EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
blob8b42401d4795646019f4498ed909b306630f19ec
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
50 /* Name of this kernel module. */
51 #define DRV_NAME "ib_srpt"
52 #define DRV_VERSION "2.0.0"
53 #define DRV_RELDATE "2011-02-14"
55 #define SRPT_ID_STRING "Linux SRP target"
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
66 * Global Variables
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 "Maximum size of SRP request messages in bytes.");
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 "Shared receive queue (SRQ) size.");
83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 " instead of using the node_guid of the first HCA.");
93 static struct ib_client srpt_client;
94 static void srpt_release_cmd(struct se_cmd *se_cmd);
95 static void srpt_free_ch(struct kref *kref);
96 static int srpt_queue_status(struct se_cmd *cmd);
97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
102 * The only allowed channel state changes are those that change the channel
103 * state into a state with a higher numerical value. Hence the new > prev test.
105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
107 unsigned long flags;
108 enum rdma_ch_state prev;
109 bool changed = false;
111 spin_lock_irqsave(&ch->spinlock, flags);
112 prev = ch->state;
113 if (new > prev) {
114 ch->state = new;
115 changed = true;
117 spin_unlock_irqrestore(&ch->spinlock, flags);
119 return changed;
123 * srpt_event_handler() - Asynchronous IB event callback function.
125 * Callback function called by the InfiniBand core when an asynchronous IB
126 * event occurs. This callback may occur in interrupt context. See also
127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
128 * Architecture Specification.
130 static void srpt_event_handler(struct ib_event_handler *handler,
131 struct ib_event *event)
133 struct srpt_device *sdev;
134 struct srpt_port *sport;
136 sdev = ib_get_client_data(event->device, &srpt_client);
137 if (!sdev || sdev->device != event->device)
138 return;
140 pr_debug("ASYNC event= %d on device= %s\n", event->event,
141 sdev->device->name);
143 switch (event->event) {
144 case IB_EVENT_PORT_ERR:
145 if (event->element.port_num <= sdev->device->phys_port_cnt) {
146 sport = &sdev->port[event->element.port_num - 1];
147 sport->lid = 0;
148 sport->sm_lid = 0;
150 break;
151 case IB_EVENT_PORT_ACTIVE:
152 case IB_EVENT_LID_CHANGE:
153 case IB_EVENT_PKEY_CHANGE:
154 case IB_EVENT_SM_CHANGE:
155 case IB_EVENT_CLIENT_REREGISTER:
156 case IB_EVENT_GID_CHANGE:
157 /* Refresh port data asynchronously. */
158 if (event->element.port_num <= sdev->device->phys_port_cnt) {
159 sport = &sdev->port[event->element.port_num - 1];
160 if (!sport->lid && !sport->sm_lid)
161 schedule_work(&sport->work);
163 break;
164 default:
165 pr_err("received unrecognized IB event %d\n",
166 event->event);
167 break;
172 * srpt_srq_event() - SRQ event callback function.
174 static void srpt_srq_event(struct ib_event *event, void *ctx)
176 pr_info("SRQ event %d\n", event->event);
179 static const char *get_ch_state_name(enum rdma_ch_state s)
181 switch (s) {
182 case CH_CONNECTING:
183 return "connecting";
184 case CH_LIVE:
185 return "live";
186 case CH_DISCONNECTING:
187 return "disconnecting";
188 case CH_DRAINING:
189 return "draining";
190 case CH_DISCONNECTED:
191 return "disconnected";
193 return "???";
197 * srpt_qp_event() - QP event callback function.
199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
201 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
202 event->event, ch->cm_id, ch->sess_name, ch->state);
204 switch (event->event) {
205 case IB_EVENT_COMM_EST:
206 ib_cm_notify(ch->cm_id, event->event);
207 break;
208 case IB_EVENT_QP_LAST_WQE_REACHED:
209 pr_debug("%s-%d, state %s: received Last WQE event.\n",
210 ch->sess_name, ch->qp->qp_num,
211 get_ch_state_name(ch->state));
212 break;
213 default:
214 pr_err("received unrecognized IB QP event %d\n", event->event);
215 break;
220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
222 * @slot: one-based slot number.
