet_msk_finish()
802 * to clean up and start the next grace period if one is needed.
804 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
808 * Record a quiescent state for the specified CPU, which must either be
809 * the current CPU. The lastcomp argument is used to make sure we are
810 * still in the grace period of interest. We don't want to end the current
811 * grace period based on quiescent states detected in an earlier grace
812 * period!
814 static void
815 cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
817 unsigned long flags;
818 unsigned long mask;
819 struct rcu_node *rnp;
821 rnp = rdp->mynode;
822 spin_lock_irqsave(&rnp->lock, flags);
823 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
826 * Someone beat us to it for this grace period, so leave.
827 * The race with GP start is resolved by the fact that we
828 * hold the leaf rcu_node lock, so that the per-CPU bits
829 * cannot yet be initialized -- so we would simply find our
830 * CPU's bit already cleared in cpu_quiet_msk() if this race
831 * occurred.
833 rdp->passed_quiesc = 0; /* try again later! */
834 spin_unlock_irqrestore(&rnp->lock, flags);
835 return;
837 mask = rdp->grpmask;
838 if ((rnp->qsmask & mask) == 0) {
839 spin_unlock_irqrestore(&rnp->lock, flags);
840 } else {
841 rdp->qs_pending = 0;
844 * This GP can't end until cpu checks in, so all of our
845 * callbacks can be processed during the next GP.
847 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
849 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
854 * Check to see if there is a new grace period of which this CPU
855 * is not yet aware, and if so, set up local rcu_data state for it.
856 * Otherwise, see if this CPU has just passed through its first
857 * quiescent state for this grace period, and record that fact if so.
859 static void
860 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
862 /* If there is now a new grace period, record and return. */
863 if (check_for_new_grace_period(rsp, rdp))
864 return;
867 * Does this CPU still need to do its part for current grace period?
868 * If no, return and let the other CPUs do their part as well.
870 if (!rdp->qs_pending)
871 return;
874 * Was there a quiescent state since the beginning of the grace
875 * period? If no, then exit and wait for the next call.
877 if (!rdp->passed_quiesc)
878 return;
880 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
881 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
884 #ifdef CONFIG_HOTPLUG_CPU
887 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
888 * specified flavor of RCU. The callbacks will be adopted by the next
889 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
890 * comes first. Because this is invoked from the CPU_DYING notifier,
891 * irqs are already disabled.
893 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
895 int i;
896 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
898 if (rdp->nxtlist == NULL)
899 return; /* irqs disabled, so comparison is stable. */
900 spin_lock(&rsp->onofflock); /* irqs already disabled. */
901 *rsp->orphan_cbs_tail = rdp->nxtlist;
902 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
903 rdp->nxtlist = NULL;
904 for (i = 0; i < RCU_NEXT_SIZE; i++)
905 rdp->nxttail[i] = &rdp->nxtlist;
906 rsp->orphan_qlen += rdp->qlen;
907 rdp->qlen = 0;
908 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
912 * Adopt previously orphaned RCU callbacks.
914 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
916 unsigned long flags;
917 struct rcu_data *rdp;
919 spin_lock_irqsave(&rsp->onofflock, flags);
920 rdp = rsp->rda[smp_processor_id()];
921 if (rsp->orphan_cbs_list == NULL) {
922 spin_unlock_irqrestore(&rsp->onofflock, flags);
923 return;
925 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
926 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
927 rdp->qlen += rsp->orphan_qlen;
928 rsp->orphan_cbs_list = NULL;
929 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
930 rsp->orphan_qlen = 0;
931 spin_unlock_irqrestore(&rsp->onofflock, flags);
935 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
936 * and move all callbacks from the outgoing CPU to the current one.
