2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
37 int __intel_ring_space(int head
, int tail
, int size
)
39 int space
= head
- tail
;
42 return space
- I915_RING_FREE_SPACE
;
45 void intel_ring_update_space(struct intel_ringbuffer
*ringbuf
)
47 if (ringbuf
->last_retired_head
!= -1) {
48 ringbuf
->head
= ringbuf
->last_retired_head
;
49 ringbuf
->last_retired_head
= -1;
52 ringbuf
->space
= __intel_ring_space(ringbuf
->head
& HEAD_ADDR
,
53 ringbuf
->tail
, ringbuf
->size
);
56 int intel_ring_space(struct intel_ringbuffer
*ringbuf
)
58 intel_ring_update_space(ringbuf
);
59 return ringbuf
->space
;
62 bool intel_ring_stopped(struct intel_engine_cs
*ring
)
64 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
65 return dev_priv
->gpu_error
.stop_rings
& intel_ring_flag(ring
);
68 static void __intel_ring_advance(struct intel_engine_cs
*ring
)
70 struct intel_ringbuffer
*ringbuf
= ring
->buffer
;
71 ringbuf
->tail
&= ringbuf
->size
- 1;
72 if (intel_ring_stopped(ring
))
74 ring
->write_tail(ring
, ringbuf
->tail
);
78 gen2_render_ring_flush(struct drm_i915_gem_request
*req
,
79 u32 invalidate_domains
,
82 struct intel_engine_cs
*ring
= req
->ring
;
87 if (((invalidate_domains
|flush_domains
) & I915_GEM_DOMAIN_RENDER
) == 0)
88 cmd
|= MI_NO_WRITE_FLUSH
;
90 if (invalidate_domains
& I915_GEM_DOMAIN_SAMPLER
)
93 ret
= intel_ring_begin(req
, 2);
97 intel_ring_emit(ring
, cmd
);
98 intel_ring_emit(ring
, MI_NOOP
);
99 intel_ring_advance(ring
);
105 gen4_render_ring_flush(struct drm_i915_gem_request
*req
,
106 u32 invalidate_domains
,
109 struct intel_engine_cs
*ring
= req
->ring
;
110 struct drm_device
*dev
= ring
->dev
;
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
126 * I915_GEM_DOMAIN_COMMAND may not exist?
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
142 cmd
= MI_FLUSH
| MI_NO_WRITE_FLUSH
;
143 if ((invalidate_domains
|flush_domains
) & I915_GEM_DOMAIN_RENDER
)
144 cmd
&= ~MI_NO_WRITE_FLUSH
;
145 if (invalidate_domains
& I915_GEM_DOMAIN_INSTRUCTION
)
148 if (invalidate_domains
& I915_GEM_DOMAIN_COMMAND
&&
149 (IS_G4X(dev
) || IS_GEN5(dev
)))
150 cmd
|= MI_INVALIDATE_ISP
;
152 ret
= intel_ring_begin(req
, 2);
156 intel_ring_emit(ring
, cmd
);
157 intel_ring_emit(ring
, MI_NOOP
);
158 intel_ring_advance(ring
);
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
176 * And the workaround for these two requires this workaround first:
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request
*req
)
203 struct intel_engine_cs
*ring
= req
->ring
;
204 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
207 ret
= intel_ring_begin(req
, 6);
211 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(ring
, PIPE_CONTROL_CS_STALL
|
213 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
214 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
); /* address */
215 intel_ring_emit(ring
, 0); /* low dword */
216 intel_ring_emit(ring
, 0); /* high dword */
217 intel_ring_emit(ring
, MI_NOOP
);
218 intel_ring_advance(ring
);
220 ret
= intel_ring_begin(req
, 6);
224 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(ring
, PIPE_CONTROL_QW_WRITE
);
226 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
); /* address */
227 intel_ring_emit(ring
, 0);
228 intel_ring_emit(ring
, 0);
229 intel_ring_emit(ring
, MI_NOOP
);
230 intel_ring_advance(ring
);
236 gen6_render_ring_flush(struct drm_i915_gem_request
*req
,
237 u32 invalidate_domains
, u32 flush_domains
)
239 struct intel_engine_cs
*ring
= req
->ring
;
241 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret
= intel_emit_post_sync_nonzero_flush(req
);
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
254 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
255 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
260 flags
|= PIPE_CONTROL_CS_STALL
;
262 if (invalidate_domains
) {
263 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
264 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
265 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
266 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
267 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
268 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
270 * TLB invalidate requires a post-sync write.
272 flags
|= PIPE_CONTROL_QW_WRITE
| PIPE_CONTROL_CS_STALL
;
275 ret
= intel_ring_begin(req
, 4);
279 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(ring
, flags
);
281 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
);
282 intel_ring_emit(ring
, 0);
283 intel_ring_advance(ring
);
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request
*req
)
291 struct intel_engine_cs
*ring
= req
->ring
;
294 ret
= intel_ring_begin(req
, 4);
298 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(ring
, PIPE_CONTROL_CS_STALL
|
300 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
301 intel_ring_emit(ring
, 0);
302 intel_ring_emit(ring
, 0);
303 intel_ring_advance(ring
);
309 gen7_render_ring_flush(struct drm_i915_gem_request
*req
,
310 u32 invalidate_domains
, u32 flush_domains
)
312 struct intel_engine_cs
*ring
= req
->ring
;
314 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
325 flags
|= PIPE_CONTROL_CS_STALL
;
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
332 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
333 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
334 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
335 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
337 if (invalidate_domains
) {
338 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
339 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
340 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
341 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
342 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
343 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
344 flags
|= PIPE_CONTROL_MEDIA_STATE_CLEAR
;
346 * TLB invalidate requires a post-sync write.
348 flags
|= PIPE_CONTROL_QW_WRITE
;
349 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
351 flags
|= PIPE_CONTROL_STALL_AT_SCOREBOARD
;
353 /* Workaround: we must issue a pipe_control with CS-stall bit
354 * set before a pipe_control command that has the state cache
355 * invalidate bit set. */
356 gen7_render_ring_cs_stall_wa(req
);
359 ret
= intel_ring_begin(req
, 4);
363 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
364 intel_ring_emit(ring
, flags
);
365 intel_ring_emit(ring
, scratch_addr
);
366 intel_ring_emit(ring
, 0);
367 intel_ring_advance(ring
);
373 gen8_emit_pipe_control(struct drm_i915_gem_request
*req
,
374 u32 flags
, u32 scratch_addr
)
376 struct intel_engine_cs
*ring
= req
->ring
;
379 ret
= intel_ring_begin(req
, 6);
383 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
384 intel_ring_emit(ring
, flags
);
385 intel_ring_emit(ring
, scratch_addr
);
386 intel_ring_emit(ring
, 0);
387 intel_ring_emit(ring
, 0);
388 intel_ring_emit(ring
, 0);
389 intel_ring_advance(ring
);
395 gen8_render_ring_flush(struct drm_i915_gem_request
*req
,
396 u32 invalidate_domains
, u32 flush_domains
)
399 u32 scratch_addr
= req
->ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
402 flags
|= PIPE_CONTROL_CS_STALL
;
405 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
406 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
407 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
408 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
410 if (invalidate_domains
) {
411 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
412 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
413 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
414 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
415 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
416 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
417 flags
|= PIPE_CONTROL_QW_WRITE
;
418 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
420 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 ret
= gen8_emit_pipe_control(req
,
422 PIPE_CONTROL_CS_STALL
|
423 PIPE_CONTROL_STALL_AT_SCOREBOARD
,
429 return gen8_emit_pipe_control(req
, flags
, scratch_addr
);
432 static void ring_write_tail(struct intel_engine_cs
*ring
,
435 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
436 I915_WRITE_TAIL(ring
, value
);
439 u64
intel_ring_get_active_head(struct intel_engine_cs
*ring
)
441 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
444 if (INTEL_INFO(ring
->dev
)->gen
>= 8)
445 acthd
= I915_READ64_2x32(RING_ACTHD(ring
->mmio_base
),
446 RING_ACTHD_UDW(ring
->mmio_base
));
447 else if (INTEL_INFO(ring
->dev
)->gen
>= 4)
448 acthd
= I915_READ(RING_ACTHD(ring
->mmio_base
));
450 acthd
= I915_READ(ACTHD
);
455 static void ring_setup_phys_status_page(struct intel_engine_cs
*ring
)
457 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
460 addr
= dev_priv
->status_page_dmah
->busaddr
;
461 if (INTEL_INFO(ring
->dev
)->gen
>= 4)
462 addr
|= (dev_priv
->status_page_dmah
->busaddr
>> 28) & 0xf0;
463 I915_WRITE(HWS_PGA
, addr
);
466 static void intel_ring_setup_status_page(struct intel_engine_cs
*ring
)
468 struct drm_device
*dev
= ring
->dev
;
469 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
472 /* The ring status page addresses are no longer next to the rest of
473 * the ring registers as of gen7.
478 mmio
= RENDER_HWS_PGA_GEN7
;
481 mmio
= BLT_HWS_PGA_GEN7
;
484 * VCS2 actually doesn't exist on Gen7. Only shut up
485 * gcc switch check warning
489 mmio
= BSD_HWS_PGA_GEN7
;
492 mmio
= VEBOX_HWS_PGA_GEN7
;
495 } else if (IS_GEN6(ring
->dev
)) {
496 mmio
= RING_HWS_PGA_GEN6(ring
->mmio_base
);
498 /* XXX: gen8 returns to sanity */
499 mmio
= RING_HWS_PGA(ring
->mmio_base
);
502 I915_WRITE(mmio
, (u32
)ring
->status_page
.gfx_addr
);
506 * Flush the TLB for this page
508 * FIXME: These two bits have disappeared on gen8, so a question
509 * arises: do we still need this and if so how should we go about
510 * invalidating the TLB?
512 if (INTEL_INFO(dev
)->gen
>= 6 && INTEL_INFO(dev
)->gen
< 8) {
513 i915_reg_t reg
= RING_INSTPM(ring
->mmio_base
);
515 /* ring should be idle before issuing a sync flush*/
516 WARN_ON((I915_READ_MODE(ring
) & MODE_IDLE
) == 0);
519 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE
|
521 if (wait_for((I915_READ(reg
) & INSTPM_SYNC_FLUSH
) == 0,
523 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
528 static bool stop_ring(struct intel_engine_cs
*ring
)
530 struct drm_i915_private
*dev_priv
= to_i915(ring
->dev
);
532 if (!IS_GEN2(ring
->dev
)) {
533 I915_WRITE_MODE(ring
, _MASKED_BIT_ENABLE(STOP_RING
));
534 if (wait_for((I915_READ_MODE(ring
) & MODE_IDLE
) != 0, 1000)) {
535 DRM_ERROR("%s : timed out trying to stop ring\n", ring
->name
);
536 /* Sometimes we observe that the idle flag is not
537 * set even though the ring is empty. So double
538 * check before giving up.
