EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / dma / dmaengine.c
blob0cb259c59916ac0cadd4a3c3f7e5d4ae7fa2a1d8
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
22 * this capability.
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
26 * such as locking.
28 * LOCKING:
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
41 * See Documentation/dmaengine.txt for more details
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
67 static DEFINE_MUTEX(dma_list_mutex);
68 static DEFINE_IDR(dma_idr);
69 static LIST_HEAD(dma_device_list);
70 static long dmaengine_ref_count;
72 /* --- sysfs implementation --- */
74 /**
75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
76 * @dev - device node
78 * Must be called under dma_list_mutex
80 static struct dma_chan *dev_to_dma_chan(struct device *dev)
82 struct dma_chan_dev *chan_dev;
84 chan_dev = container_of(dev, typeof(*chan_dev), device);
85 return chan_dev->chan;
88 static ssize_t memcpy_count_show(struct device *dev,
89 struct device_attribute *attr, char *buf)
91 struct dma_chan *chan;
92 unsigned long count = 0;
93 int i;
94 int err;
96 mutex_lock(&dma_list_mutex);
97 chan = dev_to_dma_chan(dev);
98 if (chan) {
99 for_each_possible_cpu(i)
100 count += per_cpu_ptr(chan->local, i)->memcpy_count;
101 err = sprintf(buf, "%lu\n", count);
102 } else
103 err = -ENODEV;
104 mutex_unlock(&dma_list_mutex);
106 return err;
108 static DEVICE_ATTR_RO(memcpy_count);
110 static ssize_t bytes_transferred_show(struct device *dev,
111 struct device_attribute *attr, char *buf)
113 struct dma_chan *chan;
114 unsigned long count = 0;
115 int i;
116 int err;
118 mutex_lock(&dma_list_mutex);
119 chan = dev_to_dma_chan(dev);
120 if (chan) {
121 for_each_possible_cpu(i)
122 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 err = sprintf(buf, "%lu\n", count);
124 } else
125 err = -ENODEV;
126 mutex_unlock(&dma_list_mutex);
128 return err;
130 static DEVICE_ATTR_RO(bytes_transferred);
132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
133 char *buf)
135 struct dma_chan *chan;
136 int err;
138 mutex_lock(&dma_list_mutex);
139 chan = dev_to_dma_chan(dev);
140 if (chan)
141 err = sprintf(buf, "%d\n", chan->client_count);
142 else
143 err = -ENODEV;
144 mutex_unlock(&dma_list_mutex);
146 return err;
148 static DEVICE_ATTR_RO(in_use);
150 static struct attribute *dma_dev_attrs[] = {
151 &dev_attr_memcpy_count.attr,
152 &dev_attr_bytes_transferred.attr,
153 &dev_attr_in_use.attr,
154 NULL,
156 ATTRIBUTE_GROUPS(dma_dev);
158 static void chan_dev_release(struct device *dev)
160 struct dma_chan_dev *chan_dev;
162 chan_dev = container_of(dev, typeof(*chan_dev), device);
163 if (atomic_dec_and_test(chan_dev->idr_ref)) {
164 mutex_lock(&dma_list_mutex);
165 idr_remove(&dma_idr, chan_dev->dev_id);
166 mutex_unlock(&dma_list_mutex);
167 kfree(chan_dev->idr_ref);
169 kfree(chan_dev);
172 static struct class dma_devclass = {
173 .name = "dma",
174 .dev_groups = dma_dev_groups,
175 .dev_release = chan_dev_release,
178 /* --- client and device registration --- */
180 #define dma_device_satisfies_mask(device, mask) \
181 __dma_device_satisfies_mask((device), &(mask))
182 static int
183 __dma_device_satisfies_mask(struct dma_device *device,
184 const dma_cap_mask_t *want)
186 dma_cap_mask_t has;
188 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
189 DMA_TX_TYPE_END);
190 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
193 static struct module *dma_chan_to_owner(struct dma_chan *chan)
195 return chan->device->dev->driver->owner;
199 * balance_ref_count - catch up the channel reference count
200 * @chan - channel to balance ->client_count versus dmaengine_ref_count
202 * balance_ref_count must be called under dma_list_mutex
204 static void balance_ref_count(struct dma_chan *chan)
206 struct module *owner = dma_chan_to_owner(chan);
208 while (chan->client_count < dmaengine_ref_count) {
209 __module_get(owner);
210 chan->client_count++;
215 * dma_chan_get - try to grab a dma channel's parent driver module
216 * @chan - channel to grab
218 * Must be called under dma_list_mutex
220 static int dma_chan_get(struct dma_chan *chan)
222 struct module *owner = dma_chan_to_owner(chan);
223 int ret;
225 /* The channel is already in use, update client count */
226 if (chan->client_count) {
227 __module_get(owner);
228 goto out;
231 if (!try_module_get(owner))
232 return -ENODEV;
