2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__
void ip_send_check(struct iphdr
*iph
)
89 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
92 int __ip_local_out(struct sk_buff
*skb
)
94 struct iphdr
*iph
= ip_hdr(skb
);
96 iph
->tot_len
= htons(skb
->len
);
98 return nf_hook(PF_INET
, NF_INET_LOCAL_OUT
, skb
, NULL
, skb_dst(skb
)->dev
,
102 int ip_local_out(struct sk_buff
*skb
)
106 err
= __ip_local_out(skb
);
107 if (likely(err
== 1))
108 err
= dst_output(skb
);
112 EXPORT_SYMBOL_GPL(ip_local_out
);
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
117 skb_reset_mac_header(newskb
);
118 __skb_pull(newskb
, skb_network_offset(newskb
));
119 newskb
->pkt_type
= PACKET_LOOPBACK
;
120 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
121 WARN_ON(!skb_dst(newskb
));
126 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
128 int ttl
= inet
->uc_ttl
;
131 ttl
= dst_metric(dst
, RTAX_HOPLIMIT
);
136 * Add an ip header to a skbuff and send it out.
139 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
140 __be32 saddr
, __be32 daddr
, struct ip_options
*opt
)
142 struct inet_sock
*inet
= inet_sk(sk
);
143 struct rtable
*rt
= skb_rtable(skb
);
146 /* Build the IP header. */
147 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
148 skb_reset_network_header(skb
);
152 iph
->tos
= inet
->tos
;
153 if (ip_dont_fragment(sk
, &rt
->u
.dst
))
154 iph
->frag_off
= htons(IP_DF
);
157 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
158 iph
->daddr
= rt
->rt_dst
;
159 iph
->saddr
= rt
->rt_src
;
160 iph
->protocol
= sk
->sk_protocol
;
161 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
163 if (opt
&& opt
->optlen
) {
164 iph
->ihl
+= opt
->optlen
>>2;
165 ip_options_build(skb
, opt
, daddr
, rt
, 0);
168 skb
->priority
= sk
->sk_priority
;
169 skb
->mark
= sk
->sk_mark
;
172 return ip_local_out(skb
);
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
177 static inline int ip_finish_output2(struct sk_buff
*skb
)
179 struct dst_entry
*dst
= skb_dst(skb
);
180 struct rtable
*rt
= (struct rtable
*)dst
;
181 struct net_device
*dev
= dst
->dev
;
182 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
184 if (rt
->rt_type
== RTN_MULTICAST
) {
185 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCAST
, skb
->len
);
186 } else if (rt
->rt_type
== RTN_BROADCAST
)
187 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCAST
, skb
->len
);
189 /* Be paranoid, rather than too clever. */
190 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
191 struct sk_buff
*skb2
;
193 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
199 skb_set_owner_w(skb2
, skb
->sk
);
205 return neigh_hh_output(dst
->hh
, skb
);
206 else if (dst
->neighbour
)
207 return dst
->neighbour
->output(skb
);
210 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
215 static inline int ip_skb_dst_mtu(struct sk_buff
*skb
)
217 struct inet_sock
*inet
= skb
->sk
? inet_sk(skb
->sk
) : NULL
;
219 return (inet
&& inet
->pmtudisc
== IP_PMTUDISC_PROBE
) ?
220 skb_dst(skb
)->dev
->mtu
: dst_mtu(skb_dst(skb
));
223 static int ip_finish_output(struct sk_buff
*skb
)
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 /* Policy lookup after SNAT yielded a new policy */
227 if (skb_dst(skb
)->xfrm
!= NULL
) {
228 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
229 return dst_output(skb
);
232 if (skb
->len
> ip_skb_dst_mtu(skb
) && !skb_is_gso(skb
))
233 return ip_fragment(skb
, ip_finish_output2
);
235 return ip_finish_output2(skb
);
238 int ip_mc_output(struct sk_buff
*skb
)
240 struct sock
*sk
= skb
->sk
;
241 struct rtable
*rt
= skb_rtable(skb
);
242 struct net_device
*dev
= rt
->u
.dst
.dev
;
245 * If the indicated interface is up and running, send the packet.
