EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / infiniband / core / verbs.c
blob15b8adbf39c0f46fcf25726a5eefc6cc24f2d046
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
52 #include "core_priv.h"
54 static const char * const ib_events[] = {
55 [IB_EVENT_CQ_ERR] = "CQ error",
56 [IB_EVENT_QP_FATAL] = "QP fatal error",
57 [IB_EVENT_QP_REQ_ERR] = "QP request error",
58 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
59 [IB_EVENT_COMM_EST] = "communication established",
60 [IB_EVENT_SQ_DRAINED] = "send queue drained",
61 [IB_EVENT_PATH_MIG] = "path migration successful",
62 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
63 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
64 [IB_EVENT_PORT_ACTIVE] = "port active",
65 [IB_EVENT_PORT_ERR] = "port error",
66 [IB_EVENT_LID_CHANGE] = "LID change",
67 [IB_EVENT_PKEY_CHANGE] = "P_key change",
68 [IB_EVENT_SM_CHANGE] = "SM change",
69 [IB_EVENT_SRQ_ERR] = "SRQ error",
70 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
71 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
72 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
73 [IB_EVENT_GID_CHANGE] = "GID changed",
76 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 size_t index = event;
80 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
81 ib_events[index] : "unrecognized event";
83 EXPORT_SYMBOL(ib_event_msg);
85 static const char * const wc_statuses[] = {
86 [IB_WC_SUCCESS] = "success",
87 [IB_WC_LOC_LEN_ERR] = "local length error",
88 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
89 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
90 [IB_WC_LOC_PROT_ERR] = "local protection error",
91 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
92 [IB_WC_MW_BIND_ERR] = "memory management operation error",
93 [IB_WC_BAD_RESP_ERR] = "bad response error",
94 [IB_WC_LOC_ACCESS_ERR] = "local access error",
95 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
96 [IB_WC_REM_ACCESS_ERR] = "remote access error",
97 [IB_WC_REM_OP_ERR] = "remote operation error",
98 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
99 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
100 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
101 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
102 [IB_WC_REM_ABORT_ERR] = "operation aborted",
103 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
104 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
105 [IB_WC_FATAL_ERR] = "fatal error",
106 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
107 [IB_WC_GENERAL_ERR] = "general error",
110 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 size_t index = status;
114 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
115 wc_statuses[index] : "unrecognized status";
117 EXPORT_SYMBOL(ib_wc_status_msg);
119 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 switch (rate) {
122 case IB_RATE_2_5_GBPS: return 1;
123 case IB_RATE_5_GBPS: return 2;
124 case IB_RATE_10_GBPS: return 4;
125 case IB_RATE_20_GBPS: return 8;
126 case IB_RATE_30_GBPS: return 12;
127 case IB_RATE_40_GBPS: return 16;
128 case IB_RATE_60_GBPS: return 24;
129 case IB_RATE_80_GBPS: return 32;
130 case IB_RATE_120_GBPS: return 48;
131 default: return -1;
134 EXPORT_SYMBOL(ib_rate_to_mult);
136 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 switch (mult) {
139 case 1: return IB_RATE_2_5_GBPS;
140 case 2: return IB_RATE_5_GBPS;
141 case 4: return IB_RATE_10_GBPS;
142 case 8: return IB_RATE_20_GBPS;
143 case 12: return IB_RATE_30_GBPS;
144 case 16: return IB_RATE_40_GBPS;
145 case 24: return IB_RATE_60_GBPS;
146 case 32: return IB_RATE_80_GBPS;
147 case 48: return IB_RATE_120_GBPS;
148 default: return IB_RATE_PORT_CURRENT;
151 EXPORT_SYMBOL(mult_to_ib_rate);
153 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 switch (rate) {
156 case IB_RATE_2_5_GBPS: return 2500;
157 case IB_RATE_5_GBPS: return 5000;
158 case IB_RATE_10_GBPS: return 10000;
159 case IB_RATE_20_GBPS: return 20000;
160 case IB_RATE_30_GBPS: return 30000;
161 case IB_RATE_40_GBPS: return 40000;
162 case IB_RATE_60_GBPS: return 60000;
163 case IB_RATE_80_GBPS: return 80000;
164 case IB_RATE_120_GBPS: return 120000;
165 case IB_RATE_14_GBPS: return 14062;
166 case IB_RATE_56_GBPS: return 56250;
167 case IB_RATE_112_GBPS: return 112500;
168 case IB_RATE_168_GBPS: return 168750;
169 case IB_RATE_25_GBPS: return 25781;
170 case IB_RATE_100_GBPS: return 103125;
171 case IB_RATE_200_GBPS: return 206250;
172 case IB_RATE_300_GBPS: return 309375;
173 default: return -1;
176 EXPORT_SYMBOL(ib_rate_to_mbps);
178 __attribute_const__ enum rdma_transport_type
179 rdma_node_get_transport(enum rdma_node_type node_type)
181 switch (node_type) {
182 case RDMA_NODE_IB_CA:
183 case RDMA_NODE_IB_SWITCH:
184 case RDMA_NODE_IB_ROUTER:
185 return RDMA_TRANSPORT_IB;
186 case RDMA_NODE_RNIC:
187 return RDMA_TRANSPORT_IWARP;
188 case RDMA_NODE_USNIC:
189 return RDMA_TRANSPORT_USNIC;
190 case RDMA_NODE_USNIC_UDP:
191 return RDMA_TRANSPORT_USNIC_UDP;
192 default:
193 BUG();
194 return 0;
197 EXPORT_SYMBOL(rdma_node_get_transport);
199 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 if (device->get_link_layer)
202 return device->get_link_layer(device, port_num);
204 switch (rdma_node_get_transport(device->node_type)) {
205 case RDMA_TRANSPORT_IB:
206 return IB_LINK_LAYER_INFINIBAND;
207 case RDMA_TRANSPORT_IWARP:
208 case RDMA_TRANSPORT_USNIC:
209 case RDMA_TRANSPORT_USNIC_UDP:
210 return IB_LINK_LAYER_ETHERNET;
211 default:
212 return IB_LINK_LAYER_UNSPECIFIED;
215 EXPORT_SYMBOL(rdma_port_get_link_layer);
217 /* Protection domains */
220 * ib_alloc_pd - Allocates an unused protection domain.
221 * @device: The device on which to allocate the protection domain.
223 * A protection domain object provides an association between QPs, shared
224 * receive queues, address handles, memory regions, and memory windows.
226 * Every PD has a local_dma_lkey which can be used as the lkey value for local
227 * memory operations.
