EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-at91.c
blob921d32bfcda8eabbbb3677178734f6b4f614987a
1 /*
2 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 * Copyright (C) 2011 Weinmann Medical GmbH
5 * Author: Nikolaus Voss <n.voss@weinmann.de>
7 * Evolved from original work by:
8 * Copyright (C) 2004 Rick Bronson
9 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 * Borrowed heavily from original work by:
12 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
37 #define DEFAULT_TWI_CLK_HZ 100000 /* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT msecs_to_jiffies(100) /* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD 8 /* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT 2000
42 /* AT91 TWI register definitions */
43 #define AT91_TWI_CR 0x0000 /* Control Register */
44 #define AT91_TWI_START BIT(0) /* Send a Start Condition */
45 #define AT91_TWI_STOP BIT(1) /* Send a Stop Condition */
46 #define AT91_TWI_MSEN BIT(2) /* Master Transfer Enable */
47 #define AT91_TWI_MSDIS BIT(3) /* Master Transfer Disable */
48 #define AT91_TWI_SVEN BIT(4) /* Slave Transfer Enable */
49 #define AT91_TWI_SVDIS BIT(5) /* Slave Transfer Disable */
50 #define AT91_TWI_QUICK BIT(6) /* SMBus quick command */
51 #define AT91_TWI_SWRST BIT(7) /* Software Reset */
52 #define AT91_TWI_ACMEN BIT(16) /* Alternative Command Mode Enable */
53 #define AT91_TWI_ACMDIS BIT(17) /* Alternative Command Mode Disable */
54 #define AT91_TWI_THRCLR BIT(24) /* Transmit Holding Register Clear */
55 #define AT91_TWI_RHRCLR BIT(25) /* Receive Holding Register Clear */
56 #define AT91_TWI_LOCKCLR BIT(26) /* Lock Clear */
57 #define AT91_TWI_FIFOEN BIT(28) /* FIFO Enable */
58 #define AT91_TWI_FIFODIS BIT(29) /* FIFO Disable */
60 #define AT91_TWI_MMR 0x0004 /* Master Mode Register */
61 #define AT91_TWI_IADRSZ_1 0x0100 /* Internal Device Address Size */
62 #define AT91_TWI_MREAD BIT(12) /* Master Read Direction */
64 #define AT91_TWI_IADR 0x000c /* Internal Address Register */
66 #define AT91_TWI_CWGR 0x0010 /* Clock Waveform Generator Reg */
67 #define AT91_TWI_CWGR_HOLD_MAX 0x1f
68 #define AT91_TWI_CWGR_HOLD(x) (((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)
70 #define AT91_TWI_SR 0x0020 /* Status Register */
71 #define AT91_TWI_TXCOMP BIT(0) /* Transmission Complete */
72 #define AT91_TWI_RXRDY BIT(1) /* Receive Holding Register Ready */
73 #define AT91_TWI_TXRDY BIT(2) /* Transmit Holding Register Ready */
74 #define AT91_TWI_OVRE BIT(6) /* Overrun Error */
75 #define AT91_TWI_UNRE BIT(7) /* Underrun Error */
76 #define AT91_TWI_NACK BIT(8) /* Not Acknowledged */
77 #define AT91_TWI_LOCK BIT(23) /* TWI Lock due to Frame Errors */
79 #define AT91_TWI_INT_MASK \
80 (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
82 #define AT91_TWI_IER 0x0024 /* Interrupt Enable Register */
83 #define AT91_TWI_IDR 0x0028 /* Interrupt Disable Register */
84 #define AT91_TWI_IMR 0x002c /* Interrupt Mask Register */
85 #define AT91_TWI_RHR 0x0030 /* Receive Holding Register */
86 #define AT91_TWI_THR 0x0034 /* Transmit Holding Register */
88 #define AT91_TWI_ACR 0x0040 /* Alternative Command Register */
89 #define AT91_TWI_ACR_DATAL(len) ((len) & 0xff)
90 #define AT91_TWI_ACR_DIR BIT(8)
92 #define AT91_TWI_FMR 0x0050 /* FIFO Mode Register */
93 #define AT91_TWI_FMR_TXRDYM(mode) (((mode) & 0x3) << 0)
94 #define AT91_TWI_FMR_TXRDYM_MASK (0x3 << 0)
95 #define AT91_TWI_FMR_RXRDYM(mode) (((mode) & 0x3) << 4)
96 #define AT91_TWI_FMR_RXRDYM_MASK (0x3 << 4)
97 #define AT91_TWI_ONE_DATA 0x0
98 #define AT91_TWI_TWO_DATA 0x1
99 #define AT91_TWI_FOUR_DATA 0x2
101 #define AT91_TWI_FLR 0x0054 /* FIFO Level Register */
103 #define AT91_TWI_FSR 0x0060 /* FIFO Status Register */
104 #define AT91_TWI_FIER 0x0064 /* FIFO Interrupt Enable Register */
105 #define AT91_TWI_FIDR 0x0068 /* FIFO Interrupt Disable Register */
106 #define AT91_TWI_FIMR 0x006c /* FIFO Interrupt Mask Register */
108 #define AT91_TWI_VER 0x00fc /* Version Register */
110 struct at91_twi_pdata {
111 unsigned clk_max_div;
112 unsigned clk_offset;
113 bool has_unre_flag;
114 bool has_alt_cmd;
115 bool has_hold_field;
116 struct at_dma_slave dma_slave;
119 struct at91_twi_dma {
120 struct dma_chan *chan_rx;
121 struct dma_chan *chan_tx;
122 struct scatterlist sg[2];
123 struct dma_async_tx_descriptor *data_desc;
124 enum dma_data_direction direction;
125 bool buf_mapped;
126 bool xfer_in_progress;
129 struct at91_twi_dev {