247 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
250 skb
->protocol
= htons(ETH_P_IP
);
253 * Multicasts are looped back for other local users
256 if (rt
->rt_flags
&RTCF_MULTICAST
) {
257 if ((!sk
|| inet_sk(sk
)->mc_loop
)
258 #ifdef CONFIG_IP_MROUTE
259 /* Small optimization: do not loopback not local frames,
260 which returned after forwarding; they will be dropped
261 by ip_mr_input in any case.
262 Note, that local frames are looped back to be delivered
265 This check is duplicated in ip_mr_input at the moment.
267 && ((rt
->rt_flags
&RTCF_LOCAL
) || !(IPCB(skb
)->flags
&IPSKB_FORWARDED
))
270 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
272 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
,
274 ip_dev_loopback_xmit
);
277 /* Multicasts with ttl 0 must not go beyond the host */
279 if (ip_hdr(skb
)->ttl
== 0) {
285 if (rt
->rt_flags
&RTCF_BROADCAST
) {
286 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
288 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
, NULL
,
289 newskb
->dev
, ip_dev_loopback_xmit
);
292 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, skb
->dev
,
294 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
297 int ip_output(struct sk_buff
*skb
)
299 struct net_device
*dev
= skb_dst(skb
)->dev
;
301 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
304 skb
->protocol
= htons(ETH_P_IP
);
306 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
308 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
311 int ip_queue_xmit(struct sk_buff
*skb
, int ipfragok
)
313 struct sock
*sk
= skb
->sk
;
314 struct inet_sock
*inet
= inet_sk(sk
);
315 struct ip_options
*opt
= inet
->opt
;
319 /* Skip all of this if the packet is already routed,
320 * f.e. by something like SCTP.
322 rt
= skb_rtable(skb
);
326 /* Make sure we can route this packet. */
327 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
331 /* Use correct destination address if we have options. */
337 struct flowi fl
= { .oif
= sk
->sk_bound_dev_if
,
341 .saddr
= inet
->saddr
,
342 .tos
= RT_CONN_FLAGS(sk
) } },
343 .proto
= sk
->sk_protocol
,
344 .flags
= inet_sk_flowi_flags(sk
),
346 { .sport
= inet
->sport
,
347 .dport
= inet
->dport
} } };
349 /* If this fails, retransmit mechanism of transport layer will
350 * keep trying until route appears or the connection times
353 security_sk_classify_flow(sk
, &fl
);
354 if (ip_route_output_flow(sock_net(sk
), &rt
, &fl
, sk
, 0))
357 sk_setup_caps(sk
, &rt
->u
.dst
);
359 skb_dst_set(skb
, dst_clone(&rt
->u
.dst
));
362 if (opt
&& opt
->is_strictroute
&& rt
->rt_dst
!= rt
->rt_gateway
)
365 /* OK, we know where to send it, allocate and build IP header. */
366 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
367 skb_reset_network_header(skb
);
369 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
370 if (ip_dont_fragment(sk
, &rt
->u
.dst
) && !ipfragok
)
371 iph
->frag_off
= htons(IP_DF
);
374 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
375 iph
->protocol
= sk
->sk_protocol
;
376 iph
->saddr
= rt
->rt_src
;
377 iph
->daddr
= rt
->rt_dst
;
378 /* Transport layer set skb->h.foo itself. */
380 if (opt
&& opt
->optlen
) {
381 iph
->ihl
+= opt
->optlen
>> 2;
382 ip_options_build(skb
, opt
, inet
->daddr
, rt
, 0);
385 ip_select_ident_more(iph
, &rt
->u
.dst
, sk
,
386 (skb_shinfo(skb
)->gso_segs
?: 1) - 1);
388 skb
->priority
= sk
->sk_priority
;
389 skb
->mark
= sk
->sk_mark
;
391 return ip_local_out(skb
);
394 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
396 return -EHOSTUNREACH
;
400 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
402 to
->pkt_type
= from
->pkt_type
;
403 to
->priority
= from
->priority
;
404 to
->protocol
= from
->protocol
;
406 skb_dst_set(to
, dst_clone(skb_dst(from
)));
408 to
->mark
= from
->mark
;
410 /* Copy the flags to each fragment. */
411 IPCB(to
)->flags
= IPCB(from
)->flags
;
413 #ifdef CONFIG_NET_SCHED
414 to
->tc_index
= from
->tc_index
;
417 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
418 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
419 to
->nf_trace
= from
->nf_trace
;
421 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
422 to
->ipvs_property
= from
->ipvs_property
;
424 skb_copy_secmark(to
, from
);
428 * This IP datagram is too large to be sent in one piece. Break it up into
429 * smaller pieces (each of size equal to IP header plus
430 * a block of the data of the original IP data part) that will yet fit in a
431 * single device frame, and queue such a frame for sending.
