2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
60 * Regarding the creation of contexts, we have:
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 (reg_state)[(pos)+1] = (val); \
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
210 ADVANCED_CONTEXT
= 0,
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
217 LEGACY_64B_CONTEXT :\
221 FAULT_AND_HALT
, /* Debug only */
223 FAULT_AND_CONTINUE
/* Unsupported */
225 #define GEN8_CTX_ID_SHIFT 32
226 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
227 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
229 static int intel_lr_context_pin(struct intel_context
*ctx
,
230 struct intel_engine_cs
*engine
);
231 static void lrc_setup_hardware_status_page(struct intel_engine_cs
*ring
,
232 struct drm_i915_gem_object
*default_ctx_obj
);
236 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238 * @enable_execlists: value of i915.enable_execlists module parameter.
240 * Only certain platforms support Execlists (the prerequisites being
241 * support for Logical Ring Contexts and Aliasing PPGTT or better).
243 * Return: 1 if Execlists is supported and has to be enabled.
245 int intel_sanitize_enable_execlists(struct drm_device
*dev
, int enable_execlists
)
247 WARN_ON(i915
.enable_ppgtt
== -1);
249 /* On platforms with execlist available, vGPU will only
250 * support execlist mode, no ring buffer mode.
252 if (HAS_LOGICAL_RING_CONTEXTS(dev
) && intel_vgpu_active(dev
))
255 if (INTEL_INFO(dev
)->gen
>= 9)
258 if (enable_execlists
== 0)
261 if (HAS_LOGICAL_RING_CONTEXTS(dev
) && USES_PPGTT(dev
) &&
262 i915
.use_mmio_flip
>= 0)
269 logical_ring_init_platform_invariants(struct intel_engine_cs
*ring
)
271 struct drm_device
*dev
= ring
->dev
;
273 ring
->disable_lite_restore_wa
= (IS_SKL_REVID(dev
, 0, SKL_REVID_B0
) ||
274 IS_BXT_REVID(dev
, 0, BXT_REVID_A1
)) &&
275 (ring
->id
== VCS
|| ring
->id
== VCS2
);
277 ring
->ctx_desc_template
= GEN8_CTX_VALID
;
278 ring
->ctx_desc_template
|= GEN8_CTX_ADDRESSING_MODE(dev
) <<
279 GEN8_CTX_ADDRESSING_MODE_SHIFT
;
281 ring
->ctx_desc_template
|= GEN8_CTX_L3LLC_COHERENT
;
282 ring
->ctx_desc_template
|= GEN8_CTX_PRIVILEGE
;
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290 if (ring
->disable_lite_restore_wa
)
291 ring
->ctx_desc_template
|= GEN8_CTX_FORCE_RESTORE
;
295 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
296 * descriptor for a pinned context
298 * @ctx: Context to work on
299 * @ring: Engine the descriptor will be used with
301 * The context descriptor encodes various attributes of a context,
302 * including its GTT address and some flags. Because it's fairly
303 * expensive to calculate, we'll just do it once and cache the result,
304 * which remains valid until the context is unpinned.
306 * This is what a descriptor looks like, from LSB to MSB:
307 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
308 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
309 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
310 * bits 52-63: reserved, may encode the engine ID (for GuC)
313 intel_lr_context_descriptor_update(struct intel_context
*ctx
,
314 struct intel_engine_cs
*ring
)
318 lrca
= ctx
->engine
[ring
->id
].lrc_vma
->node
.start
+
319 LRC_PPHWSP_PN
* PAGE_SIZE
;
321 desc
= ring
->ctx_desc_template
; /* bits 0-11 */
322 desc
|= lrca
; /* bits 12-31 */
323 desc
|= (lrca
>> PAGE_SHIFT
) << GEN8_CTX_ID_SHIFT
; /* bits 32-51 */
325 ctx
->engine
[ring
->id
].lrc_desc
= desc
;
328 uint64_t intel_lr_context_descriptor(struct intel_context
*ctx
,
329 struct intel_engine_cs
*ring
)
331 return ctx
->engine
[ring
->id
].lrc_desc
;
335 * intel_execlists_ctx_id() - get the Execlists Context ID
336 * @ctx: Context to get the ID for
337 * @ring: Engine to get the ID for
339 * Do not confuse with ctx->id! Unfortunately we have a name overload
340 * here: the old context ID we pass to userspace as a handler so that
341 * they can refer to a context, and the new context ID we pass to the
342 * ELSP so that the GPU can inform us of the context status via
345 * The context ID is a portion of the context descriptor, so we can
346 * just extract the required part from the cached descriptor.
348 * Return: 20-bits globally unique context ID.
350 u32
intel_execlists_ctx_id(struct intel_context
*ctx
,
351 struct intel_engine_cs
*ring
)
353 return intel_lr_context_descriptor(ctx
, ring
) >> GEN8_CTX_ID_SHIFT
;
356 static void execlists_elsp_write(struct drm_i915_gem_request
*rq0
,
357 struct drm_i915_gem_request
*rq1
)
360 struct intel_engine_cs
*ring
= rq0
->ring
;
361 struct drm_device
*dev
= ring
->dev
;
362 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
366 desc
[1] = intel_lr_context_descriptor(rq1
->ctx
, rq1
->ring
);
367 rq1
->elsp_submitted
++;
372 desc
[0] = intel_lr_context_descriptor(rq0
->ctx
, rq0
->ring
);
373 rq0
->elsp_submitted
++;
375 /* You must always write both descriptors in the order below. */
376 spin_lock(&dev_priv
->uncore
.lock
);
377 intel_uncore_forcewake_get__locked(dev_priv
, FORCEWAKE_ALL
);
378 I915_WRITE_FW(RING_ELSP(ring
), upper_32_bits(desc
[1]));
379 I915_WRITE_FW(RING_ELSP(ring
), lower_32_bits(desc
[1]));
381 I915_WRITE_FW(RING_ELSP(ring
), upper_32_bits(desc
[0]));
382 /* The context is automatically loaded after the following */
383 I915_WRITE_FW(RING_ELSP(ring
), lower_32_bits(desc
[0]));
385 /* ELSP is a wo register, use another nearby reg for posting */
386 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring
));
387 intel_uncore_forcewake_put__locked(dev_priv
, FORCEWAKE_ALL
);
388 spin_unlock(&dev_priv
->uncore
.lock
);
391 static int execlists_update_context(struct drm_i915_gem_request
*rq
)
393 struct intel_engine_cs
*ring
= rq
->ring
;
394 struct i915_hw_ppgtt
*ppgtt
= rq
->ctx
->ppgtt
;
395 uint32_t *reg_state
= rq
->ctx
->engine
[ring
->id
].lrc_reg_state
;
397 reg_state
[CTX_RING_TAIL
+1] = rq
->tail
;
399 if (ppgtt
&& !USES_FULL_48BIT_PPGTT(ppgtt
->base
.dev
)) {
400 /* True 32b PPGTT with dynamic page allocation: update PDP
401 * registers and point the unallocated PDPs to scratch page.
402 * PML4 is allocated during ppgtt init, so this is not needed
405 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 3);
406 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 2);
407 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 1);
408 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 0);
414 static void execlists_submit_requests(struct drm_i915_gem_request
*rq0
,
415 struct drm_i915_gem_request
*rq1
)
417 execlists_update_context(rq0
);
420 execlists_update_context(rq1
);
422 execlists_elsp_write(rq0
, rq1
);
425 static void execlists_context_unqueue(struct intel_engine_cs
*ring
)
427 struct drm_i915_gem_request
*req0
= NULL
, *req1
= NULL
;
428 struct drm_i915_gem_request
*cursor
= NULL
, *tmp
= NULL
;
430 assert_spin_locked(&ring
->execlist_lock
);
433 * If irqs are not active generate a warning as batches that finish
434 * without the irqs may get lost and a GPU Hang may occur.
436 WARN_ON(!intel_irqs_enabled(ring
->dev
->dev_private
));
438 if (list_empty(&ring
->execlist_queue
))
441 /* Try to read in pairs */
442 list_for_each_entry_safe(cursor
, tmp
, &ring
->execlist_queue
,
446 } else if (req0
->ctx
== cursor
->ctx
) {
447 /* Same ctx: ignore first request, as second request
448 * will update tail past first request's workload */
449 cursor
->elsp_submitted
= req0
->elsp_submitted
;
450 list_move_tail(&req0
->execlist_link
,
451 &ring
->execlist_retired_req_list
);
459 if (IS_GEN8(ring
->dev
) || IS_GEN9(ring
->dev
)) {
461 * WaIdleLiteRestore: make sure we never cause a lite
462 * restore with HEAD==TAIL
464 if (req0
->elsp_submitted
) {
466 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
467 * as we resubmit the request. See gen8_emit_request()
468 * for where we prepare the padding after the end of the
471 struct intel_ringbuffer
*ringbuf
;
473 ringbuf
= req0
->ctx
->engine
[ring
->id
].ringbuf
;
475 req0
->tail
&= ringbuf
->size
- 1;
479 WARN_ON(req1
&& req1
->elsp_submitted
);
481 execlists_submit_requests(req0
, req1
);
484 static bool execlists_check_remove_request(struct intel_engine_cs
*ring
,
487 struct drm_i915_gem_request
*head_req
;
489 assert_spin_locked(&ring
->execlist_lock
);
491 head_req
= list_first_entry_or_null(&ring
->execlist_queue
,
492 struct drm_i915_gem_request
,
495 if (head_req
!= NULL
) {
496 if (intel_execlists_ctx_id(head_req
->ctx
, ring
) == request_id
) {
497 WARN(head_req
->elsp_submitted
== 0,
498 "Never submitted head request\n");
500 if (--head_req
->elsp_submitted
<= 0) {
501 list_move_tail(&head_req
->execlist_link
,
502 &ring
->execlist_retired_req_list
);
511 static void get_context_status(struct intel_engine_cs
*ring
,
513 u32
*status
, u32
*context_id
)
515 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
517 if (WARN_ON(read_pointer
>= GEN8_CSB_ENTRIES
))
520 *status
= I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring
, read_pointer
));
521 *context_id
= I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring
, read_pointer
));
525 * intel_lrc_irq_handler() - handle Context Switch interrupts
526 * @ring: Engine Command Streamer to handle.
528 * Check the unread Context Status Buffers and manage the submission of new
529 * contexts to the ELSP accordingly.