130 struct device *dev;
131 void __iomem *base;
132 struct completion cmd_complete;
133 struct clk *clk;
134 u8 *buf;
135 size_t buf_len;
136 struct i2c_msg *msg;
137 int irq;
138 unsigned imr;
139 unsigned transfer_status;
140 struct i2c_adapter adapter;
141 unsigned twi_cwgr_reg;
142 struct at91_twi_pdata *pdata;
143 bool use_dma;
144 bool recv_len_abort;
145 u32 fifo_size;
146 struct at91_twi_dma dma;
149 static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
151 return readl_relaxed(dev->base + reg);
154 static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
156 writel_relaxed(val, dev->base + reg);
159 static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
161 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
164 static void at91_twi_irq_save(struct at91_twi_dev *dev)
166 dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
167 at91_disable_twi_interrupts(dev);
170 static void at91_twi_irq_restore(struct at91_twi_dev *dev)
172 at91_twi_write(dev, AT91_TWI_IER, dev->imr);
175 static void at91_init_twi_bus(struct at91_twi_dev *dev)
177 at91_disable_twi_interrupts(dev);
178 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
179 /* FIFO should be enabled immediately after the software reset */
180 if (dev->fifo_size)
181 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
182 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
183 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
184 at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
188 * Calculate symmetric clock as stated in datasheet:
189 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
191 static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
193 int ckdiv, cdiv, div, hold = 0;
194 struct at91_twi_pdata *pdata = dev->pdata;
195 int offset = pdata->clk_offset;
196 int max_ckdiv = pdata->clk_max_div;
197 u32 twd_hold_time_ns = 0;
199 div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
200 2 * twi_clk) - offset);
201 ckdiv = fls(div >> 8);
202 cdiv = div >> ckdiv;
204 if (ckdiv > max_ckdiv) {
205 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
206 ckdiv, max_ckdiv);
207 ckdiv = max_ckdiv;
208 cdiv = 255;
211 if (pdata->has_hold_field) {
212 of_property_read_u32(dev->dev->of_node, "i2c-sda-hold-time-ns",
213 &twd_hold_time_ns);
216 * hold time = HOLD + 3 x T_peripheral_clock
217 * Use clk rate in kHz to prevent overflows when computing
218 * hold.
220 hold = DIV_ROUND_UP(twd_hold_time_ns
221 * (clk_get_rate(dev->clk) / 1000), 1000000);
222 hold -= 3;
223 if (hold < 0)
224 hold = 0;
225 if (hold > AT91_TWI_CWGR_HOLD_MAX) {
226 dev_warn(dev->dev,
227 "HOLD field set to its maximum value (%d instead of %d)\n",
228 AT91_TWI_CWGR_HOLD_MAX, hold);
229 hold = AT91_TWI_CWGR_HOLD_MAX;
233 dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
234 | AT91_TWI_CWGR_HOLD(hold);
236 dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
237 cdiv, ckdiv, hold, twd_hold_time_ns);
240 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
242 struct at91_twi_dma *dma = &dev->dma;
244 at91_twi_irq_save(dev);
246 if (dma->xfer_in_progress) {
247 if (dma->direction == DMA_FROM_DEVICE)
248 dmaengine_terminate_all(dma->chan_rx);
249 else
250 dmaengine_terminate_all(dma->chan_tx);
251 dma->xfer_in_progress = false;
253 if (dma->buf_mapped) {
254 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
255 dev->buf_len, dma->direction);
256 dma->buf_mapped = false;
259 at91_twi_irq_restore(dev);
262 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
264 if (!dev->buf_len)
265 return;
267 /* 8bit write works with and without FIFO */
268 writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
270 /* send stop when last byte has been written */
271 if (--dev->buf_len == 0)
272 if (!dev->pdata->has_alt_cmd)
273 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
275 dev_dbg(dev->dev, "wrote 0x%x, to go %d\n", *dev->buf, dev->buf_len);
277 ++dev->buf;
280 static void at91_twi_write_data_dma_callback(void *data)
282 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
284 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
285 dev->buf_len, DMA_TO_DEVICE);
288 * When this callback is called, THR/TX FIFO is likely not to be empty
289 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
290 * Status Register to be sure that the STOP bit has been sent and the
291 * transfer is completed. The NACK interrupt has already been enabled,
292 * we just have to enable TXCOMP one.