540 if (I915_READ_HEAD(ring
) != I915_READ_TAIL(ring
))
545 I915_WRITE_CTL(ring
, 0);
546 I915_WRITE_HEAD(ring
, 0);
547 ring
->write_tail(ring
, 0);
549 if (!IS_GEN2(ring
->dev
)) {
550 (void)I915_READ_CTL(ring
);
551 I915_WRITE_MODE(ring
, _MASKED_BIT_DISABLE(STOP_RING
));
554 return (I915_READ_HEAD(ring
) & HEAD_ADDR
) == 0;
557 static int init_ring_common(struct intel_engine_cs
*ring
)
559 struct drm_device
*dev
= ring
->dev
;
560 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
561 struct intel_ringbuffer
*ringbuf
= ring
->buffer
;
562 struct drm_i915_gem_object
*obj
= ringbuf
->obj
;
565 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
567 if (!stop_ring(ring
)) {
568 /* G45 ring initialization often fails to reset head to zero */
569 DRM_DEBUG_KMS("%s head not reset to zero "
570 "ctl %08x head %08x tail %08x start %08x\n",
573 I915_READ_HEAD(ring
),
574 I915_READ_TAIL(ring
),
575 I915_READ_START(ring
));
577 if (!stop_ring(ring
)) {
578 DRM_ERROR("failed to set %s head to zero "
579 "ctl %08x head %08x tail %08x start %08x\n",
582 I915_READ_HEAD(ring
),
583 I915_READ_TAIL(ring
),
584 I915_READ_START(ring
));
590 if (I915_NEED_GFX_HWS(dev
))
591 intel_ring_setup_status_page(ring
);
593 ring_setup_phys_status_page(ring
);
595 /* Enforce ordering by reading HEAD register back */
596 I915_READ_HEAD(ring
);
598 /* Initialize the ring. This must happen _after_ we've cleared the ring
599 * registers with the above sequence (the readback of the HEAD registers
600 * also enforces ordering), otherwise the hw might lose the new ring
601 * register values. */
602 I915_WRITE_START(ring
, i915_gem_obj_ggtt_offset(obj
));
604 /* WaClearRingBufHeadRegAtInit:ctg,elk */
605 if (I915_READ_HEAD(ring
))
606 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 ring
->name
, I915_READ_HEAD(ring
));
608 I915_WRITE_HEAD(ring
, 0);
609 (void)I915_READ_HEAD(ring
);
612 ((ringbuf
->size
- PAGE_SIZE
) & RING_NR_PAGES
)
615 /* If the head is still not zero, the ring is dead */
616 if (wait_for((I915_READ_CTL(ring
) & RING_VALID
) != 0 &&
617 I915_READ_START(ring
) == i915_gem_obj_ggtt_offset(obj
) &&
618 (I915_READ_HEAD(ring
) & HEAD_ADDR
) == 0, 50)) {
619 DRM_ERROR("%s initialization failed "
620 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
622 I915_READ_CTL(ring
), I915_READ_CTL(ring
) & RING_VALID
,
623 I915_READ_HEAD(ring
), I915_READ_TAIL(ring
),
624 I915_READ_START(ring
), (unsigned long)i915_gem_obj_ggtt_offset(obj
));
629 ringbuf
->last_retired_head
= -1;
630 ringbuf
->head
= I915_READ_HEAD(ring
);
631 ringbuf
->tail
= I915_READ_TAIL(ring
) & TAIL_ADDR
;
632 intel_ring_update_space(ringbuf
);
634 memset(&ring
->hangcheck
, 0, sizeof(ring
->hangcheck
));
637 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
643 intel_fini_pipe_control(struct intel_engine_cs
*ring
)
645 struct drm_device
*dev
= ring
->dev
;
647 if (ring
->scratch
.obj
== NULL
)
650 if (INTEL_INFO(dev
)->gen
>= 5) {
651 kunmap(sg_page(ring
->scratch
.obj
->pages
->sgl
));
652 i915_gem_object_ggtt_unpin(ring
->scratch
.obj
);
655 drm_gem_object_unreference(&ring
->scratch
.obj
->base
);
656 ring
->scratch
.obj
= NULL
;
660 intel_init_pipe_control(struct intel_engine_cs
*ring
)
664 WARN_ON(ring
->scratch
.obj
);
666 ring
->scratch
.obj
= i915_gem_alloc_object(ring
->dev
, 4096);
667 if (ring
->scratch
.obj
== NULL
) {
668 DRM_ERROR("Failed to allocate seqno page\n");
673 ret
= i915_gem_object_set_cache_level(ring
->scratch
.obj
, I915_CACHE_LLC
);
677 ret
= i915_gem_obj_ggtt_pin(ring
->scratch
.obj
, 4096, 0);
681 ring
->scratch
.gtt_offset
= i915_gem_obj_ggtt_offset(ring
->scratch
.obj
);
682 ring
->scratch
.cpu_page
= kmap(sg_page(ring
->scratch
.obj
->pages
->sgl
));
683 if (ring
->scratch
.cpu_page
== NULL
) {
688 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689 ring
->name
, ring
->scratch
.gtt_offset
);
693 i915_gem_object_ggtt_unpin(ring
->scratch
.obj
);
695 drm_gem_object_unreference(&ring
->scratch
.obj
->base
);
700 static int intel_ring_workarounds_emit(struct drm_i915_gem_request
*req
)
703 struct intel_engine_cs
*ring
= req
->ring
;
704 struct drm_device
*dev
= ring
->dev
;
705 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
706 struct i915_workarounds
*w
= &dev_priv
->workarounds
;
711 ring
->gpu_caches_dirty
= true;
712 ret
= intel_ring_flush_all_caches(req
);
716 ret
= intel_ring_begin(req
, (w
->count
* 2 + 2));
720 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(w
->count
));
721 for (i
= 0; i
< w
->count
; i
++) {
722 intel_ring_emit_reg(ring
, w
->reg
[i
].addr
);
723 intel_ring_emit(ring
, w
->reg
[i
].value
);
725 intel_ring_emit(ring
, MI_NOOP
);
727 intel_ring_advance(ring
);
729 ring
->gpu_caches_dirty
= true;
730 ret
= intel_ring_flush_all_caches(req
);
734 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w
->count
);
739 static int intel_rcs_ctx_init(struct drm_i915_gem_request
*req
)
743 ret
= intel_ring_workarounds_emit(req
);
747 ret
= i915_gem_render_state_init(req
);
754 static int wa_add(struct drm_i915_private
*dev_priv
,
756 const u32 mask
, const u32 val
)
758 const u32 idx
= dev_priv
->workarounds
.count
;
760 if (WARN_ON(idx
>= I915_MAX_WA_REGS
))
763 dev_priv
->workarounds
.reg
[idx
].addr
= addr
;
764 dev_priv
->workarounds
.reg
[idx
].value
= val
;
765 dev_priv
->workarounds
.reg
[idx
].mask
= mask
;
767 dev_priv
->workarounds
.count
++;
772 #define WA_REG(addr, mask, val) do { \
773 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
778 #define WA_SET_BIT_MASKED(addr, mask) \
779 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
781 #define WA_CLR_BIT_MASKED(addr, mask) \
782 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
784 #define WA_SET_FIELD_MASKED(addr, mask, value) \
785 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
787 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
790 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
792 static int wa_ring_whitelist_reg(struct intel_engine_cs
*ring
, i915_reg_t reg
)
794 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
795 struct i915_workarounds
*wa
= &dev_priv
->workarounds
;
796 const uint32_t index
= wa
->hw_whitelist_count
[ring
->id
];
798 if (WARN_ON(index
>= RING_MAX_NONPRIV_SLOTS
))
801 WA_WRITE(RING_FORCE_TO_NONPRIV(ring
->mmio_base
, index
),
802 i915_mmio_reg_offset(reg
));
803 wa
->hw_whitelist_count
[ring
->id
]++;
808 static int gen8_init_workarounds(struct intel_engine_cs
*ring
)
810 struct drm_device
*dev
= ring
->dev
;
811 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
813 WA_SET_BIT_MASKED(INSTPM
, INSTPM_FORCE_ORDERING
);
815 /* WaDisableAsyncFlipPerfMode:bdw,chv */
816 WA_SET_BIT_MASKED(MI_MODE
, ASYNC_FLIP_PERF_DISABLE
);
818 /* WaDisablePartialInstShootdown:bdw,chv */
819 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
820 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
);
822 /* Use Force Non-Coherent whenever executing a 3D context. This is a
823 * workaround for for a possible hang in the unlikely event a TLB
824 * invalidation occurs during a PSD flush.
826 /* WaForceEnableNonCoherent:bdw,chv */
827 /* WaHdcDisableFetchWhenMasked:bdw,chv */
828 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
829 HDC_DONOT_FETCH_MEM_WHEN_MASKED
|
830 HDC_FORCE_NON_COHERENT
);
832 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
833 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
834 * polygons in the same 8x4 pixel/sample area to be processed without
835 * stalling waiting for the earlier ones to write to Hierarchical Z
838 * This optimization is off by default for BDW and CHV; turn it on.
840 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7
, HIZ_RAW_STALL_OPT_DISABLE
);
842 /* Wa4x4STCOptimizationDisable:bdw,chv */
843 WA_SET_BIT_MASKED(CACHE_MODE_1
, GEN8_4x4_STC_OPTIMIZATION_DISABLE
);
846 * BSpec recommends 8x4 when MSAA is used,
847 * however in practice 16x4 seems fastest.
849 * Note that PS/WM thread counts depend on the WIZ hashing
850 * disable bit, which we don't touch here, but it's good
851 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
853 WA_SET_FIELD_MASKED(GEN7_GT_MODE
,
854 GEN6_WIZ_HASHING_MASK
,
855 GEN6_WIZ_HASHING_16x4
);
860 static int bdw_init_workarounds(struct intel_engine_cs
*ring
)
863 struct drm_device
*dev
= ring
->dev
;
864 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
866 ret
= gen8_init_workarounds(ring
);
870 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
871 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
, STALL_DOP_GATING_DISABLE
);
873 /* WaDisableDopClockGating:bdw */
874 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2
,
875 DOP_CLOCK_GATING_DISABLE
);
877 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
878 GEN8_SAMPLER_POWER_BYPASS_DIS
);
880 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
881 /* WaForceContextSaveRestoreNonCoherent:bdw */
882 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT
|
883 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
884 (IS_BDW_GT3(dev
) ? HDC_FENCE_DEST_SLM_DISABLE
: 0));
889 static int chv_init_workarounds(struct intel_engine_cs
*ring
)
892 struct drm_device
*dev
= ring
->dev
;
893 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
895 ret
= gen8_init_workarounds(ring
);
899 /* WaDisableThreadStallDopClockGating:chv */
900 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
, STALL_DOP_GATING_DISABLE
);
902 /* Improve HiZ throughput on CHV. */
903 WA_SET_BIT_MASKED(HIZ_CHICKEN
, CHV_HZ_8X8_MODE_IN_1X
);
908 static int gen9_init_workarounds(struct intel_engine_cs
*ring
)
910 struct drm_device
*dev
= ring
->dev
;
911 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
915 /* WaEnableLbsSlaRetryTimerDecrement:skl */
916 I915_WRITE(BDW_SCRATCH1
, I915_READ(BDW_SCRATCH1
) |
917 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE
);
919 /* WaDisableKillLogic:bxt,skl */
920 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) |
923 /* WaDisablePartialInstShootdown:skl,bxt */
924 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
925 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
);
927 /* Syncing dependencies between camera and graphics:skl,bxt */
928 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
929 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC
);
931 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
932 if (IS_SKL_REVID(dev
, 0, SKL_REVID_B0
) ||
933 IS_BXT_REVID(dev
, 0, BXT_REVID_A1
))
934 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5
,
935 GEN9_DG_MIRROR_FIX_ENABLE
);
937 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
938 if (IS_SKL_REVID(dev
, 0, SKL_REVID_B0
) ||
939 IS_BXT_REVID(dev
, 0, BXT_REVID_A1
)) {
940 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1
,
941 GEN9_RHWO_OPTIMIZATION_DISABLE
);
943 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944 * but we do that in per ctx batchbuffer as there is an issue
945 * with this register not getting restored on ctx restore
949 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
950 if (IS_SKL_REVID(dev
, SKL_REVID_C0
, REVID_FOREVER
) || IS_BROXTON(dev
))
951 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7
,
952 GEN9_ENABLE_YV12_BUGFIX
);
954 /* Wa4x4STCOptimizationDisable:skl,bxt */
955 /* WaDisablePartialResolveInVc:skl,bxt */
956 WA_SET_BIT_MASKED(CACHE_MODE_1
, (GEN8_4x4_STC_OPTIMIZATION_DISABLE
|
957 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE
));
959 /* WaCcsTlbPrefetchDisable:skl,bxt */
960 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5
,
961 GEN9_CCS_TLB_PREFETCH_ENABLE
);
963 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
964 if (IS_SKL_REVID(dev
, SKL_REVID_C0
, SKL_REVID_C0
) ||
965 IS_BXT_REVID(dev
, 0, BXT_REVID_A1
))
966 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0
,
967 PIXEL_MASK_CAMMING_DISABLE
);
969 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
970 tmp
= HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT
;
971 if (IS_SKL_REVID(dev
, SKL_REVID_F0
, REVID_FOREVER
) ||
972 IS_BXT_REVID(dev
, BXT_REVID_B0
, REVID_FOREVER
))
973 tmp
|= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE
;
974 WA_SET_BIT_MASKED(HDC_CHICKEN0
, tmp
);
976 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
977 if (IS_SKYLAKE(dev
) || IS_BXT_REVID(dev
, 0, BXT_REVID_B0
))
978 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
979 GEN8_SAMPLER_POWER_BYPASS_DIS
);
981 /* WaDisableSTUnitPowerOptimization:skl,bxt */
982 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2
, GEN8_ST_PO_DISABLE
);
984 /* WaOCLCoherentLineFlush:skl,bxt */
985 I915_WRITE(GEN8_L3SQCREG4
, (I915_READ(GEN8_L3SQCREG4
) |
986 GEN8_LQSC_FLUSH_COHERENT_LINES
));
988 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
989 ret
= wa_ring_whitelist_reg(ring
, GEN8_CS_CHICKEN1
);
993 /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
994 ret
= wa_ring_whitelist_reg(ring
, GEN8_HDC_CHICKEN1
);
1001 static int skl_tune_iz_hashing(struct intel_engine_cs
*ring
)
1003 struct drm_device
*dev
= ring
->dev
;
1004 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1005 u8 vals
[3] = { 0, 0, 0 };
1008 for (i
= 0; i
< 3; i
++) {
1012 * Only consider slices where one, and only one, subslice has 7
1015 if (!is_power_of_2(dev_priv
->info
.subslice_7eu
[i
]))
1019 * subslice_7eu[i] != 0 (because of the check above) and
1020 * ss_max == 4 (maximum number of subslices possible per slice)
1024 ss
= ffs(dev_priv
->info
.subslice_7eu
[i
]) - 1;
1028 if (vals
[0] == 0 && vals
[1] == 0 && vals
[2] == 0)
1031 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1032 WA_SET_FIELD_MASKED(GEN7_GT_MODE
,
1033 GEN9_IZ_HASHING_MASK(2) |
1034 GEN9_IZ_HASHING_MASK(1) |
1035 GEN9_IZ_HASHING_MASK(0),
1036 GEN9_IZ_HASHING(2, vals
[2]) |
1037 GEN9_IZ_HASHING(1, vals
[1]) |
1038 GEN9_IZ_HASHING(0, vals
[0]));
1043 static int skl_init_workarounds(struct intel_engine_cs
*ring
)
1046 struct drm_device
*dev
= ring
->dev
;
1047 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1049 ret
= gen9_init_workarounds(ring
);
1054 * Actual WA is to disable percontext preemption granularity control
1055 * until D0 which is the default case so this is equivalent to
1056 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1058 if (IS_SKL_REVID(dev
, SKL_REVID_E0
, REVID_FOREVER
)) {
1059 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1
,
1060 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL
));
1063 if (IS_SKL_REVID(dev
, 0, SKL_REVID_D0
)) {
1064 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1065 I915_WRITE(FF_SLICE_CS_CHICKEN2
,
1066 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE
));
1069 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1070 * involving this register should also be added to WA batch as required.