531 void intel_lrc_irq_handler(struct intel_engine_cs
*ring
)
533 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
539 u32 submit_contexts
= 0;
541 status_pointer
= I915_READ(RING_CONTEXT_STATUS_PTR(ring
));
543 read_pointer
= ring
->next_context_status_buffer
;
544 write_pointer
= GEN8_CSB_WRITE_PTR(status_pointer
);
545 if (read_pointer
> write_pointer
)
546 write_pointer
+= GEN8_CSB_ENTRIES
;
548 spin_lock(&ring
->execlist_lock
);
550 while (read_pointer
< write_pointer
) {
552 get_context_status(ring
, ++read_pointer
% GEN8_CSB_ENTRIES
,
553 &status
, &status_id
);
555 if (status
& GEN8_CTX_STATUS_IDLE_ACTIVE
)
558 if (status
& GEN8_CTX_STATUS_PREEMPTED
) {
559 if (status
& GEN8_CTX_STATUS_LITE_RESTORE
) {
560 if (execlists_check_remove_request(ring
, status_id
))
561 WARN(1, "Lite Restored request removed from queue\n");
563 WARN(1, "Preemption without Lite Restore\n");
566 if ((status
& GEN8_CTX_STATUS_ACTIVE_IDLE
) ||
567 (status
& GEN8_CTX_STATUS_ELEMENT_SWITCH
)) {
568 if (execlists_check_remove_request(ring
, status_id
))
573 if (ring
->disable_lite_restore_wa
) {
574 /* Prevent a ctx to preempt itself */
575 if ((status
& GEN8_CTX_STATUS_ACTIVE_IDLE
) &&
576 (submit_contexts
!= 0))
577 execlists_context_unqueue(ring
);
578 } else if (submit_contexts
!= 0) {
579 execlists_context_unqueue(ring
);
582 spin_unlock(&ring
->execlist_lock
);
584 if (unlikely(submit_contexts
> 2))
585 DRM_ERROR("More than two context complete events?\n");
587 ring
->next_context_status_buffer
= write_pointer
% GEN8_CSB_ENTRIES
;
589 /* Update the read pointer to the old write pointer. Manual ringbuffer
590 * management ftw </sarcasm> */
591 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring
),
592 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK
,
593 ring
->next_context_status_buffer
<< 8));
596 static int execlists_context_queue(struct drm_i915_gem_request
*request
)
598 struct intel_engine_cs
*ring
= request
->ring
;
599 struct drm_i915_gem_request
*cursor
;
600 int num_elements
= 0;
602 if (request
->ctx
!= request
->i915
->kernel_context
)
603 intel_lr_context_pin(request
->ctx
, ring
);
605 i915_gem_request_reference(request
);
607 spin_lock_irq(&ring
->execlist_lock
);
609 list_for_each_entry(cursor
, &ring
->execlist_queue
, execlist_link
)
610 if (++num_elements
> 2)
613 if (num_elements
> 2) {
614 struct drm_i915_gem_request
*tail_req
;
616 tail_req
= list_last_entry(&ring
->execlist_queue
,
617 struct drm_i915_gem_request
,
620 if (request
->ctx
== tail_req
->ctx
) {
621 WARN(tail_req
->elsp_submitted
!= 0,
622 "More than 2 already-submitted reqs queued\n");
623 list_move_tail(&tail_req
->execlist_link
,
624 &ring
->execlist_retired_req_list
);
628 list_add_tail(&request
->execlist_link
, &ring
->execlist_queue
);
629 if (num_elements
== 0)
630 execlists_context_unqueue(ring
);
632 spin_unlock_irq(&ring
->execlist_lock
);
637 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request
*req
)
639 struct intel_engine_cs
*ring
= req
->ring
;
640 uint32_t flush_domains
;
644 if (ring
->gpu_caches_dirty
)
645 flush_domains
= I915_GEM_GPU_DOMAINS
;
647 ret
= ring
->emit_flush(req
, I915_GEM_GPU_DOMAINS
, flush_domains
);
651 ring
->gpu_caches_dirty
= false;
655 static int execlists_move_to_gpu(struct drm_i915_gem_request
*req
,
656 struct list_head
*vmas
)
658 const unsigned other_rings
= ~intel_ring_flag(req
->ring
);
659 struct i915_vma
*vma
;
660 uint32_t flush_domains
= 0;
661 bool flush_chipset
= false;
664 list_for_each_entry(vma
, vmas
, exec_list
) {
665 struct drm_i915_gem_object
*obj
= vma
->obj
;
667 if (obj
->active
& other_rings
) {
668 ret
= i915_gem_object_sync(obj
, req
->ring
, &req
);
673 if (obj
->base
.write_domain
& I915_GEM_DOMAIN_CPU
)
674 flush_chipset
|= i915_gem_clflush_object(obj
, false);
676 flush_domains
|= obj
->base
.write_domain
;
679 if (flush_domains
& I915_GEM_DOMAIN_GTT
)
682 /* Unconditionally invalidate gpu caches and ensure that we do flush
683 * any residual writes from the previous batch.
685 return logical_ring_invalidate_all_caches(req
);
688 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request
*request
)
692 request
->ringbuf
= request
->ctx
->engine
[request
->ring
->id
].ringbuf
;
694 if (i915
.enable_guc_submission
) {
696 * Check that the GuC has space for the request before
697 * going any further, as the i915_add_request() call
698 * later on mustn't fail ...
700 struct intel_guc
*guc
= &request
->i915
->guc
;
702 ret
= i915_guc_wq_check_space(guc
->execbuf_client
);
707 if (request
->ctx
!= request
->i915
->kernel_context
)
708 ret
= intel_lr_context_pin(request
->ctx
, request
->ring
);
713 static int logical_ring_wait_for_space(struct drm_i915_gem_request
*req
,
716 struct intel_ringbuffer
*ringbuf
= req
->ringbuf
;
717 struct intel_engine_cs
*ring
= req
->ring
;
718 struct drm_i915_gem_request
*target
;
722 if (intel_ring_space(ringbuf
) >= bytes
)
725 /* The whole point of reserving space is to not wait! */
726 WARN_ON(ringbuf
->reserved_in_use
);
728 list_for_each_entry(target
, &ring
->request_list
, list
) {
730 * The request queue is per-engine, so can contain requests
731 * from multiple ringbuffers. Here, we must ignore any that
732 * aren't from the ringbuffer we're considering.
734 if (target
->ringbuf
!= ringbuf
)
737 /* Would completion of this request free enough space? */
738 space
= __intel_ring_space(target
->postfix
, ringbuf
->tail
,
744 if (WARN_ON(&target
->list
== &ring
->request_list
))
747 ret
= i915_wait_request(target
);
751 ringbuf
->space
= space
;
756 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
757 * @request: Request to advance the logical ringbuffer of.
759 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
760 * really happens during submission is that the context and current tail will be placed
761 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
762 * point, the tail *inside* the context is updated and the ELSP written to.
765 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request
*request
)
767 struct intel_ringbuffer
*ringbuf
= request
->ringbuf
;
768 struct drm_i915_private
*dev_priv
= request
->i915
;
769 struct intel_engine_cs
*engine
= request
->ring
;
771 intel_logical_ring_advance(ringbuf
);
772 request
->tail
= ringbuf
->tail
;
775 * Here we add two extra NOOPs as padding to avoid
776 * lite restore of a context with HEAD==TAIL.
778 * Caller must reserve WA_TAIL_DWORDS for us!
780 intel_logical_ring_emit(ringbuf
, MI_NOOP
);
781 intel_logical_ring_emit(ringbuf
, MI_NOOP
);
782 intel_logical_ring_advance(ringbuf
);
784 if (intel_ring_stopped(engine
))
787 if (engine
->last_context
!= request
->ctx
) {
788 if (engine
->last_context
)
789 intel_lr_context_unpin(engine
->last_context
, engine
);
790 if (request
->ctx
!= request
->i915
->kernel_context
) {
791 intel_lr_context_pin(request
->ctx
, engine
);
792 engine
->last_context
= request
->ctx
;
794 engine
->last_context
= NULL
;
798 if (dev_priv
->guc
.execbuf_client
)
799 i915_guc_submit(dev_priv
->guc
.execbuf_client
, request
);
801 execlists_context_queue(request
);
806 static void __wrap_ring_buffer(struct intel_ringbuffer
*ringbuf
)
808 uint32_t __iomem
*virt
;
809 int rem
= ringbuf
->size
- ringbuf
->tail
;
811 virt
= ringbuf
->virtual_start
+ ringbuf
->tail
;
814 iowrite32(MI_NOOP
, virt
++);
817 intel_ring_update_space(ringbuf
);
820 static int logical_ring_prepare(struct drm_i915_gem_request
*req
, int bytes
)
822 struct intel_ringbuffer
*ringbuf
= req
->ringbuf
;
823 int remain_usable
= ringbuf
->effective_size
- ringbuf
->tail
;
824 int remain_actual
= ringbuf
->size
- ringbuf
->tail
;
825 int ret
, total_bytes
, wait_bytes
= 0;
826 bool need_wrap
= false;
828 if (ringbuf
->reserved_in_use
)
831 total_bytes
= bytes
+ ringbuf
->reserved_size
;
833 if (unlikely(bytes
> remain_usable
)) {
835 * Not enough space for the basic request. So need to flush
836 * out the remainder and then wait for base + reserved.
838 wait_bytes
= remain_actual
+ total_bytes
;
841 if (unlikely(total_bytes
> remain_usable
)) {
843 * The base request will fit but the reserved space
844 * falls off the end. So don't need an immediate wrap
845 * and only need to effectively wait for the reserved
846 * size space from the start of ringbuffer.
848 wait_bytes
= remain_actual
+ ringbuf
->reserved_size
;
849 } else if (total_bytes
> ringbuf
->space
) {
850 /* No wrapping required, just waiting. */
851 wait_bytes
= total_bytes
;
856 ret
= logical_ring_wait_for_space(req
, wait_bytes
);
861 __wrap_ring_buffer(ringbuf
);
868 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
870 * @req: The request to start some new work for
871 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
873 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
874 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
875 * and also preallocates a request (every workload submission is still mediated through
876 * requests, same as it did with legacy ringbuffer submission).
878 * Return: non-zero if the ringbuffer is not ready to be written to.
880 int intel_logical_ring_begin(struct drm_i915_gem_request
*req
, int num_dwords
)
882 struct drm_i915_private
*dev_priv
;
885 WARN_ON(req
== NULL
);
886 dev_priv
= req
->ring
->dev
->dev_private
;
888 ret
= i915_gem_check_wedge(&dev_priv
->gpu_error
,
889 dev_priv
->mm
.interruptible
);
893 ret
= logical_ring_prepare(req
, num_dwords
* sizeof(uint32_t));
897 req
->ringbuf
->space
-= num_dwords
* sizeof(uint32_t);
901 int intel_logical_ring_reserve_space(struct drm_i915_gem_request
*request
)
904 * The first call merely notes the reserve request and is common for
905 * all back ends. The subsequent localised _begin() call actually
906 * ensures that the reservation is available. Without the begin, if
907 * the request creator immediately submitted the request without
908 * adding any commands to it then there might not actually be
909 * sufficient room for the submission commands.