229 struct ib_pd *ib_alloc_pd(struct ib_device *device)
231 struct ib_pd *pd;
233 pd = device->alloc_pd(device, NULL, NULL);
234 if (IS_ERR(pd))
235 return pd;
237 pd->device = device;
238 pd->uobject = NULL;
239 pd->local_mr = NULL;
240 atomic_set(&pd->usecnt, 0);
242 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
243 pd->local_dma_lkey = device->local_dma_lkey;
244 else {
245 struct ib_mr *mr;
247 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
248 if (IS_ERR(mr)) {
249 ib_dealloc_pd(pd);
250 return (struct ib_pd *)mr;
253 pd->local_mr = mr;
254 pd->local_dma_lkey = pd->local_mr->lkey;
256 return pd;
258 EXPORT_SYMBOL(ib_alloc_pd);
261 * ib_dealloc_pd - Deallocates a protection domain.
262 * @pd: The protection domain to deallocate.
264 * It is an error to call this function while any resources in the pd still
265 * exist. The caller is responsible to synchronously destroy them and
266 * guarantee no new allocations will happen.
268 void ib_dealloc_pd(struct ib_pd *pd)
270 int ret;
272 if (pd->local_mr) {
273 ret = ib_dereg_mr(pd->local_mr);
274 WARN_ON(ret);
275 pd->local_mr = NULL;
278 /* uverbs manipulates usecnt with proper locking, while the kabi
279 requires the caller to guarantee we can't race here. */
280 WARN_ON(atomic_read(&pd->usecnt));
282 /* Making delalloc_pd a void return is a WIP, no driver should return
283 an error here. */
284 ret = pd->device->dealloc_pd(pd);
285 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
287 EXPORT_SYMBOL(ib_dealloc_pd);
289 /* Address handles */
291 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
293 struct ib_ah *ah;
295 ah = pd->device->create_ah(pd, ah_attr);
297 if (!IS_ERR(ah)) {
298 ah->device = pd->device;
299 ah->pd = pd;
300 ah->uobject = NULL;
301 atomic_inc(&pd->usecnt);
304 return ah;
306 EXPORT_SYMBOL(ib_create_ah);
308 static int ib_get_header_version(const union rdma_network_hdr *hdr)
310 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
311 struct iphdr ip4h_checked;
312 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
314 /* If it's IPv6, the version must be 6, otherwise, the first
315 * 20 bytes (before the IPv4 header) are garbled.
317 if (ip6h->version != 6)
318 return (ip4h->version == 4) ? 4 : 0;
319 /* version may be 6 or 4 because the first 20 bytes could be garbled */
321 /* RoCE v2 requires no options, thus header length
322 * must be 5 words
324 if (ip4h->ihl != 5)
325 return 6;
327 /* Verify checksum.
328 * We can't write on scattered buffers so we need to copy to
329 * temp buffer.
331 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
332 ip4h_checked.check = 0;
333 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
334 /* if IPv4 header checksum is OK, believe it */
335 if (ip4h->check == ip4h_checked.check)
336 return 4;
337 return 6;
340 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
341 u8 port_num,
342 const struct ib_grh *grh)
344 int grh_version;
346 if (rdma_protocol_ib(device, port_num))
347 return RDMA_NETWORK_IB;
349 grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
351 if (grh_version == 4)
352 return RDMA_NETWORK_IPV4;
354 if (grh->next_hdr == IPPROTO_UDP)
355 return RDMA_NETWORK_IPV6;
357 return RDMA_NETWORK_ROCE_V1;
360 struct find_gid_index_context {
361 u16 vlan_id;
362 enum ib_gid_type gid_type;
365 static bool find_gid_index(const union ib_gid *gid,
366 const struct ib_gid_attr *gid_attr,
367 void *context)
369 struct find_gid_index_context *ctx =
370 (struct find_gid_index_context *)context;
372 if (ctx->gid_type != gid_attr->gid_type)
373 return false;
375 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
376 (is_vlan_dev(gid_attr->ndev) &&
377 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
378 return false;
380 return true;
383 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
384 u16 vlan_id, const union ib_gid *sgid,
385 enum ib_gid_type gid_type,
386 u16 *gid_index)
388 struct find_gid_index_context context = {.vlan_id = vlan_id,
389 .gid_type = gid_type};
391 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
392 &context, gid_index);
395 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
396 enum rdma_network_type net_type,
397 union ib_gid *sgid, union ib_gid *dgid)
399 struct sockaddr_in src_in;
400 struct sockaddr_in dst_in;
401 __be32 src_saddr, dst_saddr;
403 if (!sgid || !dgid)
404 return -EINVAL;
406 if (net_type == RDMA_NETWORK_IPV4) {
407 memcpy(&src_in.sin_addr.s_addr,
408 &hdr->roce4grh.saddr, 4);
409 memcpy(&dst_in.sin_addr.s_addr,
410 &hdr->roce4grh.daddr, 4);
411 src_saddr = src_in.sin_addr.s_addr;
412 dst_saddr = dst_in.sin_addr.s_addr;
413 ipv6_addr_set_v4mapped(src_saddr,
414 (struct in6_addr *)sgid);
415 ipv6_addr_set_v4mapped(dst_saddr,
416 (struct in6_addr *)dgid);
417 return 0;
418 } else if (net_type == RDMA_NETWORK_IPV6 ||
419 net_type == RDMA_NETWORK_IB) {
420 *dgid = hdr->ibgrh.dgid;
421 *sgid = hdr->ibgrh.sgid;
422 return 0;
423 } else {
424 return -EINVAL;
428 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
429 const struct ib_wc *wc, const struct ib_grh *grh,
430 struct ib_ah_attr *ah_attr)
432 u32 flow_class;
433 u16 gid_index;
434 int ret;
435 enum rdma_network_type net_type = RDMA_NETWORK_IB;
436 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
437 int hoplimit = 0xff;
438 union ib_gid dgid;
439 union ib_gid sgid;
441 memset(ah_attr, 0, sizeof *ah_attr);
442 if (rdma_cap_eth_ah(device, port_num)) {
443 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
444 net_type = wc->network_hdr_type;
445 else
446 net_type = ib_get_net_type_by_grh(device, port_num, grh);
447 gid_type = ib_network_to_gid_type(net_type);
449 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
450 &sgid, &dgid);
451 if (ret)
452 return ret;
454 if (rdma_protocol_roce(device, port_num)) {
455 int if_index = 0;
456 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
457 wc->vlan_id : 0xffff;
458 struct net_device *idev;
459 struct net_device *resolved_dev;
461 if (!(wc->wc_flags & IB_WC_GRH))
462 return -EPROTOTYPE;
464 if (!device->get_netdev)
465 return -EOPNOTSUPP;
467 idev = device->get_netdev(device, port_num);
468 if (!idev)
469 return -ENODEV;
471 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
472 ah_attr->dmac,
473 wc->wc_flags & IB_WC_WITH_VLAN ?