938 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
940 unsigned long flags;
941 long lastcomp;
942 unsigned long mask;
943 struct rcu_data *rdp = rsp->rda[cpu];
944 struct rcu_node *rnp;
946 /* Exclude any attempts to start a new grace period. */
947 spin_lock_irqsave(&rsp->onofflock, flags);
949 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
950 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
951 mask = rdp->grpmask; /* rnp->grplo is constant. */
952 do {
953 spin_lock(&rnp->lock); /* irqs already disabled. */
954 rnp->qsmaskinit &= ~mask;
955 if (rnp->qsmaskinit != 0) {
956 spin_unlock(&rnp->lock); /* irqs remain disabled. */
957 break;
961 * If there was a task blocking the current grace period,
962 * and if all CPUs have checked in, we need to propagate
963 * the quiescent state up the rcu_node hierarchy. But that
964 * is inconvenient at the moment due to deadlock issues if
965 * this should end the current grace period. So set the
966 * offlined CPU's bit in ->qsmask in order to force the
967 * next force_quiescent_state() invocation to clean up this
968 * mess in a deadlock-free manner.
970 if (rcu_preempt_offline_tasks(rsp, rnp, rdp) && !rnp->qsmask)
971 rnp->qsmask |= mask;
973 mask = rnp->grpmask;
974 spin_unlock(&rnp->lock); /* irqs remain disabled. */
975 rnp = rnp->parent;
976 } while (rnp != NULL);
977 lastcomp = rsp->completed;
979 spin_unlock_irqrestore(&rsp->onofflock, flags);
981 rcu_adopt_orphan_cbs(rsp);
985 * Remove the specified CPU from the RCU hierarchy and move any pending
986 * callbacks that it might have to the current CPU. This code assumes
987 * that at least one CPU in the system will remain running at all times.
988 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
990 static void rcu_offline_cpu(int cpu)
992 __rcu_offline_cpu(cpu, &rcu_sched_state);
993 __rcu_offline_cpu(cpu, &rcu_bh_state);
994 rcu_preempt_offline_cpu(cpu);
997 #else /* #ifdef CONFIG_HOTPLUG_CPU */
999 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1003 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1007 static void rcu_offline_cpu(int cpu)
1011 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1014 * Invoke any RCU callbacks that have made it to the end of their grace
1015 * period. Thottle as specified by rdp->blimit.
1017 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1019 unsigned long flags;
1020 struct rcu_head *next, *list, **tail;
1021 int count;
1023 /* If no callbacks are ready, just return.*/
1024 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1025 return;
1028 * Extract the list of ready callbacks, disabling to prevent
1029 * races with call_rcu() from interrupt handlers.
1031 local_irq_save(flags);
1032 list = rdp->nxtlist;
1033 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1034 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1035 tail = rdp->nxttail[RCU_DONE_TAIL];
1036 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1037 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1038 rdp->nxttail[count] = &rdp->nxtlist;
1039 local_irq_restore(flags);
1041 /* Invoke callbacks. */
1042 count = 0;
1043 while (list) {
1044 next = list->next;
1045 prefetch(next);
1046 list->func(list);
1047 list = next;
1048 if (++count >= rdp->blimit)
1049 break;
1052 local_irq_save(flags);
1054 /* Update count, and requeue any remaining callbacks. */
1055 rdp->qlen -= count;
1056 if (list != NULL) {
1057 *tail = rdp->nxtlist;
1058 rdp->nxtlist = list;
1059 for (count = 0; count < RCU_NEXT_SIZE; count++)
1060 if (&rdp->nxtlist == rdp->nxttail[count])
1061 rdp->nxttail[count] = tail;
1062 else
1063 break;
1066 /* Reinstate batch limit if we have worked down the excess. */
1067 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1068 rdp->blimit = blimit;
1070 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1071 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1072 rdp->qlen_last_fqs_check = 0;
1073 rdp->n_force_qs_snap = rsp->n_force_qs;
1074 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1075 rdp->qlen_last_fqs_check = rdp->qlen;
1077 local_irq_restore(flags);
1079 /* Re-raise the RCU softirq if there are callbacks remaining. */
1080 if (cpu_has_callbacks_ready_to_invoke(rdp))
1081 raise_softirq(RCU_SOFTIRQ);
1085 * Check to see if this CPU is in a non-context-switch quiescent state
1086 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1087 * Also schedule the RCU softirq handler.
1089 * This function must be called with hardirqs disabled. It is normally
1090 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1091 * false, there is no point in invoking rcu_check_callbacks().