911 intel_ring_reserved_space_reserve(request
->ringbuf
, MIN_SPACE_FOR_ADD_REQUEST
);
913 return intel_logical_ring_begin(request
, 0);
917 * execlists_submission() - submit a batchbuffer for execution, Execlists style
920 * @ring: Engine Command Streamer to submit to.
921 * @ctx: Context to employ for this submission.
922 * @args: execbuffer call arguments.
923 * @vmas: list of vmas.
924 * @batch_obj: the batchbuffer to submit.
925 * @exec_start: batchbuffer start virtual address pointer.
926 * @dispatch_flags: translated execbuffer call flags.
928 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
929 * away the submission details of the execbuffer ioctl call.
931 * Return: non-zero if the submission fails.
933 int intel_execlists_submission(struct i915_execbuffer_params
*params
,
934 struct drm_i915_gem_execbuffer2
*args
,
935 struct list_head
*vmas
)
937 struct drm_device
*dev
= params
->dev
;
938 struct intel_engine_cs
*ring
= params
->ring
;
939 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
940 struct intel_ringbuffer
*ringbuf
= params
->ctx
->engine
[ring
->id
].ringbuf
;
946 instp_mode
= args
->flags
& I915_EXEC_CONSTANTS_MASK
;
947 instp_mask
= I915_EXEC_CONSTANTS_MASK
;
948 switch (instp_mode
) {
949 case I915_EXEC_CONSTANTS_REL_GENERAL
:
950 case I915_EXEC_CONSTANTS_ABSOLUTE
:
951 case I915_EXEC_CONSTANTS_REL_SURFACE
:
952 if (instp_mode
!= 0 && ring
!= &dev_priv
->ring
[RCS
]) {
953 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
957 if (instp_mode
!= dev_priv
->relative_constants_mode
) {
958 if (instp_mode
== I915_EXEC_CONSTANTS_REL_SURFACE
) {
959 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
963 /* The HW changed the meaning on this bit on gen6 */
964 instp_mask
&= ~I915_EXEC_CONSTANTS_REL_SURFACE
;
968 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode
);
972 if (args
->flags
& I915_EXEC_GEN7_SOL_RESET
) {
973 DRM_DEBUG("sol reset is gen7 only\n");
977 ret
= execlists_move_to_gpu(params
->request
, vmas
);
981 if (ring
== &dev_priv
->ring
[RCS
] &&
982 instp_mode
!= dev_priv
->relative_constants_mode
) {
983 ret
= intel_logical_ring_begin(params
->request
, 4);
987 intel_logical_ring_emit(ringbuf
, MI_NOOP
);
988 intel_logical_ring_emit(ringbuf
, MI_LOAD_REGISTER_IMM(1));
989 intel_logical_ring_emit_reg(ringbuf
, INSTPM
);
990 intel_logical_ring_emit(ringbuf
, instp_mask
<< 16 | instp_mode
);
991 intel_logical_ring_advance(ringbuf
);
993 dev_priv
->relative_constants_mode
= instp_mode
;
996 exec_start
= params
->batch_obj_vm_offset
+
997 args
->batch_start_offset
;
999 ret
= ring
->emit_bb_start(params
->request
, exec_start
, params
->dispatch_flags
);
1003 trace_i915_gem_ring_dispatch(params
->request
, params
->dispatch_flags
);
1005 i915_gem_execbuffer_move_to_active(vmas
, params
->request
);
1006 i915_gem_execbuffer_retire_commands(params
);
1011 void intel_execlists_retire_requests(struct intel_engine_cs
*ring
)
1013 struct drm_i915_gem_request
*req
, *tmp
;
1014 struct list_head retired_list
;
1016 WARN_ON(!mutex_is_locked(&ring
->dev
->struct_mutex
));
1017 if (list_empty(&ring
->execlist_retired_req_list
))
1020 INIT_LIST_HEAD(&retired_list
);
1021 spin_lock_irq(&ring
->execlist_lock
);
1022 list_replace_init(&ring
->execlist_retired_req_list
, &retired_list
);
1023 spin_unlock_irq(&ring
->execlist_lock
);
1025 list_for_each_entry_safe(req
, tmp
, &retired_list
, execlist_link
) {
1026 struct intel_context
*ctx
= req
->ctx
;
1027 struct drm_i915_gem_object
*ctx_obj
=
1028 ctx
->engine
[ring
->id
].state
;
1030 if (ctx_obj
&& (ctx
!= req
->i915
->kernel_context
))
1031 intel_lr_context_unpin(ctx
, ring
);
1033 list_del(&req
->execlist_link
);
1034 i915_gem_request_unreference(req
);
1038 void intel_logical_ring_stop(struct intel_engine_cs
*ring
)
1040 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
1043 if (!intel_ring_initialized(ring
))
1046 ret
= intel_ring_idle(ring
);
1047 if (ret
&& !i915_reset_in_progress(&to_i915(ring
->dev
)->gpu_error
))
1048 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1051 /* TODO: Is this correct with Execlists enabled? */
1052 I915_WRITE_MODE(ring
, _MASKED_BIT_ENABLE(STOP_RING
));
1053 if (wait_for_atomic((I915_READ_MODE(ring
) & MODE_IDLE
) != 0, 1000)) {
1054 DRM_ERROR("%s :timed out trying to stop ring\n", ring
->name
);
1057 I915_WRITE_MODE(ring
, _MASKED_BIT_DISABLE(STOP_RING
));
1060 int logical_ring_flush_all_caches(struct drm_i915_gem_request
*req
)
1062 struct intel_engine_cs
*ring
= req
->ring
;
1065 if (!ring
->gpu_caches_dirty
)
1068 ret
= ring
->emit_flush(req
, 0, I915_GEM_GPU_DOMAINS
);
1072 ring
->gpu_caches_dirty
= false;
1076 static int intel_lr_context_do_pin(struct intel_context
*ctx
,
1077 struct intel_engine_cs
*ring
)
1079 struct drm_device
*dev
= ring
->dev
;
1080 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1081 struct drm_i915_gem_object
*ctx_obj
= ctx
->engine
[ring
->id
].state
;
1082 struct intel_ringbuffer
*ringbuf
= ctx
->engine
[ring
->id
].ringbuf
;
1083 struct page
*lrc_state_page
;
1084 uint32_t *lrc_reg_state
;
1087 WARN_ON(!mutex_is_locked(&ring
->dev
->struct_mutex
));
1089 ret
= i915_gem_obj_ggtt_pin(ctx_obj
, GEN8_LR_CONTEXT_ALIGN
,
1090 PIN_OFFSET_BIAS
| GUC_WOPCM_TOP
);
1094 lrc_state_page
= i915_gem_object_get_dirty_page(ctx_obj
, LRC_STATE_PN
);
1095 if (WARN_ON(!lrc_state_page
)) {
1100 ret
= intel_pin_and_map_ringbuffer_obj(ring
->dev
, ringbuf
);
1104 ctx
->engine
[ring
->id
].lrc_vma
= i915_gem_obj_to_ggtt(ctx_obj
);
1105 intel_lr_context_descriptor_update(ctx
, ring
);
1106 lrc_reg_state
= kmap(lrc_state_page
);
1107 lrc_reg_state
[CTX_RING_BUFFER_START
+1] = ringbuf
->vma
->node
.start
;
1108 ctx
->engine
[ring
->id
].lrc_reg_state
= lrc_reg_state
;
1109 ctx_obj
->dirty
= true;
1111 /* Invalidate GuC TLB. */
1112 if (i915
.enable_guc_submission
)
1113 I915_WRITE(GEN8_GTCR
, GEN8_GTCR_INVALIDATE
);
1118 i915_gem_object_ggtt_unpin(ctx_obj
);
1123 static int intel_lr_context_pin(struct intel_context
*ctx
,
1124 struct intel_engine_cs
*engine
)
1128 if (ctx
->engine
[engine
->id
].pin_count
++ == 0) {
1129 ret
= intel_lr_context_do_pin(ctx
, engine
);
1131 goto reset_pin_count
;
1133 i915_gem_context_reference(ctx
);
1138 ctx
->engine
[engine
->id
].pin_count
= 0;
1142 void intel_lr_context_unpin(struct intel_context
*ctx
,
1143 struct intel_engine_cs
*engine
)
1145 struct drm_i915_gem_object
*ctx_obj
= ctx
->engine
[engine
->id
].state
;
1147 WARN_ON(!mutex_is_locked(&ctx
->i915
->dev
->struct_mutex
));
1148 if (--ctx
->engine
[engine
->id
].pin_count
== 0) {
1149 kunmap(kmap_to_page(ctx
->engine
[engine
->id
].lrc_reg_state
));
1150 intel_unpin_ringbuffer_obj(ctx
->engine
[engine
->id
].ringbuf
);
1151 i915_gem_object_ggtt_unpin(ctx_obj
);
1152 ctx
->engine
[engine
->id
].lrc_vma
= NULL
;
1153 ctx
->engine
[engine
->id
].lrc_desc
= 0;
1154 ctx
->engine
[engine
->id
].lrc_reg_state
= NULL
;
1156 i915_gem_context_unreference(ctx
);
1160 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request
*req
)
1163 struct intel_engine_cs
*ring
= req
->ring
;
1164 struct intel_ringbuffer
*ringbuf
= req
->ringbuf
;
1165 struct drm_device
*dev
= ring
->dev
;
1166 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1167 struct i915_workarounds
*w
= &dev_priv
->workarounds
;
1172 ring
->gpu_caches_dirty
= true;
1173 ret
= logical_ring_flush_all_caches(req
);
1177 ret
= intel_logical_ring_begin(req
, w
->count
* 2 + 2);
1181 intel_logical_ring_emit(ringbuf
, MI_LOAD_REGISTER_IMM(w
->count
));
1182 for (i
= 0; i
< w
->count
; i
++) {
1183 intel_logical_ring_emit_reg(ringbuf
, w
->reg
[i
].addr
);
1184 intel_logical_ring_emit(ringbuf
, w
->reg
[i
].value
);
1186 intel_logical_ring_emit(ringbuf
, MI_NOOP
);
1188 intel_logical_ring_advance(ringbuf
);
1190 ring
->gpu_caches_dirty
= true;
1191 ret
= logical_ring_flush_all_caches(req
);
1198 #define wa_ctx_emit(batch, index, cmd) \
1200 int __index = (index)++; \
1201 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1204 batch[__index] = (cmd); \
1207 #define wa_ctx_emit_reg(batch, index, reg) \
1208 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1211 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1212 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1213 * but there is a slight complication as this is applied in WA batch where the
1214 * values are only initialized once so we cannot take register value at the
1215 * beginning and reuse it further; hence we save its value to memory, upload a
1216 * constant value with bit21 set and then we restore it back with the saved value.
