EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / dma / sh / rcar-dmac.c
blobdfb17926297bd4f095a77b8105725335fa7c1aff
1 /*
2 * Renesas R-Car Gen2 DMA Controller Driver
4 * Copyright (C) 2014 Renesas Electronics Inc.
6 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8 * This is free software; you can redistribute it and/or modify
9 * it under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
27 #include "../dmaengine.h"
30 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31 * @node: entry in the parent's chunks list
32 * @src_addr: device source address
33 * @dst_addr: device destination address
34 * @size: transfer size in bytes
36 struct rcar_dmac_xfer_chunk {
37 struct list_head node;
39 dma_addr_t src_addr;
40 dma_addr_t dst_addr;
41 u32 size;
45 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46 * @sar: value of the SAR register (source address)
47 * @dar: value of the DAR register (destination address)
48 * @tcr: value of the TCR register (transfer count)
50 struct rcar_dmac_hw_desc {
51 u32 sar;
52 u32 dar;
53 u32 tcr;
54 u32 reserved;
55 } __attribute__((__packed__));
58 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59 * @async_tx: base DMA asynchronous transaction descriptor
60 * @direction: direction of the DMA transfer
61 * @xfer_shift: log2 of the transfer size
62 * @chcr: value of the channel configuration register for this transfer
63 * @node: entry in the channel's descriptors lists
64 * @chunks: list of transfer chunks for this transfer
65 * @running: the transfer chunk being currently processed
66 * @nchunks: number of transfer chunks for this transfer
67 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68 * @hwdescs.mem: hardware descriptors memory for the transfer
69 * @hwdescs.dma: device address of the hardware descriptors memory
70 * @hwdescs.size: size of the hardware descriptors in bytes
71 * @size: transfer size in bytes
72 * @cyclic: when set indicates that the DMA transfer is cyclic
74 struct rcar_dmac_desc {
75 struct dma_async_tx_descriptor async_tx;
76 enum dma_transfer_direction direction;
77 unsigned int xfer_shift;
78 u32 chcr;
80 struct list_head node;
81 struct list_head chunks;
82 struct rcar_dmac_xfer_chunk *running;
83 unsigned int nchunks;
85 struct {
86 bool use;
87 struct rcar_dmac_hw_desc *mem;
88 dma_addr_t dma;
89 size_t size;
90 } hwdescs;
92 unsigned int size;
93 bool cyclic;
96 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
99 * struct rcar_dmac_desc_page - One page worth of descriptors
100 * @node: entry in the channel's pages list
101 * @descs: array of DMA descriptors
102 * @chunks: array of transfer chunk descriptors
104 struct rcar_dmac_desc_page {
105 struct list_head node;
107 union {
108 struct rcar_dmac_desc descs[0];
109 struct rcar_dmac_xfer_chunk chunks[0];
113 #define RCAR_DMAC_DESCS_PER_PAGE \
114 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
115 sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
117 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
118 sizeof(struct rcar_dmac_xfer_chunk))
121 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
122 * @chan: base DMA channel object
123 * @iomem: channel I/O memory base
124 * @index: index of this channel in the controller
125 * @src_xfer_size: size (in bytes) of hardware transfers on the source side
126 * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side
127 * @src_slave_addr: slave source memory address
128 * @dst_slave_addr: slave destination memory address
129 * @mid_rid: hardware MID/RID for the DMA client using this channel
130 * @lock: protects the channel CHCR register and the desc members
131 * @desc.free: list of free descriptors
132 * @desc.pending: list of pending descriptors (submitted with tx_submit)
133 * @desc.active: list of active descriptors (activated with issue_pending)
134 * @desc.done: list of completed descriptors
135 * @desc.wait: list of descriptors waiting for an ack
136 * @desc.running: the descriptor being processed (a member of the active list)
137 * @desc.chunks_free: list of free transfer chunk descriptors
138 * @desc.pages: list of pages used by allocated descriptors
140 struct rcar_dmac_chan {
141 struct dma_chan chan;
142 void __iomem *iomem;
143 unsigned int index;
145 unsigned int src_xfer_size;
146 unsigned int dst_xfer_size;
147 dma_addr_t src_slave_addr;
148 dma_addr_t dst_slave_addr;
149 int mid_rid;
151 spinlock_t lock;
153 struct {
154 struct list_head free;
155 struct list_head pending;
156 struct list_head active;
157 struct list_head done;
158 struct list_head wait;
159 struct rcar_dmac_desc *running;
161 struct list_head chunks_free;
163 struct list_head pages;
164 } desc;
167 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
170 * struct rcar_dmac - R-Car Gen2 DMA Controller
171 * @engine: base DMA engine object
172 * @dev: the hardware device
173 * @iomem: remapped I/O memory base
174 * @n_channels: number of available channels
175 * @channels: array of DMAC channels
176 * @modules: bitmask of client modules in use
178 struct rcar_dmac {
179 struct dma_device engine;
180 struct device *dev;
181 void __iomem *iomem;
183 unsigned int n_channels;
184 struct rcar_dmac_chan *channels;
186 DECLARE_BITMAP(modules, 256);
189 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
191 /* -----------------------------------------------------------------------------
192 * Registers
195 #define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i))
197 #define RCAR_DMAISTA 0x0020
198 #define RCAR_DMASEC 0x0030
199 #define RCAR_DMAOR 0x0060
200 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
201 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
202 #define RCAR_DMAOR_AE (1 << 2)
203 #define RCAR_DMAOR_DME (1 << 0)
204 #define RCAR_DMACHCLR 0x0080
205 #define RCAR_DMADPSEC 0x00a0
207 #define RCAR_DMASAR 0x0000
208 #define RCAR_DMADAR 0x0004
209 #define RCAR_DMATCR 0x0008
210 #define RCAR_DMATCR_MASK 0x00ffffff
