EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-pmcmsp.c
blob2c40edbf6224eb69a0cf720616b3ca8aee321502
1 /*
2 * Specific bus support for PMC-TWI compliant implementation on MSP71xx.
4 * Copyright 2005-2007 PMC-Sierra, Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
11 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
12 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
14 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
15 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
16 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
17 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
18 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
19 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
20 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/completion.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/io.h>
33 #define DRV_NAME "pmcmsptwi"
35 #define MSP_TWI_SF_CLK_REG_OFFSET 0x00
36 #define MSP_TWI_HS_CLK_REG_OFFSET 0x04
37 #define MSP_TWI_CFG_REG_OFFSET 0x08
38 #define MSP_TWI_CMD_REG_OFFSET 0x0c
39 #define MSP_TWI_ADD_REG_OFFSET 0x10
40 #define MSP_TWI_DAT_0_REG_OFFSET 0x14
41 #define MSP_TWI_DAT_1_REG_OFFSET 0x18
42 #define MSP_TWI_INT_STS_REG_OFFSET 0x1c
43 #define MSP_TWI_INT_MSK_REG_OFFSET 0x20
44 #define MSP_TWI_BUSY_REG_OFFSET 0x24
46 #define MSP_TWI_INT_STS_DONE (1 << 0)
47 #define MSP_TWI_INT_STS_LOST_ARBITRATION (1 << 1)
48 #define MSP_TWI_INT_STS_NO_RESPONSE (1 << 2)
49 #define MSP_TWI_INT_STS_DATA_COLLISION (1 << 3)
50 #define MSP_TWI_INT_STS_BUSY (1 << 4)
51 #define MSP_TWI_INT_STS_ALL 0x1f
53 #define MSP_MAX_BYTES_PER_RW 8
54 #define MSP_MAX_POLL 5
55 #define MSP_POLL_DELAY 10
56 #define MSP_IRQ_TIMEOUT (MSP_MAX_POLL * MSP_POLL_DELAY)
58 /* IO Operation macros */
59 #define pmcmsptwi_readl __raw_readl
60 #define pmcmsptwi_writel __raw_writel
62 /* TWI command type */
63 enum pmcmsptwi_cmd_type {
64 MSP_TWI_CMD_WRITE = 0, /* Write only */
65 MSP_TWI_CMD_READ = 1, /* Read only */
66 MSP_TWI_CMD_WRITE_READ = 2, /* Write then Read */
69 /* The possible results of the xferCmd */
70 enum pmcmsptwi_xfer_result {
71 MSP_TWI_XFER_OK = 0,
72 MSP_TWI_XFER_TIMEOUT,
73 MSP_TWI_XFER_BUSY,
74 MSP_TWI_XFER_DATA_COLLISION,
75 MSP_TWI_XFER_NO_RESPONSE,
76 MSP_TWI_XFER_LOST_ARBITRATION,
79 /* Corresponds to a PMCTWI clock configuration register */
80 struct pmcmsptwi_clock {
81 u8 filter; /* Bits 15:12, default = 0x03 */
82 u16 clock; /* Bits 9:0, default = 0x001f */
85 struct pmcmsptwi_clockcfg {
86 struct pmcmsptwi_clock standard; /* The standard/fast clock config */
87 struct pmcmsptwi_clock highspeed; /* The highspeed clock config */
90 /* Corresponds to the main TWI configuration register */
91 struct pmcmsptwi_cfg {
92 u8 arbf; /* Bits 15:12, default=0x03 */
93 u8 nak; /* Bits 11:8, default=0x03 */
94 u8 add10; /* Bit 7, default=0x00 */
95 u8 mst_code; /* Bits 6:4, default=0x00 */
96 u8 arb; /* Bit 1, default=0x01 */
97 u8 highspeed; /* Bit 0, default=0x00 */
100 /* A single pmctwi command to issue */
101 struct pmcmsptwi_cmd {
102 u16 addr; /* The slave address (7 or 10 bits) */
103 enum pmcmsptwi_cmd_type type; /* The command type */
104 u8 write_len; /* Number of bytes in the write buffer */
105 u8 read_len; /* Number of bytes in the read buffer */
106 u8 *write_data; /* Buffer of characters to send */
107 u8 *read_data; /* Buffer to fill with incoming data */
110 /* The private data */
111 struct pmcmsptwi_data {
112 void __iomem *iobase; /* iomapped base for IO */