1093 void rcu_check_callbacks(int cpu, int user)
1095 if (!rcu_pending(cpu))
1096 return; /* if nothing for RCU to do. */
1097 if (user ||
1098 (idle_cpu(cpu) && rcu_scheduler_active &&
1099 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1102 * Get here if this CPU took its interrupt from user
1103 * mode or from the idle loop, and if this is not a
1104 * nested interrupt. In this case, the CPU is in
1105 * a quiescent state, so note it.
1107 * No memory barrier is required here because both
1108 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1109 * variables that other CPUs neither access nor modify,
1110 * at least not while the corresponding CPU is online.
1113 rcu_sched_qs(cpu);
1114 rcu_bh_qs(cpu);
1116 } else if (!in_softirq()) {
1119 * Get here if this CPU did not take its interrupt from
1120 * softirq, in other words, if it is not interrupting
1121 * a rcu_bh read-side critical section. This is an _bh
1122 * critical section, so note it.
1125 rcu_bh_qs(cpu);
1127 rcu_preempt_check_callbacks(cpu);
1128 raise_softirq(RCU_SOFTIRQ);
1131 #ifdef CONFIG_SMP
1134 * Scan the leaf rcu_node structures, processing dyntick state for any that
1135 * have not yet encountered a quiescent state, using the function specified.
1136 * Returns 1 if the current grace period ends while scanning (possibly
1137 * because we made it end).
1139 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1140 int (*f)(struct rcu_data *))
1142 unsigned long bit;
1143 int cpu;
1144 unsigned long flags;
1145 unsigned long mask;
1146 struct rcu_node *rnp;
1148 rcu_for_each_leaf_node(rsp, rnp) {
1149 mask = 0;
1150 spin_lock_irqsave(&rnp->lock, flags);
1151 if (rsp->completed != lastcomp) {
1152 spin_unlock_irqrestore(&rnp->lock, flags);
1153 return 1;
1155 if (rnp->qsmask == 0) {
1156 spin_unlock_irqrestore(&rnp->lock, flags);
1157 continue;
1159 cpu = rnp->grplo;
1160 bit = 1;
1161 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1162 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1163 mask |= bit;
1165 if (mask != 0 && rsp->completed == lastcomp) {
1167 /* cpu_quiet_msk() releases rnp->lock. */
1168 cpu_quiet_msk(mask, rsp, rnp, flags);
1169 continue;
1171 spin_unlock_irqrestore(&rnp->lock, flags);
1173 return 0;
1177 * Force quiescent states on reluctant CPUs, and also detect which
1178 * CPUs are in dyntick-idle mode.
1180 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1182 unsigned long flags;
1183 long lastcomp;
1184 struct rcu_node *rnp = rcu_get_root(rsp);
1185 u8 signaled;
1186 u8 forcenow;
1188 if (!rcu_gp_in_progress(rsp))
1189 return; /* No grace period in progress, nothing to force. */
1190 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1191 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1192 return; /* Someone else is already on the job. */
1194 if (relaxed &&
1195 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1196 goto unlock_ret; /* no emergency and done recently. */
1197 rsp->n_force_qs++;
1198 spin_lock(&rnp->lock);
1199 lastcomp = rsp->completed;
1200 signaled = rsp->signaled;
1201 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1202 if (lastcomp == rsp->gpnum) {
1203 rsp->n_force_qs_ngp++;
1204 spin_unlock(&rnp->lock);
1205 goto unlock_ret; /* no GP in progress, time updated. */
1207 spin_unlock(&rnp->lock);
1208 switch (signaled) {
1209 case RCU_GP_IDLE:
1210 case RCU_GP_INIT:
1212 break; /* grace period idle or initializing, ignore. */
1214 case RCU_SAVE_DYNTICK:
1216 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1217 break; /* So gcc recognizes the dead code. */
1219 /* Record dyntick-idle state. */
1220 if (rcu_process_dyntick(rsp, lastcomp,
1221 dyntick_save_progress_counter))
1222 goto unlock_ret;
1223 /* fall into next case. */
1225 case RCU_SAVE_COMPLETED:
1227 /* Update state, record completion counter. */
1228 forcenow = 0;