474 NULL : &vlan_id,
475 &if_index, &hoplimit);
476 if (ret) {
477 dev_put(idev);
478 return ret;
481 resolved_dev = dev_get_by_index(&init_net, if_index);
482 if (resolved_dev->flags & IFF_LOOPBACK) {
483 dev_put(resolved_dev);
484 resolved_dev = idev;
485 dev_hold(resolved_dev);
487 rcu_read_lock();
488 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
489 resolved_dev))
490 ret = -EHOSTUNREACH;
491 rcu_read_unlock();
492 dev_put(idev);
493 dev_put(resolved_dev);
494 if (ret)
495 return ret;
497 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
498 &dgid, gid_type, &gid_index);
499 if (ret)
500 return ret;
503 ah_attr->dlid = wc->slid;
504 ah_attr->sl = wc->sl;
505 ah_attr->src_path_bits = wc->dlid_path_bits;
506 ah_attr->port_num = port_num;
508 if (wc->wc_flags & IB_WC_GRH) {
509 ah_attr->ah_flags = IB_AH_GRH;
510 ah_attr->grh.dgid = sgid;
512 if (!rdma_cap_eth_ah(device, port_num)) {
513 ret = ib_find_cached_gid_by_port(device, &dgid,
514 IB_GID_TYPE_IB,
515 port_num, NULL,
516 &gid_index);
517 if (ret)
518 return ret;
521 ah_attr->grh.sgid_index = (u8) gid_index;
522 flow_class = be32_to_cpu(grh->version_tclass_flow);
523 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
524 ah_attr->grh.hop_limit = hoplimit;
525 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
527 return 0;
529 EXPORT_SYMBOL(ib_init_ah_from_wc);
531 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
532 const struct ib_grh *grh, u8 port_num)
534 struct ib_ah_attr ah_attr;
535 int ret;
537 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
538 if (ret)
539 return ERR_PTR(ret);
541 return ib_create_ah(pd, &ah_attr);
543 EXPORT_SYMBOL(ib_create_ah_from_wc);
545 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
547 return ah->device->modify_ah ?
548 ah->device->modify_ah(ah, ah_attr) :
549 -ENOSYS;
551 EXPORT_SYMBOL(ib_modify_ah);
553 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
555 return ah->device->query_ah ?
556 ah->device->query_ah(ah, ah_attr) :
557 -ENOSYS;
559 EXPORT_SYMBOL(ib_query_ah);
561 int ib_destroy_ah(struct ib_ah *ah)
563 struct ib_pd *pd;
564 int ret;
566 pd = ah->pd;
567 ret = ah->device->destroy_ah(ah);
568 if (!ret)
569 atomic_dec(&pd->usecnt);
571 return ret;
573 EXPORT_SYMBOL(ib_destroy_ah);
575 /* Shared receive queues */
577 struct ib_srq *ib_create_srq(struct ib_pd *pd,
578 struct ib_srq_init_attr *srq_init_attr)
580 struct ib_srq *srq;
582 if (!pd->device->create_srq)
583 return ERR_PTR(-ENOSYS);
585 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
587 if (!IS_ERR(srq)) {
588 srq->device = pd->device;
589 srq->pd = pd;
590 srq->uobject = NULL;
591 srq->event_handler = srq_init_attr->event_handler;
592 srq->srq_context = srq_init_attr->srq_context;
593 srq->srq_type = srq_init_attr->srq_type;
594 if (srq->srq_type == IB_SRQT_XRC) {
595 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
596 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
597 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
598 atomic_inc(&srq->ext.xrc.cq->usecnt);
600 atomic_inc(&pd->usecnt);
601 atomic_set(&srq->usecnt, 0);
604 return srq;
606 EXPORT_SYMBOL(ib_create_srq);
608 int ib_modify_srq(struct ib_srq *srq,
609 struct ib_srq_attr *srq_attr,
610 enum ib_srq_attr_mask srq_attr_mask)
612 return srq->device->modify_srq ?
613 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
614 -ENOSYS;
616 EXPORT_SYMBOL(ib_modify_srq);
618 int ib_query_srq(struct ib_srq *srq,
619 struct ib_srq_attr *srq_attr)
621 return srq->device->query_srq ?
622 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
624 EXPORT_SYMBOL(ib_query_srq);
626 int ib_destroy_srq(struct ib_srq *srq)
628 struct ib_pd *pd;
629 enum ib_srq_type srq_type;
630 struct ib_xrcd *uninitialized_var(xrcd);
631 struct ib_cq *uninitialized_var(cq);
632 int ret;
634 if (atomic_read(&srq->usecnt))
635 return -EBUSY;
637 pd = srq->pd;
638 srq_type = srq->srq_type;
639 if (srq_type == IB_SRQT_XRC) {
640 xrcd = srq->ext.xrc.xrcd;
641 cq = srq->ext.xrc.cq;
644 ret = srq->device->destroy_srq(srq);
645 if (!ret) {
646 atomic_dec(&pd->usecnt);
647 if (srq_type == IB_SRQT_XRC) {
648 atomic_dec(&xrcd->usecnt);
649 atomic_dec(&cq->usecnt);
653 return ret;
655 EXPORT_SYMBOL(ib_destroy_srq);
657 /* Queue pairs */
659 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
661 struct ib_qp *qp = context;
662 unsigned long flags;
664 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
665 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
666 if (event->element.qp->event_handler)
667 event->element.qp->event_handler(event, event->element.qp->qp_context);
668 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
671 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
673 mutex_lock(&xrcd->tgt_qp_mutex);
674 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
675 mutex_unlock(&xrcd->tgt_qp_mutex);
678 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
679 void (*event_handler)(struct ib_event *, void *),
680 void *qp_context)
682 struct ib_qp *qp;
683 unsigned long flags;
685 qp = kzalloc(sizeof *qp, GFP_KERNEL);
686 if (!qp)
687 return ERR_PTR(-ENOMEM);
689 qp->real_qp = real_qp;
690 atomic_inc(&real_qp->usecnt);
691 qp->device = real_qp->device;
692 qp->event_handler = event_handler;
693 qp->qp_context = qp_context;
694 qp->qp_num = real_qp->qp_num;
695 qp->qp_type = real_qp->qp_type;
697 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
698 list_add(&qp->open_list, &real_qp->open_list);
699 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
701 return qp;
704 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