234 /* allocate upon first client reference */
235 if (chan->device->device_alloc_chan_resources) {
236 ret = chan->device->device_alloc_chan_resources(chan);
237 if (ret < 0)
238 goto err_out;
241 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
242 balance_ref_count(chan);
244 out:
245 chan->client_count++;
246 return 0;
248 err_out:
249 module_put(owner);
250 return ret;
254 * dma_chan_put - drop a reference to a dma channel's parent driver module
255 * @chan - channel to release
257 * Must be called under dma_list_mutex
259 static void dma_chan_put(struct dma_chan *chan)
261 /* This channel is not in use, bail out */
262 if (!chan->client_count)
263 return;
265 chan->client_count--;
266 module_put(dma_chan_to_owner(chan));
268 /* This channel is not in use anymore, free it */
269 if (!chan->client_count && chan->device->device_free_chan_resources) {
270 /* Make sure all operations have completed */
271 dmaengine_synchronize(chan);
272 chan->device->device_free_chan_resources(chan);
275 /* If the channel is used via a DMA request router, free the mapping */
276 if (chan->router && chan->router->route_free) {
277 chan->router->route_free(chan->router->dev, chan->route_data);
278 chan->router = NULL;
279 chan->route_data = NULL;
283 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
285 enum dma_status status;
286 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
288 dma_async_issue_pending(chan);
289 do {
290 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
291 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
292 pr_err("%s: timeout!\n", __func__);
293 return DMA_ERROR;
295 if (status != DMA_IN_PROGRESS)
296 break;
297 cpu_relax();
298 } while (1);
300 return status;
302 EXPORT_SYMBOL(dma_sync_wait);
305 * dma_cap_mask_all - enable iteration over all operation types
307 static dma_cap_mask_t dma_cap_mask_all;
310 * dma_chan_tbl_ent - tracks channel allocations per core/operation
311 * @chan - associated channel for this entry
313 struct dma_chan_tbl_ent {
314 struct dma_chan *chan;
318 * channel_table - percpu lookup table for memory-to-memory offload providers
320 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
322 static int __init dma_channel_table_init(void)
324 enum dma_transaction_type cap;
325 int err = 0;
327 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
329 /* 'interrupt', 'private', and 'slave' are channel capabilities,
330 * but are not associated with an operation so they do not need
331 * an entry in the channel_table
333 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
334 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
335 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
337 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
338 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
339 if (!channel_table[cap]) {
340 err = -ENOMEM;
341 break;
345 if (err) {
346 pr_err("initialization failure\n");
347 for_each_dma_cap_mask(cap, dma_cap_mask_all)
348 free_percpu(channel_table[cap]);
351 return err;
353 arch_initcall(dma_channel_table_init);
356 * dma_find_channel - find a channel to carry out the operation
357 * @tx_type: transaction type
359 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
361 return this_cpu_read(channel_table[tx_type]->chan);
363 EXPORT_SYMBOL(dma_find_channel);
366 * dma_issue_pending_all - flush all pending operations across all channels
368 void dma_issue_pending_all(void)
370 struct dma_device *device;
371 struct dma_chan *chan;
373 rcu_read_lock();
374 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
375 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
376 continue;
377 list_for_each_entry(chan, &device->channels, device_node)
378 if (chan->client_count)
379 device->device_issue_pending(chan);
381 rcu_read_unlock();
383 EXPORT_SYMBOL(dma_issue_pending_all);
386 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
388 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
390 int node = dev_to_node(chan->device->dev);
391 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
395 * min_chan - returns the channel with min count and in the same numa-node as the cpu
396 * @cap: capability to match
397 * @cpu: cpu index which the channel should be close to
399 * If some channels are close to the given cpu, the one with the lowest
400 * reference count is returned. Otherwise, cpu is ignored and only the
401 * reference count is taken into account.