1229 spin_lock(&rnp->lock);
1230 if (lastcomp == rsp->completed &&
1231 rsp->signaled == signaled) {
1232 rsp->signaled = RCU_FORCE_QS;
1233 dyntick_record_completed(rsp, lastcomp);
1234 forcenow = signaled == RCU_SAVE_COMPLETED;
1236 spin_unlock(&rnp->lock);
1237 if (!forcenow)
1238 break;
1239 /* fall into next case. */
1241 case RCU_FORCE_QS:
1243 /* Check dyntick-idle state, send IPI to laggarts. */
1244 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1245 rcu_implicit_dynticks_qs))
1246 goto unlock_ret;
1248 /* Leave state in case more forcing is required. */
1250 break;
1252 unlock_ret:
1253 spin_unlock_irqrestore(&rsp->fqslock, flags);
1256 #else /* #ifdef CONFIG_SMP */
1258 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1260 set_need_resched();
1263 #endif /* #else #ifdef CONFIG_SMP */
1266 * This does the RCU processing work from softirq context for the
1267 * specified rcu_state and rcu_data structures. This may be called
1268 * only from the CPU to whom the rdp belongs.
1270 static void
1271 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1273 unsigned long flags;
1275 WARN_ON_ONCE(rdp->beenonline == 0);
1278 * If an RCU GP has gone long enough, go check for dyntick
1279 * idle CPUs and, if needed, send resched IPIs.
1281 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1282 force_quiescent_state(rsp, 1);
1285 * Advance callbacks in response to end of earlier grace
1286 * period that some other CPU ended.
1288 rcu_process_gp_end(rsp, rdp);
1290 /* Update RCU state based on any recent quiescent states. */
1291 rcu_check_quiescent_state(rsp, rdp);
1293 /* Does this CPU require a not-yet-started grace period? */
1294 if (cpu_needs_another_gp(rsp, rdp)) {
1295 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1296 rcu_start_gp(rsp, flags); /* releases above lock */
1299 /* If there are callbacks ready, invoke them. */
1300 rcu_do_batch(rsp, rdp);
1304 * Do softirq processing for the current CPU.
1306 static void rcu_process_callbacks(struct softirq_action *unused)
1309 * Memory references from any prior RCU read-side critical sections
1310 * executed by the interrupted code must be seen before any RCU
1311 * grace-period manipulations below.
1313 smp_mb(); /* See above block comment. */
1315 __rcu_process_callbacks(&rcu_sched_state,
1316 &__get_cpu_var(rcu_sched_data));
1317 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1318 rcu_preempt_process_callbacks();
1321 * Memory references from any later RCU read-side critical sections
1322 * executed by the interrupted code must be seen after any RCU
1323 * grace-period manipulations above.
1325 smp_mb(); /* See above block comment. */
1328 static void
1329 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1330 struct rcu_state *rsp)
1332 unsigned long flags;
1333 struct rcu_data *rdp;
1335 head->func = func;
1336 head->next = NULL;
1338 smp_mb(); /* Ensure RCU update seen before callback registry. */
1341 * Opportunistically note grace-period endings and beginnings.
1342 * Note that we might see a beginning right after we see an
1343 * end, but never vice versa, since this CPU has to pass through
1344 * a quiescent state betweentimes.
1346 local_irq_save(flags);
1347 rdp = rsp->rda[smp_processor_id()];
1348 rcu_process_gp_end(rsp, rdp);
1349 check_for_new_grace_period(rsp, rdp);
1351 /* Add the callback to our list. */
1352 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1353 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1355 /* Start a new grace period if one not already started. */
1356 if (!rcu_gp_in_progress(rsp)) {
1357 unsigned long nestflag;
1358 struct rcu_node *rnp_root = rcu_get_root(rsp);
1360 spin_lock_irqsave(&rnp_root->lock, nestflag);
1361 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1365 * Force the grace period if too many callbacks or too long waiting.