434 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
439 struct net_device
*dev
;
440 struct sk_buff
*skb2
;
441 unsigned int mtu
, hlen
, left
, len
, ll_rs
, pad
;
443 __be16 not_last_frag
;
444 struct rtable
*rt
= skb_rtable(skb
);
450 * Point into the IP datagram header.
455 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
456 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
457 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
458 htonl(ip_skb_dst_mtu(skb
)));
464 * Setup starting values.
468 mtu
= dst_mtu(&rt
->u
.dst
) - hlen
; /* Size of data space */
469 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
471 /* When frag_list is given, use it. First, check its validity:
472 * some transformers could create wrong frag_list or break existing
473 * one, it is not prohibited. In this case fall back to copying.
475 * LATER: this step can be merged to real generation of fragments,
476 * we can switch to copy when see the first bad fragment.
478 if (skb_has_frags(skb
)) {
479 struct sk_buff
*frag
, *frag2
;
480 int first_len
= skb_pagelen(skb
);
482 if (first_len
- hlen
> mtu
||
483 ((first_len
- hlen
) & 7) ||
484 (iph
->frag_off
& htons(IP_MF
|IP_OFFSET
)) ||
488 skb_walk_frags(skb
, frag
) {
489 /* Correct geometry. */
490 if (frag
->len
> mtu
||
491 ((frag
->len
& 7) && frag
->next
) ||
492 skb_headroom(frag
) < hlen
)
493 goto slow_path_clean
;
495 /* Partially cloned skb? */
496 if (skb_shared(frag
))
497 goto slow_path_clean
;
502 frag
->destructor
= sock_wfree
;
504 skb
->truesize
-= frag
->truesize
;
507 /* Everything is OK. Generate! */
511 frag
= skb_shinfo(skb
)->frag_list
;
512 skb_frag_list_init(skb
);
513 skb
->data_len
= first_len
- skb_headlen(skb
);
514 skb
->len
= first_len
;
515 iph
->tot_len
= htons(first_len
);
516 iph
->frag_off
= htons(IP_MF
);
520 /* Prepare header of the next frame,
521 * before previous one went down. */
523 frag
->ip_summed
= CHECKSUM_NONE
;
524 skb_reset_transport_header(frag
);
525 __skb_push(frag
, hlen
);
526 skb_reset_network_header(frag
);
527 memcpy(skb_network_header(frag
), iph
, hlen
);
529 iph
->tot_len
= htons(frag
->len
);
530 ip_copy_metadata(frag
, skb
);
532 ip_options_fragment(frag
);
533 offset
+= skb
->len
- hlen
;
534 iph
->frag_off
= htons(offset
>>3);
535 if (frag
->next
!= NULL
)
536 iph
->frag_off
|= htons(IP_MF
);
537 /* Ready, complete checksum */
544 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
554 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
563 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
567 skb_walk_frags(skb
, frag2
) {
571 frag2
->destructor
= NULL
;
572 skb
->truesize
+= frag2
->truesize
;
577 left
= skb
->len
- hlen
; /* Space per frame */
578 ptr
= raw
+ hlen
; /* Where to start from */
580 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
581 * we need to make room for the encapsulating header
583 pad
= nf_bridge_pad(skb
);
584 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->u
.dst
.dev
, pad
);
588 * Fragment the datagram.