294 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
295 if (!dev->pdata->has_alt_cmd)
296 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
299 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
301 dma_addr_t dma_addr;
302 struct dma_async_tx_descriptor *txdesc;
303 struct at91_twi_dma *dma = &dev->dma;
304 struct dma_chan *chan_tx = dma->chan_tx;
305 unsigned int sg_len = 1;
307 if (!dev->buf_len)
308 return;
310 dma->direction = DMA_TO_DEVICE;
312 at91_twi_irq_save(dev);
313 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
314 DMA_TO_DEVICE);
315 if (dma_mapping_error(dev->dev, dma_addr)) {
316 dev_err(dev->dev, "dma map failed\n");
317 return;
319 dma->buf_mapped = true;
320 at91_twi_irq_restore(dev);
322 if (dev->fifo_size) {
323 size_t part1_len, part2_len;
324 struct scatterlist *sg;
325 unsigned fifo_mr;
327 sg_len = 0;
329 part1_len = dev->buf_len & ~0x3;
330 if (part1_len) {
331 sg = &dma->sg[sg_len++];
332 sg_dma_len(sg) = part1_len;
333 sg_dma_address(sg) = dma_addr;
336 part2_len = dev->buf_len & 0x3;
337 if (part2_len) {
338 sg = &dma->sg[sg_len++];
339 sg_dma_len(sg) = part2_len;
340 sg_dma_address(sg) = dma_addr + part1_len;
344 * DMA controller is triggered when at least 4 data can be
345 * written into the TX FIFO
347 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
348 fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
349 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
350 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
351 } else {
352 sg_dma_len(&dma->sg[0]) = dev->buf_len;
353 sg_dma_address(&dma->sg[0]) = dma_addr;
356 txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
357 DMA_MEM_TO_DEV,
358 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
359 if (!txdesc) {
360 dev_err(dev->dev, "dma prep slave sg failed\n");
361 goto error;
364 txdesc->callback = at91_twi_write_data_dma_callback;
365 txdesc->callback_param = dev;
367 dma->xfer_in_progress = true;
368 dmaengine_submit(txdesc);
369 dma_async_issue_pending(chan_tx);
371 return;
373 error:
374 at91_twi_dma_cleanup(dev);
377 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
380 * If we are in this case, it means there is garbage data in RHR, so
381 * delete them.
383 if (!dev->buf_len) {
384 at91_twi_read(dev, AT91_TWI_RHR);
385 return;
388 /* 8bit read works with and without FIFO */
389 *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
390 --dev->buf_len;
392 /* return if aborting, we only needed to read RHR to clear RXRDY*/
393 if (dev->recv_len_abort)
394 return;
396 /* handle I2C_SMBUS_BLOCK_DATA */
397 if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
398 /* ensure length byte is a valid value */
399 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
400 dev->msg->flags &= ~I2C_M_RECV_LEN;
401 dev->buf_len += *dev->buf;
402 dev->msg->len = dev->buf_len + 1;
403 dev_dbg(dev->dev, "received block length %d\n",
404 dev->buf_len);
405 } else {
406 /* abort and send the stop by reading one more byte */
407 dev->recv_len_abort = true;
408 dev->buf_len = 1;
412 /* send stop if second but last byte has been read */
413 if (!dev->pdata->has_alt_cmd && dev->buf_len == 1)
414 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
416 dev_dbg(dev->dev, "read 0x%x, to go %d\n", *dev->buf, dev->buf_len);
418 ++dev->buf;
421 static void at91_twi_read_data_dma_callback(void *data)
423 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
424 unsigned ier = AT91_TWI_TXCOMP;
426 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
427 dev->buf_len, DMA_FROM_DEVICE);
429 if (!dev->pdata->has_alt_cmd) {
430 /* The last two bytes have to be read without using dma */
431 dev->buf += dev->buf_len - 2;
432 dev->buf_len = 2;
433 ier |= AT91_TWI_RXRDY;
435 at91_twi_write(dev, AT91_TWI_IER, ier);
438 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
440 dma_addr_t dma_addr;
441 struct dma_async_tx_descriptor *rxdesc;
442 struct at91_twi_dma *dma = &dev->dma;
443 struct dma_chan *chan_rx = dma->chan_rx;
444 size_t buf_len;
446 buf_len = (dev->pdata->has_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
447 dma->direction = DMA_FROM_DEVICE;
449 /* Keep in mind that we won't use dma to read the last two bytes */
450 at91_twi_irq_save(dev);
451 dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
452 if (dma_mapping_error(dev->dev, dma_addr)) {
453 dev_err(dev->dev, "dma map failed\n");
454 return;
456 dma->buf_mapped = true;
457 at91_twi_irq_restore(dev);
459 if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
460 unsigned fifo_mr;
463 * DMA controller is triggered when at least 4 data can be
464 * read from the RX FIFO
466 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
467 fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
468 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
469 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
472 sg_dma_len(&dma->sg[0]) = buf_len;
473 sg_dma_address(&dma->sg[0]) = dma_addr;
475 rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
476 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
477 if (!rxdesc) {
478 dev_err(dev->dev, "dma prep slave sg failed\n");
479 goto error;
482 rxdesc->callback = at91_twi_read_data_dma_callback;
483 rxdesc->callback_param = dev;
485 dma->xfer_in_progress = true;
486 dmaengine_submit(rxdesc);
487 dma_async_issue_pending(dma->chan_rx);
489 return;
491 error:
492 at91_twi_dma_cleanup(dev);
495 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
497 struct at91_twi_dev *dev = dev_id;
498 const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
499 const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
501 if (!irqstatus)
502 return IRQ_NONE;
504 * In reception, the behavior of the twi device (before sama5d2) is
505 * weird. There is some magic about RXRDY flag! When a data has been
506 * almost received, the reception of a new one is anticipated if there
507 * is no stop command to send. That is the reason why ask for sending
508 * the stop command not on the last data but on the second last one.