113 int irq; /* IRQ to use (0 disables) */
114 struct completion wait; /* Completion for xfer */
115 struct mutex lock; /* Used for threadsafeness */
116 enum pmcmsptwi_xfer_result last_result; /* result of last xfer */
119 /* The default settings */
120 static const struct pmcmsptwi_clockcfg pmcmsptwi_defclockcfg = {
121 .standard = {
122 .filter = 0x3,
123 .clock = 0x1f,
125 .highspeed = {
126 .filter = 0x3,
127 .clock = 0x1f,
131 static const struct pmcmsptwi_cfg pmcmsptwi_defcfg = {
132 .arbf = 0x03,
133 .nak = 0x03,
134 .add10 = 0x00,
135 .mst_code = 0x00,
136 .arb = 0x01,
137 .highspeed = 0x00,
140 static struct pmcmsptwi_data pmcmsptwi_data;
142 static struct i2c_adapter pmcmsptwi_adapter;
144 /* inline helper functions */
145 static inline u32 pmcmsptwi_clock_to_reg(
146 const struct pmcmsptwi_clock *clock)
148 return ((clock->filter & 0xf) << 12) | (clock->clock & 0x03ff);
151 static inline u32 pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg *cfg)
153 return ((cfg->arbf & 0xf) << 12) |
154 ((cfg->nak & 0xf) << 8) |
155 ((cfg->add10 & 0x1) << 7) |
156 ((cfg->mst_code & 0x7) << 4) |
157 ((cfg->arb & 0x1) << 1) |
158 (cfg->highspeed & 0x1);
161 static inline void pmcmsptwi_reg_to_cfg(u32 reg, struct pmcmsptwi_cfg *cfg)
163 cfg->arbf = (reg >> 12) & 0xf;
164 cfg->nak = (reg >> 8) & 0xf;
165 cfg->add10 = (reg >> 7) & 0x1;
166 cfg->mst_code = (reg >> 4) & 0x7;
167 cfg->arb = (reg >> 1) & 0x1;
168 cfg->highspeed = reg & 0x1;
172 * Sets the current clock configuration
174 static void pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg *cfg,
175 struct pmcmsptwi_data *data)
177 mutex_lock(&data->lock);
178 pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->standard),
179 data->iobase + MSP_TWI_SF_CLK_REG_OFFSET);
180 pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->highspeed),
181 data->iobase + MSP_TWI_HS_CLK_REG_OFFSET);
182 mutex_unlock(&data->lock);
186 * Gets the current TWI bus configuration
188 static void pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg *cfg,
189 struct pmcmsptwi_data *data)
191 mutex_lock(&data->lock);
192 pmcmsptwi_reg_to_cfg(pmcmsptwi_readl(
193 data->iobase + MSP_TWI_CFG_REG_OFFSET), cfg);
194 mutex_unlock(&data->lock);
198 * Sets the current TWI bus configuration
200 static void pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg *cfg,
201 struct pmcmsptwi_data *data)
203 mutex_lock(&data->lock);
204 pmcmsptwi_writel(pmcmsptwi_cfg_to_reg(cfg),
205 data->iobase + MSP_TWI_CFG_REG_OFFSET);
206 mutex_unlock(&data->lock);
210 * Parses the 'int_sts' register and returns a well-defined error code
212 static enum pmcmsptwi_xfer_result pmcmsptwi_get_result(u32 reg)
214 if (reg & MSP_TWI_INT_STS_LOST_ARBITRATION) {
215 dev_dbg(&pmcmsptwi_adapter.dev,
216 "Result: Lost arbitration\n");
217 return MSP_TWI_XFER_LOST_ARBITRATION;
218 } else if (reg & MSP_TWI_INT_STS_NO_RESPONSE) {
219 dev_dbg(&pmcmsptwi_adapter.dev,
220 "Result: No response\n");
221 return MSP_TWI_XFER_NO_RESPONSE;
222 } else if (reg & MSP_TWI_INT_STS_DATA_COLLISION) {
223 dev_dbg(&pmcmsptwi_adapter.dev,
224 "Result: Data collision\n");
225 return MSP_TWI_XFER_DATA_COLLISION;
226 } else if (reg & MSP_TWI_INT_STS_BUSY) {
227 dev_dbg(&pmcmsptwi_adapter.dev,
228 "Result: Bus busy\n");
229 return MSP_TWI_XFER_BUSY;
232 dev_dbg(&pmcmsptwi_adapter.dev, "Result: Operation succeeded\n");
233 return MSP_TWI_XFER_OK;
237 * In interrupt mode, handle the interrupt.
238 * NOTE: Assumes data->lock is held.