591 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
592 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
595 * Keep copying data until we run out.
600 /* IF: it doesn't fit, use 'mtu' - the data space left */
603 /* IF: we are not sending upto and including the packet end
604 then align the next start on an eight byte boundary */
612 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
613 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
619 * Set up data on packet
622 ip_copy_metadata(skb2
, skb
);
623 skb_reserve(skb2
, ll_rs
);
624 skb_put(skb2
, len
+ hlen
);
625 skb_reset_network_header(skb2
);
626 skb2
->transport_header
= skb2
->network_header
+ hlen
;
629 * Charge the memory for the fragment to any owner
634 skb_set_owner_w(skb2
, skb
->sk
);
637 * Copy the packet header into the new buffer.
640 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
643 * Copy a block of the IP datagram.
645 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
650 * Fill in the new header fields.
653 iph
->frag_off
= htons((offset
>> 3));
655 /* ANK: dirty, but effective trick. Upgrade options only if
656 * the segment to be fragmented was THE FIRST (otherwise,
657 * options are already fixed) and make it ONCE
658 * on the initial skb, so that all the following fragments
659 * will inherit fixed options.
662 ip_options_fragment(skb
);
665 * Added AC : If we are fragmenting a fragment that's not the
666 * last fragment then keep MF on each bit
668 if (left
> 0 || not_last_frag
)
669 iph
->frag_off
|= htons(IP_MF
);
674 * Put this fragment into the sending queue.
676 iph
->tot_len
= htons(len
+ hlen
);
684 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
687 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
692 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
696 EXPORT_SYMBOL(ip_fragment
);
699 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
701 struct iovec
*iov
= from
;
703 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
704 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
708 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
710 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
716 csum_page(struct page
*page
, int offset
, int copy
)
721 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
726 static inline int ip_ufo_append_data(struct sock
*sk
,
727 int getfrag(void *from
, char *to
, int offset
, int len
,
728 int odd
, struct sk_buff
*skb
),
729 void *from
, int length
, int hh_len
, int fragheaderlen
,
730 int transhdrlen
, int mtu
, unsigned int flags
)
735 /* There is support for UDP fragmentation offload by network
736 * device, so create one single skb packet containing complete
739 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
) {
740 skb
= sock_alloc_send_skb(sk
,
741 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
742 (flags
& MSG_DONTWAIT
), &err
);
747 /* reserve space for Hardware header */
748 skb_reserve(skb
, hh_len
);
750 /* create space for UDP/IP header */
751 skb_put(skb
, fragheaderlen
+ transhdrlen
);
753 /* initialize network header pointer */
754 skb_reset_network_header(skb
);
756 /* initialize protocol header pointer */
757 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
759 skb
->ip_summed
= CHECKSUM_PARTIAL
;
761 sk
->sk_sndmsg_off
= 0;
763 /* specify the length of each IP datagram fragment */
764 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
765 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
766 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
769 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
770 (length
- transhdrlen
));
774 * ip_append_data() and ip_append_page() can make one large IP datagram
775 * from many pieces of data. Each pieces will be holded on the socket
776 * until ip_push_pending_frames() is called. Each piece can be a page
779 * Not only UDP, other transport protocols - e.g. raw sockets - can use
780 * this interface potentially.
782 * LATER: length must be adjusted by pad at tail, when it is required.