1366 * Enforce hysteresis, and don't invoke force_quiescent_state()
1367 * if some other CPU has recently done so. Also, don't bother
1368 * invoking force_quiescent_state() if the newly enqueued callback
1369 * is the only one waiting for a grace period to complete.
1371 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1372 rdp->blimit = LONG_MAX;
1373 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1374 *rdp->nxttail[RCU_DONE_TAIL] != head)
1375 force_quiescent_state(rsp, 0);
1376 rdp->n_force_qs_snap = rsp->n_force_qs;
1377 rdp->qlen_last_fqs_check = rdp->qlen;
1378 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1379 force_quiescent_state(rsp, 1);
1380 local_irq_restore(flags);
1384 * Queue an RCU-sched callback for invocation after a grace period.
1386 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1388 __call_rcu(head, func, &rcu_sched_state);
1390 EXPORT_SYMBOL_GPL(call_rcu_sched);
1393 * Queue an RCU for invocation after a quicker grace period.
1395 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1397 __call_rcu(head, func, &rcu_bh_state);
1399 EXPORT_SYMBOL_GPL(call_rcu_bh);
1402 * Check to see if there is any immediate RCU-related work to be done
1403 * by the current CPU, for the specified type of RCU, returning 1 if so.
1404 * The checks are in order of increasing expense: checks that can be
1405 * carried out against CPU-local state are performed first. However,
1406 * we must check for CPU stalls first, else we might not get a chance.
1408 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1410 rdp->n_rcu_pending++;
1412 /* Check for CPU stalls, if enabled. */
1413 check_cpu_stall(rsp, rdp);
1415 /* Is the RCU core waiting for a quiescent state from this CPU? */
1416 if (rdp->qs_pending) {
1417 rdp->n_rp_qs_pending++;
1418 return 1;
1421 /* Does this CPU have callbacks ready to invoke? */
1422 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1423 rdp->n_rp_cb_ready++;
1424 return 1;
1427 /* Has RCU gone idle with this CPU needing another grace period? */
1428 if (cpu_needs_another_gp(rsp, rdp)) {
1429 rdp->n_rp_cpu_needs_gp++;
1430 return 1;
1433 /* Has another RCU grace period completed? */
1434 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1435 rdp->n_rp_gp_completed++;
1436 return 1;
1439 /* Has a new RCU grace period started? */
1440 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1441 rdp->n_rp_gp_started++;
1442 return 1;
1445 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1446 if (rcu_gp_in_progress(rsp) &&
1447 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1448 rdp->n_rp_need_fqs++;
1449 return 1;
1452 /* nothing to do */
1453 rdp->n_rp_need_nothing++;
1454 return 0;
1458 * Check to see if there is any immediate RCU-related work to be done
1459 * by the current CPU, returning 1 if so. This function is part of the
1460 * RCU implementation; it is -not- an exported member of the RCU API.
1462 static int rcu_pending(int cpu)
1464 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1465 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1466 rcu_preempt_pending(cpu);
1470 * Check to see if any future RCU-related work will need to be done
1471 * by the current CPU, even if none need be done immediately, returning
1472 * 1 if so. This function is part of the RCU implementation; it is -not-
1473 * an exported member of the RCU API.
1475 int rcu_needs_cpu(int cpu)
1477 /* RCU callbacks either ready or pending? */
1478 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1479 per_cpu(rcu_bh_data, cpu).nxtlist ||
1480 rcu_preempt_needs_cpu(cpu);
1483 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1484 static atomic_t rcu_barrier_cpu_count;
1485 static DEFINE_MUTEX(rcu_barrier_mutex);
1486 static struct completion rcu_barrier_completion;
1488 static void rcu_barrier_callback(struct rcu_head *notused)
1490 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1491 complete(&rcu_barrier_completion);
1495 * Called with preemption disabled, and from cross-cpu IRQ context.
1497 static void rcu_barrier_func(void *type)
1499 int cpu = smp_processor_id();
1500 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1501 void (*call_rcu_func)(struct rcu_head *head,
1502 void (*func)(struct rcu_head *head));
1504 atomic_inc(&rcu_barrier_cpu_count);
1505 call_rcu_func = type;
1506 call_rcu_func(head, rcu_barrier_callback);
1510 * Orchestrate the specified type of RCU barrier, waiting for all
1511 * RCU callbacks of the specified type to complete.