510 * Unfortunately, we could still have the RXRDY flag set even if the
511 * transfer is done and we have read the last data. It might happen
512 * when the i2c slave device sends too quickly data after receiving the
513 * ack from the master. The data has been almost received before having
514 * the order to send stop. In this case, sending the stop command could
515 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
516 * the RXRDY interrupt first in order to not keep garbage data in the
517 * Receive Holding Register for the next transfer.
519 if (irqstatus & AT91_TWI_RXRDY)
520 at91_twi_read_next_byte(dev);
523 * When a NACK condition is detected, the I2C controller sets the NACK,
524 * TXCOMP and TXRDY bits all together in the Status Register (SR).
526 * 1 - Handling NACK errors with CPU write transfer.
528 * In such case, we should not write the next byte into the Transmit
529 * Holding Register (THR) otherwise the I2C controller would start a new
530 * transfer and the I2C slave is likely to reply by another NACK.
532 * 2 - Handling NACK errors with DMA write transfer.
534 * By setting the TXRDY bit in the SR, the I2C controller also triggers
535 * the DMA controller to write the next data into the THR. Then the
536 * result depends on the hardware version of the I2C controller.
538 * 2a - Without support of the Alternative Command mode.
540 * This is the worst case: the DMA controller is triggered to write the
541 * next data into the THR, hence starting a new transfer: the I2C slave
542 * is likely to reply by another NACK.
543 * Concurrently, this interrupt handler is likely to be called to manage
544 * the first NACK before the I2C controller detects the second NACK and
545 * sets once again the NACK bit into the SR.
546 * When handling the first NACK, this interrupt handler disables the I2C
547 * controller interruptions, especially the NACK interrupt.
548 * Hence, the NACK bit is pending into the SR. This is why we should
549 * read the SR to clear all pending interrupts at the beginning of
550 * at91_do_twi_transfer() before actually starting a new transfer.
552 * 2b - With support of the Alternative Command mode.
554 * When a NACK condition is detected, the I2C controller also locks the
555 * THR (and sets the LOCK bit in the SR): even though the DMA controller
556 * is triggered by the TXRDY bit to write the next data into the THR,
557 * this data actually won't go on the I2C bus hence a second NACK is not
558 * generated.
560 if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
561 at91_disable_twi_interrupts(dev);
562 complete(&dev->cmd_complete);
563 } else if (irqstatus & AT91_TWI_TXRDY) {
564 at91_twi_write_next_byte(dev);
567 /* catch error flags */
568 dev->transfer_status |= status;
570 return IRQ_HANDLED;
573 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
575 int ret;
576 unsigned long time_left;
577 bool has_unre_flag = dev->pdata->has_unre_flag;
578 bool has_alt_cmd = dev->pdata->has_alt_cmd;
581 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
582 * read flag but shows the state of the transmission at the time the
583 * Status Register is read. According to the programmer datasheet,
584 * TXCOMP is set when both holding register and internal shifter are
585 * empty and STOP condition has been sent.
586 * Consequently, we should enable NACK interrupt rather than TXCOMP to
587 * detect transmission failure.
588 * Indeed let's take the case of an i2c write command using DMA.
589 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
590 * TXCOMP bits are set together into the Status Register.
591 * LOCK is a clear on write bit, which is set to prevent the DMA
592 * controller from sending new data on the i2c bus after a NACK
593 * condition has happened. Once locked, this i2c peripheral stops
594 * triggering the DMA controller for new data but it is more than
595 * likely that a new DMA transaction is already in progress, writing
596 * into the Transmit Holding Register. Since the peripheral is locked,
597 * these new data won't be sent to the i2c bus but they will remain
598 * into the Transmit Holding Register, so TXCOMP bit is cleared.