784 int ip_append_data(struct sock
*sk
,
785 int getfrag(void *from
, char *to
, int offset
, int len
,
786 int odd
, struct sk_buff
*skb
),
787 void *from
, int length
, int transhdrlen
,
788 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
791 struct inet_sock
*inet
= inet_sk(sk
);
794 struct ip_options
*opt
= NULL
;
801 unsigned int maxfraglen
, fragheaderlen
;
802 int csummode
= CHECKSUM_NONE
;
808 if (skb_queue_empty(&sk
->sk_write_queue
)) {
814 if (inet
->cork
.opt
== NULL
) {
815 inet
->cork
.opt
= kmalloc(sizeof(struct ip_options
) + 40, sk
->sk_allocation
);
816 if (unlikely(inet
->cork
.opt
== NULL
))
819 memcpy(inet
->cork
.opt
, opt
, sizeof(struct ip_options
)+opt
->optlen
);
820 inet
->cork
.flags
|= IPCORK_OPT
;
821 inet
->cork
.addr
= ipc
->addr
;
827 * We steal reference to this route, caller should not release it
830 inet
->cork
.fragsize
= mtu
= inet
->pmtudisc
== IP_PMTUDISC_PROBE
?
832 dst_mtu(rt
->u
.dst
.path
);
833 inet
->cork
.dst
= &rt
->u
.dst
;
834 inet
->cork
.length
= 0;
835 sk
->sk_sndmsg_page
= NULL
;
836 sk
->sk_sndmsg_off
= 0;
837 if ((exthdrlen
= rt
->u
.dst
.header_len
) != 0) {
839 transhdrlen
+= exthdrlen
;
842 rt
= (struct rtable
*)inet
->cork
.dst
;
843 if (inet
->cork
.flags
& IPCORK_OPT
)
844 opt
= inet
->cork
.opt
;
848 mtu
= inet
->cork
.fragsize
;
850 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
852 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
853 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
855 if (inet
->cork
.length
+ length
> 0xFFFF - fragheaderlen
) {
856 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
-exthdrlen
);
861 * transhdrlen > 0 means that this is the first fragment and we wish
862 * it won't be fragmented in the future.
865 length
+ fragheaderlen
<= mtu
&&
866 rt
->u
.dst
.dev
->features
& NETIF_F_V4_CSUM
&&
868 csummode
= CHECKSUM_PARTIAL
;
870 skb
= skb_peek_tail(&sk
->sk_write_queue
);
872 inet
->cork
.length
+= length
;
873 if (((length
> mtu
) || (skb
&& skb_is_gso(skb
))) &&
874 (sk
->sk_protocol
== IPPROTO_UDP
) &&
875 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
876 err
= ip_ufo_append_data(sk
, getfrag
, from
, length
, hh_len
,
877 fragheaderlen
, transhdrlen
, mtu
,
884 /* So, what's going on in the loop below?
886 * We use calculated fragment length to generate chained skb,
887 * each of segments is IP fragment ready for sending to network after
888 * adding appropriate IP header.
895 /* Check if the remaining data fits into current packet. */
896 copy
= mtu
- skb
->len
;
898 copy
= maxfraglen
- skb
->len
;
901 unsigned int datalen
;
902 unsigned int fraglen
;
903 unsigned int fraggap
;
904 unsigned int alloclen
;
905 struct sk_buff
*skb_prev
;
909 fraggap
= skb_prev
->len
- maxfraglen
;
914 * If remaining data exceeds the mtu,
915 * we know we need more fragment(s).
917 datalen
= length
+ fraggap
;
918 if (datalen
> mtu
- fragheaderlen
)
919 datalen
= maxfraglen
- fragheaderlen
;
920 fraglen
= datalen
+ fragheaderlen
;
922 if ((flags
& MSG_MORE
) &&
923 !(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
926 alloclen
= datalen
+ fragheaderlen
;
928 /* The last fragment gets additional space at tail.