1072 if (IS_SKL_REVID(dev
, 0, SKL_REVID_E0
))
1073 /* WaDisableLSQCROPERFforOCL:skl */
1074 I915_WRITE(GEN8_L3SQCREG4
, I915_READ(GEN8_L3SQCREG4
) |
1075 GEN8_LQSC_RO_PERF_DIS
);
1077 /* WaEnableGapsTsvCreditFix:skl */
1078 if (IS_SKL_REVID(dev
, SKL_REVID_C0
, REVID_FOREVER
)) {
1079 I915_WRITE(GEN8_GARBCNTL
, (I915_READ(GEN8_GARBCNTL
) |
1080 GEN9_GAPS_TSV_CREDIT_DISABLE
));
1083 /* WaDisablePowerCompilerClockGating:skl */
1084 if (IS_SKL_REVID(dev
, SKL_REVID_B0
, SKL_REVID_B0
))
1085 WA_SET_BIT_MASKED(HIZ_CHICKEN
,
1086 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE
);
1088 /* This is tied to WaForceContextSaveRestoreNonCoherent */
1089 if (IS_SKL_REVID(dev
, 0, REVID_FOREVER
)) {
1091 *Use Force Non-Coherent whenever executing a 3D context. This
1092 * is a workaround for a possible hang in the unlikely event
1093 * a TLB invalidation occurs during a PSD flush.
1095 /* WaForceEnableNonCoherent:skl */
1096 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
1097 HDC_FORCE_NON_COHERENT
);
1099 /* WaDisableHDCInvalidation:skl */
1100 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) |
1101 BDW_DISABLE_HDC_INVALIDATION
);
1104 /* WaBarrierPerformanceFixDisable:skl */
1105 if (IS_SKL_REVID(dev
, SKL_REVID_C0
, SKL_REVID_D0
))
1106 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
1107 HDC_FENCE_DEST_SLM_DISABLE
|
1108 HDC_BARRIER_PERFORMANCE_DISABLE
);
1110 /* WaDisableSbeCacheDispatchPortSharing:skl */
1111 if (IS_SKL_REVID(dev
, 0, SKL_REVID_F0
))
1113 GEN7_HALF_SLICE_CHICKEN1
,
1114 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE
);
1116 /* WaDisableLSQCROPERFforOCL:skl */
1117 ret
= wa_ring_whitelist_reg(ring
, GEN8_L3SQCREG4
);
1121 return skl_tune_iz_hashing(ring
);
1124 static int bxt_init_workarounds(struct intel_engine_cs
*ring
)
1127 struct drm_device
*dev
= ring
->dev
;
1128 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1130 ret
= gen9_init_workarounds(ring
);
1134 /* WaStoreMultiplePTEenable:bxt */
1135 /* This is a requirement according to Hardware specification */
1136 if (IS_BXT_REVID(dev
, 0, BXT_REVID_A1
))
1137 I915_WRITE(TILECTL
, I915_READ(TILECTL
) | TILECTL_TLBPF
);
1139 /* WaSetClckGatingDisableMedia:bxt */
1140 if (IS_BXT_REVID(dev
, 0, BXT_REVID_A1
)) {
1141 I915_WRITE(GEN7_MISCCPCTL
, (I915_READ(GEN7_MISCCPCTL
) &
1142 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE
));
1145 /* WaDisableThreadStallDopClockGating:bxt */
1146 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
1147 STALL_DOP_GATING_DISABLE
);
1149 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1150 if (IS_BXT_REVID(dev
, 0, BXT_REVID_B0
)) {
1152 GEN7_HALF_SLICE_CHICKEN1
,
1153 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE
);
1156 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1157 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1158 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1159 /* WaDisableLSQCROPERFforOCL:bxt */
1160 if (IS_BXT_REVID(dev
, 0, BXT_REVID_A1
)) {
1161 ret
= wa_ring_whitelist_reg(ring
, GEN9_CS_DEBUG_MODE1
);
1165 ret
= wa_ring_whitelist_reg(ring
, GEN8_L3SQCREG4
);
1173 int init_workarounds_ring(struct intel_engine_cs
*ring
)
1175 struct drm_device
*dev
= ring
->dev
;
1176 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1178 WARN_ON(ring
->id
!= RCS
);
1180 dev_priv
->workarounds
.count
= 0;
1181 dev_priv
->workarounds
.hw_whitelist_count
[RCS
] = 0;
1183 if (IS_BROADWELL(dev
))
1184 return bdw_init_workarounds(ring
);
1186 if (IS_CHERRYVIEW(dev
))
1187 return chv_init_workarounds(ring
);
1189 if (IS_SKYLAKE(dev
))
1190 return skl_init_workarounds(ring
);
1192 if (IS_BROXTON(dev
))
1193 return bxt_init_workarounds(ring
);
1198 static int init_render_ring(struct intel_engine_cs
*ring
)
1200 struct drm_device
*dev
= ring
->dev
;
1201 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1202 int ret
= init_ring_common(ring
);
1206 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1207 if (INTEL_INFO(dev
)->gen
>= 4 && INTEL_INFO(dev
)->gen
< 7)
1208 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH
));
1210 /* We need to disable the AsyncFlip performance optimisations in order
1211 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1212 * programmed to '1' on all products.
1214 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1216 if (INTEL_INFO(dev
)->gen
>= 6 && INTEL_INFO(dev
)->gen
< 8)
1217 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE
));
1219 /* Required for the hardware to program scanline values for waiting */
1220 /* WaEnableFlushTlbInvalidationMode:snb */
1221 if (INTEL_INFO(dev
)->gen
== 6)
1222 I915_WRITE(GFX_MODE
,
1223 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
));
1225 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1227 I915_WRITE(GFX_MODE_GEN7
,
1228 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
) |
1229 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE
));
1232 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1233 * "If this bit is set, STCunit will have LRA as replacement
1234 * policy. [...] This bit must be reset. LRA replacement
1235 * policy is not supported."
1237 I915_WRITE(CACHE_MODE_0
,
1238 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB
));
1241 if (INTEL_INFO(dev
)->gen
>= 6 && INTEL_INFO(dev
)->gen
< 8)
1242 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING
));
1244 if (HAS_L3_DPF(dev
))
1245 I915_WRITE_IMR(ring
, ~GT_PARITY_ERROR(dev
));
1247 return init_workarounds_ring(ring
);
1250 static void render_ring_cleanup(struct intel_engine_cs
*ring
)
1252 struct drm_device
*dev
= ring
->dev
;
1253 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1255 if (dev_priv
->semaphore_obj
) {
1256 i915_gem_object_ggtt_unpin(dev_priv
->semaphore_obj
);
1257 drm_gem_object_unreference(&dev_priv
->semaphore_obj
->base
);
1258 dev_priv
->semaphore_obj
= NULL
;
1261 intel_fini_pipe_control(ring
);
1264 static int gen8_rcs_signal(struct drm_i915_gem_request
*signaller_req
,
1265 unsigned int num_dwords
)
1267 #define MBOX_UPDATE_DWORDS 8
1268 struct intel_engine_cs
*signaller
= signaller_req
->ring
;
1269 struct drm_device
*dev
= signaller
->dev
;
1270 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1271 struct intel_engine_cs
*waiter
;
1272 int i
, ret
, num_rings
;
1274 num_rings
= hweight32(INTEL_INFO(dev
)->ring_mask
);
1275 num_dwords
+= (num_rings
-1) * MBOX_UPDATE_DWORDS
;
1276 #undef MBOX_UPDATE_DWORDS
1278 ret
= intel_ring_begin(signaller_req
, num_dwords
);
1282 for_each_ring(waiter
, dev_priv
, i
) {
1284 u64 gtt_offset
= signaller
->semaphore
.signal_ggtt
[i
];
1285 if (gtt_offset
== MI_SEMAPHORE_SYNC_INVALID
)
1288 seqno
= i915_gem_request_get_seqno(signaller_req
);
1289 intel_ring_emit(signaller
, GFX_OP_PIPE_CONTROL(6));
1290 intel_ring_emit(signaller
, PIPE_CONTROL_GLOBAL_GTT_IVB
|
1291 PIPE_CONTROL_QW_WRITE
|
1292 PIPE_CONTROL_FLUSH_ENABLE
);
1293 intel_ring_emit(signaller
, lower_32_bits(gtt_offset
));
1294 intel_ring_emit(signaller
, upper_32_bits(gtt_offset
));
1295 intel_ring_emit(signaller
, seqno
);
1296 intel_ring_emit(signaller
, 0);
1297 intel_ring_emit(signaller
, MI_SEMAPHORE_SIGNAL
|
1298 MI_SEMAPHORE_TARGET(waiter
->id
));
1299 intel_ring_emit(signaller
, 0);
1305 static int gen8_xcs_signal(struct drm_i915_gem_request
*signaller_req
,
1306 unsigned int num_dwords
)
1308 #define MBOX_UPDATE_DWORDS 6
1309 struct intel_engine_cs
*signaller
= signaller_req
->ring
;
1310 struct drm_device
*dev
= signaller
->dev
;
1311 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1312 struct intel_engine_cs
*waiter
;
1313 int i
, ret
, num_rings
;
1315 num_rings
= hweight32(INTEL_INFO(dev
)->ring_mask
);
1316 num_dwords
+= (num_rings
-1) * MBOX_UPDATE_DWORDS
;
1317 #undef MBOX_UPDATE_DWORDS
1319 ret
= intel_ring_begin(signaller_req
, num_dwords
);
1323 for_each_ring(waiter
, dev_priv
, i
) {
1325 u64 gtt_offset
= signaller
->semaphore
.signal_ggtt
[i
];
1326 if (gtt_offset
== MI_SEMAPHORE_SYNC_INVALID
)
1329 seqno
= i915_gem_request_get_seqno(signaller_req
);
1330 intel_ring_emit(signaller
, (MI_FLUSH_DW
+ 1) |
1331 MI_FLUSH_DW_OP_STOREDW
);
1332 intel_ring_emit(signaller
, lower_32_bits(gtt_offset
) |
1333 MI_FLUSH_DW_USE_GTT
);
1334 intel_ring_emit(signaller
, upper_32_bits(gtt_offset
));
1335 intel_ring_emit(signaller
, seqno
);
1336 intel_ring_emit(signaller
, MI_SEMAPHORE_SIGNAL
|
1337 MI_SEMAPHORE_TARGET(waiter
->id
));
1338 intel_ring_emit(signaller
, 0);
1344 static int gen6_signal(struct drm_i915_gem_request
*signaller_req
,
1345 unsigned int num_dwords
)
1347 struct intel_engine_cs
*signaller
= signaller_req
->ring
;
1348 struct drm_device
*dev
= signaller
->dev
;
1349 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1350 struct intel_engine_cs
*useless
;
1351 int i
, ret
, num_rings
;
1353 #define MBOX_UPDATE_DWORDS 3
1354 num_rings
= hweight32(INTEL_INFO(dev
)->ring_mask
);
1355 num_dwords
+= round_up((num_rings
-1) * MBOX_UPDATE_DWORDS
, 2);
1356 #undef MBOX_UPDATE_DWORDS
1358 ret
= intel_ring_begin(signaller_req
, num_dwords
);
1362 for_each_ring(useless
, dev_priv
, i
) {
1363 i915_reg_t mbox_reg
= signaller
->semaphore
.mbox
.signal
[i
];
1365 if (i915_mmio_reg_valid(mbox_reg
)) {
1366 u32 seqno
= i915_gem_request_get_seqno(signaller_req
);
1368 intel_ring_emit(signaller
, MI_LOAD_REGISTER_IMM(1));
1369 intel_ring_emit_reg(signaller
, mbox_reg
);
1370 intel_ring_emit(signaller
, seqno
);
1374 /* If num_dwords was rounded, make sure the tail pointer is correct */
1375 if (num_rings
% 2 == 0)
1376 intel_ring_emit(signaller
, MI_NOOP
);
1382 * gen6_add_request - Update the semaphore mailbox registers
1384 * @request - request to write to the ring
1386 * Update the mailbox registers in the *other* rings with the current seqno.