599 * Then when the interrupt handler is called, the Status Register is
600 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
601 * manage the error properly, without waiting for timeout.
602 * This case can be reproduced easyly when writing into an at24 eeprom.
604 * Besides, the TXCOMP bit is already set before the i2c transaction
605 * has been started. For read transactions, this bit is cleared when
606 * writing the START bit into the Control Register. So the
607 * corresponding interrupt can safely be enabled just after.
608 * However for write transactions managed by the CPU, we first write
609 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
610 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
611 * the interrupt handler would be called immediately and the i2c command
612 * would be reported as completed.
613 * Also when a write transaction is managed by the DMA controller,
614 * enabling the TXCOMP interrupt in this function may lead to a race
615 * condition since we don't know whether the TXCOMP interrupt is enabled
616 * before or after the DMA has started to write into THR. So the TXCOMP
617 * interrupt is enabled later by at91_twi_write_data_dma_callback().
618 * Immediately after in that DMA callback, if the alternative command
619 * mode is not used, we still need to send the STOP condition manually
620 * writing the corresponding bit into the Control Register.
623 dev_dbg(dev->dev, "transfer: %s %d bytes.\n",
624 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
626 reinit_completion(&dev->cmd_complete);
627 dev->transfer_status = 0;
629 /* Clear pending interrupts, such as NACK. */
630 at91_twi_read(dev, AT91_TWI_SR);
632 if (dev->fifo_size) {
633 unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
635 /* Reset FIFO mode register */
636 fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
637 AT91_TWI_FMR_RXRDYM_MASK);
638 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
639 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
640 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
642 /* Flush FIFOs */
643 at91_twi_write(dev, AT91_TWI_CR,
644 AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
647 if (!dev->buf_len) {
648 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
649 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
650 } else if (dev->msg->flags & I2C_M_RD) {
651 unsigned start_flags = AT91_TWI_START;
653 /* if only one byte is to be read, immediately stop transfer */
654 if (!has_alt_cmd && dev->buf_len <= 1 &&
655 !(dev->msg->flags & I2C_M_RECV_LEN))
656 start_flags |= AT91_TWI_STOP;
657 at91_twi_write(dev, AT91_TWI_CR, start_flags);
659 * When using dma without alternative command mode, the last
660 * byte has to be read manually in order to not send the stop
661 * command too late and then to receive extra data.
662 * In practice, there are some issues if you use the dma to
663 * read n-1 bytes because of latency.
664 * Reading n-2 bytes with dma and the two last ones manually
665 * seems to be the best solution.
667 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
668 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
669 at91_twi_read_data_dma(dev);
670 } else {
671 at91_twi_write(dev, AT91_TWI_IER,
672 AT91_TWI_TXCOMP |
673 AT91_TWI_NACK |
674 AT91_TWI_RXRDY);
676 } else {
677 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
678 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
679 at91_twi_write_data_dma(dev);
680 } else {
681 at91_twi_write_next_byte(dev);
682 at91_twi_write(dev, AT91_TWI_IER,
683 AT91_TWI_TXCOMP |
684 AT91_TWI_NACK |
685 AT91_TWI_TXRDY);
689 time_left = wait_for_completion_timeout(&dev->cmd_complete,
690 dev->adapter.timeout);
691 if (time_left == 0) {
692 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
693 dev_err(dev->dev, "controller timed out\n");
694 at91_init_twi_bus(dev);
695 ret = -ETIMEDOUT;
696 goto error;
698 if (dev->transfer_status & AT91_TWI_NACK) {
699 dev_dbg(dev->dev, "received nack\n");
700 ret = -EREMOTEIO;
701 goto error;
703 if (dev->transfer_status & AT91_TWI_OVRE) {
704 dev_err(dev->dev, "overrun while reading\n");
705 ret = -EIO;
706 goto error;
708 if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
709 dev_err(dev->dev, "underrun while writing\n");
710 ret = -EIO;
711 goto error;
713 if ((has_alt_cmd || dev->fifo_size) &&
714 (dev->transfer_status & AT91_TWI_LOCK)) {
715 dev_err(dev->dev, "tx locked\n");
716 ret = -EIO;
717 goto error;
719 if (dev->recv_len_abort) {