929 * Note, with MSG_MORE we overallocate on fragments,
930 * because we have no idea what fragment will be
933 if (datalen
== length
+ fraggap
)
934 alloclen
+= rt
->u
.dst
.trailer_len
;
937 skb
= sock_alloc_send_skb(sk
,
938 alloclen
+ hh_len
+ 15,
939 (flags
& MSG_DONTWAIT
), &err
);
942 if (atomic_read(&sk
->sk_wmem_alloc
) <=
944 skb
= sock_wmalloc(sk
,
945 alloclen
+ hh_len
+ 15, 1,
947 if (unlikely(skb
== NULL
))
950 /* only the initial fragment is
958 * Fill in the control structures
960 skb
->ip_summed
= csummode
;
962 skb_reserve(skb
, hh_len
);
963 *skb_tx(skb
) = ipc
->shtx
;
966 * Find where to start putting bytes.
968 data
= skb_put(skb
, fraglen
);
969 skb_set_network_header(skb
, exthdrlen
);
970 skb
->transport_header
= (skb
->network_header
+
972 data
+= fragheaderlen
;
975 skb
->csum
= skb_copy_and_csum_bits(
976 skb_prev
, maxfraglen
,
977 data
+ transhdrlen
, fraggap
, 0);
978 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
981 pskb_trim_unique(skb_prev
, maxfraglen
);
984 copy
= datalen
- transhdrlen
- fraggap
;
985 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
992 length
-= datalen
- fraggap
;
995 csummode
= CHECKSUM_NONE
;
998 * Put the packet on the pending queue.
1000 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1007 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
)) {
1011 if (getfrag(from
, skb_put(skb
, copy
),
1012 offset
, copy
, off
, skb
) < 0) {
1013 __skb_trim(skb
, off
);
1018 int i
= skb_shinfo(skb
)->nr_frags
;
1019 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
1020 struct page
*page
= sk
->sk_sndmsg_page
;
1021 int off
= sk
->sk_sndmsg_off
;
1024 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
1027 if (page
!= frag
->page
) {
1028 if (i
== MAX_SKB_FRAGS
) {
1033 skb_fill_page_desc(skb
, i
, page
, sk
->sk_sndmsg_off
, 0);
1034 frag
= &skb_shinfo(skb
)->frags
[i
];
1036 } else if (i
< MAX_SKB_FRAGS
) {
1037 if (copy
> PAGE_SIZE
)
1039 page
= alloc_pages(sk
->sk_allocation
, 0);
1044 sk
->sk_sndmsg_page
= page
;
1045 sk
->sk_sndmsg_off
= 0;
1047 skb_fill_page_desc(skb
, i
, page
, 0, 0);
1048 frag
= &skb_shinfo(skb
)->frags
[i
];
1053 if (getfrag(from
, page_address(frag
->page
)+frag
->page_offset
+frag
->size
, offset
, copy
, skb
->len
, skb
) < 0) {
1057 sk
->sk_sndmsg_off
+= copy
;
1060 skb
->data_len
+= copy
;
1061 skb
->truesize
+= copy
;
1062 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1071 inet
->cork
.length
-= length
;
1072 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1076 ssize_t
ip_append_page(struct sock
*sk
, struct page
*page
,
1077 int offset
, size_t size
, int flags
)
1079 struct inet_sock
*inet
= inet_sk(sk
);
1080 struct sk_buff
*skb
;
1082 struct ip_options
*opt
= NULL
;
1087 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
1092 if (flags
&MSG_PROBE
)
1095 if (skb_queue_empty(&sk
->sk_write_queue
))
1098 rt
= (struct rtable
*)inet
->cork
.dst
;
1099 if (inet
->cork
.flags
& IPCORK_OPT
)
1100 opt
= inet
->cork
.opt
;
1102 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
1105 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
1106 mtu
= inet
->cork
.fragsize
;
1108 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1109 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1111 if (inet
->cork
.length
+ size
> 0xFFFF - fragheaderlen
) {
1112 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
);
1116 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1119 inet
->cork
.length
+= size
;
1120 if ((size
+ skb
->len
> mtu
) &&
1121 (sk
->sk_protocol
== IPPROTO_UDP
) &&
1122 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
1123 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1124 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1131 if (skb_is_gso(skb
))
1135 /* Check if the remaining data fits into current packet. */
1136 len
= mtu
- skb
->len
;
1138 len
= maxfraglen
- skb
->len
;
1141 struct sk_buff
*skb_prev
;
1145 fraggap
= skb_prev
->len
- maxfraglen
;
1147 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1148 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1149 if (unlikely(!skb
)) {
1155 * Fill in the control structures
1157 skb
->ip_summed
= CHECKSUM_NONE
;
1159 skb_reserve(skb
, hh_len
);
1162 * Find where to start putting bytes.
