2 * Copyright © 2012-2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include <drm/i915_drm.h>
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
35 struct i915_mm_struct
{
37 struct drm_device
*dev
;
38 struct i915_mmu_notifier
*mn
;
39 struct hlist_node node
;
41 struct work_struct work
;
44 #if defined(CONFIG_MMU_NOTIFIER)
45 #include <linux/interval_tree.h>
47 struct i915_mmu_notifier
{
49 struct hlist_node node
;
50 struct mmu_notifier mn
;
51 struct rb_root objects
;
54 struct i915_mmu_object
{
55 struct i915_mmu_notifier
*mn
;
56 struct drm_i915_gem_object
*obj
;
57 struct interval_tree_node it
;
58 struct list_head link
;
59 struct work_struct work
;
63 static void cancel_userptr(struct work_struct
*work
)
65 struct i915_mmu_object
*mo
= container_of(work
, typeof(*mo
), work
);
66 struct drm_i915_gem_object
*obj
= mo
->obj
;
67 struct drm_device
*dev
= obj
->base
.dev
;
69 mutex_lock(&dev
->struct_mutex
);
70 /* Cancel any active worker and force us to re-evaluate gup */
71 obj
->userptr
.work
= NULL
;
73 if (obj
->pages
!= NULL
) {
74 struct drm_i915_private
*dev_priv
= to_i915(dev
);
75 struct i915_vma
*vma
, *tmp
;
76 bool was_interruptible
;
78 was_interruptible
= dev_priv
->mm
.interruptible
;
79 dev_priv
->mm
.interruptible
= false;
81 list_for_each_entry_safe(vma
, tmp
, &obj
->vma_list
, obj_link
) {
82 int ret
= i915_vma_unbind(vma
);
83 WARN_ON(ret
&& ret
!= -EIO
);
85 WARN_ON(i915_gem_object_put_pages(obj
));
87 dev_priv
->mm
.interruptible
= was_interruptible
;
90 drm_gem_object_unreference(&obj
->base
);
91 mutex_unlock(&dev
->struct_mutex
);
94 static void add_object(struct i915_mmu_object
*mo
)
99 interval_tree_insert(&mo
->it
, &mo
->mn
->objects
);
103 static void del_object(struct i915_mmu_object
*mo
)
108 interval_tree_remove(&mo
->it
, &mo
->mn
->objects
);
109 mo
->attached
= false;
112 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier
*_mn
,
113 struct mm_struct
*mm
,
117 struct i915_mmu_notifier
*mn
=
118 container_of(_mn
, struct i915_mmu_notifier
, mn
);
119 struct i915_mmu_object
*mo
;
120 struct interval_tree_node
*it
;
121 LIST_HEAD(cancelled
);
123 if (RB_EMPTY_ROOT(&mn
->objects
))
126 /* interval ranges are inclusive, but invalidate range is exclusive */
129 spin_lock(&mn
->lock
);
130 it
= interval_tree_iter_first(&mn
->objects
, start
, end
);
132 /* The mmu_object is released late when destroying the
133 * GEM object so it is entirely possible to gain a
134 * reference on an object in the process of being freed
135 * since our serialisation is via the spinlock and not
136 * the struct_mutex - and consequently use it after it
137 * is freed and then double free it. To prevent that
138 * use-after-free we only acquire a reference on the
139 * object if it is not in the process of being destroyed.