720 dev_err(dev->dev, "invalid smbus block length recvd\n");
721 ret = -EPROTO;
722 goto error;
725 dev_dbg(dev->dev, "transfer complete\n");
727 return 0;
729 error:
730 /* first stop DMA transfer if still in progress */
731 at91_twi_dma_cleanup(dev);
732 /* then flush THR/FIFO and unlock TX if locked */
733 if ((has_alt_cmd || dev->fifo_size) &&
734 (dev->transfer_status & AT91_TWI_LOCK)) {
735 dev_dbg(dev->dev, "unlock tx\n");
736 at91_twi_write(dev, AT91_TWI_CR,
737 AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
739 return ret;
742 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
744 struct at91_twi_dev *dev = i2c_get_adapdata(adap);
745 int ret;
746 unsigned int_addr_flag = 0;
747 struct i2c_msg *m_start = msg;
748 bool is_read, use_alt_cmd = false;
750 dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
752 ret = pm_runtime_get_sync(dev->dev);
753 if (ret < 0)
754 goto out;
756 if (num == 2) {
757 int internal_address = 0;
758 int i;
760 /* 1st msg is put into the internal address, start with 2nd */
761 m_start = &msg[1];
762 for (i = 0; i < msg->len; ++i) {
763 const unsigned addr = msg->buf[msg->len - 1 - i];
765 internal_address |= addr << (8 * i);
766 int_addr_flag += AT91_TWI_IADRSZ_1;
768 at91_twi_write(dev, AT91_TWI_IADR, internal_address);
771 is_read = (m_start->flags & I2C_M_RD);
772 if (dev->pdata->has_alt_cmd) {
773 if (m_start->len > 0) {
774 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
775 at91_twi_write(dev, AT91_TWI_ACR,
776 AT91_TWI_ACR_DATAL(m_start->len) |
777 ((is_read) ? AT91_TWI_ACR_DIR : 0));
778 use_alt_cmd = true;
779 } else {
780 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
784 at91_twi_write(dev, AT91_TWI_MMR,
785 (m_start->addr << 16) |
786 int_addr_flag |
787 ((!use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
789 dev->buf_len = m_start->len;
790 dev->buf = m_start->buf;
791 dev->msg = m_start;
792 dev->recv_len_abort = false;
794 ret = at91_do_twi_transfer(dev);
796 ret = (ret < 0) ? ret : num;
797 out:
798 pm_runtime_mark_last_busy(dev->dev);
799 pm_runtime_put_autosuspend(dev->dev);
801 return ret;
805 * The hardware can handle at most two messages concatenated by a
806 * repeated start via it's internal address feature.
808 static struct i2c_adapter_quirks at91_twi_quirks = {
809 .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
810 .max_comb_1st_msg_len = 3,
813 static u32 at91_twi_func(struct i2c_adapter *adapter)
815 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
816 | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
819 static struct i2c_algorithm at91_twi_algorithm = {
820 .master_xfer = at91_twi_xfer,
821 .functionality = at91_twi_func,
824 static struct at91_twi_pdata at91rm9200_config = {
825 .clk_max_div = 5,
826 .clk_offset = 3,
827 .has_unre_flag = true,
828 .has_alt_cmd = false,
829 .has_hold_field = false,
832 static struct at91_twi_pdata at91sam9261_config = {
833 .clk_max_div = 5,
834 .clk_offset = 4,
835 .has_unre_flag = false,
836 .has_alt_cmd = false,
837 .has_hold_field = false,
840 static struct at91_twi_pdata at91sam9260_config = {
841 .clk_max_div = 7,
842 .clk_offset = 4,
843 .has_unre_flag = false,
844 .has_alt_cmd = false,
845 .has_hold_field = false,
848 static struct at91_twi_pdata at91sam9g20_config = {
849 .clk_max_div = 7,
850 .clk_offset = 4,
851 .has_unre_flag = false,
852 .has_alt_cmd = false,
853 .has_hold_field = false,
856 static struct at91_twi_pdata at91sam9g10_config = {
857 .clk_max_div = 7,
858 .clk_offset = 4,
859 .has_unre_flag = false,
860 .has_alt_cmd = false,
861 .has_hold_field = false,
864 static const struct platform_device_id at91_twi_devtypes[] = {
866 .name = "i2c-at91rm9200",
867 .driver_data = (unsigned long) &at91rm9200_config,
868 }, {
869 .name = "i2c-at91sam9261",
870 .driver_data = (unsigned long) &at91sam9261_config,
871 }, {
872 .name = "i2c-at91sam9260",
873 .driver_data = (unsigned long) &at91sam9260_config,
874 }, {
875 .name = "i2c-at91sam9g20",
876 .driver_data = (unsigned long) &at91sam9g20_config,
877 }, {
878 .name = "i2c-at91sam9g10",
879 .driver_data = (unsigned long) &at91sam9g10_config,
880 }, {
881 /* sentinel */
885 #if defined(CONFIG_OF)
886 static struct at91_twi_pdata at91sam9x5_config = {
887 .clk_max_div = 7,
888 .clk_offset = 4,
889 .has_unre_flag = false,
890 .has_alt_cmd = false,
891 .has_hold_field = false,
894 static struct at91_twi_pdata sama5d4_config = {
895 .clk_max_div = 7,
896 .clk_offset = 4,
897 .has_unre_flag = false,
898 .has_alt_cmd = false,