1164 skb_put(skb
, fragheaderlen
+ fraggap
);
1165 skb_reset_network_header(skb
);
1166 skb
->transport_header
= (skb
->network_header
+
1169 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1171 skb_transport_header(skb
),
1173 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1175 pskb_trim_unique(skb_prev
, maxfraglen
);
1179 * Put the packet on the pending queue.
1181 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1185 i
= skb_shinfo(skb
)->nr_frags
;
1188 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1189 skb_shinfo(skb
)->frags
[i
-1].size
+= len
;
1190 } else if (i
< MAX_SKB_FRAGS
) {
1192 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1198 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1200 csum
= csum_page(page
, offset
, len
);
1201 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1205 skb
->data_len
+= len
;
1206 skb
->truesize
+= len
;
1207 atomic_add(len
, &sk
->sk_wmem_alloc
);
1214 inet
->cork
.length
-= size
;
1215 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1219 static void ip_cork_release(struct inet_sock
*inet
)
1221 inet
->cork
.flags
&= ~IPCORK_OPT
;
1222 kfree(inet
->cork
.opt
);
1223 inet
->cork
.opt
= NULL
;
1224 dst_release(inet
->cork
.dst
);
1225 inet
->cork
.dst
= NULL
;
1229 * Combined all pending IP fragments on the socket as one IP datagram
1230 * and push them out.
1232 int ip_push_pending_frames(struct sock
*sk
)
1234 struct sk_buff
*skb
, *tmp_skb
;
1235 struct sk_buff
**tail_skb
;
1236 struct inet_sock
*inet
= inet_sk(sk
);
1237 struct net
*net
= sock_net(sk
);
1238 struct ip_options
*opt
= NULL
;
1239 struct rtable
*rt
= (struct rtable
*)inet
->cork
.dst
;
1245 if ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) == NULL
)
1247 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1249 /* move skb->data to ip header from ext header */
1250 if (skb
->data
< skb_network_header(skb
))
1251 __skb_pull(skb
, skb_network_offset(skb
));
1252 while ((tmp_skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
1253 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1254 *tail_skb
= tmp_skb
;
1255 tail_skb
= &(tmp_skb
->next
);
1256 skb
->len
+= tmp_skb
->len
;
1257 skb
->data_len
+= tmp_skb
->len
;
1258 skb
->truesize
+= tmp_skb
->truesize
;
1259 tmp_skb
->destructor
= NULL
;
1263 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1264 * to fragment the frame generated here. No matter, what transforms
1265 * how transforms change size of the packet, it will come out.
1267 if (inet
->pmtudisc
< IP_PMTUDISC_DO
)
1270 /* DF bit is set when we want to see DF on outgoing frames.