141 mo
= container_of(it
, struct i915_mmu_object
, it
);
142 if (kref_get_unless_zero(&mo
->obj
->base
.refcount
))
143 schedule_work(&mo
->work
);
145 list_add(&mo
->link
, &cancelled
);
146 it
= interval_tree_iter_next(it
, start
, end
);
148 list_for_each_entry(mo
, &cancelled
, link
)
150 spin_unlock(&mn
->lock
);
153 static const struct mmu_notifier_ops i915_gem_userptr_notifier
= {
154 .invalidate_range_start
= i915_gem_userptr_mn_invalidate_range_start
,
157 static struct i915_mmu_notifier
*
158 i915_mmu_notifier_create(struct mm_struct
*mm
)
160 struct i915_mmu_notifier
*mn
;
163 mn
= kmalloc(sizeof(*mn
), GFP_KERNEL
);
165 return ERR_PTR(-ENOMEM
);
167 spin_lock_init(&mn
->lock
);
168 mn
->mn
.ops
= &i915_gem_userptr_notifier
;
169 mn
->objects
= RB_ROOT
;
171 /* Protected by mmap_sem (write-lock) */
172 ret
= __mmu_notifier_register(&mn
->mn
, mm
);
182 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
184 struct i915_mmu_object
*mo
;
186 mo
= obj
->userptr
.mmu_object
;
190 spin_lock(&mo
->mn
->lock
);
192 spin_unlock(&mo
->mn
->lock
);
195 obj
->userptr
.mmu_object
= NULL
;
198 static struct i915_mmu_notifier
*
199 i915_mmu_notifier_find(struct i915_mm_struct
*mm
)
201 struct i915_mmu_notifier
*mn
= mm
->mn
;
207 down_write(&mm
->mm
->mmap_sem
);
208 mutex_lock(&to_i915(mm
->dev
)->mm_lock
);
209 if ((mn
= mm
->mn
) == NULL
) {
210 mn
= i915_mmu_notifier_create(mm
->mm
);
214 mutex_unlock(&to_i915(mm
->dev
)->mm_lock
);
215 up_write(&mm
->mm
->mmap_sem
);
221 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
224 struct i915_mmu_notifier
*mn
;
225 struct i915_mmu_object
*mo
;
227 if (flags
& I915_USERPTR_UNSYNCHRONIZED
)
228 return capable(CAP_SYS_ADMIN
) ? 0 : -EPERM
;
230 if (WARN_ON(obj
->userptr
.mm
== NULL
))
233 mn
= i915_mmu_notifier_find(obj
->userptr
.mm
);
237 mo
= kzalloc(sizeof(*mo
), GFP_KERNEL
);
243 mo
->it
.start
= obj
->userptr
.ptr
;
244 mo
->it
.last
= obj
->userptr
.ptr
+ obj
->base
.size
- 1;
245 INIT_WORK(&mo
->work
, cancel_userptr
);
247 obj
->userptr
.mmu_object
= mo
;
252 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
253 struct mm_struct
*mm
)
258 mmu_notifier_unregister(&mn
->mn
, mm
);
265 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
270 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
273 if ((flags
& I915_USERPTR_UNSYNCHRONIZED
) == 0)
276 if (!capable(CAP_SYS_ADMIN
))
283 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
284 struct mm_struct
*mm
)
290 static struct i915_mm_struct
*
291 __i915_mm_struct_find(struct drm_i915_private
*dev_priv
, struct mm_struct
*real
)
293 struct i915_mm_struct
*mm
;
295 /* Protected by dev_priv->mm_lock */
296 hash_for_each_possible(dev_priv
->mm_structs
, mm
, node
, (unsigned long)real
)
304 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object
*obj
)
306 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
307 struct i915_mm_struct
*mm
;
310 /* During release of the GEM object we hold the struct_mutex. This
311 * precludes us from calling mmput() at that time as that may be
312 * the last reference and so call exit_mmap(). exit_mmap() will
313 * attempt to reap the vma, and if we were holding a GTT mmap
314 * would then call drm_gem_vm_close() and attempt to reacquire
315 * the struct mutex. So in order to avoid that recursion, we have
316 * to defer releasing the mm reference until after we drop the
317 * struct_mutex, i.e. we need to schedule a worker to do the clean
320 mutex_lock(&dev_priv
->mm_lock
);
321 mm
= __i915_mm_struct_find(dev_priv
, current
->mm
);
323 mm
= kmalloc(sizeof(*mm
), GFP_KERNEL
);
329 kref_init(&mm
->kref
);
330 mm
->dev
= obj
->base
.dev
;
332 mm
->mm
= current
->mm
;
333 atomic_inc(¤t
->mm
->mm_count
);
337 /* Protected by dev_priv->mm_lock */
338 hash_add(dev_priv
->mm_structs
,
339 &mm
->node
, (unsigned long)mm
->mm
);
343 obj
->userptr
.mm
= mm
;
345 mutex_unlock(&dev_priv
->mm_lock
);
350 __i915_mm_struct_free__worker(struct work_struct
*work
)
352 struct i915_mm_struct
*mm
= container_of(work
, typeof(*mm
), work
);
353 i915_mmu_notifier_free(mm
->mn
, mm
->mm
);
359 __i915_mm_struct_free(struct kref
*kref
)
361 struct i915_mm_struct
*mm
= container_of(kref
, typeof(*mm
), kref
);
363 /* Protected by dev_priv->mm_lock */