211 #define RCAR_DMATSR 0x0028
212 #define RCAR_DMACHCR 0x000c
213 #define RCAR_DMACHCR_CAE (1 << 31)
214 #define RCAR_DMACHCR_CAIE (1 << 30)
215 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
216 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
217 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
218 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
219 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
220 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
221 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
222 #define RCAR_DMACHCR_DPB (1 << 22)
223 #define RCAR_DMACHCR_DSE (1 << 19)
224 #define RCAR_DMACHCR_DSIE (1 << 18)
225 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
226 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
227 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
228 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
229 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
230 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
231 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
232 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
233 #define RCAR_DMACHCR_DM_INC (1 << 14)
234 #define RCAR_DMACHCR_DM_DEC (2 << 14)
235 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
236 #define RCAR_DMACHCR_SM_INC (1 << 12)
237 #define RCAR_DMACHCR_SM_DEC (2 << 12)
238 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
239 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
240 #define RCAR_DMACHCR_IE (1 << 2)
241 #define RCAR_DMACHCR_TE (1 << 1)
242 #define RCAR_DMACHCR_DE (1 << 0)
243 #define RCAR_DMATCRB 0x0018
244 #define RCAR_DMATSRB 0x0038
245 #define RCAR_DMACHCRB 0x001c
246 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
247 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
248 #define RCAR_DMACHCRB_DPTR_SHIFT 16
249 #define RCAR_DMACHCRB_DRST (1 << 15)
250 #define RCAR_DMACHCRB_DTS (1 << 8)
251 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
252 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
253 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
254 #define RCAR_DMARS 0x0040
255 #define RCAR_DMABUFCR 0x0048
256 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
257 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
258 #define RCAR_DMADPBASE 0x0050
259 #define RCAR_DMADPBASE_MASK 0xfffffff0
260 #define RCAR_DMADPBASE_SEL (1 << 0)
261 #define RCAR_DMADPCR 0x0054
262 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
263 #define RCAR_DMAFIXSAR 0x0010
264 #define RCAR_DMAFIXDAR 0x0014
265 #define RCAR_DMAFIXDPBASE 0x0060
267 /* Hardcode the MEMCPY transfer size to 4 bytes. */
268 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
270 /* -----------------------------------------------------------------------------
271 * Device access
274 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
276 if (reg == RCAR_DMAOR)
277 writew(data, dmac->iomem + reg);
278 else
279 writel(data, dmac->iomem + reg);
282 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
284 if (reg == RCAR_DMAOR)
285 return readw(dmac->iomem + reg);
286 else
287 return readl(dmac->iomem + reg);
290 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
292 if (reg == RCAR_DMARS)
293 return readw(chan->iomem + reg);
294 else
295 return readl(chan->iomem + reg);
298 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
300 if (reg == RCAR_DMARS)
301 writew(data, chan->iomem + reg);
302 else
303 writel(data, chan->iomem + reg);
306 /* -----------------------------------------------------------------------------
307 * Initialization and configuration
310 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
312 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
314 return (chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)) == RCAR_DMACHCR_DE;
317 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
319 struct rcar_dmac_desc *desc = chan->desc.running;
320 u32 chcr = desc->chcr;
322 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
324 if (chan->mid_rid >= 0)
325 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
327 if (desc->hwdescs.use) {
328 struct rcar_dmac_xfer_chunk *chunk;
330 dev_dbg(chan->chan.device->dev,
331 "chan%u: queue desc %p: %u@%pad\n",
332 chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
334 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
335 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
336 desc->hwdescs.dma >> 32);
337 #endif
338 rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
339 (desc->hwdescs.dma & 0xfffffff0) |
340 RCAR_DMADPBASE_SEL);
341 rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
342 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
343 RCAR_DMACHCRB_DRST);
346 * Errata: When descriptor memory is accessed through an IOMMU
347 * the DMADAR register isn't initialized automatically from the
348 * first descriptor at beginning of transfer by the DMAC like it
349 * should. Initialize it manually with the destination address
350 * of the first chunk.
352 chunk = list_first_entry(&desc->chunks,
353 struct rcar_dmac_xfer_chunk, node);
354 rcar_dmac_chan_write(chan, RCAR_DMADAR,
355 chunk->dst_addr & 0xffffffff);
358 * Program the descriptor stage interrupt to occur after the end
359 * of the first stage.
361 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
363 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
364 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
367 * If the descriptor isn't cyclic enable normal descriptor mode
368 * and the transfer completion interrupt.
370 if (!desc->cyclic)
371 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
373 * If the descriptor is cyclic and has a callback enable the
374 * descriptor stage interrupt in infinite repeat mode.
376 else if (desc->async_tx.callback)
377 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
379 * Otherwise just select infinite repeat mode without any
380 * interrupt.