1387 * This acts like a signal in the canonical semaphore.
1390 gen6_add_request(struct drm_i915_gem_request
*req
)
1392 struct intel_engine_cs
*ring
= req
->ring
;
1395 if (ring
->semaphore
.signal
)
1396 ret
= ring
->semaphore
.signal(req
, 4);
1398 ret
= intel_ring_begin(req
, 4);
1403 intel_ring_emit(ring
, MI_STORE_DWORD_INDEX
);
1404 intel_ring_emit(ring
, I915_GEM_HWS_INDEX
<< MI_STORE_DWORD_INDEX_SHIFT
);
1405 intel_ring_emit(ring
, i915_gem_request_get_seqno(req
));
1406 intel_ring_emit(ring
, MI_USER_INTERRUPT
);
1407 __intel_ring_advance(ring
);
1412 static inline bool i915_gem_has_seqno_wrapped(struct drm_device
*dev
,
1415 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1416 return dev_priv
->last_seqno
< seqno
;
1420 * intel_ring_sync - sync the waiter to the signaller on seqno
1422 * @waiter - ring that is waiting
1423 * @signaller - ring which has, or will signal
1424 * @seqno - seqno which the waiter will block on
1428 gen8_ring_sync(struct drm_i915_gem_request
*waiter_req
,
1429 struct intel_engine_cs
*signaller
,
1432 struct intel_engine_cs
*waiter
= waiter_req
->ring
;
1433 struct drm_i915_private
*dev_priv
= waiter
->dev
->dev_private
;
1436 ret
= intel_ring_begin(waiter_req
, 4);
1440 intel_ring_emit(waiter
, MI_SEMAPHORE_WAIT
|
1441 MI_SEMAPHORE_GLOBAL_GTT
|
1443 MI_SEMAPHORE_SAD_GTE_SDD
);
1444 intel_ring_emit(waiter
, seqno
);
1445 intel_ring_emit(waiter
,
1446 lower_32_bits(GEN8_WAIT_OFFSET(waiter
, signaller
->id
)));
1447 intel_ring_emit(waiter
,
1448 upper_32_bits(GEN8_WAIT_OFFSET(waiter
, signaller
->id
)));
1449 intel_ring_advance(waiter
);
1454 gen6_ring_sync(struct drm_i915_gem_request
*waiter_req
,
1455 struct intel_engine_cs
*signaller
,
1458 struct intel_engine_cs
*waiter
= waiter_req
->ring
;
1459 u32 dw1
= MI_SEMAPHORE_MBOX
|
1460 MI_SEMAPHORE_COMPARE
|
1461 MI_SEMAPHORE_REGISTER
;
1462 u32 wait_mbox
= signaller
->semaphore
.mbox
.wait
[waiter
->id
];
1465 /* Throughout all of the GEM code, seqno passed implies our current
1466 * seqno is >= the last seqno executed. However for hardware the
1467 * comparison is strictly greater than.
1471 WARN_ON(wait_mbox
== MI_SEMAPHORE_SYNC_INVALID
);
1473 ret
= intel_ring_begin(waiter_req
, 4);
1477 /* If seqno wrap happened, omit the wait with no-ops */
1478 if (likely(!i915_gem_has_seqno_wrapped(waiter
->dev
, seqno
))) {
1479 intel_ring_emit(waiter
, dw1
| wait_mbox
);
1480 intel_ring_emit(waiter
, seqno
);
1481 intel_ring_emit(waiter
, 0);
1482 intel_ring_emit(waiter
, MI_NOOP
);
1484 intel_ring_emit(waiter
, MI_NOOP
);
1485 intel_ring_emit(waiter
, MI_NOOP
);
1486 intel_ring_emit(waiter
, MI_NOOP
);
1487 intel_ring_emit(waiter
, MI_NOOP
);
1489 intel_ring_advance(waiter
);
1494 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1496 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1497 PIPE_CONTROL_DEPTH_STALL); \
1498 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1499 intel_ring_emit(ring__, 0); \
1500 intel_ring_emit(ring__, 0); \
1504 pc_render_add_request(struct drm_i915_gem_request
*req
)
1506 struct intel_engine_cs
*ring
= req
->ring
;
1507 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
1510 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1511 * incoherent with writes to memory, i.e. completely fubar,
1512 * so we need to use PIPE_NOTIFY instead.
1514 * However, we also need to workaround the qword write
1515 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1516 * memory before requesting an interrupt.
1518 ret
= intel_ring_begin(req
, 32);
1522 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE
|
1523 PIPE_CONTROL_WRITE_FLUSH
|
1524 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
);
1525 intel_ring_emit(ring
, ring
->scratch
.gtt_offset
| PIPE_CONTROL_GLOBAL_GTT
);
1526 intel_ring_emit(ring
, i915_gem_request_get_seqno(req
));
1527 intel_ring_emit(ring
, 0);
1528 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1529 scratch_addr
+= 2 * CACHELINE_BYTES
; /* write to separate cachelines */
1530 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1531 scratch_addr
+= 2 * CACHELINE_BYTES
;
1532 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1533 scratch_addr
+= 2 * CACHELINE_BYTES
;
1534 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1535 scratch_addr
+= 2 * CACHELINE_BYTES
;
1536 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1537 scratch_addr
+= 2 * CACHELINE_BYTES
;
1538 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1540 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE
|
1541 PIPE_CONTROL_WRITE_FLUSH
|
1542 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
|
1543 PIPE_CONTROL_NOTIFY
);
1544 intel_ring_emit(ring
, ring
->scratch
.gtt_offset
| PIPE_CONTROL_GLOBAL_GTT
);
1545 intel_ring_emit(ring
, i915_gem_request_get_seqno(req
));
1546 intel_ring_emit(ring
, 0);
1547 __intel_ring_advance(ring
);
1553 gen6_ring_get_seqno(struct intel_engine_cs
*ring
, bool lazy_coherency
)
1555 /* Workaround to force correct ordering between irq and seqno writes on
1556 * ivb (and maybe also on snb) by reading from a CS register (like
1557 * ACTHD) before reading the status page. */
1558 if (!lazy_coherency
) {
1559 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
1560 POSTING_READ(RING_ACTHD(ring
->mmio_base
));
1563 return intel_read_status_page(ring
, I915_GEM_HWS_INDEX
);
1567 ring_get_seqno(struct intel_engine_cs
*ring
, bool lazy_coherency
)
1569 return intel_read_status_page(ring
, I915_GEM_HWS_INDEX
);
1573 ring_set_seqno(struct intel_engine_cs
*ring
, u32 seqno
)
1575 intel_write_status_page(ring
, I915_GEM_HWS_INDEX
, seqno
);
1579 pc_render_get_seqno(struct intel_engine_cs
*ring
, bool lazy_coherency
)
1581 return ring
->scratch
.cpu_page
[0];
1585 pc_render_set_seqno(struct intel_engine_cs
*ring
, u32 seqno
)
1587 ring
->scratch
.cpu_page
[0] = seqno
;
1591 gen5_ring_get_irq(struct intel_engine_cs
*ring
)
1593 struct drm_device
*dev
= ring
->dev
;
1594 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1595 unsigned long flags
;
1597 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
1600 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1601 if (ring
->irq_refcount
++ == 0)
1602 gen5_enable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1603 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1609 gen5_ring_put_irq(struct intel_engine_cs
*ring
)
1611 struct drm_device
*dev
= ring
->dev
;
1612 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1613 unsigned long flags
;
1615 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1616 if (--ring
->irq_refcount
== 0)
1617 gen5_disable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1618 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1622 i9xx_ring_get_irq(struct intel_engine_cs
*ring
)
1624 struct drm_device
*dev
= ring
->dev
;
1625 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1626 unsigned long flags
;
1628 if (!intel_irqs_enabled(dev_priv
))
1631 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1632 if (ring
->irq_refcount
++ == 0) {
1633 dev_priv
->irq_mask
&= ~ring
->irq_enable_mask
;
1634 I915_WRITE(IMR
, dev_priv
->irq_mask
);
1637 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1643 i9xx_ring_put_irq(struct intel_engine_cs
*ring
)
1645 struct drm_device
*dev
= ring
->dev
;
1646 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1647 unsigned long flags
;
1649 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1650 if (--ring
->irq_refcount
== 0) {
1651 dev_priv
->irq_mask
|= ring
->irq_enable_mask
;
1652 I915_WRITE(IMR
, dev_priv
->irq_mask
);
1655 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1659 i8xx_ring_get_irq(struct intel_engine_cs
*ring
)
1661 struct drm_device
*dev
= ring
->dev
;
1662 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1663 unsigned long flags
;
1665 if (!intel_irqs_enabled(dev_priv
))
1668 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1669 if (ring
->irq_refcount
++ == 0) {
1670 dev_priv
->irq_mask
&= ~ring
->irq_enable_mask
;
1671 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
1672 POSTING_READ16(IMR
);
1674 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1680 i8xx_ring_put_irq(struct intel_engine_cs
*ring
)
1682 struct drm_device
*dev
= ring
->dev
;
1683 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1684 unsigned long flags
;
1686 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1687 if (--ring
->irq_refcount
== 0) {
1688 dev_priv
->irq_mask
|= ring
->irq_enable_mask
;
1689 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
1690 POSTING_READ16(IMR
);
1692 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1696 bsd_ring_flush(struct drm_i915_gem_request
*req
,
1697 u32 invalidate_domains
,
1700 struct intel_engine_cs
*ring
= req
->ring
;
1703 ret
= intel_ring_begin(req
, 2);
1707 intel_ring_emit(ring
, MI_FLUSH
);
1708 intel_ring_emit(ring
, MI_NOOP
);
1709 intel_ring_advance(ring
);
1714 i9xx_add_request(struct drm_i915_gem_request
*req
)
1716 struct intel_engine_cs
*ring
= req
->ring
;
1719 ret
= intel_ring_begin(req
, 4);
1723 intel_ring_emit(ring
, MI_STORE_DWORD_INDEX
);
1724 intel_ring_emit(ring
, I915_GEM_HWS_INDEX
<< MI_STORE_DWORD_INDEX_SHIFT
);
1725 intel_ring_emit(ring
, i915_gem_request_get_seqno(req
));
1726 intel_ring_emit(ring
, MI_USER_INTERRUPT
);
1727 __intel_ring_advance(ring
);
1733 gen6_ring_get_irq(struct intel_engine_cs
*ring
)
1735 struct drm_device
*dev
= ring
->dev
;
1736 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1737 unsigned long flags
;
1739 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
1742 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1743 if (ring
->irq_refcount
++ == 0) {
1744 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
)
1745 I915_WRITE_IMR(ring
,
1746 ~(ring
->irq_enable_mask
|
1747 GT_PARITY_ERROR(dev
)));
1749 I915_WRITE_IMR(ring
, ~ring
->irq_enable_mask
);
1750 gen5_enable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1752 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1758 gen6_ring_put_irq(struct intel_engine_cs
*ring
)
1760 struct drm_device
*dev
= ring
->dev
;
1761 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1762 unsigned long flags
;
1764 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1765 if (--ring
->irq_refcount
== 0) {
1766 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
)
1767 I915_WRITE_IMR(ring
, ~GT_PARITY_ERROR(dev
));
1769 I915_WRITE_IMR(ring
, ~0);
1770 gen5_disable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1772 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1776 hsw_vebox_get_irq(struct intel_engine_cs
*ring
)
1778 struct drm_device
*dev
= ring
->dev
;
1779 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1780 unsigned long flags
;
1782 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
1785 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1786 if (ring
->irq_refcount
++ == 0) {
1787 I915_WRITE_IMR(ring
, ~ring
->irq_enable_mask
);
1788 gen6_enable_pm_irq(dev_priv
, ring
->irq_enable_mask
);
1790 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1796 hsw_vebox_put_irq(struct intel_engine_cs
*ring
)
1798 struct drm_device
*dev
= ring
->dev
;
1799 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1800 unsigned long flags
;
1802 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1803 if (--ring
->irq_refcount
== 0) {
1804 I915_WRITE_IMR(ring
, ~0);
1805 gen6_disable_pm_irq(dev_priv
, ring
->irq_enable_mask
);
1807 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1811 gen8_ring_get_irq(struct intel_engine_cs
*ring
)
1813 struct drm_device
*dev
= ring
->dev
;
1814 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1815 unsigned long flags
;
1817 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
1820 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1821 if (ring
->irq_refcount
++ == 0) {
1822 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
) {
1823 I915_WRITE_IMR(ring
,
1824 ~(ring
->irq_enable_mask
|
1825 GT_RENDER_L3_PARITY_ERROR_INTERRUPT
));
1827 I915_WRITE_IMR(ring
, ~ring
->irq_enable_mask
);
1829 POSTING_READ(RING_IMR(ring
->mmio_base
));
1831 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1837 gen8_ring_put_irq(struct intel_engine_cs
*ring
)
1839 struct drm_device
*dev
= ring
->dev
;
1840 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1841 unsigned long flags
;
1843 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1844 if (--ring
->irq_refcount
== 0) {
1845 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
) {
1846 I915_WRITE_IMR(ring
,
1847 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT
);
1849 I915_WRITE_IMR(ring
, ~0);
1851 POSTING_READ(RING_IMR(ring
->mmio_base
));
1853 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1857 i965_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
1858 u64 offset
, u32 length
,
1859 unsigned dispatch_flags
)
1861 struct intel_engine_cs
*ring
= req
->ring
;
1864 ret
= intel_ring_begin(req
, 2);
1868 intel_ring_emit(ring
,
1869 MI_BATCH_BUFFER_START
|
1871 (dispatch_flags
& I915_DISPATCH_SECURE
?