240 static irqreturn_t pmcmsptwi_interrupt(int irq, void *ptr)
242 struct pmcmsptwi_data *data = ptr;
244 u32 reason = pmcmsptwi_readl(data->iobase +
245 MSP_TWI_INT_STS_REG_OFFSET);
246 pmcmsptwi_writel(reason, data->iobase + MSP_TWI_INT_STS_REG_OFFSET);
248 dev_dbg(&pmcmsptwi_adapter.dev, "Got interrupt 0x%08x\n", reason);
249 if (!(reason & MSP_TWI_INT_STS_DONE))
250 return IRQ_NONE;
252 data->last_result = pmcmsptwi_get_result(reason);
253 complete(&data->wait);
255 return IRQ_HANDLED;
259 * Probe for and register the device and return 0 if there is one.
261 static int pmcmsptwi_probe(struct platform_device *pldev)
263 struct resource *res;
264 int rc = -ENODEV;
266 /* get the static platform resources */
267 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
268 if (!res) {
269 dev_err(&pldev->dev, "IOMEM resource not found\n");
270 goto ret_err;
273 /* reserve the memory region */
274 if (!request_mem_region(res->start, resource_size(res),
275 pldev->name)) {
276 dev_err(&pldev->dev,
277 "Unable to get memory/io address region 0x%08x\n",
278 res->start);
279 rc = -EBUSY;
280 goto ret_err;
283 /* remap the memory */
284 pmcmsptwi_data.iobase = ioremap_nocache(res->start,
285 resource_size(res));
286 if (!pmcmsptwi_data.iobase) {
287 dev_err(&pldev->dev,
288 "Unable to ioremap address 0x%08x\n", res->start);
289 rc = -EIO;
290 goto ret_unreserve;
293 /* request the irq */
294 pmcmsptwi_data.irq = platform_get_irq(pldev, 0);
295 if (pmcmsptwi_data.irq) {
296 rc = request_irq(pmcmsptwi_data.irq, &pmcmsptwi_interrupt,
297 IRQF_SHARED, pldev->name, &pmcmsptwi_data);
298 if (rc == 0) {
300 * Enable 'DONE' interrupt only.
302 * If you enable all interrupts, you will get one on
303 * error and another when the operation completes.
304 * This way you only have to handle one interrupt,
305 * but you can still check all result flags.
307 pmcmsptwi_writel(MSP_TWI_INT_STS_DONE,
308 pmcmsptwi_data.iobase +
309 MSP_TWI_INT_MSK_REG_OFFSET);
310 } else {
311 dev_warn(&pldev->dev,
312 "Could not assign TWI IRQ handler "
313 "to irq %d (continuing with poll)\n",
314 pmcmsptwi_data.irq);
315 pmcmsptwi_data.irq = 0;
319 init_completion(&pmcmsptwi_data.wait);
320 mutex_init(&pmcmsptwi_data.lock);
322 pmcmsptwi_set_clock_config(&pmcmsptwi_defclockcfg, &pmcmsptwi_data);
323 pmcmsptwi_set_twi_config(&pmcmsptwi_defcfg, &pmcmsptwi_data);
325 printk(KERN_INFO DRV_NAME ": Registering MSP71xx I2C adapter\n");
327 pmcmsptwi_adapter.dev.parent = &pldev->dev;
328 platform_set_drvdata(pldev, &pmcmsptwi_adapter);
329 i2c_set_adapdata(&pmcmsptwi_adapter, &pmcmsptwi_data);
331 rc = i2c_add_adapter(&pmcmsptwi_adapter);
332 if (rc) {
333 dev_err(&pldev->dev, "Unable to register I2C adapter\n");
334 goto ret_unmap;
337 return 0;
339 ret_unmap:
340 if (pmcmsptwi_data.irq) {
341 pmcmsptwi_writel(0,
342 pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
343 free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
346 iounmap(pmcmsptwi_data.iobase);
348 ret_unreserve:
349 release_mem_region(res->start, resource_size(res));
351 ret_err:
352 return rc;
356 * Release the device and return 0 if there is one.
358 static int pmcmsptwi_remove(struct platform_device *pldev)
360 struct resource *res;
362 i2c_del_adapter(&pmcmsptwi_adapter);
364 if (pmcmsptwi_data.irq) {
365 pmcmsptwi_writel(0,
366 pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
367 free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
370 iounmap(pmcmsptwi_data.iobase);
372 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
373 release_mem_region(res->start, resource_size(res));
375 return 0;
379 * Polls the 'busy' register until the command is complete.
380 * NOTE: Assumes data->lock is held.