382 else
383 chcr |= RCAR_DMACHCR_DPM_INFINITE;
384 } else {
385 struct rcar_dmac_xfer_chunk *chunk = desc->running;
387 dev_dbg(chan->chan.device->dev,
388 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
389 chan->index, chunk, chunk->size, &chunk->src_addr,
390 &chunk->dst_addr);
392 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
393 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
394 chunk->src_addr >> 32);
395 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
396 chunk->dst_addr >> 32);
397 #endif
398 rcar_dmac_chan_write(chan, RCAR_DMASAR,
399 chunk->src_addr & 0xffffffff);
400 rcar_dmac_chan_write(chan, RCAR_DMADAR,
401 chunk->dst_addr & 0xffffffff);
402 rcar_dmac_chan_write(chan, RCAR_DMATCR,
403 chunk->size >> desc->xfer_shift);
405 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
408 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
411 static int rcar_dmac_init(struct rcar_dmac *dmac)
413 u16 dmaor;
415 /* Clear all channels and enable the DMAC globally. */
416 rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
417 rcar_dmac_write(dmac, RCAR_DMAOR,
418 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
420 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
421 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
422 dev_warn(dmac->dev, "DMAOR initialization failed.\n");
423 return -EIO;
426 return 0;
429 /* -----------------------------------------------------------------------------
430 * Descriptors submission
433 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
435 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
436 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
437 unsigned long flags;
438 dma_cookie_t cookie;
440 spin_lock_irqsave(&chan->lock, flags);
442 cookie = dma_cookie_assign(tx);
444 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
445 chan->index, tx->cookie, desc);
447 list_add_tail(&desc->node, &chan->desc.pending);
448 desc->running = list_first_entry(&desc->chunks,
449 struct rcar_dmac_xfer_chunk, node);
451 spin_unlock_irqrestore(&chan->lock, flags);
453 return cookie;
456 /* -----------------------------------------------------------------------------
457 * Descriptors allocation and free
461 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
462 * @chan: the DMA channel
463 * @gfp: allocation flags
465 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
467 struct rcar_dmac_desc_page *page;
468 unsigned long flags;
469 LIST_HEAD(list);
470 unsigned int i;
472 page = (void *)get_zeroed_page(gfp);
473 if (!page)
474 return -ENOMEM;
476 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
477 struct rcar_dmac_desc *desc = &page->descs[i];
479 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
480 desc->async_tx.tx_submit = rcar_dmac_tx_submit;
481 INIT_LIST_HEAD(&desc->chunks);
483 list_add_tail(&desc->node, &list);
486 spin_lock_irqsave(&chan->lock, flags);
487 list_splice_tail(&list, &chan->desc.free);
488 list_add_tail(&page->node, &chan->desc.pages);
489 spin_unlock_irqrestore(&chan->lock, flags);
491 return 0;
495 * rcar_dmac_desc_put - Release a DMA transfer descriptor
496 * @chan: the DMA channel
497 * @desc: the descriptor
499 * Put the descriptor and its transfer chunk descriptors back in the channel's
500 * free descriptors lists. The descriptor's chunks list will be reinitialized to
501 * an empty list as a result.
503 * The descriptor must have been removed from the channel's lists before calling
504 * this function.
506 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
507 struct rcar_dmac_desc *desc)
509 unsigned long flags;
511 spin_lock_irqsave(&chan->lock, flags);
512 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
513 list_add_tail(&desc->node, &chan->desc.free);
514 spin_unlock_irqrestore(&chan->lock, flags);
517 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
519 struct rcar_dmac_desc *desc, *_desc;
520 unsigned long flags;
521 LIST_HEAD(list);
524 * We have to temporarily move all descriptors from the wait list to a
525 * local list as iterating over the wait list, even with
526 * list_for_each_entry_safe, isn't safe if we release the channel lock
527 * around the rcar_dmac_desc_put() call.
529 spin_lock_irqsave(&chan->lock, flags);
530 list_splice_init(&chan->desc.wait, &list);
531 spin_unlock_irqrestore(&chan->lock, flags);
533 list_for_each_entry_safe(desc, _desc, &list, node) {
534 if (async_tx_test_ack(&desc->async_tx)) {
535 list_del(&desc->node);
536 rcar_dmac_desc_put(chan, desc);
540 if (list_empty(&list))
541 return;
543 /* Put the remaining descriptors back in the wait list. */
544 spin_lock_irqsave(&chan->lock, flags);
545 list_splice(&list, &chan->desc.wait);
546 spin_unlock_irqrestore(&chan->lock, flags);
550 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
551 * @chan: the DMA channel
553 * Locking: This function must be called in a non-atomic context.
555 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
556 * be allocated.
558 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
560 struct rcar_dmac_desc *desc;
561 unsigned long flags;
562 int ret;
564 /* Recycle acked descriptors before attempting allocation. */
565 rcar_dmac_desc_recycle_acked(chan);
567 spin_lock_irqsave(&chan->lock, flags);
569 while (list_empty(&chan->desc.free)) {
571 * No free descriptors, allocate a page worth of them and try
572 * again, as someone else could race us to get the newly
573 * allocated descriptors. If the allocation fails return an
574 * error.
576 spin_unlock_irqrestore(&chan->lock, flags);
577 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
578 if (ret < 0)
579 return NULL;
580 spin_lock_irqsave(&chan->lock, flags);
583 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
584 list_del(&desc->node);
586 spin_unlock_irqrestore(&chan->lock, flags);
588 return desc;
592 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
593 * @chan: the DMA channel
594 * @gfp: allocation flags
596 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
598 struct rcar_dmac_desc_page *page;
599 unsigned long flags;
600 LIST_HEAD(list);
601 unsigned int i;
603 page = (void *)get_zeroed_page(gfp);
604 if (!page)
605 return -ENOMEM;
607 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
608 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
610 list_add_tail(&chunk->node, &list);
613 spin_lock_irqsave(&chan->lock, flags);
614 list_splice_tail(&list, &chan->desc.chunks_free);
615 list_add_tail(&page->node, &chan->desc.pages);
616 spin_unlock_irqrestore(&chan->lock, flags);
618 return 0;
622 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
623 * @chan: the DMA channel
625 * Locking: This function must be called in a non-atomic context.
627 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
628 * descriptor can be allocated.
630 static struct rcar_dmac_xfer_chunk *
631 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
633 struct rcar_dmac_xfer_chunk *chunk;
634 unsigned long flags;
635 int ret;
637 spin_lock_irqsave(&chan->lock, flags);
639 while (list_empty(&chan->desc.chunks_free)) {
641 * No free descriptors, allocate a page worth of them and try
642 * again, as someone else could race us to get the newly
643 * allocated descriptors. If the allocation fails return an
644 * error.