1217 * To simplify the WA, a constant value is formed by using the default value
1218 * of this register. This shouldn't be a problem because we are only modifying
1219 * it for a short period and this batch in non-premptible. We can ofcourse
1220 * use additional instructions that read the actual value of the register
1221 * at that time and set our bit of interest but it makes the WA complicated.
1223 * This WA is also required for Gen9 so extracting as a function avoids
1226 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs
*ring
,
1227 uint32_t *const batch
,
1230 uint32_t l3sqc4_flush
= (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES
);
1233 * WaDisableLSQCROPERFforOCL:skl
1234 * This WA is implemented in skl_init_clock_gating() but since
1235 * this batch updates GEN8_L3SQCREG4 with default value we need to
1236 * set this bit here to retain the WA during flush.
1238 if (IS_SKL_REVID(ring
->dev
, 0, SKL_REVID_E0
))
1239 l3sqc4_flush
|= GEN8_LQSC_RO_PERF_DIS
;
1241 wa_ctx_emit(batch
, index
, (MI_STORE_REGISTER_MEM_GEN8
|
1242 MI_SRM_LRM_GLOBAL_GTT
));
1243 wa_ctx_emit_reg(batch
, index
, GEN8_L3SQCREG4
);
1244 wa_ctx_emit(batch
, index
, ring
->scratch
.gtt_offset
+ 256);
1245 wa_ctx_emit(batch
, index
, 0);
1247 wa_ctx_emit(batch
, index
, MI_LOAD_REGISTER_IMM(1));
1248 wa_ctx_emit_reg(batch
, index
, GEN8_L3SQCREG4
);
1249 wa_ctx_emit(batch
, index
, l3sqc4_flush
);
1251 wa_ctx_emit(batch
, index
, GFX_OP_PIPE_CONTROL(6));
1252 wa_ctx_emit(batch
, index
, (PIPE_CONTROL_CS_STALL
|
1253 PIPE_CONTROL_DC_FLUSH_ENABLE
));
1254 wa_ctx_emit(batch
, index
, 0);
1255 wa_ctx_emit(batch
, index
, 0);
1256 wa_ctx_emit(batch
, index
, 0);
1257 wa_ctx_emit(batch
, index
, 0);
1259 wa_ctx_emit(batch
, index
, (MI_LOAD_REGISTER_MEM_GEN8
|
1260 MI_SRM_LRM_GLOBAL_GTT
));
1261 wa_ctx_emit_reg(batch
, index
, GEN8_L3SQCREG4
);
1262 wa_ctx_emit(batch
, index
, ring
->scratch
.gtt_offset
+ 256);
1263 wa_ctx_emit(batch
, index
, 0);
1268 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb
*wa_ctx
,
1270 uint32_t start_alignment
)
1272 return wa_ctx
->offset
= ALIGN(offset
, start_alignment
);
1275 static inline int wa_ctx_end(struct i915_wa_ctx_bb
*wa_ctx
,
1277 uint32_t size_alignment
)
1279 wa_ctx
->size
= offset
- wa_ctx
->offset
;
1281 WARN(wa_ctx
->size
% size_alignment
,
1282 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1283 wa_ctx
->size
, size_alignment
);
1288 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1290 * @ring: only applicable for RCS
1291 * @wa_ctx: structure representing wa_ctx
1292 * offset: specifies start of the batch, should be cache-aligned. This is updated
1293 * with the offset value received as input.
1294 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1295 * @batch: page in which WA are loaded
1296 * @offset: This field specifies the start of the batch, it should be
1297 * cache-aligned otherwise it is adjusted accordingly.
1298 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1299 * initialized at the beginning and shared across all contexts but this field
1300 * helps us to have multiple batches at different offsets and select them based
1301 * on a criteria. At the moment this batch always start at the beginning of the page
1302 * and at this point we don't have multiple wa_ctx batch buffers.
1304 * The number of WA applied are not known at the beginning; we use this field
1305 * to return the no of DWORDS written.
1307 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1308 * so it adds NOOPs as padding to make it cacheline aligned.
1309 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1310 * makes a complete batch buffer.
1312 * Return: non-zero if we exceed the PAGE_SIZE limit.
1315 static int gen8_init_indirectctx_bb(struct intel_engine_cs
*ring
,
1316 struct i915_wa_ctx_bb
*wa_ctx
,
1317 uint32_t *const batch
,
1320 uint32_t scratch_addr
;
1321 uint32_t index
= wa_ctx_start(wa_ctx
, *offset
, CACHELINE_DWORDS
);
1323 /* WaDisableCtxRestoreArbitration:bdw,chv */
1324 wa_ctx_emit(batch
, index
, MI_ARB_ON_OFF
| MI_ARB_DISABLE
);
1326 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1327 if (IS_BROADWELL(ring
->dev
)) {
1328 int rc
= gen8_emit_flush_coherentl3_wa(ring
, batch
, index
);
1334 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1335 /* Actual scratch location is at 128 bytes offset */
1336 scratch_addr
= ring
->scratch
.gtt_offset
+ 2*CACHELINE_BYTES
;
1338 wa_ctx_emit(batch
, index
, GFX_OP_PIPE_CONTROL(6));
1339 wa_ctx_emit(batch
, index
, (PIPE_CONTROL_FLUSH_L3
|
1340 PIPE_CONTROL_GLOBAL_GTT_IVB
|
1341 PIPE_CONTROL_CS_STALL
|
1342 PIPE_CONTROL_QW_WRITE
));
1343 wa_ctx_emit(batch
, index
, scratch_addr
);
1344 wa_ctx_emit(batch
, index
, 0);
1345 wa_ctx_emit(batch
, index
, 0);
1346 wa_ctx_emit(batch
, index
, 0);
1348 /* Pad to end of cacheline */
1349 while (index
% CACHELINE_DWORDS
)
1350 wa_ctx_emit(batch
, index
, MI_NOOP
);
1353 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1354 * execution depends on the length specified in terms of cache lines
1355 * in the register CTX_RCS_INDIRECT_CTX
1358 return wa_ctx_end(wa_ctx
, *offset
= index
, CACHELINE_DWORDS
);
1362 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1364 * @ring: only applicable for RCS
1365 * @wa_ctx: structure representing wa_ctx
1366 * offset: specifies start of the batch, should be cache-aligned.
1367 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1368 * @batch: page in which WA are loaded
1369 * @offset: This field specifies the start of this batch.
1370 * This batch is started immediately after indirect_ctx batch. Since we ensure
1371 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1373 * The number of DWORDS written are returned using this field.
1375 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1376 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1378 static int gen8_init_perctx_bb(struct intel_engine_cs
*ring
,
1379 struct i915_wa_ctx_bb
*wa_ctx
,
1380 uint32_t *const batch
,
1383 uint32_t index
= wa_ctx_start(wa_ctx
, *offset
, CACHELINE_DWORDS
);
1385 /* WaDisableCtxRestoreArbitration:bdw,chv */
1386 wa_ctx_emit(batch
, index
, MI_ARB_ON_OFF
| MI_ARB_ENABLE
);
1388 wa_ctx_emit(batch
, index
, MI_BATCH_BUFFER_END
);
1390 return wa_ctx_end(wa_ctx
, *offset
= index
, 1);
1393 static int gen9_init_indirectctx_bb(struct intel_engine_cs
*ring
,
1394 struct i915_wa_ctx_bb
*wa_ctx
,
1395 uint32_t *const batch
,
1399 struct drm_device
*dev
= ring
->dev
;
1400 uint32_t index
= wa_ctx_start(wa_ctx
, *offset
, CACHELINE_DWORDS
);
1402 /* WaDisableCtxRestoreArbitration:skl,bxt */
1403 if (IS_SKL_REVID(dev
, 0, SKL_REVID_D0
) ||
1404 IS_BXT_REVID(dev
, 0, BXT_REVID_A1
))
1405 wa_ctx_emit(batch
, index
, MI_ARB_ON_OFF
| MI_ARB_DISABLE
);
1407 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1408 ret
= gen8_emit_flush_coherentl3_wa(ring
, batch
, index
);
1413 /* Pad to end of cacheline */
1414 while (index
% CACHELINE_DWORDS
)
1415 wa_ctx_emit(batch
, index
, MI_NOOP
);
1417 return wa_ctx_end(wa_ctx
, *offset
= index
, CACHELINE_DWORDS
);
1420 static int gen9_init_perctx_bb(struct intel_engine_cs
*ring
,
1421 struct i915_wa_ctx_bb
*wa_ctx
,
1422 uint32_t *const batch
,
1425 struct drm_device
*dev
= ring
->dev
;
1426 uint32_t index
= wa_ctx_start(wa_ctx
, *offset
, CACHELINE_DWORDS
);
1428 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1429 if (IS_SKL_REVID(dev
, 0, SKL_REVID_B0
) ||
1430 IS_BXT_REVID(dev
, 0, BXT_REVID_A1
)) {
1431 wa_ctx_emit(batch
, index
, MI_LOAD_REGISTER_IMM(1));
1432 wa_ctx_emit_reg(batch
, index
, GEN9_SLICE_COMMON_ECO_CHICKEN0
);
1433 wa_ctx_emit(batch
, index
,
1434 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING
));
1435 wa_ctx_emit(batch
, index
, MI_NOOP
);
1438 /* WaDisableCtxRestoreArbitration:skl,bxt */
1439 if (IS_SKL_REVID(dev
, 0, SKL_REVID_D0
) ||
1440 IS_BXT_REVID(dev
, 0, BXT_REVID_A1
))
1441 wa_ctx_emit(batch
, index
, MI_ARB_ON_OFF
| MI_ARB_ENABLE
);
1443 wa_ctx_emit(batch
, index
, MI_BATCH_BUFFER_END
);
1445 return wa_ctx_end(wa_ctx
, *offset
= index
, 1);
1448 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs
*ring
, u32 size
)
1452 ring
->wa_ctx
.obj
= i915_gem_alloc_object(ring
->dev
, PAGE_ALIGN(size
));
1453 if (!ring
->wa_ctx
.obj
) {
1454 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1458 ret
= i915_gem_obj_ggtt_pin(ring
->wa_ctx
.obj
, PAGE_SIZE
, 0);
1460 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1462 drm_gem_object_unreference(&ring
->wa_ctx
.obj
->base
);
1469 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs
*ring
)
1471 if (ring
->wa_ctx
.obj
) {
1472 i915_gem_object_ggtt_unpin(ring
->wa_ctx
.obj
);
1473 drm_gem_object_unreference(&ring
->wa_ctx
.obj
->base
);
1474 ring
->wa_ctx
.obj
= NULL
;
1478 static int intel_init_workaround_bb(struct intel_engine_cs
*ring
)
1484 struct i915_ctx_workarounds
*wa_ctx
= &ring
->wa_ctx
;
1486 WARN_ON(ring
->id
!= RCS
);
1488 /* update this when WA for higher Gen are added */
1489 if (INTEL_INFO(ring
->dev
)->gen
> 9) {
1490 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1491 INTEL_INFO(ring
->dev
)->gen
);
1495 /* some WA perform writes to scratch page, ensure it is valid */
1496 if (ring
->scratch
.obj
== NULL
) {
1497 DRM_ERROR("scratch page not allocated for %s\n", ring
->name
);
1501 ret
= lrc_setup_wa_ctx_obj(ring
, PAGE_SIZE
);
1503 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret
);
1507 page
= i915_gem_object_get_dirty_page(wa_ctx
->obj
, 0);
1508 batch
= kmap_atomic(page
);
1511 if (INTEL_INFO(ring
->dev
)->gen
== 8) {
1512 ret
= gen8_init_indirectctx_bb(ring
,
1513 &wa_ctx
->indirect_ctx
,
1519 ret
= gen8_init_perctx_bb(ring
,
1525 } else if (INTEL_INFO(ring
->dev
)->gen
== 9) {
1526 ret
= gen9_init_indirectctx_bb(ring
,
1527 &wa_ctx
->indirect_ctx
,
1533 ret
= gen9_init_perctx_bb(ring
,
1542 kunmap_atomic(batch
);
1544 lrc_destroy_wa_ctx_obj(ring
);
1549 static int gen8_init_common_ring(struct intel_engine_cs
*ring
)
1551 struct drm_device
*dev
= ring
->dev
;
1552 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1553 u8 next_context_status_buffer_hw
;
1555 lrc_setup_hardware_status_page(ring
,
1556 dev_priv
->kernel_context
->engine
[ring
->id
].state
);
1558 I915_WRITE_IMR(ring
, ~(ring
->irq_enable_mask
| ring
->irq_keep_mask
));
1559 I915_WRITE(RING_HWSTAM(ring
->mmio_base
), 0xffffffff);
1561 I915_WRITE(RING_MODE_GEN7(ring
),
1562 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE
) |
1563 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE
));
1564 POSTING_READ(RING_MODE_GEN7(ring
));
1567 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1568 * zero, we need to read the write pointer from hardware and use its
1569 * value because "this register is power context save restored".