705 struct ib_qp_open_attr *qp_open_attr)
707 struct ib_qp *qp, *real_qp;
709 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
710 return ERR_PTR(-EINVAL);
712 qp = ERR_PTR(-EINVAL);
713 mutex_lock(&xrcd->tgt_qp_mutex);
714 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
715 if (real_qp->qp_num == qp_open_attr->qp_num) {
716 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
717 qp_open_attr->qp_context);
718 break;
721 mutex_unlock(&xrcd->tgt_qp_mutex);
722 return qp;
724 EXPORT_SYMBOL(ib_open_qp);
726 struct ib_qp *ib_create_qp(struct ib_pd *pd,
727 struct ib_qp_init_attr *qp_init_attr)
729 struct ib_qp *qp, *real_qp;
730 struct ib_device *device;
732 device = pd ? pd->device : qp_init_attr->xrcd->device;
733 qp = device->create_qp(pd, qp_init_attr, NULL);
735 if (!IS_ERR(qp)) {
736 qp->device = device;
737 qp->real_qp = qp;
738 qp->uobject = NULL;
739 qp->qp_type = qp_init_attr->qp_type;
741 atomic_set(&qp->usecnt, 0);
742 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
743 qp->event_handler = __ib_shared_qp_event_handler;
744 qp->qp_context = qp;
745 qp->pd = NULL;
746 qp->send_cq = qp->recv_cq = NULL;
747 qp->srq = NULL;
748 qp->xrcd = qp_init_attr->xrcd;
749 atomic_inc(&qp_init_attr->xrcd->usecnt);
750 INIT_LIST_HEAD(&qp->open_list);
752 real_qp = qp;
753 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
754 qp_init_attr->qp_context);
755 if (!IS_ERR(qp))
756 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
757 else
758 real_qp->device->destroy_qp(real_qp);
759 } else {
760 qp->event_handler = qp_init_attr->event_handler;
761 qp->qp_context = qp_init_attr->qp_context;
762 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
763 qp->recv_cq = NULL;
764 qp->srq = NULL;
765 } else {
766 qp->recv_cq = qp_init_attr->recv_cq;
767 atomic_inc(&qp_init_attr->recv_cq->usecnt);
768 qp->srq = qp_init_attr->srq;
769 if (qp->srq)
770 atomic_inc(&qp_init_attr->srq->usecnt);
773 qp->pd = pd;
774 qp->send_cq = qp_init_attr->send_cq;
775 qp->xrcd = NULL;
777 atomic_inc(&pd->usecnt);
778 atomic_inc(&qp_init_attr->send_cq->usecnt);
782 return qp;
784 EXPORT_SYMBOL(ib_create_qp);
786 static const struct {
787 int valid;
788 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
789 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
790 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
791 [IB_QPS_RESET] = {
792 [IB_QPS_RESET] = { .valid = 1 },
793 [IB_QPS_INIT] = {
794 .valid = 1,
795 .req_param = {
796 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
797 IB_QP_PORT |
798 IB_QP_QKEY),
799 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
800 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
801 IB_QP_PORT |
802 IB_QP_ACCESS_FLAGS),
803 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
804 IB_QP_PORT |
805 IB_QP_ACCESS_FLAGS),
806 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
807 IB_QP_PORT |
808 IB_QP_ACCESS_FLAGS),
809 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
810 IB_QP_PORT |
811 IB_QP_ACCESS_FLAGS),
812 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
813 IB_QP_QKEY),
814 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
815 IB_QP_QKEY),
819 [IB_QPS_INIT] = {
820 [IB_QPS_RESET] = { .valid = 1 },
821 [IB_QPS_ERR] = { .valid = 1 },
822 [IB_QPS_INIT] = {
823 .valid = 1,
824 .opt_param = {
825 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
826 IB_QP_PORT |
827 IB_QP_QKEY),
828 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
829 IB_QP_PORT |
830 IB_QP_ACCESS_FLAGS),
831 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
832 IB_QP_PORT |
833 IB_QP_ACCESS_FLAGS),
834 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
835 IB_QP_PORT |
836 IB_QP_ACCESS_FLAGS),
837 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
838 IB_QP_PORT |
839 IB_QP_ACCESS_FLAGS),
840 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
841 IB_QP_QKEY),
842 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
843 IB_QP_QKEY),
846 [IB_QPS_RTR] = {
847 .valid = 1,
848 .req_param = {
849 [IB_QPT_UC] = (IB_QP_AV |
850 IB_QP_PATH_MTU |
851 IB_QP_DEST_QPN |
852 IB_QP_RQ_PSN),
853 [IB_QPT_RC] = (IB_QP_AV |
854 IB_QP_PATH_MTU |
855 IB_QP_DEST_QPN |
856 IB_QP_RQ_PSN |
857 IB_QP_MAX_DEST_RD_ATOMIC |
858 IB_QP_MIN_RNR_TIMER),
859 [IB_QPT_XRC_INI] = (IB_QP_AV |
860 IB_QP_PATH_MTU |
861 IB_QP_DEST_QPN |
862 IB_QP_RQ_PSN),
863 [IB_QPT_XRC_TGT] = (IB_QP_AV |
864 IB_QP_PATH_MTU |
865 IB_QP_DEST_QPN |
866 IB_QP_RQ_PSN |
867 IB_QP_MAX_DEST_RD_ATOMIC |
868 IB_QP_MIN_RNR_TIMER),
870 .opt_param = {
871 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
872 IB_QP_QKEY),
873 [IB_QPT_UC] = (IB_QP_ALT_PATH |
874 IB_QP_ACCESS_FLAGS |
875 IB_QP_PKEY_INDEX),
876 [IB_QPT_RC] = (IB_QP_ALT_PATH |
877 IB_QP_ACCESS_FLAGS |
878 IB_QP_PKEY_INDEX),
879 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
880 IB_QP_ACCESS_FLAGS |
881 IB_QP_PKEY_INDEX),
882 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
883 IB_QP_ACCESS_FLAGS |
884 IB_QP_PKEY_INDEX),
885 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
886 IB_QP_QKEY),
887 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
888 IB_QP_QKEY),
892 [IB_QPS_RTR] = {
893 [IB_QPS_RESET] = { .valid = 1 },
894 [IB_QPS_ERR] = { .valid = 1 },
895 [IB_QPS_RTS] = {
896 .valid = 1,
897 .req_param = {
898 [IB_QPT_UD] = IB_QP_SQ_PSN,
899 [IB_QPT_UC] = IB_QP_SQ_PSN,
900 [IB_QPT_RC] = (IB_QP_TIMEOUT |
901 IB_QP_RETRY_CNT |
902 IB_QP_RNR_RETRY |
903 IB_QP_SQ_PSN |
904 IB_QP_MAX_QP_RD_ATOMIC),
905 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
906 IB_QP_RETRY_CNT |
907 IB_QP_RNR_RETRY |
908 IB_QP_SQ_PSN |
909 IB_QP_MAX_QP_RD_ATOMIC),