646 spin_unlock_irqrestore(&chan->lock, flags);
647 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
648 if (ret < 0)
649 return NULL;
650 spin_lock_irqsave(&chan->lock, flags);
653 chunk = list_first_entry(&chan->desc.chunks_free,
654 struct rcar_dmac_xfer_chunk, node);
655 list_del(&chunk->node);
657 spin_unlock_irqrestore(&chan->lock, flags);
659 return chunk;
662 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
663 struct rcar_dmac_desc *desc, size_t size)
666 * dma_alloc_coherent() allocates memory in page size increments. To
667 * avoid reallocating the hardware descriptors when the allocated size
668 * wouldn't change align the requested size to a multiple of the page
669 * size.
671 size = PAGE_ALIGN(size);
673 if (desc->hwdescs.size == size)
674 return;
676 if (desc->hwdescs.mem) {
677 dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
678 desc->hwdescs.mem, desc->hwdescs.dma);
679 desc->hwdescs.mem = NULL;
680 desc->hwdescs.size = 0;
683 if (!size)
684 return;
686 desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
687 &desc->hwdescs.dma, GFP_NOWAIT);
688 if (!desc->hwdescs.mem)
689 return;
691 desc->hwdescs.size = size;
694 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
695 struct rcar_dmac_desc *desc)
697 struct rcar_dmac_xfer_chunk *chunk;
698 struct rcar_dmac_hw_desc *hwdesc;
700 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
702 hwdesc = desc->hwdescs.mem;
703 if (!hwdesc)
704 return -ENOMEM;
706 list_for_each_entry(chunk, &desc->chunks, node) {
707 hwdesc->sar = chunk->src_addr;
708 hwdesc->dar = chunk->dst_addr;
709 hwdesc->tcr = chunk->size >> desc->xfer_shift;
710 hwdesc++;
713 return 0;
716 /* -----------------------------------------------------------------------------
717 * Stop and reset
720 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
722 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
724 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
725 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
726 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
729 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
731 struct rcar_dmac_desc *desc, *_desc;
732 unsigned long flags;
733 LIST_HEAD(descs);
735 spin_lock_irqsave(&chan->lock, flags);
737 /* Move all non-free descriptors to the local lists. */
738 list_splice_init(&chan->desc.pending, &descs);
739 list_splice_init(&chan->desc.active, &descs);
740 list_splice_init(&chan->desc.done, &descs);
741 list_splice_init(&chan->desc.wait, &descs);
743 chan->desc.running = NULL;
745 spin_unlock_irqrestore(&chan->lock, flags);
747 list_for_each_entry_safe(desc, _desc, &descs, node) {
748 list_del(&desc->node);
749 rcar_dmac_desc_put(chan, desc);
753 static void rcar_dmac_stop(struct rcar_dmac *dmac)
755 rcar_dmac_write(dmac, RCAR_DMAOR, 0);
758 static void rcar_dmac_abort(struct rcar_dmac *dmac)
760 unsigned int i;
762 /* Stop all channels. */
763 for (i = 0; i < dmac->n_channels; ++i) {
764 struct rcar_dmac_chan *chan = &dmac->channels[i];
766 /* Stop and reinitialize the channel. */
767 spin_lock(&chan->lock);
768 rcar_dmac_chan_halt(chan);
769 spin_unlock(&chan->lock);
771 rcar_dmac_chan_reinit(chan);
775 /* -----------------------------------------------------------------------------
776 * Descriptors preparation
779 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
780 struct rcar_dmac_desc *desc)
782 static const u32 chcr_ts[] = {
783 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
784 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
785 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
786 RCAR_DMACHCR_TS_64B,
789 unsigned int xfer_size;
790 u32 chcr;
792 switch (desc->direction) {
793 case DMA_DEV_TO_MEM:
794 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
795 | RCAR_DMACHCR_RS_DMARS;
796 xfer_size = chan->src_xfer_size;
797 break;
799 case DMA_MEM_TO_DEV:
800 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
801 | RCAR_DMACHCR_RS_DMARS;
802 xfer_size = chan->dst_xfer_size;
803 break;
805 case DMA_MEM_TO_MEM:
806 default:
807 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
808 | RCAR_DMACHCR_RS_AUTO;
809 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
810 break;
813 desc->xfer_shift = ilog2(xfer_size);
814 desc->chcr = chcr | chcr_ts[desc->xfer_shift];
818 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
820 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
821 * converted to scatter-gather to guarantee consistent locking and a correct
822 * list manipulation. For slave DMA direction carries the usual meaning, and,
823 * logically, the SG list is RAM and the addr variable contains slave address,
824 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
825 * and the SG list contains only one element and points at the source buffer.
827 static struct dma_async_tx_descriptor *
828 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
829 unsigned int sg_len, dma_addr_t dev_addr,
830 enum dma_transfer_direction dir, unsigned long dma_flags,
831 bool cyclic)
833 struct rcar_dmac_xfer_chunk *chunk;
834 struct rcar_dmac_desc *desc;
835 struct scatterlist *sg;
836 unsigned int nchunks = 0;
837 unsigned int max_chunk_size;
838 unsigned int full_size = 0;
839 bool highmem = false;
840 unsigned int i;
842 desc = rcar_dmac_desc_get(chan);
843 if (!desc)
844 return NULL;
846 desc->async_tx.flags = dma_flags;
847 desc->async_tx.cookie = -EBUSY;
849 desc->cyclic = cyclic;
850 desc->direction = dir;
852 rcar_dmac_chan_configure_desc(chan, desc);
854 max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
857 * Allocate and fill the transfer chunk descriptors. We own the only
858 * reference to the DMA descriptor, there's no need for locking.
860 for_each_sg(sgl, sg, sg_len, i) {
861 dma_addr_t mem_addr = sg_dma_address(sg);
862 unsigned int len = sg_dma_len(sg);
864 full_size += len;
866 while (len) {
867 unsigned int size = min(len, max_chunk_size);
869 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
871 * Prevent individual transfers from crossing 4GB
872 * boundaries.