1570 * Effectively, these states have been observed:
1572 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1573 * BDW | CSB regs not reset | CSB regs reset |
1574 * CHT | CSB regs not reset | CSB regs not reset |
1578 next_context_status_buffer_hw
=
1579 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring
)));
1582 * When the CSB registers are reset (also after power-up / gpu reset),
1583 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1584 * this special case, so the first element read is CSB[0].
1586 if (next_context_status_buffer_hw
== GEN8_CSB_PTR_MASK
)
1587 next_context_status_buffer_hw
= (GEN8_CSB_ENTRIES
- 1);
1589 ring
->next_context_status_buffer
= next_context_status_buffer_hw
;
1590 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring
->name
);
1592 memset(&ring
->hangcheck
, 0, sizeof(ring
->hangcheck
));
1597 static int gen8_init_render_ring(struct intel_engine_cs
*ring
)
1599 struct drm_device
*dev
= ring
->dev
;
1600 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1603 ret
= gen8_init_common_ring(ring
);
1607 /* We need to disable the AsyncFlip performance optimisations in order
1608 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1609 * programmed to '1' on all products.
1611 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1613 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE
));
1615 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING
));
1617 return init_workarounds_ring(ring
);
1620 static int gen9_init_render_ring(struct intel_engine_cs
*ring
)
1624 ret
= gen8_init_common_ring(ring
);
1628 return init_workarounds_ring(ring
);
1631 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request
*req
)
1633 struct i915_hw_ppgtt
*ppgtt
= req
->ctx
->ppgtt
;
1634 struct intel_engine_cs
*ring
= req
->ring
;
1635 struct intel_ringbuffer
*ringbuf
= req
->ringbuf
;
1636 const int num_lri_cmds
= GEN8_LEGACY_PDPES
* 2;
1639 ret
= intel_logical_ring_begin(req
, num_lri_cmds
* 2 + 2);
1643 intel_logical_ring_emit(ringbuf
, MI_LOAD_REGISTER_IMM(num_lri_cmds
));
1644 for (i
= GEN8_LEGACY_PDPES
- 1; i
>= 0; i
--) {
1645 const dma_addr_t pd_daddr
= i915_page_dir_dma_addr(ppgtt
, i
);
1647 intel_logical_ring_emit_reg(ringbuf
, GEN8_RING_PDP_UDW(ring
, i
));
1648 intel_logical_ring_emit(ringbuf
, upper_32_bits(pd_daddr
));
1649 intel_logical_ring_emit_reg(ringbuf
, GEN8_RING_PDP_LDW(ring
, i
));
1650 intel_logical_ring_emit(ringbuf
, lower_32_bits(pd_daddr
));
1653 intel_logical_ring_emit(ringbuf
, MI_NOOP
);
1654 intel_logical_ring_advance(ringbuf
);
1659 static int gen8_emit_bb_start(struct drm_i915_gem_request
*req
,
1660 u64 offset
, unsigned dispatch_flags
)
1662 struct intel_ringbuffer
*ringbuf
= req
->ringbuf
;
1663 bool ppgtt
= !(dispatch_flags
& I915_DISPATCH_SECURE
);
1666 /* Don't rely in hw updating PDPs, specially in lite-restore.
1667 * Ideally, we should set Force PD Restore in ctx descriptor,
1668 * but we can't. Force Restore would be a second option, but
1669 * it is unsafe in case of lite-restore (because the ctx is
1670 * not idle). PML4 is allocated during ppgtt init so this is
1671 * not needed in 48-bit.*/
1672 if (req
->ctx
->ppgtt
&&
1673 (intel_ring_flag(req
->ring
) & req
->ctx
->ppgtt
->pd_dirty_rings
)) {
1674 if (!USES_FULL_48BIT_PPGTT(req
->i915
) &&
1675 !intel_vgpu_active(req
->i915
->dev
)) {
1676 ret
= intel_logical_ring_emit_pdps(req
);
1681 req
->ctx
->ppgtt
->pd_dirty_rings
&= ~intel_ring_flag(req
->ring
);
1684 ret
= intel_logical_ring_begin(req
, 4);
1688 /* FIXME(BDW): Address space and security selectors. */
1689 intel_logical_ring_emit(ringbuf
, MI_BATCH_BUFFER_START_GEN8
|
1691 (dispatch_flags
& I915_DISPATCH_RS
?
1692 MI_BATCH_RESOURCE_STREAMER
: 0));
1693 intel_logical_ring_emit(ringbuf
, lower_32_bits(offset
));
1694 intel_logical_ring_emit(ringbuf
, upper_32_bits(offset
));
1695 intel_logical_ring_emit(ringbuf
, MI_NOOP
);
1696 intel_logical_ring_advance(ringbuf
);
1701 static bool gen8_logical_ring_get_irq(struct intel_engine_cs
*ring
)
1703 struct drm_device
*dev
= ring
->dev
;
1704 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1705 unsigned long flags
;
1707 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
1710 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1711 if (ring
->irq_refcount
++ == 0) {
1712 I915_WRITE_IMR(ring
, ~(ring
->irq_enable_mask
| ring
->irq_keep_mask
));
1713 POSTING_READ(RING_IMR(ring
->mmio_base
));
1715 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1720 static void gen8_logical_ring_put_irq(struct intel_engine_cs
*ring
)
1722 struct drm_device
*dev
= ring
->dev
;
1723 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1724 unsigned long flags
;
1726 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1727 if (--ring
->irq_refcount
== 0) {
1728 I915_WRITE_IMR(ring
, ~ring
->irq_keep_mask
);
1729 POSTING_READ(RING_IMR(ring
->mmio_base
));
1731 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1734 static int gen8_emit_flush(struct drm_i915_gem_request
*request
,
1735 u32 invalidate_domains
,
1738 struct intel_ringbuffer
*ringbuf
= request
->ringbuf
;
1739 struct intel_engine_cs
*ring
= ringbuf
->ring
;
1740 struct drm_device
*dev
= ring
->dev
;
1741 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1745 ret
= intel_logical_ring_begin(request
, 4);
1749 cmd
= MI_FLUSH_DW
+ 1;
1751 /* We always require a command barrier so that subsequent
1752 * commands, such as breadcrumb interrupts, are strictly ordered
1753 * wrt the contents of the write cache being flushed to memory
1754 * (and thus being coherent from the CPU).