899 .has_hold_field = true,
902 static struct at91_twi_pdata sama5d2_config = {
903 .clk_max_div = 7,
904 .clk_offset = 4,
905 .has_unre_flag = true,
906 .has_alt_cmd = true,
907 .has_hold_field = true,
910 static const struct of_device_id atmel_twi_dt_ids[] = {
912 .compatible = "atmel,at91rm9200-i2c",
913 .data = &at91rm9200_config,
914 } , {
915 .compatible = "atmel,at91sam9260-i2c",
916 .data = &at91sam9260_config,
917 } , {
918 .compatible = "atmel,at91sam9261-i2c",
919 .data = &at91sam9261_config,
920 } , {
921 .compatible = "atmel,at91sam9g20-i2c",
922 .data = &at91sam9g20_config,
923 } , {
924 .compatible = "atmel,at91sam9g10-i2c",
925 .data = &at91sam9g10_config,
926 }, {
927 .compatible = "atmel,at91sam9x5-i2c",
928 .data = &at91sam9x5_config,
929 }, {
930 .compatible = "atmel,sama5d4-i2c",
931 .data = &sama5d4_config,
932 }, {
933 .compatible = "atmel,sama5d2-i2c",
934 .data = &sama5d2_config,
935 }, {
936 /* sentinel */
939 MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
940 #endif
942 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
944 int ret = 0;
945 struct dma_slave_config slave_config;
946 struct at91_twi_dma *dma = &dev->dma;
947 enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
950 * The actual width of the access will be chosen in
951 * dmaengine_prep_slave_sg():
952 * for each buffer in the scatter-gather list, if its size is aligned
953 * to addr_width then addr_width accesses will be performed to transfer
954 * the buffer. On the other hand, if the buffer size is not aligned to
955 * addr_width then the buffer is transferred using single byte accesses.
956 * Please refer to the Atmel eXtended DMA controller driver.
957 * When FIFOs are used, the TXRDYM threshold can always be set to
958 * trigger the XDMAC when at least 4 data can be written into the TX
959 * FIFO, even if single byte accesses are performed.
960 * However the RXRDYM threshold must be set to fit the access width,
961 * deduced from buffer length, so the XDMAC is triggered properly to
962 * read data from the RX FIFO.
964 if (dev->fifo_size)
965 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
967 memset(&slave_config, 0, sizeof(slave_config));
968 slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
969 slave_config.src_addr_width = addr_width;
970 slave_config.src_maxburst = 1;
971 slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
972 slave_config.dst_addr_width = addr_width;
973 slave_config.dst_maxburst = 1;
974 slave_config.device_fc = false;
976 dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
977 if (IS_ERR(dma->chan_tx)) {
978 ret = PTR_ERR(dma->chan_tx);
979 dma->chan_tx = NULL;
980 goto error;
983 dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
984 if (IS_ERR(dma->chan_rx)) {
985 ret = PTR_ERR(dma->chan_rx);
986 dma->chan_rx = NULL;
987 goto error;
990 slave_config.direction = DMA_MEM_TO_DEV;
991 if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
992 dev_err(dev->dev, "failed to configure tx channel\n");
993 ret = -EINVAL;
994 goto error;
997 slave_config.direction = DMA_DEV_TO_MEM;
998 if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
999 dev_err(dev->dev, "failed to configure rx channel\n");
1000 ret = -EINVAL;
1001 goto error;
1004 sg_init_table(dma->sg, 2);
1005 dma->buf_mapped = false;
1006 dma->xfer_in_progress = false;
1007 dev->use_dma = true;
1009 dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
1010 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
1012 return ret;
1014 error:
1015 if (ret != -EPROBE_DEFER)
1016 dev_info(dev->dev, "can't use DMA, error %d\n", ret);
1017 if (dma->chan_rx)
1018 dma_release_channel(dma->chan_rx);
1019 if (dma->chan_tx)
1020 dma_release_channel(dma->chan_tx);
1021 return ret;
1024 static struct at91_twi_pdata *at91_twi_get_driver_data(
1025 struct platform_device *pdev)
1027 if (pdev->dev.of_node) {
1028 const struct of_device_id *match;
1029 match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
1030 if (!match)
1031 return NULL;
1032 return (struct at91_twi_pdata *)match->data;
1034 return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
1037 static int at91_twi_probe(struct platform_device *pdev)
1039 struct at91_twi_dev *dev;
1040 struct resource *mem;
1041 int rc;
1042 u32 phy_addr;
1043 u32 bus_clk_rate;
1045 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1046 if (!dev)
1047 return -ENOMEM;
1048 init_completion(&dev->cmd_complete);
1049 dev->dev = &pdev->dev;
1051 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1052 if (!mem)