223 * @value: four-bit value.
225 * Copies the lowest four bits of value in element slot of the array of four
226 * bit elements called c_list (controller list). The index slot is one-based.
228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
230 u16 id;
231 u8 tmp;
233 id = (slot - 1) / 2;
234 if (slot & 0x1) {
235 tmp = c_list[id] & 0xf;
236 c_list[id] = (value << 4) | tmp;
237 } else {
238 tmp = c_list[id] & 0xf0;
239 c_list[id] = (value & 0xf) | tmp;
244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
247 * Specification.
249 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
251 struct ib_class_port_info *cif;
253 cif = (struct ib_class_port_info *)mad->data;
254 memset(cif, 0, sizeof(*cif));
255 cif->base_version = 1;
256 cif->class_version = 1;
257 cif->resp_time_value = 20;
259 mad->mad_hdr.status = 0;
263 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
266 * Specification. See also section B.7, table B.6 in the SRP r16a document.
268 static void srpt_get_iou(struct ib_dm_mad *mad)
270 struct ib_dm_iou_info *ioui;
271 u8 slot;
272 int i;
274 ioui = (struct ib_dm_iou_info *)mad->data;
275 ioui->change_id = cpu_to_be16(1);
276 ioui->max_controllers = 16;
278 /* set present for slot 1 and empty for the rest */
279 srpt_set_ioc(ioui->controller_list, 1, 1);
280 for (i = 1, slot = 2; i < 16; i++, slot++)
281 srpt_set_ioc(ioui->controller_list, slot, 0);
283 mad->mad_hdr.status = 0;
287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
290 * Architecture Specification. See also section B.7, table B.7 in the SRP
291 * r16a document.
293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
294 struct ib_dm_mad *mad)
296 struct srpt_device *sdev = sport->sdev;
297 struct ib_dm_ioc_profile *iocp;
299 iocp = (struct ib_dm_ioc_profile *)mad->data;
301 if (!slot || slot > 16) {
302 mad->mad_hdr.status
303 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
304 return;
307 if (slot > 2) {
308 mad->mad_hdr.status
309 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
310 return;
313 memset(iocp, 0, sizeof(*iocp));
314 strcpy(iocp->id_string, SRPT_ID_STRING);
315 iocp->guid = cpu_to_be64(srpt_service_guid);
316 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
317 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
318 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
319 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
320 iocp->subsys_device_id = 0x0;
321 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
322 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
323 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
324 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
325 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
326 iocp->rdma_read_depth = 4;
327 iocp->send_size = cpu_to_be32(srp_max_req_size);
328 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
329 1U << 24));
330 iocp->num_svc_entries = 1;
331 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
332 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
334 mad->mad_hdr.status = 0;
338 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
340 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
341 * Specification. See also section B.7, table B.8 in the SRP r16a document.
343 static void srpt_get_svc_entries(u64 ioc_guid,
344 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
346 struct ib_dm_svc_entries *svc_entries;
348 WARN_ON(!ioc_guid);
350 if (!slot || slot > 16) {
351 mad->mad_hdr.status
352 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
353 return;
356 if (slot > 2 || lo > hi || hi > 1) {
357 mad->mad_hdr.status
358 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
359 return;
362 svc_entries = (struct ib_dm_svc_entries *)mad->data;
363 memset(svc_entries, 0, sizeof(*svc_entries));
364 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
365 snprintf(svc_entries->service_entries[0].name,
366 sizeof(svc_entries->service_entries[0].name),
367 "%s%016llx",
368 SRP_SERVICE_NAME_PREFIX,
369 ioc_guid);
371 mad->mad_hdr.status = 0;
375 * srpt_mgmt_method_get() - Process a received management datagram.
376 * @sp: source port through which the MAD has been received.
377 * @rq_mad: received MAD.
378 * @rsp_mad: response MAD.
