Linux 2.6.32.42
[linux/fpc-iii.git] / kernel / sched_cpupri.c
blob0f052fc674d5a0c49c4086c03fb950539edcfa48
1 /*
2 * kernel/sched_cpupri.c
4 * CPU priority management
6 * Copyright (C) 2007-2008 Novell
8 * Author: Gregory Haskins <ghaskins@novell.com>
10 * This code tracks the priority of each CPU so that global migration
11 * decisions are easy to calculate. Each CPU can be in a state as follows:
13 * (INVALID), IDLE, NORMAL, RT1, ... RT99
15 * going from the lowest priority to the highest. CPUs in the INVALID state
16 * are not eligible for routing. The system maintains this state with
17 * a 2 dimensional bitmap (the first for priority class, the second for cpus
18 * in that class). Therefore a typical application without affinity
19 * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
20 * searches). For tasks with affinity restrictions, the algorithm has a
21 * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
22 * yields the worst case search is fairly contrived.
24 * This program is free software; you can redistribute it and/or
25 * modify it under the terms of the GNU General Public License
26 * as published by the Free Software Foundation; version 2
27 * of the License.
30 #include "sched_cpupri.h"
32 /* Convert between a 140 based task->prio, and our 102 based cpupri */
33 static int convert_prio(int prio)
35 int cpupri;
37 if (prio == CPUPRI_INVALID)
38 cpupri = CPUPRI_INVALID;
39 else if (prio == MAX_PRIO)
40 cpupri = CPUPRI_IDLE;
41 else if (prio >= MAX_RT_PRIO)
42 cpupri = CPUPRI_NORMAL;
43 else
44 cpupri = MAX_RT_PRIO - prio + 1;
46 return cpupri;
49 #define for_each_cpupri_active(array, idx) \
50 for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \
51 idx < CPUPRI_NR_PRIORITIES; \
52 idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1))
54 /**
55 * cpupri_find - find the best (lowest-pri) CPU in the system
56 * @cp: The cpupri context
57 * @p: The task
58 * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
60 * Note: This function returns the recommended CPUs as calculated during the
61 * current invokation. By the time the call returns, the CPUs may have in
62 * fact changed priorities any number of times. While not ideal, it is not
63 * an issue of correctness since the normal rebalancer logic will correct
64 * any discrepancies created by racing against the uncertainty of the current
65 * priority configuration.
67 * Returns: (int)bool - CPUs were found
69 int cpupri_find(struct cpupri *cp, struct task_struct *p,
70 struct cpumask *lowest_mask)
72 int idx = 0;
73 int task_pri = convert_prio(p->prio);
75 for_each_cpupri_active(cp->pri_active, idx) {
76 struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
78 if (idx >= task_pri)
79 break;
81 if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
82 continue;
84 if (lowest_mask) {
85 cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
88 * We have to ensure that we have at least one bit
89 * still set in the array, since the map could have
90 * been concurrently emptied between the first and
91 * second reads of vec->mask. If we hit this
92 * condition, simply act as though we never hit this
93 * priority level and continue on.
95 if (cpumask_any(lowest_mask) >= nr_cpu_ids)
96 continue;
99 return 1;
102 return 0;
106 * cpupri_set - update the cpu priority setting
107 * @cp: The cpupri context
108 * @cpu: The target cpu
109 * @pri: The priority (INVALID-RT99) to assign to this CPU
111 * Note: Assumes cpu_rq(cpu)->lock is locked
113 * Returns: (void)
115 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
117 int *currpri = &cp->cpu_to_pri[cpu];
118 int oldpri = *currpri;
119 unsigned long flags;
121 newpri = convert_prio(newpri);
123 BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
125 if (newpri == oldpri)
126 return;
129 * If the cpu was currently mapped to a different value, we
130 * need to map it to the new value then remove the old value.
131 * Note, we must add the new value first, otherwise we risk the
132 * cpu being cleared from pri_active, and this cpu could be
133 * missed for a push or pull.
135 if (likely(newpri != CPUPRI_INVALID)) {
136 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
138 spin_lock_irqsave(&vec->lock, flags);
140 cpumask_set_cpu(cpu, vec->mask);
141 vec->count++;
142 if (vec->count == 1)
143 set_bit(newpri, cp->pri_active);
145 spin_unlock_irqrestore(&vec->lock, flags);
147 if (likely(oldpri != CPUPRI_INVALID)) {
148 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
150 spin_lock_irqsave(&vec->lock, flags);
152 vec->count--;
153 if (!vec->count)
154 clear_bit(oldpri, cp->pri_active);
155 cpumask_clear_cpu(cpu, vec->mask);
157 spin_unlock_irqrestore(&vec->lock, flags);
160 *currpri = newpri;
164 * cpupri_init - initialize the cpupri structure
165 * @cp: The cpupri context
166 * @bootmem: true if allocations need to use bootmem
168 * Returns: -ENOMEM if memory fails.
170 int cpupri_init(struct cpupri *cp, bool bootmem)
172 gfp_t gfp = GFP_KERNEL;
173 int i;
175 if (bootmem)
176 gfp = GFP_NOWAIT;
178 memset(cp, 0, sizeof(*cp));
180 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
181 struct cpupri_vec *vec = &cp->pri_to_cpu[i];
183 spin_lock_init(&vec->lock);
184 vec->count = 0;
185 if (!zalloc_cpumask_var(&vec->mask, gfp))
186 goto cleanup;
189 for_each_possible_cpu(i)
190 cp->cpu_to_pri[i] = CPUPRI_INVALID;
191 return 0;
193 cleanup:
194 for (i--; i >= 0; i--)
195 free_cpumask_var(cp->pri_to_cpu[i].mask);
196 return -ENOMEM;
200 * cpupri_cleanup - clean up the cpupri structure
201 * @cp: The cpupri context
203 void cpupri_cleanup(struct cpupri *cp)
205 int i;
207 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
208 free_cpumask_var(cp->pri_to_cpu[i].mask);