910 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
911 IB_QP_SQ_PSN),
912 [IB_QPT_SMI] = IB_QP_SQ_PSN,
913 [IB_QPT_GSI] = IB_QP_SQ_PSN,
915 .opt_param = {
916 [IB_QPT_UD] = (IB_QP_CUR_STATE |
917 IB_QP_QKEY),
918 [IB_QPT_UC] = (IB_QP_CUR_STATE |
919 IB_QP_ALT_PATH |
920 IB_QP_ACCESS_FLAGS |
921 IB_QP_PATH_MIG_STATE),
922 [IB_QPT_RC] = (IB_QP_CUR_STATE |
923 IB_QP_ALT_PATH |
924 IB_QP_ACCESS_FLAGS |
925 IB_QP_MIN_RNR_TIMER |
926 IB_QP_PATH_MIG_STATE),
927 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
928 IB_QP_ALT_PATH |
929 IB_QP_ACCESS_FLAGS |
930 IB_QP_PATH_MIG_STATE),
931 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
932 IB_QP_ALT_PATH |
933 IB_QP_ACCESS_FLAGS |
934 IB_QP_MIN_RNR_TIMER |
935 IB_QP_PATH_MIG_STATE),
936 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
937 IB_QP_QKEY),
938 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
939 IB_QP_QKEY),
943 [IB_QPS_RTS] = {
944 [IB_QPS_RESET] = { .valid = 1 },
945 [IB_QPS_ERR] = { .valid = 1 },
946 [IB_QPS_RTS] = {
947 .valid = 1,
948 .opt_param = {
949 [IB_QPT_UD] = (IB_QP_CUR_STATE |
950 IB_QP_QKEY),
951 [IB_QPT_UC] = (IB_QP_CUR_STATE |
952 IB_QP_ACCESS_FLAGS |
953 IB_QP_ALT_PATH |
954 IB_QP_PATH_MIG_STATE),
955 [IB_QPT_RC] = (IB_QP_CUR_STATE |
956 IB_QP_ACCESS_FLAGS |
957 IB_QP_ALT_PATH |
958 IB_QP_PATH_MIG_STATE |
959 IB_QP_MIN_RNR_TIMER),
960 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
961 IB_QP_ACCESS_FLAGS |
962 IB_QP_ALT_PATH |
963 IB_QP_PATH_MIG_STATE),
964 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
965 IB_QP_ACCESS_FLAGS |
966 IB_QP_ALT_PATH |
967 IB_QP_PATH_MIG_STATE |
968 IB_QP_MIN_RNR_TIMER),
969 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
970 IB_QP_QKEY),
971 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
972 IB_QP_QKEY),
975 [IB_QPS_SQD] = {
976 .valid = 1,
977 .opt_param = {
978 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
979 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
980 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
981 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
982 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
983 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
984 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
988 [IB_QPS_SQD] = {
989 [IB_QPS_RESET] = { .valid = 1 },
990 [IB_QPS_ERR] = { .valid = 1 },
991 [IB_QPS_RTS] = {
992 .valid = 1,
993 .opt_param = {
994 [IB_QPT_UD] = (IB_QP_CUR_STATE |
995 IB_QP_QKEY),
996 [IB_QPT_UC] = (IB_QP_CUR_STATE |
997 IB_QP_ALT_PATH |
998 IB_QP_ACCESS_FLAGS |
999 IB_QP_PATH_MIG_STATE),
1000 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1001 IB_QP_ALT_PATH |
1002 IB_QP_ACCESS_FLAGS |
1003 IB_QP_MIN_RNR_TIMER |
1004 IB_QP_PATH_MIG_STATE),
1005 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1006 IB_QP_ALT_PATH |
1007 IB_QP_ACCESS_FLAGS |
1008 IB_QP_PATH_MIG_STATE),
1009 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1010 IB_QP_ALT_PATH |
1011 IB_QP_ACCESS_FLAGS |
1012 IB_QP_MIN_RNR_TIMER |
1013 IB_QP_PATH_MIG_STATE),
1014 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1015 IB_QP_QKEY),
1016 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1017 IB_QP_QKEY),
1020 [IB_QPS_SQD] = {
1021 .valid = 1,
1022 .opt_param = {
1023 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1024 IB_QP_QKEY),
1025 [IB_QPT_UC] = (IB_QP_AV |
1026 IB_QP_ALT_PATH |
1027 IB_QP_ACCESS_FLAGS |
1028 IB_QP_PKEY_INDEX |
1029 IB_QP_PATH_MIG_STATE),
1030 [IB_QPT_RC] = (IB_QP_PORT |
1031 IB_QP_AV |
1032 IB_QP_TIMEOUT |
1033 IB_QP_RETRY_CNT |
1034 IB_QP_RNR_RETRY |
1035 IB_QP_MAX_QP_RD_ATOMIC |
1036 IB_QP_MAX_DEST_RD_ATOMIC |
1037 IB_QP_ALT_PATH |
1038 IB_QP_ACCESS_FLAGS |
1039 IB_QP_PKEY_INDEX |
1040 IB_QP_MIN_RNR_TIMER |
1041 IB_QP_PATH_MIG_STATE),
1042 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1043 IB_QP_AV |
1044 IB_QP_TIMEOUT |
1045 IB_QP_RETRY_CNT |
1046 IB_QP_RNR_RETRY |
1047 IB_QP_MAX_QP_RD_ATOMIC |
1048 IB_QP_ALT_PATH |
1049 IB_QP_ACCESS_FLAGS |
1050 IB_QP_PKEY_INDEX |
1051 IB_QP_PATH_MIG_STATE),
1052 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1053 IB_QP_AV |
1054 IB_QP_TIMEOUT |
1055 IB_QP_MAX_DEST_RD_ATOMIC |
1056 IB_QP_ALT_PATH |
1057 IB_QP_ACCESS_FLAGS |
1058 IB_QP_PKEY_INDEX |
1059 IB_QP_MIN_RNR_TIMER |
1060 IB_QP_PATH_MIG_STATE),
1061 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1062 IB_QP_QKEY),
1063 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1064 IB_QP_QKEY),
1068 [IB_QPS_SQE] = {
1069 [IB_QPS_RESET] = { .valid = 1 },
1070 [IB_QPS_ERR] = { .valid = 1 },
1071 [IB_QPS_RTS] = {
1072 .valid = 1,
1073 .opt_param = {
1074 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1075 IB_QP_QKEY),
1076 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1077 IB_QP_ACCESS_FLAGS),
1078 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1079 IB_QP_QKEY),
1080 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1081 IB_QP_QKEY),
1085 [IB_QPS_ERR] = {
1086 [IB_QPS_RESET] = { .valid = 1 },
1087 [IB_QPS_ERR] = { .valid = 1 }
1091 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1092 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1093 enum rdma_link_layer ll)
1095 enum ib_qp_attr_mask req_param, opt_param;
1097 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1098 next_state < 0 || next_state > IB_QPS_ERR)
1099 return 0;
1101 if (mask & IB_QP_CUR_STATE &&
1102 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1103 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1104 return 0;
1106 if (!qp_state_table[cur_state][next_state].valid)
1107 return 0;
1109 req_param = qp_state_table[cur_state][next_state].req_param[type];