402 * Must be called under dma_list_mutex.
404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
406 struct dma_device *device;
407 struct dma_chan *chan;
408 struct dma_chan *min = NULL;
409 struct dma_chan *localmin = NULL;
411 list_for_each_entry(device, &dma_device_list, global_node) {
412 if (!dma_has_cap(cap, device->cap_mask) ||
413 dma_has_cap(DMA_PRIVATE, device->cap_mask))
414 continue;
415 list_for_each_entry(chan, &device->channels, device_node) {
416 if (!chan->client_count)
417 continue;
418 if (!min || chan->table_count < min->table_count)
419 min = chan;
421 if (dma_chan_is_local(chan, cpu))
422 if (!localmin ||
423 chan->table_count < localmin->table_count)
424 localmin = chan;
428 chan = localmin ? localmin : min;
430 if (chan)
431 chan->table_count++;
433 return chan;
437 * dma_channel_rebalance - redistribute the available channels
439 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
440 * operation type) in the SMP case, and operation isolation (avoid
441 * multi-tasking channels) in the non-SMP case. Must be called under
442 * dma_list_mutex.
444 static void dma_channel_rebalance(void)
446 struct dma_chan *chan;
447 struct dma_device *device;
448 int cpu;
449 int cap;
451 /* undo the last distribution */
452 for_each_dma_cap_mask(cap, dma_cap_mask_all)
453 for_each_possible_cpu(cpu)
454 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
456 list_for_each_entry(device, &dma_device_list, global_node) {
457 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
458 continue;
459 list_for_each_entry(chan, &device->channels, device_node)
460 chan->table_count = 0;
463 /* don't populate the channel_table if no clients are available */
464 if (!dmaengine_ref_count)
465 return;
467 /* redistribute available channels */
468 for_each_dma_cap_mask(cap, dma_cap_mask_all)
469 for_each_online_cpu(cpu) {
470 chan = min_chan(cap, cpu);
471 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
475 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
477 struct dma_device *device;
479 if (!chan || !caps)
480 return -EINVAL;
482 device = chan->device;
484 /* check if the channel supports slave transactions */
485 if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
486 return -ENXIO;
489 * Check whether it reports it uses the generic slave
490 * capabilities, if not, that means it doesn't support any
491 * kind of slave capabilities reporting.
493 if (!device->directions)
494 return -ENXIO;
496 caps->src_addr_widths = device->src_addr_widths;
497 caps->dst_addr_widths = device->dst_addr_widths;
498 caps->directions = device->directions;
499 caps->max_burst = device->max_burst;
500 caps->residue_granularity = device->residue_granularity;
501 caps->descriptor_reuse = device->descriptor_reuse;
504 * Some devices implement only pause (e.g. to get residuum) but no
505 * resume. However cmd_pause is advertised as pause AND resume.
507 caps->cmd_pause = !!(device->device_pause && device->device_resume);
508 caps->cmd_terminate = !!device->device_terminate_all;
510 return 0;
512 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
514 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
515 struct dma_device *dev,
516 dma_filter_fn fn, void *fn_param)
518 struct dma_chan *chan;
520 if (mask && !__dma_device_satisfies_mask(dev, mask)) {
521 pr_debug("%s: wrong capabilities\n", __func__);
522 return NULL;
524 /* devices with multiple channels need special handling as we need to
525 * ensure that all channels are either private or public.