1756 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
1758 if (invalidate_domains
& I915_GEM_GPU_DOMAINS
) {
1759 cmd
|= MI_INVALIDATE_TLB
;
1760 if (ring
== &dev_priv
->ring
[VCS
])
1761 cmd
|= MI_INVALIDATE_BSD
;
1764 intel_logical_ring_emit(ringbuf
, cmd
);
1765 intel_logical_ring_emit(ringbuf
,
1766 I915_GEM_HWS_SCRATCH_ADDR
|
1767 MI_FLUSH_DW_USE_GTT
);
1768 intel_logical_ring_emit(ringbuf
, 0); /* upper addr */
1769 intel_logical_ring_emit(ringbuf
, 0); /* value */
1770 intel_logical_ring_advance(ringbuf
);
1775 static int gen8_emit_flush_render(struct drm_i915_gem_request
*request
,
1776 u32 invalidate_domains
,
1779 struct intel_ringbuffer
*ringbuf
= request
->ringbuf
;
1780 struct intel_engine_cs
*ring
= ringbuf
->ring
;
1781 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
1782 bool vf_flush_wa
= false;
1786 flags
|= PIPE_CONTROL_CS_STALL
;
1788 if (flush_domains
) {
1789 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
1790 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
1791 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
1792 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
1795 if (invalidate_domains
) {
1796 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
1797 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
1798 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
1799 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
1800 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
1801 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
1802 flags
|= PIPE_CONTROL_QW_WRITE
;
1803 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
1806 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1809 if (IS_GEN9(ring
->dev
))
1813 ret
= intel_logical_ring_begin(request
, vf_flush_wa
? 12 : 6);
1818 intel_logical_ring_emit(ringbuf
, GFX_OP_PIPE_CONTROL(6));
1819 intel_logical_ring_emit(ringbuf
, 0);
1820 intel_logical_ring_emit(ringbuf
, 0);
1821 intel_logical_ring_emit(ringbuf
, 0);
1822 intel_logical_ring_emit(ringbuf
, 0);
1823 intel_logical_ring_emit(ringbuf
, 0);
1826 intel_logical_ring_emit(ringbuf
, GFX_OP_PIPE_CONTROL(6));
1827 intel_logical_ring_emit(ringbuf
, flags
);
1828 intel_logical_ring_emit(ringbuf
, scratch_addr
);
1829 intel_logical_ring_emit(ringbuf
, 0);
1830 intel_logical_ring_emit(ringbuf
, 0);
1831 intel_logical_ring_emit(ringbuf
, 0);
1832 intel_logical_ring_advance(ringbuf
);
1837 static u32
gen8_get_seqno(struct intel_engine_cs
*ring
, bool lazy_coherency
)
1839 return intel_read_status_page(ring
, I915_GEM_HWS_INDEX
);
1842 static void gen8_set_seqno(struct intel_engine_cs
*ring
, u32 seqno
)
1844 intel_write_status_page(ring
, I915_GEM_HWS_INDEX
, seqno
);
1847 static u32
bxt_a_get_seqno(struct intel_engine_cs
*ring
, bool lazy_coherency
)
1851 * On BXT A steppings there is a HW coherency issue whereby the
1852 * MI_STORE_DATA_IMM storing the completed request's seqno
1853 * occasionally doesn't invalidate the CPU cache. Work around this by
1854 * clflushing the corresponding cacheline whenever the caller wants
1855 * the coherency to be guaranteed. Note that this cacheline is known
1856 * to be clean at this point, since we only write it in
1857 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1858 * this clflush in practice becomes an invalidate operation.
1861 if (!lazy_coherency
)
1862 intel_flush_status_page(ring
, I915_GEM_HWS_INDEX
);
1864 return intel_read_status_page(ring
, I915_GEM_HWS_INDEX
);
1867 static void bxt_a_set_seqno(struct intel_engine_cs
*ring
, u32 seqno
)
1869 intel_write_status_page(ring
, I915_GEM_HWS_INDEX
, seqno
);
1871 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1872 intel_flush_status_page(ring
, I915_GEM_HWS_INDEX
);
1876 * Reserve space for 2 NOOPs at the end of each request to be
1877 * used as a workaround for not being allowed to do lite
1878 * restore with HEAD==TAIL (WaIdleLiteRestore).
1880 #define WA_TAIL_DWORDS 2
1882 static inline u32
hws_seqno_address(struct intel_engine_cs
*engine
)
1884 return engine
->status_page
.gfx_addr
+ I915_GEM_HWS_INDEX_ADDR
;
1887 static int gen8_emit_request(struct drm_i915_gem_request
*request
)
1889 struct intel_ringbuffer
*ringbuf
= request
->ringbuf
;
1892 ret
= intel_logical_ring_begin(request
, 6 + WA_TAIL_DWORDS
);
1896 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1897 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR
& (1 << 5));
1899 intel_logical_ring_emit(ringbuf
,
1900 (MI_FLUSH_DW
+ 1) | MI_FLUSH_DW_OP_STOREDW
);
1901 intel_logical_ring_emit(ringbuf
,
1902 hws_seqno_address(request
->ring
) |
1903 MI_FLUSH_DW_USE_GTT
);
1904 intel_logical_ring_emit(ringbuf
, 0);
1905 intel_logical_ring_emit(ringbuf
, i915_gem_request_get_seqno(request
));
1906 intel_logical_ring_emit(ringbuf
, MI_USER_INTERRUPT
);
1907 intel_logical_ring_emit(ringbuf
, MI_NOOP
);
1908 return intel_logical_ring_advance_and_submit(request
);
1911 static int gen8_emit_request_render(struct drm_i915_gem_request
*request
)
1913 struct intel_ringbuffer
*ringbuf
= request
->ringbuf
;
1916 ret
= intel_logical_ring_begin(request
, 8 + WA_TAIL_DWORDS
);
1920 /* We're using qword write, seqno should be aligned to 8 bytes. */
1921 BUILD_BUG_ON(I915_GEM_HWS_INDEX
& 1);
1923 /* w/a for post sync ops following a GPGPU operation we
1924 * need a prior CS_STALL, which is emitted by the flush
1925 * following the batch.
1927 intel_logical_ring_emit(ringbuf
, GFX_OP_PIPE_CONTROL(6));
1928 intel_logical_ring_emit(ringbuf
,
1929 (PIPE_CONTROL_GLOBAL_GTT_IVB
|
1930 PIPE_CONTROL_CS_STALL
|
1931 PIPE_CONTROL_QW_WRITE
));
1932 intel_logical_ring_emit(ringbuf
, hws_seqno_address(request
->ring
));
1933 intel_logical_ring_emit(ringbuf
, 0);
1934 intel_logical_ring_emit(ringbuf
, i915_gem_request_get_seqno(request
));
1935 /* We're thrashing one dword of HWS. */
1936 intel_logical_ring_emit(ringbuf
, 0);
1937 intel_logical_ring_emit(ringbuf
, MI_USER_INTERRUPT
);
1938 intel_logical_ring_emit(ringbuf
, MI_NOOP
);
1939 return intel_logical_ring_advance_and_submit(request
);
1942 static int intel_lr_context_render_state_init(struct drm_i915_gem_request
*req
)
1944 struct render_state so
;
1947 ret
= i915_gem_render_state_prepare(req
->ring
, &so
);
1951 if (so
.rodata
== NULL
)
1954 ret
= req
->ring
->emit_bb_start(req
, so
.ggtt_offset
,
1955 I915_DISPATCH_SECURE
);
1959 ret
= req
->ring
->emit_bb_start(req
,
1960 (so
.ggtt_offset
+ so
.aux_batch_offset
),
1961 I915_DISPATCH_SECURE
);
1965 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so
.obj
), req
);
1968 i915_gem_render_state_fini(&so
);
1972 static int gen8_init_rcs_context(struct drm_i915_gem_request
*req
)
1976 ret
= intel_logical_ring_workarounds_emit(req
);
1980 ret
= intel_rcs_context_init_mocs(req
);
1982 * Failing to program the MOCS is non-fatal.The system will not
1983 * run at peak performance. So generate an error and carry on.
1986 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1988 return intel_lr_context_render_state_init(req
);
1992 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1994 * @ring: Engine Command Streamer.
1997 void intel_logical_ring_cleanup(struct intel_engine_cs
*ring
)
1999 struct drm_i915_private
*dev_priv
;
2001 if (!intel_ring_initialized(ring
))
2004 dev_priv
= ring
->dev
->dev_private
;
2007 intel_logical_ring_stop(ring
);
2008 WARN_ON((I915_READ_MODE(ring
) & MODE_IDLE
) == 0);
2012 ring
->cleanup(ring
);
2014 i915_cmd_parser_fini_ring(ring
);
2015 i915_gem_batch_pool_fini(&ring
->batch_pool
);
2017 if (ring
->status_page
.obj
) {
2018 kunmap(sg_page(ring
->status_page
.obj
->pages
->sgl
));
2019 ring
->status_page
.obj
= NULL
;
2022 ring
->disable_lite_restore_wa
= false;
2023 ring
->ctx_desc_template
= 0;
2025 lrc_destroy_wa_ctx_obj(ring
);
2030 logical_ring_default_vfuncs(struct drm_device
*dev
,
2031 struct intel_engine_cs
*ring
)
2033 /* Default vfuncs which can be overriden by each engine. */
2034 ring
->init_hw
= gen8_init_common_ring
;
2035 ring
->emit_request
= gen8_emit_request
;
2036 ring
->emit_flush
= gen8_emit_flush
;
2037 ring
->irq_get
= gen8_logical_ring_get_irq
;
2038 ring
->irq_put
= gen8_logical_ring_put_irq
;
2039 ring
->emit_bb_start
= gen8_emit_bb_start
;
2040 if (IS_BXT_REVID(dev
, 0, BXT_REVID_A1
)) {
2041 ring
->get_seqno
= bxt_a_get_seqno
;
2042 ring
->set_seqno
= bxt_a_set_seqno
;
2044 ring
->get_seqno
= gen8_get_seqno
;
2045 ring
->set_seqno
= gen8_set_seqno
;
2050 logical_ring_default_irqs(struct intel_engine_cs
*ring
, unsigned shift
)
2052 ring
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
<< shift
;
2053 ring
->irq_keep_mask
= GT_CONTEXT_SWITCH_INTERRUPT