1110 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1112 if ((mask & req_param) != req_param)
1113 return 0;
1115 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1116 return 0;
1118 return 1;
1120 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1122 int ib_resolve_eth_dmac(struct ib_qp *qp,
1123 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1125 int ret = 0;
1127 if (*qp_attr_mask & IB_QP_AV) {
1128 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1129 qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1130 return -EINVAL;
1132 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1133 return 0;
1135 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1136 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1137 qp_attr->ah_attr.dmac);
1138 } else {
1139 union ib_gid sgid;
1140 struct ib_gid_attr sgid_attr;
1141 int ifindex;
1142 int hop_limit;
1144 ret = ib_query_gid(qp->device,
1145 qp_attr->ah_attr.port_num,
1146 qp_attr->ah_attr.grh.sgid_index,
1147 &sgid, &sgid_attr);
1149 if (ret || !sgid_attr.ndev) {
1150 if (!ret)
1151 ret = -ENXIO;
1152 goto out;
1155 ifindex = sgid_attr.ndev->ifindex;
1157 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1158 &qp_attr->ah_attr.grh.dgid,
1159 qp_attr->ah_attr.dmac,
1160 NULL, &ifindex, &hop_limit);
1162 dev_put(sgid_attr.ndev);
1164 qp_attr->ah_attr.grh.hop_limit = hop_limit;
1167 out:
1168 return ret;
1170 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1173 int ib_modify_qp(struct ib_qp *qp,
1174 struct ib_qp_attr *qp_attr,
1175 int qp_attr_mask)
1177 int ret;
1179 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1180 if (ret)
1181 return ret;
1183 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1185 EXPORT_SYMBOL(ib_modify_qp);
1187 int ib_query_qp(struct ib_qp *qp,
1188 struct ib_qp_attr *qp_attr,
1189 int qp_attr_mask,
1190 struct ib_qp_init_attr *qp_init_attr)
1192 return qp->device->query_qp ?
1193 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1194 -ENOSYS;
1196 EXPORT_SYMBOL(ib_query_qp);
1198 int ib_close_qp(struct ib_qp *qp)
1200 struct ib_qp *real_qp;
1201 unsigned long flags;
1203 real_qp = qp->real_qp;
1204 if (real_qp == qp)
1205 return -EINVAL;
1207 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1208 list_del(&qp->open_list);
1209 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1211 atomic_dec(&real_qp->usecnt);
1212 kfree(qp);
1214 return 0;
1216 EXPORT_SYMBOL(ib_close_qp);
1218 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1220 struct ib_xrcd *xrcd;
1221 struct ib_qp *real_qp;
1222 int ret;
1224 real_qp = qp->real_qp;
1225 xrcd = real_qp->xrcd;
1227 mutex_lock(&xrcd->tgt_qp_mutex);
1228 ib_close_qp(qp);
1229 if (atomic_read(&real_qp->usecnt) == 0)
1230 list_del(&real_qp->xrcd_list);
1231 else
1232 real_qp = NULL;
1233 mutex_unlock(&xrcd->tgt_qp_mutex);
1235 if (real_qp) {
1236 ret = ib_destroy_qp(real_qp);
1237 if (!ret)
1238 atomic_dec(&xrcd->usecnt);
1239 else
1240 __ib_insert_xrcd_qp(xrcd, real_qp);
1243 return 0;
1246 int ib_destroy_qp(struct ib_qp *qp)
1248 struct ib_pd *pd;
1249 struct ib_cq *scq, *rcq;
1250 struct ib_srq *srq;
1251 int ret;
1253 if (atomic_read(&qp->usecnt))
1254 return -EBUSY;
1256 if (qp->real_qp != qp)
1257 return __ib_destroy_shared_qp(qp);
1259 pd = qp->pd;
1260 scq = qp->send_cq;
1261 rcq = qp->recv_cq;
1262 srq = qp->srq;
1264 ret = qp->device->destroy_qp(qp);
1265 if (!ret) {
1266 if (pd)
1267 atomic_dec(&pd->usecnt);
1268 if (scq)
1269 atomic_dec(&scq->usecnt);
1270 if (rcq)
1271 atomic_dec(&rcq->usecnt);
1272 if (srq)
1273 atomic_dec(&srq->usecnt);
1276 return ret;
1278 EXPORT_SYMBOL(ib_destroy_qp);
1280 /* Completion queues */
1282 struct ib_cq *ib_create_cq(struct ib_device *device,
1283 ib_comp_handler comp_handler,
1284 void (*event_handler)(struct ib_event *, void *),
1285 void *cq_context,
1286 const struct ib_cq_init_attr *cq_attr)
1288 struct ib_cq *cq;
1290 cq = device->create_cq(device, cq_attr, NULL, NULL);
1292 if (!IS_ERR(cq)) {
1293 cq->device = device;
1294 cq->uobject = NULL;
1295 cq->comp_handler = comp_handler;
1296 cq->event_handler = event_handler;
1297 cq->cq_context = cq_context;
1298 atomic_set(&cq->usecnt, 0);
1301 return cq;
1303 EXPORT_SYMBOL(ib_create_cq);
1305 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1307 return cq->device->modify_cq ?
1308 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1310 EXPORT_SYMBOL(ib_modify_cq);
1312 int ib_destroy_cq(struct ib_cq *cq)
1314 if (atomic_read(&cq->usecnt))
1315 return -EBUSY;
1317 return cq->device->destroy_cq(cq);
1319 EXPORT_SYMBOL(ib_destroy_cq);
1321 int ib_resize_cq(struct ib_cq *cq, int cqe)
1323 return cq->device->resize_cq ?
1324 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1326 EXPORT_SYMBOL(ib_resize_cq);
1328 /* Memory regions */
1330 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1332 struct ib_mr *mr;
1333 int err;
1335 err = ib_check_mr_access(mr_access_flags);
1336 if (err)
1337 return ERR_PTR(err);
1339 mr = pd->device->get_dma_mr(pd, mr_access_flags);
1341 if (!IS_ERR(mr)) {
1342 mr->device = pd->device;
1343 mr->pd = pd;
1344 mr->uobject = NULL;
1345 atomic_inc(&pd->usecnt);
1348 return mr;
1350 EXPORT_SYMBOL(ib_get_dma_mr);
1352 int ib_dereg_mr(struct ib_mr *mr)
1354 struct ib_pd *pd = mr->pd;
1355 int ret;
1357 ret = mr->device->dereg_mr(mr);
1358 if (!ret)
1359 atomic_dec(&pd->usecnt);
1361 return ret;
1363 EXPORT_SYMBOL(ib_dereg_mr);
1366 * ib_alloc_mr() - Allocates a memory region
1367 * @pd: protection domain associated with the region
1368 * @mr_type: memory region type
1369 * @max_num_sg: maximum sg entries available for registration.