527 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
528 list_for_each_entry(chan, &dev->channels, device_node) {
529 /* some channels are already publicly allocated */
530 if (chan->client_count)
531 return NULL;
534 list_for_each_entry(chan, &dev->channels, device_node) {
535 if (chan->client_count) {
536 pr_debug("%s: %s busy\n",
537 __func__, dma_chan_name(chan));
538 continue;
540 if (fn && !fn(chan, fn_param)) {
541 pr_debug("%s: %s filter said false\n",
542 __func__, dma_chan_name(chan));
543 continue;
545 return chan;
548 return NULL;
551 static struct dma_chan *find_candidate(struct dma_device *device,
552 const dma_cap_mask_t *mask,
553 dma_filter_fn fn, void *fn_param)
555 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
556 int err;
558 if (chan) {
559 /* Found a suitable channel, try to grab, prep, and return it.
560 * We first set DMA_PRIVATE to disable balance_ref_count as this
561 * channel will not be published in the general-purpose
562 * allocator
564 dma_cap_set(DMA_PRIVATE, device->cap_mask);
565 device->privatecnt++;
566 err = dma_chan_get(chan);
568 if (err) {
569 if (err == -ENODEV) {
570 pr_debug("%s: %s module removed\n", __func__,
571 dma_chan_name(chan));
572 list_del_rcu(&device->global_node);
573 } else
574 pr_debug("%s: failed to get %s: (%d)\n",
575 __func__, dma_chan_name(chan), err);
577 if (--device->privatecnt == 0)
578 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
580 chan = ERR_PTR(err);
584 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
588 * dma_get_slave_channel - try to get specific channel exclusively
589 * @chan: target channel
591 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
593 int err = -EBUSY;
595 /* lock against __dma_request_channel */
596 mutex_lock(&dma_list_mutex);
598 if (chan->client_count == 0) {
599 struct dma_device *device = chan->device;
601 dma_cap_set(DMA_PRIVATE, device->cap_mask);
602 device->privatecnt++;
603 err = dma_chan_get(chan);
604 if (err) {
605 pr_debug("%s: failed to get %s: (%d)\n",
606 __func__, dma_chan_name(chan), err);
607 chan = NULL;
608 if (--device->privatecnt == 0)
609 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
611 } else
612 chan = NULL;
614 mutex_unlock(&dma_list_mutex);
617 return chan;
619 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
621 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
623 dma_cap_mask_t mask;
624 struct dma_chan *chan;
626 dma_cap_zero(mask);
627 dma_cap_set(DMA_SLAVE, mask);
629 /* lock against __dma_request_channel */
630 mutex_lock(&dma_list_mutex);
632 chan = find_candidate(device, &mask, NULL, NULL);
634 mutex_unlock(&dma_list_mutex);
636 return IS_ERR(chan) ? NULL : chan;
638 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
641 * __dma_request_channel - try to allocate an exclusive channel
642 * @mask: capabilities that the channel must satisfy
643 * @fn: optional callback to disposition available channels
644 * @fn_param: opaque parameter to pass to dma_filter_fn
646 * Returns pointer to appropriate DMA channel on success or NULL.
648 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
649 dma_filter_fn fn, void *fn_param)
651 struct dma_device *device, *_d;
652 struct dma_chan *chan = NULL;
654 /* Find a channel */
655 mutex_lock(&dma_list_mutex);
656 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
657 chan = find_candidate(device, mask, fn, fn_param);
658 if (!IS_ERR(chan))
659 break;
661 chan = NULL;
663 mutex_unlock(&dma_list_mutex);
665 pr_debug("%s: %s (%s)\n",
666 __func__,
667 chan ? "success" : "fail",
668 chan ? dma_chan_name(chan) : NULL);
670 return chan;
672 EXPORT_SYMBOL_GPL(__dma_request_channel);
674 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
675 const char *name,
676 struct device *dev)
678 int i;
680 if (!device->filter.mapcnt)
681 return NULL;
683 for (i = 0; i < device->filter.mapcnt; i++) {
684 const struct dma_slave_map *map = &device->filter.map[i];
686 if (!strcmp(map->devname, dev_name(dev)) &&
687 !strcmp(map->slave, name))
688 return map;
691 return NULL;
695 * dma_request_chan - try to allocate an exclusive slave channel
696 * @dev: pointer to client device structure
697 * @name: slave channel name
699 * Returns pointer to appropriate DMA channel on success or an error pointer.