365 mutex_unlock(&to_i915(mm
->dev
)->mm_lock
);
367 INIT_WORK(&mm
->work
, __i915_mm_struct_free__worker
);
368 schedule_work(&mm
->work
);
372 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object
*obj
)
374 if (obj
->userptr
.mm
== NULL
)
377 kref_put_mutex(&obj
->userptr
.mm
->kref
,
378 __i915_mm_struct_free
,
379 &to_i915(obj
->base
.dev
)->mm_lock
);
380 obj
->userptr
.mm
= NULL
;
383 struct get_pages_work
{
384 struct work_struct work
;
385 struct drm_i915_gem_object
*obj
;
386 struct task_struct
*task
;
389 #if IS_ENABLED(CONFIG_SWIOTLB)
390 #define swiotlb_active() swiotlb_nr_tbl()
392 #define swiotlb_active() 0
396 st_set_pages(struct sg_table
**st
, struct page
**pvec
, int num_pages
)
398 struct scatterlist
*sg
;
401 *st
= kmalloc(sizeof(**st
), GFP_KERNEL
);
405 if (swiotlb_active()) {
406 ret
= sg_alloc_table(*st
, num_pages
, GFP_KERNEL
);
410 for_each_sg((*st
)->sgl
, sg
, num_pages
, n
)
411 sg_set_page(sg
, pvec
[n
], PAGE_SIZE
, 0);
413 ret
= sg_alloc_table_from_pages(*st
, pvec
, num_pages
,
414 0, num_pages
<< PAGE_SHIFT
,
429 __i915_gem_userptr_set_pages(struct drm_i915_gem_object
*obj
,
430 struct page
**pvec
, int num_pages
)
434 ret
= st_set_pages(&obj
->pages
, pvec
, num_pages
);
438 ret
= i915_gem_gtt_prepare_object(obj
);
440 sg_free_table(obj
->pages
);
449 __i915_gem_userptr_set_active(struct drm_i915_gem_object
*obj
,
454 /* During mm_invalidate_range we need to cancel any userptr that
455 * overlaps the range being invalidated. Doing so requires the
456 * struct_mutex, and that risks recursion. In order to cause
457 * recursion, the user must alias the userptr address space with
458 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
459 * to invalidate that mmaping, mm_invalidate_range is called with
460 * the userptr address *and* the struct_mutex held. To prevent that
461 * we set a flag under the i915_mmu_notifier spinlock to indicate
462 * whether this object is valid.
464 #if defined(CONFIG_MMU_NOTIFIER)
465 if (obj
->userptr
.mmu_object
== NULL
)
468 spin_lock(&obj
->userptr
.mmu_object
->mn
->lock
);
469 /* In order to serialise get_pages with an outstanding
470 * cancel_userptr, we must drop the struct_mutex and try again.
473 del_object(obj
->userptr
.mmu_object
);
474 else if (!work_pending(&obj
->userptr
.mmu_object
->work
))
475 add_object(obj
->userptr
.mmu_object
);
478 spin_unlock(&obj
->userptr
.mmu_object
->mn
->lock
);
485 __i915_gem_userptr_get_pages_worker(struct work_struct
*_work
)
487 struct get_pages_work
*work
= container_of(_work
, typeof(*work
), work
);
488 struct drm_i915_gem_object
*obj
= work
->obj
;
489 struct drm_device
*dev
= obj
->base
.dev
;
490 const int npages
= obj
->base
.size
>> PAGE_SHIFT
;
497 pvec
= kmalloc(npages
*sizeof(struct page
*),
498 GFP_TEMPORARY
| __GFP_NOWARN
| __GFP_NORETRY
);
500 pvec
= drm_malloc_ab(npages
, sizeof(struct page
*));
502 struct mm_struct
*mm
= obj
->userptr
.mm
->mm
;
505 if (atomic_inc_not_zero(&mm
->mm_users
)) {
506 down_read(&mm
->mmap_sem
);
507 while (pinned
< npages
) {
508 ret
= get_user_pages_remote
510 obj
->userptr
.ptr
+ pinned
* PAGE_SIZE
,
512 !obj
->userptr
.read_only
, 0,
513 pvec
+ pinned
, NULL
);
519 up_read(&mm
->mmap_sem
);
524 mutex_lock(&dev
->struct_mutex
);
525 if (obj
->userptr
.work
== &work
->work
) {
526 if (pinned
== npages
) {
527 ret
= __i915_gem_userptr_set_pages(obj
, pvec
, npages
);
529 list_add_tail(&obj
->global_list
,
530 &to_i915(dev
)->mm
.unbound_list
);
531 obj
->get_page
.sg
= obj
->pages
->sgl
;
532 obj
->get_page
.last
= 0;
536 obj
->userptr
.work
= ERR_PTR(ret
);
538 __i915_gem_userptr_set_active(obj
, false);
541 obj
->userptr
.workers
--;
542 drm_gem_object_unreference(&obj
->base
);
543 mutex_unlock(&dev
->struct_mutex
);
545 release_pages(pvec
, pinned
, 0);
546 drm_free_large(pvec
);
548 put_task_struct(work
->task
);
553 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object
*obj
,
556 struct get_pages_work
*work
;
558 /* Spawn a worker so that we can acquire the
559 * user pages without holding our mutex. Access
560 * to the user pages requires mmap_sem, and we have
561 * a strict lock ordering of mmap_sem, struct_mutex -
562 * we already hold struct_mutex here and so cannot
563 * call gup without encountering a lock inversion.