1872 0 : MI_BATCH_NON_SECURE_I965
));
1873 intel_ring_emit(ring
, offset
);
1874 intel_ring_advance(ring
);
1879 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1880 #define I830_BATCH_LIMIT (256*1024)
1881 #define I830_TLB_ENTRIES (2)
1882 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1884 i830_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
1885 u64 offset
, u32 len
,
1886 unsigned dispatch_flags
)
1888 struct intel_engine_cs
*ring
= req
->ring
;
1889 u32 cs_offset
= ring
->scratch
.gtt_offset
;
1892 ret
= intel_ring_begin(req
, 6);
1896 /* Evict the invalid PTE TLBs */
1897 intel_ring_emit(ring
, COLOR_BLT_CMD
| BLT_WRITE_RGBA
);
1898 intel_ring_emit(ring
, BLT_DEPTH_32
| BLT_ROP_COLOR_COPY
| 4096);
1899 intel_ring_emit(ring
, I830_TLB_ENTRIES
<< 16 | 4); /* load each page */
1900 intel_ring_emit(ring
, cs_offset
);
1901 intel_ring_emit(ring
, 0xdeadbeef);
1902 intel_ring_emit(ring
, MI_NOOP
);
1903 intel_ring_advance(ring
);
1905 if ((dispatch_flags
& I915_DISPATCH_PINNED
) == 0) {
1906 if (len
> I830_BATCH_LIMIT
)
1909 ret
= intel_ring_begin(req
, 6 + 2);
1913 /* Blit the batch (which has now all relocs applied) to the
1914 * stable batch scratch bo area (so that the CS never
1915 * stumbles over its tlb invalidation bug) ...
1917 intel_ring_emit(ring
, SRC_COPY_BLT_CMD
| BLT_WRITE_RGBA
);
1918 intel_ring_emit(ring
, BLT_DEPTH_32
| BLT_ROP_SRC_COPY
| 4096);
1919 intel_ring_emit(ring
, DIV_ROUND_UP(len
, 4096) << 16 | 4096);
1920 intel_ring_emit(ring
, cs_offset
);
1921 intel_ring_emit(ring
, 4096);
1922 intel_ring_emit(ring
, offset
);
1924 intel_ring_emit(ring
, MI_FLUSH
);
1925 intel_ring_emit(ring
, MI_NOOP
);
1926 intel_ring_advance(ring
);
1928 /* ... and execute it. */
1932 ret
= intel_ring_begin(req
, 2);
1936 intel_ring_emit(ring
, MI_BATCH_BUFFER_START
| MI_BATCH_GTT
);
1937 intel_ring_emit(ring
, offset
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1938 0 : MI_BATCH_NON_SECURE
));
1939 intel_ring_advance(ring
);
1945 i915_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
1946 u64 offset
, u32 len
,
1947 unsigned dispatch_flags
)
1949 struct intel_engine_cs
*ring
= req
->ring
;
1952 ret
= intel_ring_begin(req
, 2);
1956 intel_ring_emit(ring
, MI_BATCH_BUFFER_START
| MI_BATCH_GTT
);
1957 intel_ring_emit(ring
, offset
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1958 0 : MI_BATCH_NON_SECURE
));
1959 intel_ring_advance(ring
);
1964 static void cleanup_phys_status_page(struct intel_engine_cs
*ring
)
1966 struct drm_i915_private
*dev_priv
= to_i915(ring
->dev
);
1968 if (!dev_priv
->status_page_dmah
)
1971 drm_pci_free(ring
->dev
, dev_priv
->status_page_dmah
);
1972 ring
->status_page
.page_addr
= NULL
;
1975 static void cleanup_status_page(struct intel_engine_cs
*ring
)
1977 struct drm_i915_gem_object
*obj
;
1979 obj
= ring
->status_page
.obj
;
1983 kunmap(sg_page(obj
->pages
->sgl
));
1984 i915_gem_object_ggtt_unpin(obj
);
1985 drm_gem_object_unreference(&obj
->base
);
1986 ring
->status_page
.obj
= NULL
;
1989 static int init_status_page(struct intel_engine_cs
*ring
)
1991 struct drm_i915_gem_object
*obj
= ring
->status_page
.obj
;
1997 obj
= i915_gem_alloc_object(ring
->dev
, 4096);
1999 DRM_ERROR("Failed to allocate status page\n");
2003 ret
= i915_gem_object_set_cache_level(obj
, I915_CACHE_LLC
);
2008 if (!HAS_LLC(ring
->dev
))
2009 /* On g33, we cannot place HWS above 256MiB, so
2010 * restrict its pinning to the low mappable arena.
2011 * Though this restriction is not documented for
2012 * gen4, gen5, or byt, they also behave similarly
2013 * and hang if the HWS is placed at the top of the
2014 * GTT. To generalise, it appears that all !llc
2015 * platforms have issues with us placing the HWS
2016 * above the mappable region (even though we never
2019 flags
|= PIN_MAPPABLE
;
2020 ret
= i915_gem_obj_ggtt_pin(obj
, 4096, flags
);
2023 drm_gem_object_unreference(&obj
->base
);
2027 ring
->status_page
.obj
= obj
;
2030 ring
->status_page
.gfx_addr
= i915_gem_obj_ggtt_offset(obj
);
2031 ring
->status_page
.page_addr
= kmap(sg_page(obj
->pages
->sgl
));
2032 memset(ring
->status_page
.page_addr
, 0, PAGE_SIZE
);
2034 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2035 ring
->name
, ring
->status_page
.gfx_addr
);
2040 static int init_phys_status_page(struct intel_engine_cs
*ring
)
2042 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
2044 if (!dev_priv
->status_page_dmah
) {
2045 dev_priv
->status_page_dmah
=
2046 drm_pci_alloc(ring
->dev
, PAGE_SIZE
, PAGE_SIZE
);
2047 if (!dev_priv
->status_page_dmah
)
2051 ring
->status_page
.page_addr
= dev_priv
->status_page_dmah
->vaddr
;
2052 memset(ring
->status_page
.page_addr
, 0, PAGE_SIZE
);
2057 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer
*ringbuf
)
2059 if (HAS_LLC(ringbuf
->obj
->base
.dev
) && !ringbuf
->obj
->stolen
)
2060 vunmap(ringbuf
->virtual_start
);
2062 iounmap(ringbuf
->virtual_start
);
2063 ringbuf
->virtual_start
= NULL
;
2064 ringbuf
->vma
= NULL
;
2065 i915_gem_object_ggtt_unpin(ringbuf
->obj
);
2068 static u32
*vmap_obj(struct drm_i915_gem_object
*obj
)
2070 struct sg_page_iter sg_iter
;
2071 struct page
**pages
;
2075 pages
= drm_malloc_ab(obj
->base
.size
>> PAGE_SHIFT
, sizeof(*pages
));
2080 for_each_sg_page(obj
->pages
->sgl
, &sg_iter
, obj
->pages
->nents
, 0)
2081 pages
[i
++] = sg_page_iter_page(&sg_iter
);
2083 addr
= vmap(pages
, i
, 0, PAGE_KERNEL
);
2084 drm_free_large(pages
);
2089 int intel_pin_and_map_ringbuffer_obj(struct drm_device
*dev
,
2090 struct intel_ringbuffer
*ringbuf
)
2092 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2093 struct drm_i915_gem_object
*obj
= ringbuf
->obj
;
2094 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2095 unsigned flags
= PIN_OFFSET_BIAS
| 4096;
2098 if (HAS_LLC(dev_priv
) && !obj
->stolen
) {
2099 ret
= i915_gem_obj_ggtt_pin(obj
, PAGE_SIZE
, flags
);
2103 ret
= i915_gem_object_set_to_cpu_domain(obj
, true);
2105 i915_gem_object_ggtt_unpin(obj
);
2109 ringbuf
->virtual_start
= vmap_obj(obj
);
2110 if (ringbuf
->virtual_start
== NULL
) {
2111 i915_gem_object_ggtt_unpin(obj
);
2115 ret
= i915_gem_obj_ggtt_pin(obj
, PAGE_SIZE
,
2116 flags
| PIN_MAPPABLE
);
2120 ret
= i915_gem_object_set_to_gtt_domain(obj
, true);
2122 i915_gem_object_ggtt_unpin(obj
);
2126 /* Access through the GTT requires the device to be awake. */
2127 assert_rpm_wakelock_held(dev_priv
);
2129 ringbuf
->virtual_start
= ioremap_wc(dev_priv
->gtt
.mappable_base
+
2130 i915_gem_obj_ggtt_offset(obj
), ringbuf
->size
);
2131 if (ringbuf
->virtual_start
== NULL
) {
2132 i915_gem_object_ggtt_unpin(obj
);
2137 ringbuf
->vma
= i915_gem_obj_to_ggtt(obj
);
2142 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer
*ringbuf
)
2144 drm_gem_object_unreference(&ringbuf
->obj
->base
);
2145 ringbuf
->obj
= NULL
;
2148 static int intel_alloc_ringbuffer_obj(struct drm_device
*dev
,
2149 struct intel_ringbuffer
*ringbuf
)
2151 struct drm_i915_gem_object
*obj
;
2155 obj
= i915_gem_object_create_stolen(dev
, ringbuf
->size
);
2157 obj
= i915_gem_alloc_object(dev
, ringbuf
->size
);
2161 /* mark ring buffers as read-only from GPU side by default */
2169 struct intel_ringbuffer
*
2170 intel_engine_create_ringbuffer(struct intel_engine_cs
*engine
, int size
)
2172 struct intel_ringbuffer
*ring
;
2175 ring
= kzalloc(sizeof(*ring
), GFP_KERNEL
);
2177 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2179 return ERR_PTR(-ENOMEM
);
2182 ring
->ring
= engine
;
2183 list_add(&ring
->link
, &engine
->buffers
);
2186 /* Workaround an erratum on the i830 which causes a hang if
2187 * the TAIL pointer points to within the last 2 cachelines
2190 ring
->effective_size
= size
;
2191 if (IS_I830(engine
->dev
) || IS_845G(engine
->dev
))
2192 ring
->effective_size
-= 2 * CACHELINE_BYTES
;
2194 ring
->last_retired_head
= -1;
2195 intel_ring_update_space(ring
);
2197 ret
= intel_alloc_ringbuffer_obj(engine
->dev
, ring
);
2199 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2201 list_del(&ring
->link
);
2203 return ERR_PTR(ret
);
2210 intel_ringbuffer_free(struct intel_ringbuffer
*ring
)
2212 intel_destroy_ringbuffer_obj(ring
);
2213 list_del(&ring
->link
);
2217 static int intel_init_ring_buffer(struct drm_device
*dev
,
2218 struct intel_engine_cs
*ring
)
2220 struct intel_ringbuffer
*ringbuf
;
2223 WARN_ON(ring
->buffer
);
2226 INIT_LIST_HEAD(&ring
->active_list
);
2227 INIT_LIST_HEAD(&ring
->request_list
);
2228 INIT_LIST_HEAD(&ring
->execlist_queue
);
2229 INIT_LIST_HEAD(&ring
->buffers
);
2230 i915_gem_batch_pool_init(dev
, &ring
->batch_pool
);
2231 memset(ring
->semaphore
.sync_seqno
, 0, sizeof(ring
->semaphore
.sync_seqno
));
2233 init_waitqueue_head(&ring
->irq_queue
);
2235 ringbuf
= intel_engine_create_ringbuffer(ring
, 32 * PAGE_SIZE
);
2236 if (IS_ERR(ringbuf
)) {
2237 ret
= PTR_ERR(ringbuf
);
2240 ring
->buffer
= ringbuf
;
2242 if (I915_NEED_GFX_HWS(dev
)) {
2243 ret
= init_status_page(ring
);
2247 WARN_ON(ring
->id
!= RCS
);
2248 ret
= init_phys_status_page(ring
);
2253 ret
= intel_pin_and_map_ringbuffer_obj(dev