701 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
703 struct dma_device *d, *_d;
704 struct dma_chan *chan = NULL;
706 /* If device-tree is present get slave info from here */
707 if (dev->of_node)
708 chan = of_dma_request_slave_channel(dev->of_node, name);
710 /* If device was enumerated by ACPI get slave info from here */
711 if (has_acpi_companion(dev) && !chan)
712 chan = acpi_dma_request_slave_chan_by_name(dev, name);
714 if (chan) {
715 /* Valid channel found or requester need to be deferred */
716 if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
717 return chan;
720 /* Try to find the channel via the DMA filter map(s) */
721 mutex_lock(&dma_list_mutex);
722 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
723 dma_cap_mask_t mask;
724 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
726 if (!map)
727 continue;
729 dma_cap_zero(mask);
730 dma_cap_set(DMA_SLAVE, mask);
732 chan = find_candidate(d, &mask, d->filter.fn, map->param);
733 if (!IS_ERR(chan))
734 break;
736 mutex_unlock(&dma_list_mutex);
738 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
740 EXPORT_SYMBOL_GPL(dma_request_chan);
743 * dma_request_slave_channel - try to allocate an exclusive slave channel
744 * @dev: pointer to client device structure
745 * @name: slave channel name
747 * Returns pointer to appropriate DMA channel on success or NULL.
749 struct dma_chan *dma_request_slave_channel(struct device *dev,
750 const char *name)
752 struct dma_chan *ch = dma_request_chan(dev, name);
753 if (IS_ERR(ch))
754 return NULL;
756 return ch;
758 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
761 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
762 * @mask: capabilities that the channel must satisfy
764 * Returns pointer to appropriate DMA channel on success or an error pointer.
766 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
768 struct dma_chan *chan;
770 if (!mask)
771 return ERR_PTR(-ENODEV);
773 chan = __dma_request_channel(mask, NULL, NULL);
774 if (!chan)
775 chan = ERR_PTR(-ENODEV);
777 return chan;
779 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
781 void dma_release_channel(struct dma_chan *chan)
783 mutex_lock(&dma_list_mutex);
784 WARN_ONCE(chan->client_count != 1,
785 "chan reference count %d != 1\n", chan->client_count);
786 dma_chan_put(chan);
787 /* drop PRIVATE cap enabled by __dma_request_channel() */
788 if (--chan->device->privatecnt == 0)
789 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
790 mutex_unlock(&dma_list_mutex);
792 EXPORT_SYMBOL_GPL(dma_release_channel);
795 * dmaengine_get - register interest in dma_channels
797 void dmaengine_get(void)
799 struct dma_device *device, *_d;
800 struct dma_chan *chan;
801 int err;
803 mutex_lock(&dma_list_mutex);
804 dmaengine_ref_count++;
806 /* try to grab channels */
807 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
808 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
809 continue;
810 list_for_each_entry(chan, &device->channels, device_node) {
811 err = dma_chan_get(chan);
812 if (err == -ENODEV) {
813 /* module removed before we could use it */
814 list_del_rcu(&device->global_node);
815 break;
816 } else if (err)
817 pr_debug("%s: failed to get %s: (%d)\n",
818 __func__, dma_chan_name(chan), err);
822 /* if this is the first reference and there were channels
823 * waiting we need to rebalance to get those channels
824 * incorporated into the channel table
826 if (dmaengine_ref_count == 1)
827 dma_channel_rebalance();
828 mutex_unlock(&dma_list_mutex);
830 EXPORT_SYMBOL(dmaengine_get);
833 * dmaengine_put - let dma drivers be removed when ref_count == 0
835 void dmaengine_put(void)
837 struct dma_device *device;
838 struct dma_chan *chan;
840 mutex_lock(&dma_list_mutex);
841 dmaengine_ref_count--;
842 BUG_ON(dmaengine_ref_count < 0);
843 /* drop channel references */
844 list_for_each_entry(device, &dma_device_list, global_node) {
845 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
846 continue;
847 list_for_each_entry(chan, &device->channels, device_node)
848 dma_chan_put(chan);
850 mutex_unlock(&dma_list_mutex);
852 EXPORT_SYMBOL(dmaengine_put);
854 static bool device_has_all_tx_types(struct dma_device *device)
856 /* A device that satisfies this test has channels that will never cause
857 * an async_tx channel switch event as all possible operation types can
858 * be handled.