1271 * If local_df is set too, we still allow to fragment this frame
1273 if (inet
->pmtudisc
>= IP_PMTUDISC_DO
||
1274 (skb
->len
<= dst_mtu(&rt
->u
.dst
) &&
1275 ip_dont_fragment(sk
, &rt
->u
.dst
)))
1278 if (inet
->cork
.flags
& IPCORK_OPT
)
1279 opt
= inet
->cork
.opt
;
1281 if (rt
->rt_type
== RTN_MULTICAST
)
1284 ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
1286 iph
= (struct iphdr
*)skb
->data
;
1290 iph
->ihl
+= opt
->optlen
>>2;
1291 ip_options_build(skb
, opt
, inet
->cork
.addr
, rt
, 0);
1293 iph
->tos
= inet
->tos
;
1295 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
1297 iph
->protocol
= sk
->sk_protocol
;
1298 iph
->saddr
= rt
->rt_src
;
1299 iph
->daddr
= rt
->rt_dst
;
1301 skb
->priority
= sk
->sk_priority
;
1302 skb
->mark
= sk
->sk_mark
;
1304 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1307 inet
->cork
.dst
= NULL
;
1308 skb_dst_set(skb
, &rt
->u
.dst
);
1310 if (iph
->protocol
== IPPROTO_ICMP
)
1311 icmp_out_count(net
, ((struct icmphdr
*)
1312 skb_transport_header(skb
))->type
);
1314 /* Netfilter gets whole the not fragmented skb. */
1315 err
= ip_local_out(skb
);
1318 err
= net_xmit_errno(err
);
1324 ip_cork_release(inet
);
1328 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1333 * Throw away all pending data on the socket.
1335 void ip_flush_pending_frames(struct sock
*sk
)
1337 struct sk_buff
*skb
;
1339 while ((skb
= __skb_dequeue_tail(&sk
->sk_write_queue
)) != NULL
)
1342 ip_cork_release(inet_sk(sk
));
1347 * Fetch data from kernel space and fill in checksum if needed.
1349 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1350 int len
, int odd
, struct sk_buff
*skb
)
1354 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1355 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1360 * Generic function to send a packet as reply to another packet.
1361 * Used to send TCP resets so far. ICMP should use this function too.
1363 * Should run single threaded per socket because it uses the sock
1364 * structure to pass arguments.
1366 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, struct ip_reply_arg
*arg
,
1369 struct inet_sock
*inet
= inet_sk(sk
);
1371 struct ip_options opt
;
1374 struct ipcm_cookie ipc
;
1376 struct rtable
*rt
= skb_rtable(skb
);
1378 if (ip_options_echo(&replyopts
.opt
, skb
))
1381 daddr
= ipc
.addr
= rt
->rt_src
;
1385 if (replyopts
.opt
.optlen
) {
1386 ipc
.opt
= &replyopts
.opt
;
1389 daddr
= replyopts
.opt
.faddr
;
1393 struct flowi fl
= { .oif
= arg
->bound_dev_if
,
1396 .saddr
= rt
->rt_spec_dst
,
1397 .tos
= RT_TOS(ip_hdr(skb
)->tos
) } },
1398 /* Not quite clean, but right. */
1400 { .sport
= tcp_hdr(skb
)->dest
,
1401 .dport
= tcp_hdr(skb
)->source
} },
1402 .proto
= sk
->sk_protocol
,
1403 .flags
= ip_reply_arg_flowi_flags(arg
) };
1404 security_skb_classify_flow(skb
, &fl
);
1405 if (ip_route_output_key(sock_net(sk
), &rt
, &fl
))
1409 /* And let IP do all the hard work.
1411 This chunk is not reenterable, hence spinlock.
1412 Note that it uses the fact, that this function is called
1413 with locally disabled BH and that sk cannot be already spinlocked.
1416 inet
->tos
= ip_hdr(skb
)->tos
;
1417 sk
->sk_priority
= skb
->priority
;
1418 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1419 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1420 ip_append_data(sk
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1421 &ipc
, &rt
, MSG_DONTWAIT
);
1422 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1423 if (arg
->csumoffset
>= 0)
1424 *((__sum16
*)skb_transport_header(skb
) +
1425 arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
,
1427 skb
->ip_summed
= CHECKSUM_NONE
;
1428 ip_push_pending_frames(sk
);
1436 void __init
ip_init(void)
1441 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1442 igmp_mc_proc_init();
1446 EXPORT_SYMBOL(ip_generic_getfrag
);
1447 EXPORT_SYMBOL(ip_queue_xmit
);
1448 EXPORT_SYMBOL(ip_send_check
);