, ringbuf
);
2255 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2257 intel_destroy_ringbuffer_obj(ringbuf
);
2261 ret
= i915_cmd_parser_init_ring(ring
);
2268 intel_cleanup_ring_buffer(ring
);
2272 void intel_cleanup_ring_buffer(struct intel_engine_cs
*ring
)
2274 struct drm_i915_private
*dev_priv
;
2276 if (!intel_ring_initialized(ring
))
2279 dev_priv
= to_i915(ring
->dev
);
2282 intel_stop_ring_buffer(ring
);
2283 WARN_ON(!IS_GEN2(ring
->dev
) && (I915_READ_MODE(ring
) & MODE_IDLE
) == 0);
2285 intel_unpin_ringbuffer_obj(ring
->buffer
);
2286 intel_ringbuffer_free(ring
->buffer
);
2287 ring
->buffer
= NULL
;
2291 ring
->cleanup(ring
);
2293 if (I915_NEED_GFX_HWS(ring
->dev
)) {
2294 cleanup_status_page(ring
);
2296 WARN_ON(ring
->id
!= RCS
);
2297 cleanup_phys_status_page(ring
);
2300 i915_cmd_parser_fini_ring(ring
);
2301 i915_gem_batch_pool_fini(&ring
->batch_pool
);
2305 static int ring_wait_for_space(struct intel_engine_cs
*ring
, int n
)
2307 struct intel_ringbuffer
*ringbuf
= ring
->buffer
;
2308 struct drm_i915_gem_request
*request
;
2312 if (intel_ring_space(ringbuf
) >= n
)
2315 /* The whole point of reserving space is to not wait! */
2316 WARN_ON(ringbuf
->reserved_in_use
);
2318 list_for_each_entry(request
, &ring
->request_list
, list
) {
2319 space
= __intel_ring_space(request
->postfix
, ringbuf
->tail
,
2325 if (WARN_ON(&request
->list
== &ring
->request_list
))
2328 ret
= i915_wait_request(request
);
2332 ringbuf
->space
= space
;
2336 static void __wrap_ring_buffer(struct intel_ringbuffer
*ringbuf
)
2338 uint32_t __iomem
*virt
;
2339 int rem
= ringbuf
->size
- ringbuf
->tail
;
2341 virt
= ringbuf
->virtual_start
+ ringbuf
->tail
;
2344 iowrite32(MI_NOOP
, virt
++);
2347 intel_ring_update_space(ringbuf
);
2350 int intel_ring_idle(struct intel_engine_cs
*ring
)
2352 struct drm_i915_gem_request
*req
;
2354 /* Wait upon the last request to be completed */
2355 if (list_empty(&ring
->request_list
))
2358 req
= list_entry(ring
->request_list
.prev
,
2359 struct drm_i915_gem_request
,
2362 /* Make sure we do not trigger any retires */
2363 return __i915_wait_request(req
,
2364 atomic_read(&to_i915(ring
->dev
)->gpu_error
.reset_counter
),
2365 to_i915(ring
->dev
)->mm
.interruptible
,
2369 int intel_ring_alloc_request_extras(struct drm_i915_gem_request
*request
)
2371 request
->ringbuf
= request
->ring
->buffer
;
2375 int intel_ring_reserve_space(struct drm_i915_gem_request
*request
)
2378 * The first call merely notes the reserve request and is common for
2379 * all back ends. The subsequent localised _begin() call actually
2380 * ensures that the reservation is available. Without the begin, if
2381 * the request creator immediately submitted the request without
2382 * adding any commands to it then there might not actually be
2383 * sufficient room for the submission commands.
2385 intel_ring_reserved_space_reserve(request
->ringbuf
, MIN_SPACE_FOR_ADD_REQUEST
);
2387 return intel_ring_begin(request
, 0);
2390 void intel_ring_reserved_space_reserve(struct intel_ringbuffer
*ringbuf
, int size
)
2392 WARN_ON(ringbuf
->reserved_size
);
2393 WARN_ON(ringbuf
->reserved_in_use
);
2395 ringbuf
->reserved_size
= size
;
2398 void intel_ring_reserved_space_cancel(struct intel_ringbuffer
*ringbuf
)
2400 WARN_ON(ringbuf
->reserved_in_use
);
2402 ringbuf
->reserved_size
= 0;
2403 ringbuf
->reserved_in_use
= false;
2406 void intel_ring_reserved_space_use(struct intel_ringbuffer
*ringbuf
)
2408 WARN_ON(ringbuf
->reserved_in_use
);
2410 ringbuf
->reserved_in_use
= true;
2411 ringbuf
->reserved_tail
= ringbuf
->tail
;
2414 void intel_ring_reserved_space_end(struct intel_ringbuffer
*ringbuf
)
2416 WARN_ON(!ringbuf
->reserved_in_use
);
2417 if (ringbuf
->tail
> ringbuf
->reserved_tail
) {
2418 WARN(ringbuf
->tail
> ringbuf
->reserved_tail
+ ringbuf
->reserved_size
,
2419 "request reserved size too small: %d vs %d!\n",
2420 ringbuf
->tail
- ringbuf
->reserved_tail
, ringbuf
->reserved_size
);
2423 * The ring was wrapped while the reserved space was in use.
2424 * That means that some unknown amount of the ring tail was
2425 * no-op filled and skipped. Thus simply adding the ring size
2426 * to the tail and doing the above space check will not work.
2427 * Rather than attempt to track how much tail was skipped,
2428 * it is much simpler to say that also skipping the sanity
2429 * check every once in a while is not a big issue.
2433 ringbuf
->reserved_size
= 0;
2434 ringbuf
->reserved_in_use
= false;
2437 static int __intel_ring_prepare(struct intel_engine_cs
*ring
, int bytes
)
2439 struct intel_ringbuffer
*ringbuf
= ring
->buffer
;
2440 int remain_usable
= ringbuf
->effective_size
- ringbuf
->tail
;
2441 int remain_actual
= ringbuf
->size
- ringbuf
->tail
;
2442 int ret
, total_bytes
, wait_bytes
= 0;
2443 bool need_wrap
= false;
2445 if (ringbuf
->reserved_in_use
)
2446 total_bytes
= bytes
;
2448 total_bytes
= bytes
+ ringbuf
->reserved_size
;
2450 if (unlikely(bytes
> remain_usable
)) {
2452 * Not enough space for the basic request. So need to flush
2453 * out the remainder and then wait for base + reserved.
2455 wait_bytes
= remain_actual
+ total_bytes
;
2458 if (unlikely(total_bytes
> remain_usable
)) {
2460 * The base request will fit but the reserved space
2461 * falls off the end. So don't need an immediate wrap
2462 * and only need to effectively wait for the reserved
2463 * size space from the start of ringbuffer.
2465 wait_bytes
= remain_actual
+ ringbuf
->reserved_size
;
2466 } else if (total_bytes
> ringbuf
->space
) {
2467 /* No wrapping required, just waiting. */
2468 wait_bytes
= total_bytes
;
2473 ret
= ring_wait_for_space(ring
, wait_bytes
);
2478 __wrap_ring_buffer(ringbuf
);
2484 int intel_ring_begin(struct drm_i915_gem_request
*req
,
2487 struct intel_engine_cs
*ring
;
2488 struct drm_i915_private
*dev_priv
;
2491 WARN_ON(req
== NULL
);
2493 dev_priv
= ring
->dev
->dev_private
;
2495 ret
= i915_gem_check_wedge(&dev_priv
->gpu_error
,
2496 dev_priv
->mm
.interruptible
);
2500 ret
= __intel_ring_prepare(ring
, num_dwords
* sizeof(uint32_t));
2504 ring
->buffer
->space
-= num_dwords
* sizeof(uint32_t);
2508 /* Align the ring tail to a cacheline boundary */
2509 int intel_ring_cacheline_align(struct drm_i915_gem_request
*req
)
2511 struct intel_engine_cs
*ring
= req
->ring
;
2512 int num_dwords
= (ring
->buffer
->tail
& (CACHELINE_BYTES
- 1)) / sizeof(uint32_t);
2515 if (num_dwords
== 0)
2518 num_dwords
= CACHELINE_BYTES
/ sizeof(uint32_t) - num_dwords
;
2519 ret
= intel_ring_begin(req
, num_dwords
);
2523 while (num_dwords
--)
2524 intel_ring_emit(ring
, MI_NOOP
);
2526 intel_ring_advance(ring
);
2531 void intel_ring_init_seqno(struct intel_engine_cs
*ring
, u32 seqno
)
2533 struct drm_device
*dev
= ring
->dev
;
2534 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2536 if (INTEL_INFO(dev
)->gen
== 6 || INTEL_INFO(dev
)->gen
== 7) {
2537 I915_WRITE(RING_SYNC_0(ring
->mmio_base
), 0);
2538 I915_WRITE(RING_SYNC_1(ring
->mmio_base
), 0);
2540 I915_WRITE(RING_SYNC_2(ring
->mmio_base
), 0);
2543 ring
->set_seqno(ring
, seqno
);
2544 ring
->hangcheck
.seqno
= seqno
;
2547 static void gen6_bsd_ring_write_tail(struct intel_engine_cs
*ring
,
2550 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
2552 /* Every tail move must follow the sequence below */
2554 /* Disable notification that the ring is IDLE. The GT
2555 * will then assume that it is busy and bring it out of rc6.
2557 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL
,
2558 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
2560 /* Clear the context id. Here be magic! */
2561 I915_WRITE64(GEN6_BSD_RNCID
, 0x0);
2563 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2564 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL
) &
2565 GEN6_BSD_SLEEP_INDICATOR
) == 0,
2567 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2569 /* Now that the ring is fully powered up, update the tail */
2570 I915_WRITE_TAIL(ring
, value
);
2571 POSTING_READ(RING_TAIL(ring
->mmio_base
));
2573 /* Let the ring send IDLE messages to the GT again,
2574 * and so let it sleep to conserve power when idle.
2576 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL
,
2577 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
2580 static int gen6_bsd_ring_flush(struct drm_i915_gem_request
*req
,
2581 u32 invalidate
, u32 flush
)
2583 struct intel_engine_cs
*ring
= req
->ring
;
2587 ret
= intel_ring_begin(req
, 4);
2592 if (INTEL_INFO(ring
->dev
)->gen
>= 8)
2595 /* We always require a command barrier so that subsequent
2596 * commands, such as breadcrumb interrupts, are strictly ordered
2597 * wrt the contents of the write cache being flushed to memory
2598 * (and thus being coherent from the CPU).
2600 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
2603 * Bspec vol 1c.5 - video engine command streamer:
2604 * "If ENABLED, all TLBs will be invalidated once the flush
2605 * operation is complete. This bit is only valid when the
2606 * Post-Sync Operation field is a value of 1h or 3h."