382 static void pmcmsptwi_poll_complete(struct pmcmsptwi_data *data)
384 int i;
386 for (i = 0; i < MSP_MAX_POLL; i++) {
387 u32 val = pmcmsptwi_readl(data->iobase +
388 MSP_TWI_BUSY_REG_OFFSET);
389 if (val == 0) {
390 u32 reason = pmcmsptwi_readl(data->iobase +
391 MSP_TWI_INT_STS_REG_OFFSET);
392 pmcmsptwi_writel(reason, data->iobase +
393 MSP_TWI_INT_STS_REG_OFFSET);
394 data->last_result = pmcmsptwi_get_result(reason);
395 return;
397 udelay(MSP_POLL_DELAY);
400 dev_dbg(&pmcmsptwi_adapter.dev, "Result: Poll timeout\n");
401 data->last_result = MSP_TWI_XFER_TIMEOUT;
405 * Do the transfer (low level):
406 * May use interrupt-driven or polling, depending on if an IRQ is
407 * presently registered.
408 * NOTE: Assumes data->lock is held.
410 static enum pmcmsptwi_xfer_result pmcmsptwi_do_xfer(
411 u32 reg, struct pmcmsptwi_data *data)
413 dev_dbg(&pmcmsptwi_adapter.dev, "Writing cmd reg 0x%08x\n", reg);
414 pmcmsptwi_writel(reg, data->iobase + MSP_TWI_CMD_REG_OFFSET);
415 if (data->irq) {
416 unsigned long timeleft = wait_for_completion_timeout(
417 &data->wait, MSP_IRQ_TIMEOUT);
418 if (timeleft == 0) {
419 dev_dbg(&pmcmsptwi_adapter.dev,
420 "Result: IRQ timeout\n");
421 complete(&data->wait);
422 data->last_result = MSP_TWI_XFER_TIMEOUT;
424 } else
425 pmcmsptwi_poll_complete(data);
427 return data->last_result;
431 * Helper routine, converts 'pmctwi_cmd' struct to register format
433 static inline u32 pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd *cmd)
435 return ((cmd->type & 0x3) << 8) |
436 (((cmd->write_len - 1) & 0x7) << 4) |
437 ((cmd->read_len - 1) & 0x7);
441 * Do the transfer (high level)
443 static enum pmcmsptwi_xfer_result pmcmsptwi_xfer_cmd(
444 struct pmcmsptwi_cmd *cmd,
445 struct pmcmsptwi_data *data)
447 enum pmcmsptwi_xfer_result retval;
449 if ((cmd->type == MSP_TWI_CMD_WRITE && cmd->write_len == 0) ||
450 (cmd->type == MSP_TWI_CMD_READ && cmd->read_len == 0) ||
451 (cmd->type == MSP_TWI_CMD_WRITE_READ &&
452 (cmd->read_len == 0 || cmd->write_len == 0))) {
453 dev_err(&pmcmsptwi_adapter.dev,
454 "%s: Cannot transfer less than 1 byte\n",
455 __func__);
456 return -EINVAL;
459 mutex_lock(&data->lock);
460 dev_dbg(&pmcmsptwi_adapter.dev,
461 "Setting address to 0x%04x\n", cmd->addr);
462 pmcmsptwi_writel(cmd->addr, data->iobase + MSP_TWI_ADD_REG_OFFSET);
464 if (cmd->type == MSP_TWI_CMD_WRITE ||
465 cmd->type == MSP_TWI_CMD_WRITE_READ) {
466 u64 tmp = be64_to_cpup((__be64 *)cmd->write_data);
467 tmp >>= (MSP_MAX_BYTES_PER_RW - cmd->write_len) * 8;
468 dev_dbg(&pmcmsptwi_adapter.dev, "Writing 0x%016llx\n", tmp);
469 pmcmsptwi_writel(tmp & 0x00000000ffffffffLL,
470 data->iobase + MSP_TWI_DAT_0_REG_OFFSET);
471 if (cmd->write_len > 4)
472 pmcmsptwi_writel(tmp >> 32,
473 data->iobase + MSP_TWI_DAT_1_REG_OFFSET);
476 retval = pmcmsptwi_do_xfer(pmcmsptwi_cmd_to_reg(cmd), data);
477 if (retval != MSP_TWI_XFER_OK)
478 goto xfer_err;
480 if (cmd->type == MSP_TWI_CMD_READ ||
481 cmd->type == MSP_TWI_CMD_WRITE_READ) {
482 int i;
483 u64 rmsk = ~(0xffffffffffffffffLL << (cmd->read_len * 8));
484 u64 tmp = (u64)pmcmsptwi_readl(data->iobase +
485 MSP_TWI_DAT_0_REG_OFFSET);
486 if (cmd->read_len > 4)
487 tmp |= (u64)pmcmsptwi_readl(data->iobase +