874 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
875 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
876 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
877 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
880 * Check if either of the source or destination address
881 * can't be expressed in 32 bits. If so we can't use
882 * hardware descriptor lists.
884 if (dev_addr >> 32 || mem_addr >> 32)
885 highmem = true;
886 #endif
888 chunk = rcar_dmac_xfer_chunk_get(chan);
889 if (!chunk) {
890 rcar_dmac_desc_put(chan, desc);
891 return NULL;
894 if (dir == DMA_DEV_TO_MEM) {
895 chunk->src_addr = dev_addr;
896 chunk->dst_addr = mem_addr;
897 } else {
898 chunk->src_addr = mem_addr;
899 chunk->dst_addr = dev_addr;
902 chunk->size = size;
904 dev_dbg(chan->chan.device->dev,
905 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
906 chan->index, chunk, desc, i, sg, size, len,
907 &chunk->src_addr, &chunk->dst_addr);
909 mem_addr += size;
910 if (dir == DMA_MEM_TO_MEM)
911 dev_addr += size;
913 len -= size;
915 list_add_tail(&chunk->node, &desc->chunks);
916 nchunks++;
920 desc->nchunks = nchunks;
921 desc->size = full_size;
924 * Use hardware descriptor lists if possible when more than one chunk
925 * needs to be transferred (otherwise they don't make much sense).
927 * The highmem check currently covers the whole transfer. As an
928 * optimization we could use descriptor lists for consecutive lowmem
929 * chunks and direct manual mode for highmem chunks. Whether the
930 * performance improvement would be significant enough compared to the
931 * additional complexity remains to be investigated.
933 desc->hwdescs.use = !highmem && nchunks > 1;
934 if (desc->hwdescs.use) {
935 if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
936 desc->hwdescs.use = false;
939 return &desc->async_tx;
942 /* -----------------------------------------------------------------------------
943 * DMA engine operations
946 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
948 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
949 int ret;
951 INIT_LIST_HEAD(&rchan->desc.chunks_free);
952 INIT_LIST_HEAD(&rchan->desc.pages);
954 /* Preallocate descriptors. */
955 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
956 if (ret < 0)
957 return -ENOMEM;
959 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
960 if (ret < 0)
961 return -ENOMEM;
963 return pm_runtime_get_sync(chan->device->dev);
966 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
968 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
969 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
970 struct rcar_dmac_desc_page *page, *_page;
971 struct rcar_dmac_desc *desc;
972 LIST_HEAD(list);
974 /* Protect against ISR */
975 spin_lock_irq(&rchan->lock);
976 rcar_dmac_chan_halt(rchan);
977 spin_unlock_irq(&rchan->lock);
979 /* Now no new interrupts will occur */
981 if (rchan->mid_rid >= 0) {
982 /* The caller is holding dma_list_mutex */
983 clear_bit(rchan->mid_rid, dmac->modules);
984 rchan->mid_rid = -EINVAL;
987 list_splice_init(&rchan->desc.free, &list);
988 list_splice_init(&rchan->desc.pending, &list);
989 list_splice_init(&rchan->desc.active, &list);
990 list_splice_init(&rchan->desc.done, &list);
991 list_splice_init(&rchan->desc.wait, &list);
993 list_for_each_entry(desc, &list, node)
994 rcar_dmac_realloc_hwdesc(rchan, desc, 0);
996 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
997 list_del(&page->node);
998 free_page((unsigned long)page);
1001 pm_runtime_put(chan->device->dev);
1004 static struct dma_async_tx_descriptor *
1005 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1006 dma_addr_t dma_src, size_t len, unsigned long flags)
1008 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1009 struct scatterlist sgl;
1011 if (!len)
1012 return NULL;
1014 sg_init_table(&sgl, 1);
1015 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1016 offset_in_page(dma_src));
1017 sg_dma_address(&sgl) = dma_src;
1018 sg_dma_len(&sgl) = len;
1020 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1021 DMA_MEM_TO_MEM, flags, false);
1024 static struct dma_async_tx_descriptor *
1025 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1026 unsigned int sg_len, enum dma_transfer_direction dir,
1027 unsigned long flags, void *context)
1029 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1030 dma_addr_t dev_addr;
1032 /* Someone calling slave DMA on a generic channel? */
1033 if (rchan->mid_rid < 0 || !sg_len) {
1034 dev_warn(chan->device->dev,
1035 "%s: bad parameter: len=%d, id=%d\n",
1036 __func__, sg_len, rchan->mid_rid);
1037 return NULL;
1040 dev_addr = dir == DMA_DEV_TO_MEM
1041 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1042 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1043 dir, flags, false);
1046 #define RCAR_DMAC_MAX_SG_LEN 32
1048 static struct dma_async_tx_descriptor *
1049 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1050 size_t buf_len, size_t period_len,
1051 enum dma_transfer_direction dir, unsigned long flags)
1053 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1054 struct dma_async_tx_descriptor *desc;
1055 struct scatterlist *sgl;
1056 dma_addr_t dev_addr;
1057 unsigned int sg_len;
1058 unsigned int i;
1060 /* Someone calling slave DMA on a generic channel? */
1061 if (rchan->mid_rid < 0 || buf_len < period_len) {
1062 dev_warn(chan->device->dev,
1063 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1064 __func__, buf_len, period_len, rchan->mid_rid);
1065 return NULL;
1068 sg_len = buf_len / period_len;
1069 if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1070 dev_err(chan->device->dev,
1071 "chan%u: sg length %d exceds limit %d",
1072 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1073 return NULL;
1077 * Allocate the sg list dynamically as it would consume too much stack
1078 * space.