2608 if (invalidate
& I915_GEM_GPU_DOMAINS
)
2609 cmd
|= MI_INVALIDATE_TLB
| MI_INVALIDATE_BSD
;
2611 intel_ring_emit(ring
, cmd
);
2612 intel_ring_emit(ring
, I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
2613 if (INTEL_INFO(ring
->dev
)->gen
>= 8) {
2614 intel_ring_emit(ring
, 0); /* upper addr */
2615 intel_ring_emit(ring
, 0); /* value */
2617 intel_ring_emit(ring
, 0);
2618 intel_ring_emit(ring
, MI_NOOP
);
2620 intel_ring_advance(ring
);
2625 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
2626 u64 offset
, u32 len
,
2627 unsigned dispatch_flags
)
2629 struct intel_engine_cs
*ring
= req
->ring
;
2630 bool ppgtt
= USES_PPGTT(ring
->dev
) &&
2631 !(dispatch_flags
& I915_DISPATCH_SECURE
);
2634 ret
= intel_ring_begin(req
, 4);
2638 /* FIXME(BDW): Address space and security selectors. */
2639 intel_ring_emit(ring
, MI_BATCH_BUFFER_START_GEN8
| (ppgtt
<<8) |
2640 (dispatch_flags
& I915_DISPATCH_RS
?
2641 MI_BATCH_RESOURCE_STREAMER
: 0));
2642 intel_ring_emit(ring
, lower_32_bits(offset
));
2643 intel_ring_emit(ring
, upper_32_bits(offset
));
2644 intel_ring_emit(ring
, MI_NOOP
);
2645 intel_ring_advance(ring
);
2651 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
2652 u64 offset
, u32 len
,
2653 unsigned dispatch_flags
)
2655 struct intel_engine_cs
*ring
= req
->ring
;
2658 ret
= intel_ring_begin(req
, 2);
2662 intel_ring_emit(ring
,
2663 MI_BATCH_BUFFER_START
|
2664 (dispatch_flags
& I915_DISPATCH_SECURE
?
2665 0 : MI_BATCH_PPGTT_HSW
| MI_BATCH_NON_SECURE_HSW
) |
2666 (dispatch_flags
& I915_DISPATCH_RS
?
2667 MI_BATCH_RESOURCE_STREAMER
: 0));
2668 /* bit0-7 is the length on GEN6+ */
2669 intel_ring_emit(ring
, offset
);
2670 intel_ring_advance(ring
);
2676 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
2677 u64 offset
, u32 len
,
2678 unsigned dispatch_flags
)
2680 struct intel_engine_cs
*ring
= req
->ring
;
2683 ret
= intel_ring_begin(req
, 2);
2687 intel_ring_emit(ring
,
2688 MI_BATCH_BUFFER_START
|
2689 (dispatch_flags
& I915_DISPATCH_SECURE
?
2690 0 : MI_BATCH_NON_SECURE_I965
));
2691 /* bit0-7 is the length on GEN6+ */
2692 intel_ring_emit(ring
, offset
);
2693 intel_ring_advance(ring
);
2698 /* Blitter support (SandyBridge+) */
2700 static int gen6_ring_flush(struct drm_i915_gem_request
*req
,
2701 u32 invalidate
, u32 flush
)
2703 struct intel_engine_cs
*ring
= req
->ring
;
2704 struct drm_device
*dev
= ring
->dev
;
2708 ret
= intel_ring_begin(req
, 4);
2713 if (INTEL_INFO(dev
)->gen
>= 8)
2716 /* We always require a command barrier so that subsequent
2717 * commands, such as breadcrumb interrupts, are strictly ordered
2718 * wrt the contents of the write cache being flushed to memory
2719 * (and thus being coherent from the CPU).
2721 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
2724 * Bspec vol 1c.3 - blitter engine command streamer:
2725 * "If ENABLED, all TLBs will be invalidated once the flush
2726 * operation is complete. This bit is only valid when the
2727 * Post-Sync Operation field is a value of 1h or 3h."
2729 if (invalidate
& I915_GEM_DOMAIN_RENDER
)
2730 cmd
|= MI_INVALIDATE_TLB
;
2731 intel_ring_emit(ring
, cmd
);
2732 intel_ring_emit(ring
, I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
2733 if (INTEL_INFO(dev
)->gen
>= 8) {
2734 intel_ring_emit(ring
, 0); /* upper addr */
2735 intel_ring_emit(ring
, 0); /* value */
2737 intel_ring_emit(ring
, 0);
2738 intel_ring_emit(ring
, MI_NOOP
);
2740 intel_ring_advance(ring
);
2745 int intel_init_render_ring_buffer(struct drm_device
*dev
)
2747 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2748 struct intel_engine_cs
*ring
= &dev_priv
->ring
[RCS
];
2749 struct drm_i915_gem_object
*obj
;
2752 ring
->name
= "render ring";
2754 ring
->exec_id
= I915_EXEC_RENDER
;
2755 ring
->mmio_base
= RENDER_RING_BASE
;
2757 if (INTEL_INFO(dev
)->gen
>= 8) {
2758 if (i915_semaphore_is_enabled(dev
)) {
2759 obj
= i915_gem_alloc_object(dev
, 4096);
2761 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2762 i915
.semaphores
= 0;
2764 i915_gem_object_set_cache_level(obj
, I915_CACHE_LLC
);
2765 ret
= i915_gem_obj_ggtt_pin(obj
, 0, PIN_NONBLOCK
);
2767 drm_gem_object_unreference(&obj
->base
);
2768 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2769 i915
.semaphores
= 0;
2771 dev_priv
->semaphore_obj
= obj
;
2775 ring
->init_context
= intel_rcs_ctx_init
;
2776 ring
->add_request
= gen6_add_request
;
2777 ring
->flush
= gen8_render_ring_flush
;
2778 ring
->irq_get
= gen8_ring_get_irq
;
2779 ring
->irq_put
= gen8_ring_put_irq
;
2780 ring
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
;
2781 ring
->get_seqno
= gen6_ring_get_seqno
;
2782 ring
->set_seqno
= ring_set_seqno
;
2783 if (i915_semaphore_is_enabled(dev
)) {
2784 WARN_ON(!dev_priv
->semaphore_obj
);
2785 ring
->semaphore
.sync_to
= gen8_ring_sync
;
2786 ring
->semaphore
.signal
= gen8_rcs_signal
;
2787 GEN8_RING_SEMAPHORE_INIT
;
2789 } else if (INTEL_INFO(dev
)->gen
>= 6) {
2790 ring
->init_context
= intel_rcs_ctx_init
;
2791 ring
->add_request
= gen6_add_request
;
2792 ring
->flush
= gen7_render_ring_flush
;
2793 if (INTEL_INFO(dev
)->gen
== 6)
2794 ring
->flush
= gen6_render_ring_flush
;
2795 ring
->irq_get
= gen6_ring_get_irq
;
2796 ring
->irq_put
= gen6_ring_put_irq
;
2797 ring
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
;
2798 ring
->get_seqno
= gen6_ring_get_seqno
;
2799 ring
->set_seqno
= ring_set_seqno
;
2800 if (i915_semaphore_is_enabled(dev
)) {
2801 ring
->semaphore
.sync_to
= gen6_ring_sync
;
2802 ring
->semaphore
.signal
= gen6_signal
;
2804 * The current semaphore is only applied on pre-gen8
2805 * platform. And there is no VCS2 ring on the pre-gen8
2806 * platform. So the semaphore between RCS and VCS2 is
2807 * initialized as INVALID. Gen8 will initialize the
2808 * sema between VCS2 and RCS later.
2810 ring
->semaphore
.mbox
.wait
[RCS
] = MI_SEMAPHORE_SYNC_INVALID
;
2811 ring
->semaphore
.mbox
.wait
[VCS
] = MI_SEMAPHORE_SYNC_RV
;
2812 ring
->semaphore
.mbox
.wait
[BCS
] = MI_SEMAPHORE_SYNC_RB
;
2813 ring
->semaphore
.mbox
.wait
[VECS
] = MI_SEMAPHORE_SYNC_RVE
;
2814 ring
->semaphore
.mbox
.wait
[VCS2
] = MI_SEMAPHORE_SYNC_INVALID
;
2815 ring
->semaphore
.mbox
.signal
[RCS
] = GEN6_NOSYNC
;
2816 ring
->semaphore
.mbox
.signal
[VCS
] = GEN6_VRSYNC
;
2817 ring
->semaphore
.mbox
.signal
[BCS
] = GEN6_BRSYNC
;
2818 ring
->semaphore
.mbox
.signal
[VECS
] = GEN6_VERSYNC
;
2819 ring
->semaphore
.mbox
.signal
[VCS2
] = GEN6_NOSYNC
;
2821 } else if (IS_GEN5(dev
)) {
2822 ring
->add_request
= pc_render_add_request
;
2823 ring
->flush
= gen4_render_ring_flush
;
2824 ring
->get_seqno
= pc_render_get_seqno
;
2825 ring
->set_seqno
= pc_render_set_seqno
;
2826 ring
->irq_get
= gen5_ring_get_irq
;
2827 ring
->irq_put
= gen5_ring_put_irq
;
2828 ring
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
|
2829 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT
;
2831 ring
->add_request
= i9xx_add_request
;
2832 if (INTEL_INFO(dev
)->gen
< 4)
2833 ring
->flush
= gen2_render_ring_flush
;
2835 ring
->flush
= gen4_render_ring_flush
;
2836 ring
->get_seqno
= ring_get_seqno
;
2837 ring
->set_seqno
= ring_set_seqno
;
2839 ring
->irq_get
= i8xx_ring_get_irq
;
2840 ring
->irq_put
= i8xx_ring_put_irq
;
2842 ring
->irq_get
= i9xx_ring_get_irq
;
2843 ring
->irq_put
= i9xx_ring_put_irq
;
2845 ring
->irq_enable_mask
= I915_USER_INTERRUPT
;
2847 ring
->write_tail
= ring_write_tail
;
2849 if (IS_HASWELL(dev
))
2850 ring
->dispatch_execbuffer
= hsw_ring_dispatch_execbuffer
;
2851 else if (IS_GEN8(dev
))
2852 ring
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
2853 else if (INTEL_INFO(dev
)->gen
>= 6)
2854 ring
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
2855 else if (INTEL_INFO(dev
)->gen
>= 4)
2856 ring
->dispatch_execbuffer
= i965_dispatch_execbuffer
;
2857 else if (IS_I830(dev
) || IS_845G(dev
))
2858 ring
->dispatch_execbuffer
= i830_dispatch_execbuffer
;
2860 ring
->dispatch_execbuffer
= i915_dispatch_execbuffer
;
2861 ring
->init_hw
= init_render_ring
;
2862 ring
->cleanup
= render_ring_cleanup
;
2864 /* Workaround batchbuffer to combat CS tlb bug. */
2865 if (HAS_BROKEN_CS_TLB(dev
)) {
2866 obj
= i915_gem_alloc_object(dev
, I830_WA_SIZE
);
2868 DRM_ERROR("Failed to allocate batch bo\n");
2872 ret
= i915_gem_obj_ggtt_pin(obj
, 0, 0);
2874 drm_gem_object_unreference(&obj
->base
);
2875 DRM_ERROR("Failed to ping batch bo\n");
2879 ring
->scratch
.obj
= obj
;
2880 ring
->scratch
.gtt_offset
= i915_gem_obj_ggtt_offset(obj
);
2883 ret
= intel_init_ring_buffer(dev
, ring
);
2887 if (INTEL_INFO(dev
)->gen
>= 5) {
2888 ret
= intel_init_pipe_control(ring
);
2896 int intel_init_bsd_ring_buffer(struct drm_device
*dev
)
2898 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2899 struct intel_engine_cs
*ring
= &dev_priv
->ring
[VCS
];
2901 ring
->name
= "bsd ring";
2903 ring
->exec_id
= I915_EXEC_BSD
;
2905 ring
->write_tail
= ring_write_tail