1371 * Notes:
1372 * Memory registeration page/sg lists must not exceed max_num_sg.
1373 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1374 * max_num_sg * used_page_size.
1377 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1378 enum ib_mr_type mr_type,
1379 u32 max_num_sg)
1381 struct ib_mr *mr;
1383 if (!pd->device->alloc_mr)
1384 return ERR_PTR(-ENOSYS);
1386 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1387 if (!IS_ERR(mr)) {
1388 mr->device = pd->device;
1389 mr->pd = pd;
1390 mr->uobject = NULL;
1391 atomic_inc(&pd->usecnt);
1394 return mr;
1396 EXPORT_SYMBOL(ib_alloc_mr);
1398 /* "Fast" memory regions */
1400 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1401 int mr_access_flags,
1402 struct ib_fmr_attr *fmr_attr)
1404 struct ib_fmr *fmr;
1406 if (!pd->device->alloc_fmr)
1407 return ERR_PTR(-ENOSYS);
1409 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1410 if (!IS_ERR(fmr)) {
1411 fmr->device = pd->device;
1412 fmr->pd = pd;
1413 atomic_inc(&pd->usecnt);
1416 return fmr;
1418 EXPORT_SYMBOL(ib_alloc_fmr);
1420 int ib_unmap_fmr(struct list_head *fmr_list)
1422 struct ib_fmr *fmr;
1424 if (list_empty(fmr_list))
1425 return 0;
1427 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1428 return fmr->device->unmap_fmr(fmr_list);
1430 EXPORT_SYMBOL(ib_unmap_fmr);
1432 int ib_dealloc_fmr(struct ib_fmr *fmr)
1434 struct ib_pd *pd;
1435 int ret;
1437 pd = fmr->pd;
1438 ret = fmr->device->dealloc_fmr(fmr);
1439 if (!ret)
1440 atomic_dec(&pd->usecnt);
1442 return ret;
1444 EXPORT_SYMBOL(ib_dealloc_fmr);
1446 /* Multicast groups */
1448 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1450 int ret;
1452 if (!qp->device->attach_mcast)
1453 return -ENOSYS;
1454 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1455 return -EINVAL;
1457 ret = qp->device->attach_mcast(qp, gid, lid);
1458 if (!ret)
1459 atomic_inc(&qp->usecnt);
1460 return ret;
1462 EXPORT_SYMBOL(ib_attach_mcast);
1464 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1466 int ret;
1468 if (!qp->device->detach_mcast)
1469 return -ENOSYS;
1470 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1471 return -EINVAL;
1473 ret = qp->device->detach_mcast(qp, gid, lid);
1474 if (!ret)
1475 atomic_dec(&qp->usecnt);
1476 return ret;
1478 EXPORT_SYMBOL(ib_detach_mcast);
1480 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1482 struct ib_xrcd *xrcd;
1484 if (!device->alloc_xrcd)
1485 return ERR_PTR(-ENOSYS);
1487 xrcd = device->alloc_xrcd(device, NULL, NULL);
1488 if (!IS_ERR(xrcd)) {
1489 xrcd->device = device;
1490 xrcd->inode = NULL;
1491 atomic_set(&xrcd->usecnt, 0);
1492 mutex_init(&xrcd->tgt_qp_mutex);
1493 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1496 return xrcd;
1498 EXPORT_SYMBOL(ib_alloc_xrcd);
1500 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1502 struct ib_qp *qp;
1503 int ret;
1505 if (atomic_read(&xrcd->usecnt))
1506 return -EBUSY;
1508 while (!list_empty(&xrcd->tgt_qp_list)) {
1509 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1510 ret = ib_destroy_qp(qp);
1511 if (ret)
1512 return ret;
1515 return xrcd->device->dealloc_xrcd(xrcd);
1517 EXPORT_SYMBOL(ib_dealloc_xrcd);
1519 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1520 struct ib_flow_attr *flow_attr,
1521 int domain)
1523 struct ib_flow *flow_id;
1524 if (!qp->device->create_flow)
1525 return ERR_PTR(-ENOSYS);
1527 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1528 if (!IS_ERR(flow_id))
1529 atomic_inc(&qp->usecnt);
1530 return flow_id;
1532 EXPORT_SYMBOL(ib_create_flow);
1534 int ib_destroy_flow(struct ib_flow *flow_id)
1536 int err;
1537 struct ib_qp *qp = flow_id->qp;
1539 err = qp->device->destroy_flow(flow_id);
1540 if (!err)
1541 atomic_dec(&qp->usecnt);
1542 return err;
1544 EXPORT_SYMBOL(ib_destroy_flow);
1546 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1547 struct ib_mr_status *mr_status)
1549 return mr->device->check_mr_status ?
1550 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1552 EXPORT_SYMBOL(ib_check_mr_status);
1554 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1555 int state)
1557 if (!device->set_vf_link_state)
1558 return -ENOSYS;
1560 return device->set_vf_link_state(device, vf, port, state);
1562 EXPORT_SYMBOL(ib_set_vf_link_state);
1564 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1565 struct ifla_vf_info *info)
1567 if (!device->get_vf_config)
1568 return -ENOSYS;
1570 return device->get_vf_config(device, vf, port, info);
1572 EXPORT_SYMBOL(ib_get_vf_config);
1574 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1575 struct ifla_vf_stats *stats)
1577 if (!device->get_vf_stats)
1578 return -ENOSYS;
1580 return device->get_vf_stats(device, vf, port, stats);
1582 EXPORT_SYMBOL(ib_get_vf_stats);
1584 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1585 int type)
1587 if (!device->set_vf_guid)
1588 return -ENOSYS;
1590 return device->set_vf_guid(device, vf, port, guid, type);
1592 EXPORT_SYMBOL(ib_set_vf_guid);
1595 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1596 * and set it the memory region.
1597 * @mr: memory region
1598 * @sg: dma mapped scatterlist
1599 * @sg_nents: number of entries in sg
1600 * @page_size: page vector desired page size
1602 * Constraints:
1603 * - The first sg element is allowed to have an offset.
1604 * - Each sg element must be aligned to page_size (or physically
1605 * contiguous to the previous element). In case an sg element has a
1606 * non contiguous offset, the mapping prefix will not include it.