1080 sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1081 if (!sgl)
1082 return NULL;
1084 sg_init_table(sgl, sg_len);
1086 for (i = 0; i < sg_len; ++i) {
1087 dma_addr_t src = buf_addr + (period_len * i);
1089 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1090 offset_in_page(src));
1091 sg_dma_address(&sgl[i]) = src;
1092 sg_dma_len(&sgl[i]) = period_len;
1095 dev_addr = dir == DMA_DEV_TO_MEM
1096 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1097 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1098 dir, flags, true);
1100 kfree(sgl);
1101 return desc;
1104 static int rcar_dmac_device_config(struct dma_chan *chan,
1105 struct dma_slave_config *cfg)
1107 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1110 * We could lock this, but you shouldn't be configuring the
1111 * channel, while using it...
1113 rchan->src_slave_addr = cfg->src_addr;
1114 rchan->dst_slave_addr = cfg->dst_addr;
1115 rchan->src_xfer_size = cfg->src_addr_width;
1116 rchan->dst_xfer_size = cfg->dst_addr_width;
1118 return 0;
1121 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1123 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1124 unsigned long flags;
1126 spin_lock_irqsave(&rchan->lock, flags);
1127 rcar_dmac_chan_halt(rchan);
1128 spin_unlock_irqrestore(&rchan->lock, flags);
1131 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1132 * be running.
1135 rcar_dmac_chan_reinit(rchan);
1137 return 0;
1140 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1141 dma_cookie_t cookie)
1143 struct rcar_dmac_desc *desc = chan->desc.running;
1144 struct rcar_dmac_xfer_chunk *running = NULL;
1145 struct rcar_dmac_xfer_chunk *chunk;
1146 unsigned int residue = 0;
1147 unsigned int dptr = 0;
1149 if (!desc)
1150 return 0;
1153 * If the cookie doesn't correspond to the currently running transfer
1154 * then the descriptor hasn't been processed yet, and the residue is
1155 * equal to the full descriptor size.
1157 if (cookie != desc->async_tx.cookie)
1158 return desc->size;
1161 * In descriptor mode the descriptor running pointer is not maintained
1162 * by the interrupt handler, find the running descriptor from the
1163 * descriptor pointer field in the CHCRB register. In non-descriptor
1164 * mode just use the running descriptor pointer.
1166 if (desc->hwdescs.use) {
1167 dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1168 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1169 WARN_ON(dptr >= desc->nchunks);
1170 } else {
1171 running = desc->running;
1174 /* Compute the size of all chunks still to be transferred. */
1175 list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1176 if (chunk == running || ++dptr == desc->nchunks)
1177 break;
1179 residue += chunk->size;
1182 /* Add the residue for the current chunk. */
1183 residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1185 return residue;
1188 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1189 dma_cookie_t cookie,
1190 struct dma_tx_state *txstate)
1192 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1193 enum dma_status status;
1194 unsigned long flags;
1195 unsigned int residue;
1197 status = dma_cookie_status(chan, cookie, txstate);
1198 if (status == DMA_COMPLETE || !txstate)
1199 return status;
1201 spin_lock_irqsave(&rchan->lock, flags);
1202 residue = rcar_dmac_chan_get_residue(rchan, cookie);
1203 spin_unlock_irqrestore(&rchan->lock, flags);
1205 dma_set_residue(txstate, residue);
1207 return status;
1210 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1212 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1213 unsigned long flags;
1215 spin_lock_irqsave(&rchan->lock, flags);
1217 if (list_empty(&rchan->desc.pending))
1218 goto done;
1220 /* Append the pending list to the active list. */
1221 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1224 * If no transfer is running pick the first descriptor from the active
1225 * list and start the transfer.
1227 if (!rchan->desc.running) {
1228 struct rcar_dmac_desc *desc;
1230 desc = list_first_entry(&rchan->desc.active,
1231 struct rcar_dmac_desc, node);
1232 rchan->desc.running = desc;
1234 rcar_dmac_chan_start_xfer(rchan);
1237 done:
1238 spin_unlock_irqrestore(&rchan->lock, flags);
1241 /* -----------------------------------------------------------------------------
1242 * IRQ handling
1245 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1247 struct rcar_dmac_desc *desc = chan->desc.running;
1248 unsigned int stage;
1250 if (WARN_ON(!desc || !desc->cyclic)) {
1252 * This should never happen, there should always be a running
1253 * cyclic descriptor when a descriptor stage end interrupt is
1254 * triggered. Warn and return.
1256 return IRQ_NONE;
1259 /* Program the interrupt pointer to the next stage. */
1260 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1261 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1262 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1264 return IRQ_WAKE_THREAD;
1267 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1269 struct rcar_dmac_desc *desc = chan->desc.running;
1270 irqreturn_t ret = IRQ_WAKE_THREAD;
1272 if (WARN_ON_ONCE(!desc)) {
1274 * This should never happen, there should always be a running
1275 * descriptor when a transfer end interrupt is triggered. Warn
1276 * and return.
1278 return IRQ_NONE;
1282 * The transfer end interrupt isn't generated for each chunk when using
1283 * descriptor mode. Only update the running chunk pointer in
1284 * non-descriptor mode.
1286 if (!desc->hwdescs.use) {
1288 * If we haven't completed the last transfer chunk simply move
1289 * to the next one. Only wake the IRQ thread if the transfer is
1290 * cyclic.
1292 if (!list_is_last(&desc->running->node, &desc->chunks)) {
1293 desc->running = list_next_entry(desc->running, node);
1294 if (!desc->cyclic)
1295 ret = IRQ_HANDLED;
1296 goto done;
1300 * We've completed the last transfer chunk. If the transfer is
1301 * cyclic, move back to the first one.