565 * Userspace will keep on repeating the operation
566 * (thanks to EAGAIN) until either we hit the fast
567 * path or the worker completes. If the worker is
568 * cancelled or superseded, the task is still run
569 * but the results ignored. (This leads to
570 * complications that we may have a stray object
571 * refcount that we need to be wary of when
572 * checking for existing objects during creation.)
573 * If the worker encounters an error, it reports
574 * that error back to this function through
575 * obj->userptr.work = ERR_PTR.
577 if (obj
->userptr
.workers
>= I915_GEM_USERPTR_MAX_WORKERS
)
580 work
= kmalloc(sizeof(*work
), GFP_KERNEL
);
584 obj
->userptr
.work
= &work
->work
;
585 obj
->userptr
.workers
++;
588 drm_gem_object_reference(&obj
->base
);
590 work
->task
= current
;
591 get_task_struct(work
->task
);
593 INIT_WORK(&work
->work
, __i915_gem_userptr_get_pages_worker
);
594 schedule_work(&work
->work
);
601 i915_gem_userptr_get_pages(struct drm_i915_gem_object
*obj
)
603 const int num_pages
= obj
->base
.size
>> PAGE_SHIFT
;
608 /* If userspace should engineer that these pages are replaced in
609 * the vma between us binding this page into the GTT and completion
610 * of rendering... Their loss. If they change the mapping of their
611 * pages they need to create a new bo to point to the new vma.
613 * However, that still leaves open the possibility of the vma
614 * being copied upon fork. Which falls under the same userspace
615 * synchronisation issue as a regular bo, except that this time
616 * the process may not be expecting that a particular piece of
617 * memory is tied to the GPU.
619 * Fortunately, we can hook into the mmu_notifier in order to
620 * discard the page references prior to anything nasty happening
621 * to the vma (discard or cloning) which should prevent the more
622 * egregious cases from causing harm.
624 if (IS_ERR(obj
->userptr
.work
)) {
625 /* active flag will have been dropped already by the worker */
626 ret
= PTR_ERR(obj
->userptr
.work
);
627 obj
->userptr
.work
= NULL
;
630 if (obj
->userptr
.work
)
631 /* active flag should still be held for the pending work */
634 /* Let the mmu-notifier know that we have begun and need cancellation */
635 ret
= __i915_gem_userptr_set_active(obj
, true);
641 if (obj
->userptr
.mm
->mm
== current
->mm
) {
642 pvec
= kmalloc(num_pages
*sizeof(struct page
*),
643 GFP_TEMPORARY
| __GFP_NOWARN
| __GFP_NORETRY
);
645 pvec
= drm_malloc_ab(num_pages
, sizeof(struct page
*));
647 __i915_gem_userptr_set_active(obj
, false);
652 pinned
= __get_user_pages_fast(obj
->userptr
.ptr
, num_pages
,
653 !obj
->userptr
.read_only
, pvec
);
658 ret
= pinned
, pinned
= 0;
659 else if (pinned
< num_pages
)
660 ret
= __i915_gem_userptr_get_pages_schedule(obj
, &active
);
662 ret
= __i915_gem_userptr_set_pages(obj
, pvec
, num_pages
);
664 __i915_gem_userptr_set_active(obj
, active
);
665 release_pages(pvec
, pinned
, 0);
667 drm_free_large(pvec
);
672 i915_gem_userptr_put_pages(struct drm_i915_gem_object
*obj
)
674 struct sg_page_iter sg_iter
;
676 BUG_ON(obj
->userptr
.work
!= NULL
);
677 __i915_gem_userptr_set_active(obj
, false);
679 if (obj
->madv
!= I915_MADV_WILLNEED
)
682 i915_gem_gtt_finish_object(obj
);
684 for_each_sg_page(obj
->pages
->sgl
, &sg_iter
, obj
->pages
->nents
, 0) {
685 struct page
*page
= sg_page_iter_page(&sg_iter
);
688 set_page_dirty(page
);
690 mark_page_accessed(page
);
695 sg_free_table(obj
->pages
);
700 i915_gem_userptr_release(struct drm_i915_gem_object
*obj
)
702 i915_gem_userptr_release__mmu_notifier(obj
);
703 i915_gem_userptr_release__mm_struct(obj
);
707 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object
*obj
)
709 if (obj
->userptr
.mmu_object
)
712 return i915_gem_userptr_init__mmu_notifier(obj
, 0);
715 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops
= {
716 .flags
= I915_GEM_OBJECT_HAS_STRUCT_PAGE
,
717 .get_pages
= i915_gem_userptr_get_pages
,
718 .put_pages
= i915_gem_userptr_put_pages
,
719 .dmabuf_export
= i915_gem_userptr_dmabuf_export
,
720 .release
= i915_gem_userptr_release
,
724 * Creates a new mm object that wraps some normal memory from the process
725 * context - user memory.