<< shift
;
2057 logical_ring_init(struct drm_device
*dev
, struct intel_engine_cs
*ring
)
2059 struct intel_context
*dctx
= to_i915(dev
)->kernel_context
;
2062 /* Intentionally left blank. */
2063 ring
->buffer
= NULL
;
2066 INIT_LIST_HEAD(&ring
->active_list
);
2067 INIT_LIST_HEAD(&ring
->request_list
);
2068 i915_gem_batch_pool_init(dev
, &ring
->batch_pool
);
2069 init_waitqueue_head(&ring
->irq_queue
);
2071 INIT_LIST_HEAD(&ring
->buffers
);
2072 INIT_LIST_HEAD(&ring
->execlist_queue
);
2073 INIT_LIST_HEAD(&ring
->execlist_retired_req_list
);
2074 spin_lock_init(&ring
->execlist_lock
);
2076 logical_ring_init_platform_invariants(ring
);
2078 ret
= i915_cmd_parser_init_ring(ring
);
2082 ret
= intel_lr_context_deferred_alloc(dctx
, ring
);
2086 /* As this is the default context, always pin it */
2087 ret
= intel_lr_context_do_pin(dctx
, ring
);
2090 "Failed to pin and map ringbuffer %s: %d\n",
2098 intel_logical_ring_cleanup(ring
);
2102 static int logical_render_ring_init(struct drm_device
*dev
)
2104 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2105 struct intel_engine_cs
*ring
= &dev_priv
->ring
[RCS
];
2108 ring
->name
= "render ring";
2110 ring
->exec_id
= I915_EXEC_RENDER
;
2111 ring
->guc_id
= GUC_RENDER_ENGINE
;
2112 ring
->mmio_base
= RENDER_RING_BASE
;
2114 logical_ring_default_irqs(ring
, GEN8_RCS_IRQ_SHIFT
);
2115 if (HAS_L3_DPF(dev
))
2116 ring
->irq_keep_mask
|= GT_RENDER_L3_PARITY_ERROR_INTERRUPT
;
2118 logical_ring_default_vfuncs(dev
, ring
);
2120 /* Override some for render ring. */
2121 if (INTEL_INFO(dev
)->gen
>= 9)
2122 ring
->init_hw
= gen9_init_render_ring
;
2124 ring
->init_hw
= gen8_init_render_ring
;
2125 ring
->init_context
= gen8_init_rcs_context
;
2126 ring
->cleanup
= intel_fini_pipe_control
;
2127 ring
->emit_flush
= gen8_emit_flush_render
;
2128 ring
->emit_request
= gen8_emit_request_render
;
2132 ret
= intel_init_pipe_control(ring
);
2136 ret
= intel_init_workaround_bb(ring
);
2139 * We continue even if we fail to initialize WA batch
2140 * because we only expect rare glitches but nothing
2141 * critical to prevent us from using GPU
2143 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2147 ret
= logical_ring_init(dev
, ring
);
2149 lrc_destroy_wa_ctx_obj(ring
);
2155 static int logical_bsd_ring_init(struct drm_device
*dev
)
2157 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2158 struct intel_engine_cs
*ring
= &dev_priv
->ring
[VCS
];
2160 ring
->name
= "bsd ring";
2162 ring
->exec_id
= I915_EXEC_BSD
;
2163 ring
->guc_id
= GUC_VIDEO_ENGINE
;
2164 ring
->mmio_base
= GEN6_BSD_RING_BASE
;
2166 logical_ring_default_irqs(ring
, GEN8_VCS1_IRQ_SHIFT
);
2167 logical_ring_default_vfuncs(dev
, ring
);
2169 return logical_ring_init(dev
, ring
);
2172 static int logical_bsd2_ring_init(struct drm_device
*dev
)
2174 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2175 struct intel_engine_cs
*ring
= &dev_priv
->ring
[VCS2
];
2177 ring
->name
= "bsd2 ring";
2179 ring
->exec_id
= I915_EXEC_BSD
;
2180 ring
->guc_id
= GUC_VIDEO_ENGINE2
;
2181 ring
->mmio_base
= GEN8_BSD2_RING_BASE
;
2183 logical_ring_default_irqs(ring
, GEN8_VCS2_IRQ_SHIFT
);
2184 logical_ring_default_vfuncs(dev
, ring
);
2186 return logical_ring_init(dev
, ring
);
2189 static int logical_blt_ring_init(struct drm_device
*dev
)
2191 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2192 struct intel_engine_cs
*ring
= &dev_priv
->ring
[BCS
];
2194 ring
->name
= "blitter ring";
2196 ring
->exec_id
= I915_EXEC_BLT
;
2197 ring
->guc_id
= GUC_BLITTER_ENGINE
;
2198 ring
->mmio_base
= BLT_RING_BASE
;
2200 logical_ring_default_irqs(ring
, GEN8_BCS_IRQ_SHIFT
);
2201 logical_ring_default_vfuncs(dev
, ring
);
2203 return logical_ring_init(dev
, ring
);
2206 static int logical_vebox_ring_init(struct drm_device
*dev
)
2208 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2209 struct intel_engine_cs
*ring
= &dev_priv
->ring
[VECS
];
2211 ring
->name
= "video enhancement ring";
2213 ring
->exec_id
= I915_EXEC_VEBOX
;
2214 ring
->guc_id
= GUC_VIDEOENHANCE_ENGINE
;
2215 ring
->mmio_base
= VEBOX_RING_BASE
;
2217 logical_ring_default_irqs(ring
, GEN8_VECS_IRQ_SHIFT
);
2218 logical_ring_default_vfuncs(dev
, ring
);
2220 return logical_ring_init(dev
, ring
);
2224 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2227 * This function inits the engines for an Execlists submission style (the equivalent in the
2228 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2229 * those engines that are present in the hardware.
2231 * Return: non-zero if the initialization failed.
2233 int intel_logical_rings_init(struct drm_device
*dev
)
2235 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2238 ret
= logical_render_ring_init(dev
);
2243 ret
= logical_bsd_ring_init(dev
);
2245 goto cleanup_render_ring
;
2249 ret
= logical_blt_ring_init(dev
);
2251 goto cleanup_bsd_ring
;
2254 if (HAS_VEBOX(dev
)) {
2255 ret
= logical_vebox_ring_init(dev
);
2257 goto cleanup_blt_ring
;
2260 if (HAS_BSD2(dev
)) {
2261 ret
= logical_bsd2_ring_init(dev
);
2263 goto cleanup_vebox_ring
;
2269 intel_logical_ring_cleanup(&dev_priv
->ring
[VECS
]);
2271 intel_logical_ring_cleanup(&dev_priv
->ring
[BCS
]);
2273 intel_logical_ring_cleanup(&dev_priv
->ring
[VCS
]);
2274 cleanup_render_ring
:
2275 intel_logical_ring_cleanup(&dev_priv
->ring
[RCS
]);
2281 make_rpcs(struct drm_device
*dev
)
2286 * No explicit RPCS request is needed to ensure full
2287 * slice/subslice/EU enablement prior to Gen9.
2289 if (INTEL_INFO(dev
)->gen
< 9)
2293 * Starting in Gen9, render power gating can leave
2294 * slice/subslice/EU in a partially enabled state. We
2295 * must make an explicit request through RPCS for full
2298 if (INTEL_INFO(dev
)->has_slice_pg
) {
2299 rpcs
|= GEN8_RPCS_S_CNT_ENABLE
;
2300 rpcs
|= INTEL_INFO(dev
)->slice_total
<<
2301 GEN8_RPCS_S_CNT_SHIFT
;
2302 rpcs
|= GEN8_RPCS_ENABLE
;
2305 if (INTEL_INFO(dev
)->has_subslice_pg
) {
2306 rpcs
|= GEN8_RPCS_SS_CNT_ENABLE
;
2307 rpcs
|= INTEL_INFO(dev
)->subslice_per_slice
<<
2308 GEN8_RPCS_SS_CNT_SHIFT
;
2309 rpcs
|= GEN8_RPCS_ENABLE
;
2312 if (INTEL_INFO(dev
)->has_eu_pg
) {
2313 rpcs
|= INTEL_INFO(dev
)->eu_per_subslice
<<
2314 GEN8_RPCS_EU_MIN_SHIFT
;
2315 rpcs
|= INTEL_INFO(dev
)->eu_per_subslice
<<
2316 GEN8_RPCS_EU_MAX_SHIFT
;
2317 rpcs
|= GEN8_RPCS_ENABLE
;
2323 static u32
intel_lr_indirect_ctx_offset(struct intel_engine_cs
*ring
)
2325 u32 indirect_ctx_offset
;
2327 switch (INTEL_INFO(ring
->dev
)->gen
) {
2329 MISSING_CASE(INTEL_INFO(ring
->dev
)->gen
);
2332 indirect_ctx_offset
=
2333 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT
;
2336 indirect_ctx_offset
=
2337 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT
;
2341 return indirect_ctx_offset
;
2345 populate_lr_context(struct intel_context
*ctx
, struct drm_i915_gem_object
*ctx_obj
,
2346 struct intel_engine_cs
*ring
, struct intel_ringbuffer
*ringbuf
)
2348 struct drm_device
*dev
= ring
->dev
;
2349 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2350 struct i915_hw_ppgtt
*ppgtt
= ctx
->ppgtt
;
2352 uint32_t *reg_state
;
2356 ppgtt
= dev_priv
->mm
.aliasing_ppgtt
;
2358 ret
= i915_gem_object_set_to_cpu_domain(ctx_obj
, true);
2360 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2364 ret
= i915_gem_object_get_pages(ctx_obj
);
2366 DRM_DEBUG_DRIVER("Could not get object pages\n");
2370 i915_gem_object_pin_pages(ctx_obj
);
2372 /* The second page of the context object contains some fields which must
2373 * be set up prior to the first execution. */
2374 page
= i915_gem_object_get_dirty_page(ctx_obj
, LRC_STATE_PN
);
2375 reg_state
= kmap_atomic(page
);
2377 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2378 * commands followed by (reg, value) pairs. The values we are setting here are
2379 * only for the first context restore: on a subsequent save, the GPU will
2380 * recreate this batchbuffer with new values (including all the missing
2381 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2382 reg_state
[CTX_LRI_HEADER_0
] =
2383 MI_LOAD_REGISTER_IMM(ring
->id
== RCS
? 14 : 11) | MI_LRI_FORCE_POSTED
;
2384 ASSIGN_CTX_REG(reg_state
, CTX_CONTEXT_CONTROL
, RING_CONTEXT_CONTROL(ring
),
2385 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH
|
2386 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT
|
2387 (HAS_RESOURCE_STREAMER(dev
) ?
2388 CTX_CTRL_RS_CTX_ENABLE
: 0)));
2389 ASSIGN_CTX_REG(reg_state
, CTX_RING_HEAD
, RING_HEAD(ring
->mmio_base
), 0);
2390 ASSIGN_CTX_REG(reg_state
, CTX_RING_TAIL
, RING_TAIL(ring
->mmio_base
), 0);
2391 /* Ring buffer start address is not known until the buffer is pinned.