1513 static void _rcu_barrier(struct rcu_state *rsp,
1514 void (*call_rcu_func)(struct rcu_head *head,
1515 void (*func)(struct rcu_head *head)))
1517 BUG_ON(in_interrupt());
1518 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1519 mutex_lock(&rcu_barrier_mutex);
1520 init_completion(&rcu_barrier_completion);
1522 * Initialize rcu_barrier_cpu_count to 1, then invoke
1523 * rcu_barrier_func() on each CPU, so that each CPU also has
1524 * incremented rcu_barrier_cpu_count. Only then is it safe to
1525 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1526 * might complete its grace period before all of the other CPUs
1527 * did their increment, causing this function to return too
1528 * early.
1530 atomic_set(&rcu_barrier_cpu_count, 1);
1531 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1532 rcu_adopt_orphan_cbs(rsp);
1533 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1534 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1535 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1536 complete(&rcu_barrier_completion);
1537 wait_for_completion(&rcu_barrier_completion);
1538 mutex_unlock(&rcu_barrier_mutex);
1542 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1544 void rcu_barrier_bh(void)
1546 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1548 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1551 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1553 void rcu_barrier_sched(void)
1555 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1557 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1560 * Do boot-time initialization of a CPU's per-CPU RCU data.
1562 static void __init
1563 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1565 unsigned long flags;
1566 int i;
1567 struct rcu_data *rdp = rsp->rda[cpu];
1568 struct rcu_node *rnp = rcu_get_root(rsp);
1570 /* Set up local state, ensuring consistent view of global state. */
1571 spin_lock_irqsave(&rnp->lock, flags);
1572 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1573 rdp->nxtlist = NULL;
1574 for (i = 0; i < RCU_NEXT_SIZE; i++)
1575 rdp->nxttail[i] = &rdp->nxtlist;
1576 rdp->qlen = 0;
1577 #ifdef CONFIG_NO_HZ
1578 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1579 #endif /* #ifdef CONFIG_NO_HZ */
1580 rdp->cpu = cpu;
1581 spin_unlock_irqrestore(&rnp->lock, flags);
1585 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1586 * offline event can be happening at a given time. Note also that we
1587 * can accept some slop in the rsp->completed access due to the fact
1588 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1590 static void __cpuinit
1591 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1593 unsigned long flags;
1594 unsigned long mask;
1595 struct rcu_data *rdp = rsp->rda[cpu];
1596 struct rcu_node *rnp = rcu_get_root(rsp);
1598 /* Set up local state, ensuring consistent view of global state. */
1599 spin_lock_irqsave(&rnp->lock, flags);
1600 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1601 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1602 rdp->beenonline = 1; /* We have now been online. */
1603 rdp->preemptable = preemptable;
1604 rdp->qlen_last_fqs_check = 0;
1605 rdp->n_force_qs_snap = rsp->n_force_qs;
1606 rdp->blimit = blimit;
1607 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1610 * A new grace period might start here. If so, we won't be part
1611 * of it, but that is OK, as we are currently in a quiescent state.
1614 /* Exclude any attempts to start a new GP on large systems. */
1615 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1617 /* Add CPU to rcu_node bitmasks. */
1618 rnp = rdp->mynode;
1619 mask = rdp->grpmask;
1620 do {
1621 /* Exclude any attempts to start a new GP on small systems. */
1622 spin_lock(&rnp->lock); /* irqs already disabled. */
1623 rnp->qsmaskinit |= mask;
1624 mask = rnp->grpmask;
1625 if (rnp == rdp->mynode) {
1626 rdp->gpnum = rnp->completed; /* if GP in progress... */
1627 rdp->completed = rnp->completed;
1628 rdp->passed_quiesc_completed = rnp->completed - 1;
1630 spin_unlock(&rnp->lock); /* irqs already disabled. */
1631 rnp = rnp->parent;
1632 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1634 spin_unlock_irqrestore(&rsp->onofflock, flags);
1637 static void __cpuinit rcu_online_cpu(int cpu)
1639 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1640 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1641 rcu_preempt_init_percpu_data(cpu);
1645 * Handle CPU online/offline notification events.