860 #ifdef CONFIG_ASYNC_TX_DMA
861 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
862 return false;
863 #endif
865 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
866 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
867 return false;
868 #endif
870 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
871 if (!dma_has_cap(DMA_XOR, device->cap_mask))
872 return false;
874 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
875 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
876 return false;
877 #endif
878 #endif
880 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
881 if (!dma_has_cap(DMA_PQ, device->cap_mask))
882 return false;
884 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
885 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
886 return false;
887 #endif
888 #endif
890 return true;
893 static int get_dma_id(struct dma_device *device)
895 int rc;
897 mutex_lock(&dma_list_mutex);
899 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
900 if (rc >= 0)
901 device->dev_id = rc;
903 mutex_unlock(&dma_list_mutex);
904 return rc < 0 ? rc : 0;
908 * dma_async_device_register - registers DMA devices found
909 * @device: &dma_device
911 int dma_async_device_register(struct dma_device *device)
913 int chancnt = 0, rc;
914 struct dma_chan* chan;
915 atomic_t *idr_ref;
917 if (!device)
918 return -ENODEV;
920 /* validate device routines */
921 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
922 !device->device_prep_dma_memcpy);
923 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
924 !device->device_prep_dma_xor);
925 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
926 !device->device_prep_dma_xor_val);
927 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
928 !device->device_prep_dma_pq);
929 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
930 !device->device_prep_dma_pq_val);
931 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
932 !device->device_prep_dma_memset);
933 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
934 !device->device_prep_dma_interrupt);
935 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
936 !device->device_prep_dma_sg);
937 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
938 !device->device_prep_dma_cyclic);
939 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
940 !device->device_prep_interleaved_dma);
942 BUG_ON(!device->device_tx_status);
943 BUG_ON(!device->device_issue_pending);
944 BUG_ON(!device->dev);
946 /* note: this only matters in the
947 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
949 if (device_has_all_tx_types(device))
950 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
952 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
953 if (!idr_ref)
954 return -ENOMEM;
955 rc = get_dma_id(device);
956 if (rc != 0) {
957 kfree(idr_ref);
958 return rc;
961 atomic_set(idr_ref, 0);
963 /* represent channels in sysfs. Probably want devs too */
964 list_for_each_entry(chan, &device->channels, device_node) {
965 rc = -ENOMEM;
966 chan->local = alloc_percpu(typeof(*chan->local));
967 if (chan->local == NULL)
968 goto err_out;
969 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
970 if (chan->dev == NULL) {
971 free_percpu(chan->local);
972 chan->local = NULL;
973 goto err_out;
976 chan->chan_id = chancnt++;
977 chan->dev->device.class = &dma_devclass;
978 chan->dev->device.parent = device->dev;
979 chan->dev->chan = chan;
980 chan->dev->idr_ref = idr_ref;
981 chan->dev->dev_id = device->dev_id;
982 atomic_inc(idr_ref);
983 dev_set_name(&chan->dev->device, "dma%dchan%d",
984 device->dev_id, chan->chan_id);
986 rc = device_register(&chan->dev->device);
987 if (rc) {
988 free_percpu(chan->local);
989 chan->local = NULL;
990 kfree(chan->dev);
991 atomic_dec(idr_ref);