1053 return -ENODEV;
1054 phy_addr = mem->start;
1056 dev->pdata = at91_twi_get_driver_data(pdev);
1057 if (!dev->pdata)
1058 return -ENODEV;
1060 dev->base = devm_ioremap_resource(&pdev->dev, mem);
1061 if (IS_ERR(dev->base))
1062 return PTR_ERR(dev->base);
1064 dev->irq = platform_get_irq(pdev, 0);
1065 if (dev->irq < 0)
1066 return dev->irq;
1068 rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
1069 dev_name(dev->dev), dev);
1070 if (rc) {
1071 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
1072 return rc;
1075 platform_set_drvdata(pdev, dev);
1077 dev->clk = devm_clk_get(dev->dev, NULL);
1078 if (IS_ERR(dev->clk)) {
1079 dev_err(dev->dev, "no clock defined\n");
1080 return -ENODEV;
1082 clk_prepare_enable(dev->clk);
1084 if (dev->dev->of_node) {
1085 rc = at91_twi_configure_dma(dev, phy_addr);
1086 if (rc == -EPROBE_DEFER)
1087 return rc;
1090 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1091 &dev->fifo_size)) {
1092 dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
1095 rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
1096 &bus_clk_rate);
1097 if (rc)
1098 bus_clk_rate = DEFAULT_TWI_CLK_HZ;
1100 at91_calc_twi_clock(dev, bus_clk_rate);
1101 at91_init_twi_bus(dev);
1103 snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
1104 i2c_set_adapdata(&dev->adapter, dev);
1105 dev->adapter.owner = THIS_MODULE;
1106 dev->adapter.class = I2C_CLASS_DEPRECATED;
1107 dev->adapter.algo = &at91_twi_algorithm;
1108 dev->adapter.quirks = &at91_twi_quirks;
1109 dev->adapter.dev.parent = dev->dev;
1110 dev->adapter.nr = pdev->id;
1111 dev->adapter.timeout = AT91_I2C_TIMEOUT;
1112 dev->adapter.dev.of_node = pdev->dev.of_node;
1114 pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
1115 pm_runtime_use_autosuspend(dev->dev);
1116 pm_runtime_set_active(dev->dev);
1117 pm_runtime_enable(dev->dev);
1119 rc = i2c_add_numbered_adapter(&dev->adapter);
1120 if (rc) {
1121 dev_err(dev->dev, "Adapter %s registration failed\n",
1122 dev->adapter.name);
1123 clk_disable_unprepare(dev->clk);
1125 pm_runtime_disable(dev->dev);
1126 pm_runtime_set_suspended(dev->dev);
1128 return rc;
1131 dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
1132 at91_twi_read(dev, AT91_TWI_VER));
1133 return 0;
1136 static int at91_twi_remove(struct platform_device *pdev)
1138 struct at91_twi_dev *dev = platform_get_drvdata(pdev);
1140 i2c_del_adapter(&dev->adapter);
1141 clk_disable_unprepare(dev->clk);
1143 pm_runtime_disable(dev->dev);
1144 pm_runtime_set_suspended(dev->dev);
1146 return 0;
1149 #ifdef CONFIG_PM
1151 static int at91_twi_runtime_suspend(struct device *dev)
1153 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1155 clk_disable_unprepare(twi_dev->clk);
1157 pinctrl_pm_select_sleep_state(dev);
1159 return 0;
1162 static int at91_twi_runtime_resume(struct device *dev)
1164 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1166 pinctrl_pm_select_default_state(dev);
1168 return clk_prepare_enable(twi_dev->clk);
1171 static int at91_twi_suspend_noirq(struct device *dev)
1173 if (!pm_runtime_status_suspended(dev))
1174 at91_twi_runtime_suspend(dev);
1176 return 0;
1179 static int at91_twi_resume_noirq(struct device *dev)
1181 int ret;
1183 if (!pm_runtime_status_suspended(dev)) {
1184 ret = at91_twi_runtime_resume(dev);
1185 if (ret)
1186 return ret;
1189 pm_runtime_mark_last_busy(dev);
1190 pm_request_autosuspend(dev);
1192 return 0;
1195 static const struct dev_pm_ops at91_twi_pm = {
1196 .suspend_noirq = at91_twi_suspend_noirq,
1197 .resume_noirq = at91_twi_resume_noirq,
1198 .runtime_suspend = at91_twi_runtime_suspend,
1199 .runtime_resume = at91_twi_runtime_resume,
1202 #define at91_twi_pm_ops (&at91_twi_pm)
1203 #else
1204 #define at91_twi_pm_ops NULL
1205 #endif
1207 static struct platform_driver at91_twi_driver = {
1208 .probe = at91_twi_probe,
1209 .remove = at91_twi_remove,
1210 .id_table = at91_twi_devtypes,
1211 .driver = {
1212 .name = "at91_i2c",
1213 .of_match_table = of_match_ptr(atmel_twi_dt_ids),
1214 .pm = at91_twi_pm_ops,
1218 static int __init at91_twi_init(void)
1220 return platform_driver_register(&at91_twi_driver);
1223 static void __exit at91_twi_exit(void)
1225 platform_driver_unregister(&at91_twi_driver);
1228 subsys_initcall(at91_twi_init);
1229 module_exit(at91_twi_exit);
1231 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1232 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1233 MODULE_LICENSE("GPL");
1234 MODULE_ALIAS("platform:at91_i2c");