1303 if (desc->cyclic) {
1304 desc->running =
1305 list_first_entry(&desc->chunks,
1306 struct rcar_dmac_xfer_chunk,
1307 node);
1308 goto done;
1312 /* The descriptor is complete, move it to the done list. */
1313 list_move_tail(&desc->node, &chan->desc.done);
1315 /* Queue the next descriptor, if any. */
1316 if (!list_empty(&chan->desc.active))
1317 chan->desc.running = list_first_entry(&chan->desc.active,
1318 struct rcar_dmac_desc,
1319 node);
1320 else
1321 chan->desc.running = NULL;
1323 done:
1324 if (chan->desc.running)
1325 rcar_dmac_chan_start_xfer(chan);
1327 return ret;
1330 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1332 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1333 struct rcar_dmac_chan *chan = dev;
1334 irqreturn_t ret = IRQ_NONE;
1335 u32 chcr;
1337 spin_lock(&chan->lock);
1339 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1340 if (chcr & RCAR_DMACHCR_TE)
1341 mask |= RCAR_DMACHCR_DE;
1342 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1344 if (chcr & RCAR_DMACHCR_DSE)
1345 ret |= rcar_dmac_isr_desc_stage_end(chan);
1347 if (chcr & RCAR_DMACHCR_TE)
1348 ret |= rcar_dmac_isr_transfer_end(chan);
1350 spin_unlock(&chan->lock);
1352 return ret;
1355 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1357 struct rcar_dmac_chan *chan = dev;
1358 struct rcar_dmac_desc *desc;
1360 spin_lock_irq(&chan->lock);
1362 /* For cyclic transfers notify the user after every chunk. */
1363 if (chan->desc.running && chan->desc.running->cyclic) {
1364 dma_async_tx_callback callback;
1365 void *callback_param;
1367 desc = chan->desc.running;
1368 callback = desc->async_tx.callback;
1369 callback_param = desc->async_tx.callback_param;
1371 if (callback) {
1372 spin_unlock_irq(&chan->lock);
1373 callback(callback_param);
1374 spin_lock_irq(&chan->lock);
1379 * Call the callback function for all descriptors on the done list and
1380 * move them to the ack wait list.
1382 while (!list_empty(&chan->desc.done)) {
1383 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1384 node);
1385 dma_cookie_complete(&desc->async_tx);
1386 list_del(&desc->node);
1388 if (desc->async_tx.callback) {
1389 spin_unlock_irq(&chan->lock);
1391 * We own the only reference to this descriptor, we can
1392 * safely dereference it without holding the channel
1393 * lock.
1395 desc->async_tx.callback(desc->async_tx.callback_param);
1396 spin_lock_irq(&chan->lock);
1399 list_add_tail(&desc->node, &chan->desc.wait);
1402 spin_unlock_irq(&chan->lock);
1404 /* Recycle all acked descriptors. */
1405 rcar_dmac_desc_recycle_acked(chan);
1407 return IRQ_HANDLED;
1410 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1412 struct rcar_dmac *dmac = data;
1414 if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1415 return IRQ_NONE;
1418 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1419 * abort transfers on all channels, and reinitialize the DMAC.
1421 rcar_dmac_stop(dmac);
1422 rcar_dmac_abort(dmac);
1423 rcar_dmac_init(dmac);
1425 return IRQ_HANDLED;
1428 /* -----------------------------------------------------------------------------
1429 * OF xlate and channel filter
1432 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1434 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1435 struct of_phandle_args *dma_spec = arg;
1438 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1439 * function knows from which device it wants to allocate a channel from,
1440 * and would be perfectly capable of selecting the channel it wants.
1441 * Forcing it to call dma_request_channel() and iterate through all
1442 * channels from all controllers is just pointless.
1444 if (chan->device->device_config != rcar_dmac_device_config ||
1445 dma_spec->np != chan->device->dev->of_node)
1446 return false;
1448 return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1451 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1452 struct of_dma *ofdma)
1454 struct rcar_dmac_chan *rchan;
1455 struct dma_chan *chan;
1456 dma_cap_mask_t mask;
1458 if (dma_spec->args_count != 1)
1459 return NULL;
1461 /* Only slave DMA channels can be allocated via DT */
1462 dma_cap_zero(mask);
1463 dma_cap_set(DMA_SLAVE, mask);
1465 chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1466 if (!chan)
1467 return NULL;
1469 rchan = to_rcar_dmac_chan(chan);
1470 rchan->mid_rid = dma_spec->args[0];
1472 return chan;
1475 /* -----------------------------------------------------------------------------
1476 * Power management
1479 #ifdef CONFIG_PM_SLEEP
1480 static int rcar_dmac_sleep_suspend(struct device *dev)
1483 * TODO: Wait for the current transfer to complete and stop the device.
1485 return 0;
1488 static int rcar_dmac_sleep_resume(struct device *dev)
1490 /* TODO: Resume transfers, if any. */
1491 return 0;
1493 #endif
1495 #ifdef CONFIG_PM
1496 static int rcar_dmac_runtime_suspend(struct device *dev)
1498 return 0;
1501 static int rcar_dmac_runtime_resume(struct device *dev)
1503 struct rcar_dmac *dmac = dev_get_drvdata(dev);
1505 return rcar_dmac_init(dmac);
1507 #endif
1509 static const struct dev_pm_ops rcar_dmac_pm = {
1510 SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1511 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1512 NULL)
1515 /* -----------------------------------------------------------------------------
1516 * Probe and remove
1519 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1520 struct rcar_dmac_chan *rchan,
1521 unsigned int index)
1523 struct platform_device *pdev = to_platform_device(dmac->dev);
1524 struct dma_chan *chan = &rchan->chan;
1525 char pdev_irqname[5];
1526 char *irqname;
1527 int irq;
1528 int ret;
1530 rchan->index = index;
1531 rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1532 rchan->mid_rid = -EINVAL;
1534 spin_lock_init(&rchan->lock);
1536 INIT_LIST_HEAD(&rchan->desc.free);
1537 INIT_LIST_HEAD(&rchan->desc.pending);
1538 INIT_LIST_HEAD(&rchan->desc.active);
1539 INIT_LIST_HEAD(&rchan->desc.done);
1540 INIT_LIST_HEAD(&rchan->desc.wait);
1542 /* Request the channel interrupt. */
1543 sprintf(pdev_irqname, "ch%u", index);
1544 irq = platform_get_irq_byname(pdev, pdev_irqname);
1545 if (irq < 0) {
1546 dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1547 return -ENODEV;
1550 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1551 dev_name(dmac->dev), index);
1552 if (!irqname)
1553 return -ENOMEM;
1555 ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1556 rcar_dmac_isr_channel_thread, 0,
1557 irqname, rchan);
1558 if (ret) {
1559 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1560 return ret;
1564 * Initialize the DMA engine channel and add it to the DMA engine
1565 * channels list.