2392 * It is written to the context image in execlists_update_context()
2394 ASSIGN_CTX_REG(reg_state
, CTX_RING_BUFFER_START
, RING_START(ring
->mmio_base
), 0);
2395 ASSIGN_CTX_REG(reg_state
, CTX_RING_BUFFER_CONTROL
, RING_CTL(ring
->mmio_base
),
2396 ((ringbuf
->size
- PAGE_SIZE
) & RING_NR_PAGES
) | RING_VALID
);
2397 ASSIGN_CTX_REG(reg_state
, CTX_BB_HEAD_U
, RING_BBADDR_UDW(ring
->mmio_base
), 0);
2398 ASSIGN_CTX_REG(reg_state
, CTX_BB_HEAD_L
, RING_BBADDR(ring
->mmio_base
), 0);
2399 ASSIGN_CTX_REG(reg_state
, CTX_BB_STATE
, RING_BBSTATE(ring
->mmio_base
),
2401 ASSIGN_CTX_REG(reg_state
, CTX_SECOND_BB_HEAD_U
, RING_SBBADDR_UDW(ring
->mmio_base
), 0);
2402 ASSIGN_CTX_REG(reg_state
, CTX_SECOND_BB_HEAD_L
, RING_SBBADDR(ring
->mmio_base
), 0);
2403 ASSIGN_CTX_REG(reg_state
, CTX_SECOND_BB_STATE
, RING_SBBSTATE(ring
->mmio_base
), 0);
2404 if (ring
->id
== RCS
) {
2405 ASSIGN_CTX_REG(reg_state
, CTX_BB_PER_CTX_PTR
, RING_BB_PER_CTX_PTR(ring
->mmio_base
), 0);
2406 ASSIGN_CTX_REG(reg_state
, CTX_RCS_INDIRECT_CTX
, RING_INDIRECT_CTX(ring
->mmio_base
), 0);
2407 ASSIGN_CTX_REG(reg_state
, CTX_RCS_INDIRECT_CTX_OFFSET
, RING_INDIRECT_CTX_OFFSET(ring
->mmio_base
), 0);
2408 if (ring
->wa_ctx
.obj
) {
2409 struct i915_ctx_workarounds
*wa_ctx
= &ring
->wa_ctx
;
2410 uint32_t ggtt_offset
= i915_gem_obj_ggtt_offset(wa_ctx
->obj
);
2412 reg_state
[CTX_RCS_INDIRECT_CTX
+1] =
2413 (ggtt_offset
+ wa_ctx
->indirect_ctx
.offset
* sizeof(uint32_t)) |
2414 (wa_ctx
->indirect_ctx
.size
/ CACHELINE_DWORDS
);
2416 reg_state
[CTX_RCS_INDIRECT_CTX_OFFSET
+1] =
2417 intel_lr_indirect_ctx_offset(ring
) << 6;
2419 reg_state
[CTX_BB_PER_CTX_PTR
+1] =
2420 (ggtt_offset
+ wa_ctx
->per_ctx
.offset
* sizeof(uint32_t)) |
2424 reg_state
[CTX_LRI_HEADER_1
] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED
;
2425 ASSIGN_CTX_REG(reg_state
, CTX_CTX_TIMESTAMP
, RING_CTX_TIMESTAMP(ring
->mmio_base
), 0);
2426 /* PDP values well be assigned later if needed */
2427 ASSIGN_CTX_REG(reg_state
, CTX_PDP3_UDW
, GEN8_RING_PDP_UDW(ring
, 3), 0);
2428 ASSIGN_CTX_REG(reg_state
, CTX_PDP3_LDW
, GEN8_RING_PDP_LDW(ring
, 3), 0);
2429 ASSIGN_CTX_REG(reg_state
, CTX_PDP2_UDW
, GEN8_RING_PDP_UDW(ring
, 2), 0);
2430 ASSIGN_CTX_REG(reg_state
, CTX_PDP2_LDW
, GEN8_RING_PDP_LDW(ring
, 2), 0);
2431 ASSIGN_CTX_REG(reg_state
, CTX_PDP1_UDW
, GEN8_RING_PDP_UDW(ring
, 1), 0);
2432 ASSIGN_CTX_REG(reg_state
, CTX_PDP1_LDW
, GEN8_RING_PDP_LDW(ring
, 1), 0);
2433 ASSIGN_CTX_REG(reg_state
, CTX_PDP0_UDW
, GEN8_RING_PDP_UDW(ring
, 0), 0);
2434 ASSIGN_CTX_REG(reg_state
, CTX_PDP0_LDW
, GEN8_RING_PDP_LDW(ring
, 0), 0);
2436 if (USES_FULL_48BIT_PPGTT(ppgtt
->base
.dev
)) {
2437 /* 64b PPGTT (48bit canonical)
2438 * PDP0_DESCRIPTOR contains the base address to PML4 and
2439 * other PDP Descriptors are ignored.
2441 ASSIGN_CTX_PML4(ppgtt
, reg_state
);
2444 * PDP*_DESCRIPTOR contains the base address of space supported.
2445 * With dynamic page allocation, PDPs may not be allocated at
2446 * this point. Point the unallocated PDPs to the scratch page
2448 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 3);
2449 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 2);
2450 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 1);
2451 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 0);
2454 if (ring
->id
== RCS
) {
2455 reg_state
[CTX_LRI_HEADER_2
] = MI_LOAD_REGISTER_IMM(1);
2456 ASSIGN_CTX_REG(reg_state
, CTX_R_PWR_CLK_STATE
, GEN8_R_PWR_CLK_STATE
,
2460 kunmap_atomic(reg_state
);
2461 i915_gem_object_unpin_pages(ctx_obj
);
2467 * intel_lr_context_free() - free the LRC specific bits of a context
2468 * @ctx: the LR context to free.
2470 * The real context freeing is done in i915_gem_context_free: this only
2471 * takes care of the bits that are LRC related: the per-engine backing
2472 * objects and the logical ringbuffer.
2474 void intel_lr_context_free(struct intel_context
*ctx
)
2478 for (i
= I915_NUM_RINGS
; --i
>= 0; ) {
2479 struct intel_ringbuffer
*ringbuf
= ctx
->engine
[i
].ringbuf
;
2480 struct drm_i915_gem_object
*ctx_obj
= ctx
->engine
[i
].state
;
2485 if (ctx
== ctx
->i915
->kernel_context
) {
2486 intel_unpin_ringbuffer_obj(ringbuf
);
2487 i915_gem_object_ggtt_unpin(ctx_obj
);
2490 WARN_ON(ctx
->engine
[i
].pin_count
);
2491 intel_ringbuffer_free(ringbuf
);
2492 drm_gem_object_unreference(&ctx_obj
->base
);
2497 * intel_lr_context_size() - return the size of the context for an engine
2498 * @ring: which engine to find the context size for
2500 * Each engine may require a different amount of space for a context image,
2501 * so when allocating (or copying) an image, this function can be used to
2502 * find the right size for the specific engine.
2504 * Return: size (in bytes) of an engine-specific context image
2506 * Note: this size includes the HWSP, which is part of the context image
2507 * in LRC mode, but does not include the "shared data page" used with
2508 * GuC submission. The caller should account for this if using the GuC.
2510 uint32_t intel_lr_context_size(struct intel_engine_cs
*ring
)
2514 WARN_ON(INTEL_INFO(ring
->dev
)->gen
< 8);
2518 if (INTEL_INFO(ring
->dev
)->gen
>= 9)
2519 ret
= GEN9_LR_CONTEXT_RENDER_SIZE
;
2521 ret
= GEN8_LR_CONTEXT_RENDER_SIZE
;
2527 ret
= GEN8_LR_CONTEXT_OTHER_SIZE
;
2534 static void lrc_setup_hardware_status_page(struct intel_engine_cs
*ring
,
2535 struct drm_i915_gem_object
*default_ctx_obj
)
2537 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
2540 /* The HWSP is part of the default context object in LRC mode. */
2541 ring
->status_page
.gfx_addr
= i915_gem_obj_ggtt_offset(default_ctx_obj
)
2542 + LRC_PPHWSP_PN
* PAGE_SIZE
;
2543 page
= i915_gem_object_get_page(default_ctx_obj
, LRC_PPHWSP_PN
);
2544 ring
->status_page
.page_addr
= kmap(page
);
2545 ring
->status_page
.obj
= default_ctx_obj
;
2547 I915_WRITE(RING_HWS_PGA(ring
->mmio_base
),
2548 (u32
)ring
->status_page
.gfx_addr
);
2549 POSTING_READ(RING_HWS_PGA(ring
->mmio_base
));
2553 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2554 * @ctx: LR context to create.
2555 * @ring: engine to be used with the context.
2557 * This function can be called more than once, with different engines, if we plan
2558 * to use the context with them. The context backing objects and the ringbuffers
2559 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2560 * the creation is a deferred call: it's better to make sure first that we need to use
2561 * a given ring with the context.
2563 * Return: non-zero on error.
2566 int intel_lr_context_deferred_alloc(struct intel_context
*ctx
,
2567 struct intel_engine_cs
*ring
)
2569 struct drm_device
*dev
= ring
->dev
;
2570 struct drm_i915_gem_object
*ctx_obj
;
2571 uint32_t context_size
;
2572 struct intel_ringbuffer
*ringbuf
;
2575 WARN_ON(ctx
->legacy_hw_ctx
.rcs_state
!= NULL
);
2576 WARN_ON(ctx
->engine
[ring
->id
].state
);
2578 context_size
= round_up(intel_lr_context_size(ring
), 4096);
2580 /* One extra page as the sharing data between driver and GuC */
2581 context_size
+= PAGE_SIZE
* LRC_PPHWSP_PN
;
2583 ctx_obj
= i915_gem_alloc_object(dev
, context_size
);
2585 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2589 ringbuf
= intel_engine_create_ringbuffer(ring
, 4 * PAGE_SIZE
);
2590 if (IS_ERR(ringbuf
)) {
2591 ret
= PTR_ERR(ringbuf
);
2592 goto error_deref_obj
;
2595 ret
= populate_lr_context(ctx
, ctx_obj
, ring
, ringbuf
);
2597 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret
);
2601 ctx
->engine
[ring
->id
].ringbuf
= ringbuf
;
2602 ctx
->engine
[ring
->id
].state
= ctx_obj
;
2604 if (ctx
!= ctx
->i915
->kernel_context
&& ring
->init_context
) {
2605 struct drm_i915_gem_request
*req
;
2607 req
= i915_gem_request_alloc(ring
, ctx
);
2610 DRM_ERROR("ring create req: %d\n", ret
);
2614 ret
= ring
->init_context(req
);
2616 DRM_ERROR("ring init context: %d\n",
2618 i915_gem_request_cancel(req
);
2621 i915_add_request_no_flush(req
);
2626 intel_ringbuffer_free(ringbuf
);
2628 drm_gem_object_unreference(&ctx_obj
->base
);
2629 ctx
->engine
[ring
->id
].ringbuf
= NULL
;
2630 ctx
->engine
[ring
->id
].state
= NULL
;
2634 void intel_lr_context_reset(struct drm_device
*dev
,
2635 struct intel_context
*ctx
)
2637 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2638 struct intel_engine_cs
*ring
;
2641 for_each_ring(ring
, dev_priv
, i
) {
2642 struct drm_i915_gem_object
*ctx_obj
=
2643 ctx
->engine
[ring
->id
].state
;
2644 struct intel_ringbuffer
*ringbuf
=
2645 ctx
->engine
[ring
->id
].ringbuf
;
2646 uint32_t *reg_state
;
2652 if (i915_gem_object_get_pages(ctx_obj
)) {
2653 WARN(1, "Failed get_pages for context obj\n");
2656 page
= i915_gem_object_get_dirty_page(ctx_obj
, LRC_STATE_PN
);
2657 reg_state
= kmap_atomic(page
);
2659 reg_state
[CTX_RING_HEAD
+1] = 0;
2660 reg_state
[CTX_RING_TAIL
+1] = 0;
2662 kunmap_atomic(reg_state
);