992 goto err_out;
994 chan->client_count = 0;
996 device->chancnt = chancnt;
998 mutex_lock(&dma_list_mutex);
999 /* take references on public channels */
1000 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1001 list_for_each_entry(chan, &device->channels, device_node) {
1002 /* if clients are already waiting for channels we need
1003 * to take references on their behalf
1005 if (dma_chan_get(chan) == -ENODEV) {
1006 /* note we can only get here for the first
1007 * channel as the remaining channels are
1008 * guaranteed to get a reference
1010 rc = -ENODEV;
1011 mutex_unlock(&dma_list_mutex);
1012 goto err_out;
1015 list_add_tail_rcu(&device->global_node, &dma_device_list);
1016 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1017 device->privatecnt++; /* Always private */
1018 dma_channel_rebalance();
1019 mutex_unlock(&dma_list_mutex);
1021 return 0;
1023 err_out:
1024 /* if we never registered a channel just release the idr */
1025 if (atomic_read(idr_ref) == 0) {
1026 mutex_lock(&dma_list_mutex);
1027 idr_remove(&dma_idr, device->dev_id);
1028 mutex_unlock(&dma_list_mutex);
1029 kfree(idr_ref);
1030 return rc;
1033 list_for_each_entry(chan, &device->channels, device_node) {
1034 if (chan->local == NULL)
1035 continue;
1036 mutex_lock(&dma_list_mutex);
1037 chan->dev->chan = NULL;
1038 mutex_unlock(&dma_list_mutex);
1039 device_unregister(&chan->dev->device);
1040 free_percpu(chan->local);
1042 return rc;
1044 EXPORT_SYMBOL(dma_async_device_register);
1047 * dma_async_device_unregister - unregister a DMA device
1048 * @device: &dma_device
1050 * This routine is called by dma driver exit routines, dmaengine holds module
1051 * references to prevent it being called while channels are in use.
1053 void dma_async_device_unregister(struct dma_device *device)
1055 struct dma_chan *chan;
1057 mutex_lock(&dma_list_mutex);
1058 list_del_rcu(&device->global_node);
1059 dma_channel_rebalance();
1060 mutex_unlock(&dma_list_mutex);
1062 list_for_each_entry(chan, &device->channels, device_node) {
1063 WARN_ONCE(chan->client_count,
1064 "%s called while %d clients hold a reference\n",
1065 __func__, chan->client_count);
1066 mutex_lock(&dma_list_mutex);
1067 chan->dev->chan = NULL;
1068 mutex_unlock(&dma_list_mutex);
1069 device_unregister(&chan->dev->device);
1070 free_percpu(chan->local);
1073 EXPORT_SYMBOL(dma_async_device_unregister);
1075 struct dmaengine_unmap_pool {
1076 struct kmem_cache *cache;
1077 const char *name;
1078 mempool_t *pool;
1079 size_t size;
1082 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1083 static struct dmaengine_unmap_pool unmap_pool[] = {
1084 __UNMAP_POOL(2),
1085 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1086 __UNMAP_POOL(16),
1087 __UNMAP_POOL(128),
1088 __UNMAP_POOL(256),
1089 #endif
1092 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1094 int order = get_count_order(nr);
1096 switch (order) {
1097 case 0 ... 1:
1098 return &unmap_pool[0];
1099 case 2 ... 4:
1100 return &unmap_pool[1];
1101 case 5 ... 7:
1102 return &unmap_pool[2];
1103 case 8:
1104 return &unmap_pool[3];
1105 default:
1106 BUG();
1107 return NULL;
1111 static void dmaengine_unmap(struct kref *kref)
1113 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1114 struct device *dev = unmap->dev;
1115 int cnt, i;
1117 cnt = unmap->to_cnt;
1118 for (i = 0; i < cnt; i++)
1119 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1120 DMA_TO_DEVICE);
1121 cnt += unmap->from_cnt;
1122 for (; i < cnt; i++)
1123 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1124 DMA_FROM_DEVICE);
1125 cnt += unmap->bidi_cnt;
1126 for (; i < cnt; i++) {
1127 if (unmap->addr[i] == 0)
1128 continue;
1129 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1130 DMA_BIDIRECTIONAL);