1567 chan->device = &dmac->engine;
1568 dma_cookie_init(chan);
1570 list_add_tail(&chan->device_node, &dmac->engine.channels);
1572 return 0;
1575 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1577 struct device_node *np = dev->of_node;
1578 int ret;
1580 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1581 if (ret < 0) {
1582 dev_err(dev, "unable to read dma-channels property\n");
1583 return ret;
1586 if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1587 dev_err(dev, "invalid number of channels %u\n",
1588 dmac->n_channels);
1589 return -EINVAL;
1592 return 0;
1595 static int rcar_dmac_probe(struct platform_device *pdev)
1597 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1598 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1599 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1600 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1601 unsigned int channels_offset = 0;
1602 struct dma_device *engine;
1603 struct rcar_dmac *dmac;
1604 struct resource *mem;
1605 unsigned int i;
1606 char *irqname;
1607 int irq;
1608 int ret;
1610 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1611 if (!dmac)
1612 return -ENOMEM;
1614 dmac->dev = &pdev->dev;
1615 platform_set_drvdata(pdev, dmac);
1617 ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1618 if (ret < 0)
1619 return ret;
1622 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1623 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1624 * is connected to microTLB 0 on currently supported platforms, so we
1625 * can't use it with the IPMMU. As the IOMMU API operates at the device
1626 * level we can't disable it selectively, so ignore channel 0 for now if
1627 * the device is part of an IOMMU group.
1629 if (pdev->dev.iommu_group) {
1630 dmac->n_channels--;
1631 channels_offset = 1;
1634 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1635 sizeof(*dmac->channels), GFP_KERNEL);
1636 if (!dmac->channels)
1637 return -ENOMEM;
1639 /* Request resources. */
1640 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1641 dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1642 if (IS_ERR(dmac->iomem))
1643 return PTR_ERR(dmac->iomem);
1645 irq = platform_get_irq_byname(pdev, "error");
1646 if (irq < 0) {
1647 dev_err(&pdev->dev, "no error IRQ specified\n");
1648 return -ENODEV;
1651 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1652 dev_name(dmac->dev));
1653 if (!irqname)
1654 return -ENOMEM;
1656 ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1657 irqname, dmac);
1658 if (ret) {
1659 dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1660 irq, ret);
1661 return ret;
1664 /* Enable runtime PM and initialize the device. */
1665 pm_runtime_enable(&pdev->dev);
1666 ret = pm_runtime_get_sync(&pdev->dev);
1667 if (ret < 0) {
1668 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1669 return ret;
1672 ret = rcar_dmac_init(dmac);
1673 pm_runtime_put(&pdev->dev);
1675 if (ret) {
1676 dev_err(&pdev->dev, "failed to reset device\n");
1677 goto error;
1680 /* Initialize the channels. */
1681 INIT_LIST_HEAD(&dmac->engine.channels);
1683 for (i = 0; i < dmac->n_channels; ++i) {
1684 ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1685 i + channels_offset);
1686 if (ret < 0)
1687 goto error;
1690 /* Register the DMAC as a DMA provider for DT. */
1691 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1692 NULL);
1693 if (ret < 0)
1694 goto error;
1697 * Register the DMA engine device.
1699 * Default transfer size of 32 bytes requires 32-byte alignment.
1701 engine = &dmac->engine;
1702 dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1703 dma_cap_set(DMA_SLAVE, engine->cap_mask);
1705 engine->dev = &pdev->dev;
1706 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1708 engine->src_addr_widths = widths;
1709 engine->dst_addr_widths = widths;
1710 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1711 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1713 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1714 engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1715 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1716 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1717 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1718 engine->device_config = rcar_dmac_device_config;
1719 engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1720 engine->device_tx_status = rcar_dmac_tx_status;
1721 engine->device_issue_pending = rcar_dmac_issue_pending;
1723 ret = dma_async_device_register(engine);
1724 if (ret < 0)
1725 goto error;
1727 return 0;
1729 error:
1730 of_dma_controller_free(pdev->dev.of_node);
1731 pm_runtime_disable(&pdev->dev);
1732 return ret;
1735 static int rcar_dmac_remove(struct platform_device *pdev)
1737 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1739 of_dma_controller_free(pdev->dev.of_node);
1740 dma_async_device_unregister(&dmac->engine);
1742 pm_runtime_disable(&pdev->dev);
1744 return 0;
1747 static void rcar_dmac_shutdown(struct platform_device *pdev)
1749 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1751 rcar_dmac_stop(dmac);
1754 static const struct of_device_id rcar_dmac_of_ids[] = {
1755 { .compatible = "renesas,rcar-dmac", },
1756 { /* Sentinel */ }
1758 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1760 static struct platform_driver rcar_dmac_driver = {
1761 .driver = {
1762 .pm = &rcar_dmac_pm,
1763 .name = "rcar-dmac",
1764 .of_match_table = rcar_dmac_of_ids,
1766 .probe = rcar_dmac_probe,
1767 .remove = rcar_dmac_remove,
1768 .shutdown = rcar_dmac_shutdown,
1771 module_platform_driver(rcar_dmac_driver);
1773 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1774 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1775 MODULE_LICENSE("GPL v2");