1607 * - The last sg element is allowed to have length less than page_size.
1608 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1609 * then only max_num_sg entries will be mapped.
1610 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1611 * constraints holds and the page_size argument is ignored.
1613 * Returns the number of sg elements that were mapped to the memory region.
1615 * After this completes successfully, the memory region
1616 * is ready for registration.
1618 int ib_map_mr_sg(struct ib_mr *mr,
1619 struct scatterlist *sg,
1620 int sg_nents,
1621 unsigned int page_size)
1623 if (unlikely(!mr->device->map_mr_sg))
1624 return -ENOSYS;
1626 mr->page_size = page_size;
1628 return mr->device->map_mr_sg(mr, sg, sg_nents);
1630 EXPORT_SYMBOL(ib_map_mr_sg);
1633 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1634 * to a page vector
1635 * @mr: memory region
1636 * @sgl: dma mapped scatterlist
1637 * @sg_nents: number of entries in sg
1638 * @set_page: driver page assignment function pointer
1640 * Core service helper for drivers to convert the largest
1641 * prefix of given sg list to a page vector. The sg list
1642 * prefix converted is the prefix that meet the requirements
1643 * of ib_map_mr_sg.
1645 * Returns the number of sg elements that were assigned to
1646 * a page vector.
1648 int ib_sg_to_pages(struct ib_mr *mr,
1649 struct scatterlist *sgl,
1650 int sg_nents,
1651 int (*set_page)(struct ib_mr *, u64))
1653 struct scatterlist *sg;
1654 u64 last_end_dma_addr = 0;
1655 unsigned int last_page_off = 0;
1656 u64 page_mask = ~((u64)mr->page_size - 1);
1657 int i, ret;
1659 mr->iova = sg_dma_address(&sgl[0]);
1660 mr->length = 0;
1662 for_each_sg(sgl, sg, sg_nents, i) {
1663 u64 dma_addr = sg_dma_address(sg);
1664 unsigned int dma_len = sg_dma_len(sg);
1665 u64 end_dma_addr = dma_addr + dma_len;
1666 u64 page_addr = dma_addr & page_mask;
1669 * For the second and later elements, check whether either the
1670 * end of element i-1 or the start of element i is not aligned
1671 * on a page boundary.
1673 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1674 /* Stop mapping if there is a gap. */
1675 if (last_end_dma_addr != dma_addr)
1676 break;
1679 * Coalesce this element with the last. If it is small
1680 * enough just update mr->length. Otherwise start
1681 * mapping from the next page.
1683 goto next_page;
1686 do {
1687 ret = set_page(mr, page_addr);
1688 if (unlikely(ret < 0))
1689 return i ? : ret;
1690 next_page:
1691 page_addr += mr->page_size;
1692 } while (page_addr < end_dma_addr);
1694 mr->length += dma_len;
1695 last_end_dma_addr = end_dma_addr;
1696 last_page_off = end_dma_addr & ~page_mask;
1699 return i;
1701 EXPORT_SYMBOL(ib_sg_to_pages);
1703 struct ib_drain_cqe {
1704 struct ib_cqe cqe;
1705 struct completion done;
1708 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1710 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1711 cqe);
1713 complete(&cqe->done);
1717 * Post a WR and block until its completion is reaped for the SQ.
1719 static void __ib_drain_sq(struct ib_qp *qp)
1721 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1722 struct ib_drain_cqe sdrain;
1723 struct ib_send_wr swr = {}, *bad_swr;
1724 int ret;
1726 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1727 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1728 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1729 return;
1732 swr.wr_cqe = &sdrain.cqe;
1733 sdrain.cqe.done = ib_drain_qp_done;
1734 init_completion(&sdrain.done);
1736 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1737 if (ret) {
1738 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1739 return;
1742 ret = ib_post_send(qp, &swr, &bad_swr);
1743 if (ret) {
1744 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1745 return;
1748 wait_for_completion(&sdrain.done);
1752 * Post a WR and block until its completion is reaped for the RQ.
1754 static void __ib_drain_rq(struct ib_qp *qp)
1756 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1757 struct ib_drain_cqe rdrain;
1758 struct ib_recv_wr rwr = {}, *bad_rwr;
1759 int ret;
1761 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1762 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1763 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1764 return;
1767 rwr.wr_cqe = &rdrain.cqe;
1768 rdrain.cqe.done = ib_drain_qp_done;
1769 init_completion(&rdrain.done);
1771 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1772 if (ret) {
1773 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1774 return;
1777 ret = ib_post_recv(qp, &rwr, &bad_rwr);
1778 if (ret) {
1779 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1780 return;
1783 wait_for_completion(&rdrain.done);
1787 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1788 * application.
1789 * @qp: queue pair to drain
1791 * If the device has a provider-specific drain function, then
1792 * call that. Otherwise call the generic drain function
1793 * __ib_drain_sq().
1795 * The caller must:
1797 * ensure there is room in the CQ and SQ for the drain work request and
1798 * completion.
1800 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1801 * IB_POLL_DIRECT.
1803 * ensure that there are no other contexts that are posting WRs concurrently.
1804 * Otherwise the drain is not guaranteed.
1806 void ib_drain_sq(struct ib_qp *qp)
1808 if (qp->device->drain_sq)
1809 qp->device->drain_sq(qp);
1810 else
1811 __ib_drain_sq(qp);
1813 EXPORT_SYMBOL(ib_drain_sq);
1816 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1817 * application.
1818 * @qp: queue pair to drain
1820 * If the device has a provider-specific drain function, then
1821 * call that. Otherwise call the generic drain function
1822 * __ib_drain_rq().
1824 * The caller must:
1826 * ensure there is room in the CQ and RQ for the drain work request and
1827 * completion.
1829 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1830 * IB_POLL_DIRECT.
1832 * ensure that there are no other contexts that are posting WRs concurrently.
1833 * Otherwise the drain is not guaranteed.
1835 void ib_drain_rq(struct ib_qp *qp)
1837 if (qp->device->drain_rq)
1838 qp->device->drain_rq(qp);
1839 else
1840 __ib_drain_rq(qp);
1842 EXPORT_SYMBOL(ib_drain_rq);
1845 * ib_drain_qp() - Block until all CQEs have been consumed by the
1846 * application on both the RQ and SQ.
1847 * @qp: queue pair to drain
1849 * The caller must:
1851 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
1852 * and completions.
1854 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
1855 * IB_POLL_DIRECT.
1857 * ensure that there are no other contexts that are posting WRs concurrently.
1858 * Otherwise the drain is not guaranteed.
1860 void ib_drain_qp(struct ib_qp *qp)
1862 ib_drain_sq(qp);
1863 ib_drain_rq(qp);
1865 EXPORT_SYMBOL(ib_drain_qp);