;
2906 if (INTEL_INFO(dev
)->gen
>= 6) {
2907 ring
->mmio_base
= GEN6_BSD_RING_BASE
;
2908 /* gen6 bsd needs a special wa for tail updates */
2910 ring
->write_tail
= gen6_bsd_ring_write_tail
;
2911 ring
->flush
= gen6_bsd_ring_flush
;
2912 ring
->add_request
= gen6_add_request
;
2913 ring
->get_seqno
= gen6_ring_get_seqno
;
2914 ring
->set_seqno
= ring_set_seqno
;
2915 if (INTEL_INFO(dev
)->gen
>= 8) {
2916 ring
->irq_enable_mask
=
2917 GT_RENDER_USER_INTERRUPT
<< GEN8_VCS1_IRQ_SHIFT
;
2918 ring
->irq_get
= gen8_ring_get_irq
;
2919 ring
->irq_put
= gen8_ring_put_irq
;
2920 ring
->dispatch_execbuffer
=
2921 gen8_ring_dispatch_execbuffer
;
2922 if (i915_semaphore_is_enabled(dev
)) {
2923 ring
->semaphore
.sync_to
= gen8_ring_sync
;
2924 ring
->semaphore
.signal
= gen8_xcs_signal
;
2925 GEN8_RING_SEMAPHORE_INIT
;
2928 ring
->irq_enable_mask
= GT_BSD_USER_INTERRUPT
;
2929 ring
->irq_get
= gen6_ring_get_irq
;
2930 ring
->irq_put
= gen6_ring_put_irq
;
2931 ring
->dispatch_execbuffer
=
2932 gen6_ring_dispatch_execbuffer
;
2933 if (i915_semaphore_is_enabled(dev
)) {
2934 ring
->semaphore
.sync_to
= gen6_ring_sync
;
2935 ring
->semaphore
.signal
= gen6_signal
;
2936 ring
->semaphore
.mbox
.wait
[RCS
] = MI_SEMAPHORE_SYNC_VR
;
2937 ring
->semaphore
.mbox
.wait
[VCS
] = MI_SEMAPHORE_SYNC_INVALID
;
2938 ring
->semaphore
.mbox
.wait
[BCS
] = MI_SEMAPHORE_SYNC_VB
;
2939 ring
->semaphore
.mbox
.wait
[VECS
] = MI_SEMAPHORE_SYNC_VVE
;
2940 ring
->semaphore
.mbox
.wait
[VCS2
] = MI_SEMAPHORE_SYNC_INVALID
;
2941 ring
->semaphore
.mbox
.signal
[RCS
] = GEN6_RVSYNC
;
2942 ring
->semaphore
.mbox
.signal
[VCS
] = GEN6_NOSYNC
;
2943 ring
->semaphore
.mbox
.signal
[BCS
] = GEN6_BVSYNC
;
2944 ring
->semaphore
.mbox
.signal
[VECS
] = GEN6_VEVSYNC
;
2945 ring
->semaphore
.mbox
.signal
[VCS2
] = GEN6_NOSYNC
;
2949 ring
->mmio_base
= BSD_RING_BASE
;
2950 ring
->flush
= bsd_ring_flush
;
2951 ring
->add_request
= i9xx_add_request
;
2952 ring
->get_seqno
= ring_get_seqno
;
2953 ring
->set_seqno
= ring_set_seqno
;
2955 ring
->irq_enable_mask
= ILK_BSD_USER_INTERRUPT
;
2956 ring
->irq_get
= gen5_ring_get_irq
;
2957 ring
->irq_put
= gen5_ring_put_irq
;
2959 ring
->irq_enable_mask
= I915_BSD_USER_INTERRUPT
;
2960 ring
->irq_get
= i9xx_ring_get_irq
;
2961 ring
->irq_put
= i9xx_ring_put_irq
;
2963 ring
->dispatch_execbuffer
= i965_dispatch_execbuffer
;
2965 ring
->init_hw
= init_ring_common
;
2967 return intel_init_ring_buffer(dev
, ring
);
2971 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2973 int intel_init_bsd2_ring_buffer(struct drm_device
*dev
)
2975 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2976 struct intel_engine_cs
*ring
= &dev_priv
->ring
[VCS2
];
2978 ring
->name
= "bsd2 ring";
2980 ring
->exec_id
= I915_EXEC_BSD
;
2982 ring
->write_tail
= ring_write_tail
;
2983 ring
->mmio_base
= GEN8_BSD2_RING_BASE
;
2984 ring
->flush
= gen6_bsd_ring_flush
;
2985 ring
->add_request
= gen6_add_request
;
2986 ring
->get_seqno
= gen6_ring_get_seqno
;
2987 ring
->set_seqno
= ring_set_seqno
;
2988 ring
->irq_enable_mask
=
2989 GT_RENDER_USER_INTERRUPT
<< GEN8_VCS2_IRQ_SHIFT
;
2990 ring
->irq_get
= gen8_ring_get_irq
;
2991 ring
->irq_put
= gen8_ring_put_irq
;
2992 ring
->dispatch_execbuffer
=
2993 gen8_ring_dispatch_execbuffer
;
2994 if (i915_semaphore_is_enabled(dev
)) {
2995 ring
->semaphore
.sync_to
= gen8_ring_sync
;
2996 ring
->semaphore
.signal
= gen8_xcs_signal
;
2997 GEN8_RING_SEMAPHORE_INIT
;
2999 ring
->init_hw
= init_ring_common
;
3001 return intel_init_ring_buffer(dev
, ring
);
3004 int intel_init_blt_ring_buffer(struct drm_device
*dev
)
3006 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3007 struct intel_engine_cs
*ring
= &dev_priv
->ring
[BCS
];
3009 ring
->name
= "blitter ring";
3011 ring
->exec_id
= I915_EXEC_BLT
;
3013 ring
->mmio_base
= BLT_RING_BASE
;
3014 ring
->write_tail
= ring_write_tail
;
3015 ring
->flush
= gen6_ring_flush
;
3016 ring
->add_request
= gen6_add_request
;
3017 ring
->get_seqno
= gen6_ring_get_seqno
;
3018 ring
->set_seqno
= ring_set_seqno
;
3019 if (INTEL_INFO(dev
)->gen
>= 8) {
3020 ring
->irq_enable_mask
=
3021 GT_RENDER_USER_INTERRUPT
<< GEN8_BCS_IRQ_SHIFT
;
3022 ring
->irq_get
= gen8_ring_get_irq
;
3023 ring
->irq_put
= gen8_ring_put_irq
;
3024 ring
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
3025 if (i915_semaphore_is_enabled(dev
)) {
3026 ring
->semaphore
.sync_to
= gen8_ring_sync
;
3027 ring
->semaphore
.signal
= gen8_xcs_signal
;
3028 GEN8_RING_SEMAPHORE_INIT
;
3031 ring
->irq_enable_mask
= GT_BLT_USER_INTERRUPT
;
3032 ring
->irq_get
= gen6_ring_get_irq
;
3033 ring
->irq_put
= gen6_ring_put_irq
;
3034 ring
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
3035 if (i915_semaphore_is_enabled(dev
)) {
3036 ring
->semaphore
.signal
= gen6_signal
;
3037 ring
->semaphore
.sync_to
= gen6_ring_sync
;
3039 * The current semaphore is only applied on pre-gen8
3040 * platform. And there is no VCS2 ring on the pre-gen8
3041 * platform. So the semaphore between BCS and VCS2 is
3042 * initialized as INVALID. Gen8 will initialize the
3043 * sema between BCS and VCS2 later.
3045 ring
->semaphore
.mbox
.wait
[RCS
] = MI_SEMAPHORE_SYNC_BR
;
3046 ring
->semaphore
.mbox
.wait
[VCS
] = MI_SEMAPHORE_SYNC_BV
;
3047 ring
->semaphore
.mbox
.wait
[BCS
] = MI_SEMAPHORE_SYNC_INVALID
;
3048 ring
->semaphore
.mbox
.wait
[VECS
] = MI_SEMAPHORE_SYNC_BVE
;
3049 ring
->semaphore
.mbox
.wait
[VCS2
] = MI_SEMAPHORE_SYNC_INVALID
;
3050 ring
->semaphore
.mbox
.signal
[RCS
] = GEN6_RBSYNC
;
3051 ring
->semaphore
.mbox
.signal
[VCS
] = GEN6_VBSYNC
;
3052 ring
->semaphore
.mbox
.signal
[BCS
] = GEN6_NOSYNC
;
3053 ring
->semaphore
.mbox
.signal
[VECS
] = GEN6_VEBSYNC
;
3054 ring
->semaphore
.mbox
.signal
[VCS2
] = GEN6_NOSYNC
;
3057 ring
->init_hw
= init_ring_common
;
3059 return intel_init_ring_buffer(dev
, ring
);
3062 int intel_init_vebox_ring_buffer(struct drm_device
*dev
)
3064 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3065 struct intel_engine_cs
*ring
= &dev_priv
->ring
[VECS
];
3067 ring
->name
= "video enhancement ring";
3069 ring
->exec_id
= I915_EXEC_VEBOX
;
3071 ring
->mmio_base
= VEBOX_RING_BASE
;
3072 ring
->write_tail
= ring_write_tail
;
3073 ring
->flush
= gen6_ring_flush
;
3074 ring
->add_request
= gen6_add_request
;
3075 ring
->get_seqno
= gen6_ring_get_seqno
;
3076 ring
->set_seqno
= ring_set_seqno
;
3078 if (INTEL_INFO(dev
)->gen
>= 8) {
3079 ring
->irq_enable_mask
=
3080 GT_RENDER_USER_INTERRUPT
<< GEN8_VECS_IRQ_SHIFT
;
3081 ring
->irq_get
= gen8_ring_get_irq
;
3082 ring
->irq_put
= gen8_ring_put_irq
;
3083 ring
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
3084 if (i915_semaphore_is_enabled(dev
)) {
3085 ring
->semaphore
.sync_to
= gen8_ring_sync
;
3086 ring
->semaphore
.signal
= gen8_xcs_signal
;
3087 GEN8_RING_SEMAPHORE_INIT
;
3090 ring
->irq_enable_mask
= PM_VEBOX_USER_INTERRUPT
;
3091 ring
->irq_get
= hsw_vebox_get_irq
;
3092 ring
->irq_put
= hsw_vebox_put_irq
;
3093 ring
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
3094 if (i915_semaphore_is_enabled(dev
)) {
3095 ring
->semaphore
.sync_to
= gen6_ring_sync
;
3096 ring
->semaphore
.signal
= gen6_signal
;
3097 ring
->semaphore
.mbox
.wait
[RCS
] = MI_SEMAPHORE_SYNC_VER
;
3098 ring
->semaphore
.mbox
.wait
[VCS
] = MI_SEMAPHORE_SYNC_VEV
;
3099 ring
->semaphore
.mbox
.wait
[BCS
] = MI_SEMAPHORE_SYNC_VEB
;
3100 ring
->semaphore
.mbox
.wait
[VECS
] = MI_SEMAPHORE_SYNC_INVALID
;
3101 ring
->semaphore
.mbox
.wait
[VCS2
] = MI_SEMAPHORE_SYNC_INVALID
;
3102 ring
->semaphore
.mbox
.signal
[RCS
] = GEN6_RVESYNC
;
3103 ring
->semaphore
.mbox
.signal
[VCS
] = GEN6_VVESYNC
;
3104 ring
->semaphore
.mbox
.signal
[BCS
] = GEN6_BVESYNC
;
3105 ring
->semaphore
.mbox
.signal
[VECS
] = GEN6_NOSYNC
;
3106 ring
->semaphore
.mbox
.signal
[VCS2
] = GEN6_NOSYNC
;
3109 ring
->init_hw
= init_ring_common
;
3111 return intel_init_ring_buffer(dev
, ring
);
3115 intel_ring_flush_all_caches(struct drm_i915_gem_request
*req
)
3117 struct intel_engine_cs
*ring
= req
->ring
;
3120 if (!ring
->gpu_caches_dirty
)
3123 ret
= ring
->flush(req
, 0, I915_GEM_GPU_DOMAINS
);
3127 trace_i915_gem_ring_flush(req
, 0, I915_GEM_GPU_DOMAINS
);
3129 ring
->gpu_caches_dirty
= false;
3134 intel_ring_invalidate_all_caches(struct drm_i915_gem_request
*req
)
3136 struct intel_engine_cs
*ring
= req
->ring
;
3137 uint32_t flush_domains
;
3141 if (ring
->gpu_caches_dirty
)
3142 flush_domains
= I915_GEM_GPU_DOMAINS
;
3144 ret
= ring
->flush(req
, I915_GEM_GPU_DOMAINS
, flush_domains
);
3148 trace_i915_gem_ring_flush(req
, I915_GEM_GPU_DOMAINS
, flush_domains
);
3150 ring
->gpu_caches_dirty
= false;
3155 intel_stop_ring_buffer(struct intel_engine_cs
*ring
)
3159 if (!intel_ring_initialized(ring
))
3162 ret
= intel_ring_idle(ring
);
3163 if (ret
&& !i915_reset_in_progress(&to_i915(ring
->dev
)->gpu_error
))
3164 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",