1647 int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1648 unsigned long action, void *hcpu)
1650 long cpu = (long)hcpu;
1652 switch (action) {
1653 case CPU_UP_PREPARE:
1654 case CPU_UP_PREPARE_FROZEN:
1655 rcu_online_cpu(cpu);
1656 break;
1657 case CPU_DYING:
1658 case CPU_DYING_FROZEN:
1660 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1661 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1662 * returns, all online cpus have queued rcu_barrier_func().
1663 * The dying CPU clears its cpu_online_mask bit and
1664 * moves all of its RCU callbacks to ->orphan_cbs_list
1665 * in the context of stop_machine(), so subsequent calls
1666 * to _rcu_barrier() will adopt these callbacks and only
1667 * then queue rcu_barrier_func() on all remaining CPUs.
1669 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1670 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1671 rcu_preempt_send_cbs_to_orphanage();
1672 break;
1673 case CPU_DEAD:
1674 case CPU_DEAD_FROZEN:
1675 case CPU_UP_CANCELED:
1676 case CPU_UP_CANCELED_FROZEN:
1677 rcu_offline_cpu(cpu);
1678 break;
1679 default:
1680 break;
1682 return NOTIFY_OK;
1686 * Compute the per-level fanout, either using the exact fanout specified
1687 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1689 #ifdef CONFIG_RCU_FANOUT_EXACT
1690 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1692 int i;
1694 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1695 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1697 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1698 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1700 int ccur;
1701 int cprv;
1702 int i;
1704 cprv = NR_CPUS;
1705 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1706 ccur = rsp->levelcnt[i];
1707 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1708 cprv = ccur;
1711 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1714 * Helper function for rcu_init() that initializes one rcu_state structure.
1716 static void __init rcu_init_one(struct rcu_state *rsp)
1718 int cpustride = 1;
1719 int i;
1720 int j;
1721 struct rcu_node *rnp;
1723 /* Initialize the level-tracking arrays. */
1725 for (i = 1; i < NUM_RCU_LVLS; i++)
1726 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1727 rcu_init_levelspread(rsp);
1729 /* Initialize the elements themselves, starting from the leaves. */
1731 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1732 cpustride *= rsp->levelspread[i];
1733 rnp = rsp->level[i];
1734 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1735 if (rnp != rcu_get_root(rsp))
1736 spin_lock_init(&rnp->lock);
1737 rnp->gpnum = 0;
1738 rnp->qsmask = 0;
1739 rnp->qsmaskinit = 0;
1740 rnp->grplo = j * cpustride;
1741 rnp->grphi = (j + 1) * cpustride - 1;
1742 if (rnp->grphi >= NR_CPUS)
1743 rnp->grphi = NR_CPUS - 1;
1744 if (i == 0) {
1745 rnp->grpnum = 0;
1746 rnp->grpmask = 0;
1747 rnp->parent = NULL;
1748 } else {
1749 rnp->grpnum = j % rsp->levelspread[i - 1];
1750 rnp->grpmask = 1UL << rnp->grpnum;
1751 rnp->parent = rsp->level[i - 1] +
1752 j / rsp->levelspread[i - 1];
1754 rnp->level = i;
1755 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1756 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1759 spin_lock_init(&rcu_get_root(rsp)->lock);
1763 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1764 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1765 * structure.
1767 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1768 do { \
1769 int i; \
1770 int j; \
1771 struct rcu_node *rnp; \
1773 rcu_init_one(rsp); \
1774 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1775 j = 0; \
1776 for_each_possible_cpu(i) { \
1777 if (i > rnp[j].grphi) \
1778 j++; \
1779 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1780 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1781 rcu_boot_init_percpu_data(i, rsp); \
1783 } while (0)
1785 void __init __rcu_init(void)
1787 rcu_bootup_announce();
1788 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1789 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1790 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1791 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1792 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1793 __rcu_init_preempt();
1794 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1797 #include "rcutree_plugin.h"