727 * We impose several restrictions upon the memory being mapped
729 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
730 * 2. It must be normal system memory, not a pointer into another map of IO
731 * space (e.g. it must not be a GTT mmapping of another object).
732 * 3. We only allow a bo as large as we could in theory map into the GTT,
733 * that is we limit the size to the total size of the GTT.
734 * 4. The bo is marked as being snoopable. The backing pages are left
735 * accessible directly by the CPU, but reads and writes by the GPU may
736 * incur the cost of a snoop (unless you have an LLC architecture).
738 * Synchronisation between multiple users and the GPU is left to userspace
739 * through the normal set-domain-ioctl. The kernel will enforce that the
740 * GPU relinquishes the VMA before it is returned back to the system
741 * i.e. upon free(), munmap() or process termination. However, the userspace
742 * malloc() library may not immediately relinquish the VMA after free() and
743 * instead reuse it whilst the GPU is still reading and writing to the VMA.
746 * Also note, that the object created here is not currently a "first class"
747 * object, in that several ioctls are banned. These are the CPU access
748 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
749 * direct access via your pointer rather than use those ioctls. Another
750 * restriction is that we do not allow userptr surfaces to be pinned to the
751 * hardware and so we reject any attempt to create a framebuffer out of a
754 * If you think this is a good interface to use to pass GPU memory between
755 * drivers, please use dma-buf instead. In fact, wherever possible use
759 i915_gem_userptr_ioctl(struct drm_device
*dev
, void *data
, struct drm_file
*file
)
761 struct drm_i915_gem_userptr
*args
= data
;
762 struct drm_i915_gem_object
*obj
;
766 if (args
->flags
& ~(I915_USERPTR_READ_ONLY
|
767 I915_USERPTR_UNSYNCHRONIZED
))
770 if (offset_in_page(args
->user_ptr
| args
->user_size
))
773 if (!access_ok(args
->flags
& I915_USERPTR_READ_ONLY
? VERIFY_READ
: VERIFY_WRITE
,
774 (char __user
*)(unsigned long)args
->user_ptr
, args
->user_size
))
777 if (args
->flags
& I915_USERPTR_READ_ONLY
) {
778 /* On almost all of the current hw, we cannot tell the GPU that a
779 * page is readonly, so this is just a placeholder in the uAPI.
784 obj
= i915_gem_object_alloc(dev
);
788 drm_gem_private_object_init(dev
, &obj
->base
, args
->user_size
);
789 i915_gem_object_init(obj
, &i915_gem_userptr_ops
);
790 obj
->cache_level
= I915_CACHE_LLC
;
791 obj
->base
.write_domain
= I915_GEM_DOMAIN_CPU
;
792 obj
->base
.read_domains
= I915_GEM_DOMAIN_CPU
;
794 obj
->userptr
.ptr
= args
->user_ptr
;
795 obj
->userptr
.read_only
= !!(args
->flags
& I915_USERPTR_READ_ONLY
);
797 /* And keep a pointer to the current->mm for resolving the user pages
798 * at binding. This means that we need to hook into the mmu_notifier
799 * in order to detect if the mmu is destroyed.
801 ret
= i915_gem_userptr_init__mm_struct(obj
);
803 ret
= i915_gem_userptr_init__mmu_notifier(obj
, args
->flags
);
805 ret
= drm_gem_handle_create(file
, &obj
->base
, &handle
);
807 /* drop reference from allocate - handle holds it now */
808 drm_gem_object_unreference_unlocked(&obj
->base
);
812 args
->handle
= handle
;
817 i915_gem_init_userptr(struct drm_device
*dev
)
819 struct drm_i915_private
*dev_priv
= to_i915(dev
);
820 mutex_init(&dev_priv
->mm_lock
);
821 hash_init(dev_priv
->mm_structs
);