1132 cnt = unmap->map_cnt;
1133 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1136 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1138 if (unmap)
1139 kref_put(&unmap->kref, dmaengine_unmap);
1141 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1143 static void dmaengine_destroy_unmap_pool(void)
1145 int i;
1147 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1148 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1150 mempool_destroy(p->pool);
1151 p->pool = NULL;
1152 kmem_cache_destroy(p->cache);
1153 p->cache = NULL;
1157 static int __init dmaengine_init_unmap_pool(void)
1159 int i;
1161 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1162 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1163 size_t size;
1165 size = sizeof(struct dmaengine_unmap_data) +
1166 sizeof(dma_addr_t) * p->size;
1168 p->cache = kmem_cache_create(p->name, size, 0,
1169 SLAB_HWCACHE_ALIGN, NULL);
1170 if (!p->cache)
1171 break;
1172 p->pool = mempool_create_slab_pool(1, p->cache);
1173 if (!p->pool)
1174 break;
1177 if (i == ARRAY_SIZE(unmap_pool))
1178 return 0;
1180 dmaengine_destroy_unmap_pool();
1181 return -ENOMEM;
1184 struct dmaengine_unmap_data *
1185 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1187 struct dmaengine_unmap_data *unmap;
1189 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1190 if (!unmap)
1191 return NULL;
1193 memset(unmap, 0, sizeof(*unmap));
1194 kref_init(&unmap->kref);
1195 unmap->dev = dev;
1196 unmap->map_cnt = nr;
1198 return unmap;
1200 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1202 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1203 struct dma_chan *chan)
1205 tx->chan = chan;
1206 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1207 spin_lock_init(&tx->lock);
1208 #endif
1210 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1212 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1213 * @tx: in-flight transaction to wait on
1215 enum dma_status
1216 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1218 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1220 if (!tx)
1221 return DMA_COMPLETE;
1223 while (tx->cookie == -EBUSY) {
1224 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1225 pr_err("%s timeout waiting for descriptor submission\n",
1226 __func__);
1227 return DMA_ERROR;
1229 cpu_relax();
1231 return dma_sync_wait(tx->chan, tx->cookie);
1233 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1235 /* dma_run_dependencies - helper routine for dma drivers to process
1236 * (start) dependent operations on their target channel
1237 * @tx: transaction with dependencies
1239 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1241 struct dma_async_tx_descriptor *dep = txd_next(tx);
1242 struct dma_async_tx_descriptor *dep_next;
1243 struct dma_chan *chan;
1245 if (!dep)
1246 return;
1248 /* we'll submit tx->next now, so clear the link */
1249 txd_clear_next(tx);
1250 chan = dep->chan;
1252 /* keep submitting up until a channel switch is detected
1253 * in that case we will be called again as a result of
1254 * processing the interrupt from async_tx_channel_switch
1256 for (; dep; dep = dep_next) {
1257 txd_lock(dep);
1258 txd_clear_parent(dep);
1259 dep_next = txd_next(dep);
1260 if (dep_next && dep_next->chan == chan)
1261 txd_clear_next(dep); /* ->next will be submitted */
1262 else
1263 dep_next = NULL; /* submit current dep and terminate */
1264 txd_unlock(dep);
1266 dep->tx_submit(dep);
1269 chan->device->device_issue_pending(chan);
1271 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1273 static int __init dma_bus_init(void)
1275 int err = dmaengine_init_unmap_pool();
1277 if (err)
1278 return err;
1279 return class_register(&dma_devclass);
1281 arch_initcall(dma_bus_init);