488 MSP_TWI_DAT_1_REG_OFFSET) << 32;
489 tmp &= rmsk;
490 dev_dbg(&pmcmsptwi_adapter.dev, "Read 0x%016llx\n", tmp);
492 for (i = 0; i < cmd->read_len; i++)
493 cmd->read_data[i] = tmp >> i;
496 xfer_err:
497 mutex_unlock(&data->lock);
499 return retval;
502 /* -- Algorithm functions -- */
505 * Sends an i2c command out on the adapter
507 static int pmcmsptwi_master_xfer(struct i2c_adapter *adap,
508 struct i2c_msg *msg, int num)
510 struct pmcmsptwi_data *data = i2c_get_adapdata(adap);
511 struct pmcmsptwi_cmd cmd;
512 struct pmcmsptwi_cfg oldcfg, newcfg;
513 int ret;
515 if (num == 2) {
516 struct i2c_msg *nextmsg = msg + 1;
518 cmd.type = MSP_TWI_CMD_WRITE_READ;
519 cmd.write_len = msg->len;
520 cmd.write_data = msg->buf;
521 cmd.read_len = nextmsg->len;
522 cmd.read_data = nextmsg->buf;
523 } else if (msg->flags & I2C_M_RD) {
524 cmd.type = MSP_TWI_CMD_READ;
525 cmd.read_len = msg->len;
526 cmd.read_data = msg->buf;
527 cmd.write_len = 0;
528 cmd.write_data = NULL;
529 } else {
530 cmd.type = MSP_TWI_CMD_WRITE;
531 cmd.read_len = 0;
532 cmd.read_data = NULL;
533 cmd.write_len = msg->len;
534 cmd.write_data = msg->buf;
537 if (msg->len == 0) {
538 dev_err(&adap->dev, "Zero-byte messages unsupported\n");
539 return -EINVAL;
542 cmd.addr = msg->addr;
544 if (msg->flags & I2C_M_TEN) {
545 pmcmsptwi_get_twi_config(&newcfg, data);
546 memcpy(&oldcfg, &newcfg, sizeof(oldcfg));
548 /* Set the special 10-bit address flag */
549 newcfg.add10 = 1;
551 pmcmsptwi_set_twi_config(&newcfg, data);
554 /* Execute the command */
555 ret = pmcmsptwi_xfer_cmd(&cmd, data);
557 if (msg->flags & I2C_M_TEN)
558 pmcmsptwi_set_twi_config(&oldcfg, data);
560 dev_dbg(&adap->dev, "I2C %s of %d bytes %s\n",
561 (msg->flags & I2C_M_RD) ? "read" : "write", msg->len,
562 (ret == MSP_TWI_XFER_OK) ? "succeeded" : "failed");
564 if (ret != MSP_TWI_XFER_OK) {
566 * TODO: We could potentially loop and retry in the case
567 * of MSP_TWI_XFER_TIMEOUT.
569 return -1;
572 return 0;
575 static u32 pmcmsptwi_i2c_func(struct i2c_adapter *adapter)
577 return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
578 I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
579 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL;
582 static struct i2c_adapter_quirks pmcmsptwi_i2c_quirks = {
583 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
584 .max_write_len = MSP_MAX_BYTES_PER_RW,
585 .max_read_len = MSP_MAX_BYTES_PER_RW,
586 .max_comb_1st_msg_len = MSP_MAX_BYTES_PER_RW,
587 .max_comb_2nd_msg_len = MSP_MAX_BYTES_PER_RW,
590 /* -- Initialization -- */
592 static struct i2c_algorithm pmcmsptwi_algo = {
593 .master_xfer = pmcmsptwi_master_xfer,
594 .functionality = pmcmsptwi_i2c_func,
597 static struct i2c_adapter pmcmsptwi_adapter = {
598 .owner = THIS_MODULE,
599 .class = I2C_CLASS_HWMON | I2C_CLASS_SPD,
600 .algo = &pmcmsptwi_algo,
601 .quirks = &pmcmsptwi_i2c_quirks,
602 .name = DRV_NAME,
605 static struct platform_driver pmcmsptwi_driver = {
606 .probe = pmcmsptwi_probe,
607 .remove = pmcmsptwi_remove,
608 .driver = {
609 .name = DRV_NAME,
613 module_platform_driver(pmcmsptwi_driver);
615 MODULE_DESCRIPTION("PMC MSP TWI/SMBus/I2C driver");
616 MODULE_LICENSE("GPL");
617 MODULE_ALIAS("platform:" DRV_NAME);