380 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
381 struct ib_dm_mad *rsp_mad)
383 u16 attr_id;
384 u32 slot;
385 u8 hi, lo;
387 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
388 switch (attr_id) {
389 case DM_ATTR_CLASS_PORT_INFO:
390 srpt_get_class_port_info(rsp_mad);
391 break;
392 case DM_ATTR_IOU_INFO:
393 srpt_get_iou(rsp_mad);
394 break;
395 case DM_ATTR_IOC_PROFILE:
396 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
397 srpt_get_ioc(sp, slot, rsp_mad);
398 break;
399 case DM_ATTR_SVC_ENTRIES:
400 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
401 hi = (u8) ((slot >> 8) & 0xff);
402 lo = (u8) (slot & 0xff);
403 slot = (u16) ((slot >> 16) & 0xffff);
404 srpt_get_svc_entries(srpt_service_guid,
405 slot, hi, lo, rsp_mad);
406 break;
407 default:
408 rsp_mad->mad_hdr.status =
409 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
410 break;
415 * srpt_mad_send_handler() - Post MAD-send callback function.
417 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
418 struct ib_mad_send_wc *mad_wc)
420 ib_destroy_ah(mad_wc->send_buf->ah);
421 ib_free_send_mad(mad_wc->send_buf);
425 * srpt_mad_recv_handler() - MAD reception callback function.
427 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
428 struct ib_mad_send_buf *send_buf,
429 struct ib_mad_recv_wc *mad_wc)
431 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
432 struct ib_ah *ah;
433 struct ib_mad_send_buf *rsp;
434 struct ib_dm_mad *dm_mad;
436 if (!mad_wc || !mad_wc->recv_buf.mad)
437 return;
439 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
440 mad_wc->recv_buf.grh, mad_agent->port_num);
441 if (IS_ERR(ah))
442 goto err;
444 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
446 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
447 mad_wc->wc->pkey_index, 0,
448 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
449 GFP_KERNEL,
450 IB_MGMT_BASE_VERSION);
451 if (IS_ERR(rsp))
452 goto err_rsp;
454 rsp->ah = ah;
456 dm_mad = rsp->mad;
457 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
458 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
459 dm_mad->mad_hdr.status = 0;
461 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
462 case IB_MGMT_METHOD_GET:
463 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
464 break;
465 case IB_MGMT_METHOD_SET:
466 dm_mad->mad_hdr.status =
467 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
468 break;
469 default:
470 dm_mad->mad_hdr.status =
471 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
472 break;
475 if (!ib_post_send_mad(rsp, NULL)) {
476 ib_free_recv_mad(mad_wc);
477 /* will destroy_ah & free_send_mad in send completion */
478 return;
481 ib_free_send_mad(rsp);
483 err_rsp:
484 ib_destroy_ah(ah);
485 err:
486 ib_free_recv_mad(mad_wc);
490 * srpt_refresh_port() - Configure a HCA port.
492 * Enable InfiniBand management datagram processing, update the cached sm_lid,
493 * lid and gid values, and register a callback function for processing MADs
494 * on the specified port.
496 * Note: It is safe to call this function more than once for the same port.
498 static int srpt_refresh_port(struct srpt_port *sport)
500 struct ib_mad_reg_req reg_req;
501 struct ib_port_modify port_modify;
502 struct ib_port_attr port_attr;
503 int ret;
505 memset(&port_modify, 0, sizeof(port_modify));
506 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
507 port_modify.clr_port_cap_mask = 0;
509 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
510 if (ret)
511 goto err_mod_port;
513 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
514 if (ret)
515 goto err_query_port;
517 sport->sm_lid = port_attr.sm_lid;
518 sport->lid = port_attr.lid;
520 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
521 NULL);
522 if (ret)
523 goto err_query_port;
525 if (!sport->mad_agent) {
526 memset(&reg_req, 0, sizeof(reg_req));
527 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
528 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
529 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
530 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
532 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
533 sport->port,
534 IB_QPT_GSI,
535 &reg_req, 0,
536 srpt_mad_send_handler,
537 srpt_mad_recv_handler,
538 sport, 0);
539 if (IS_ERR(sport->mad_agent)) {
540 ret = PTR_ERR(sport->mad_agent);
541 sport->mad_agent = NULL;
542 goto err_query_port;
546 return 0;
548 err_query_port:
550 port_modify.set_port_cap_mask = 0;
551 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
552 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
554 err_mod_port:
556 return ret;
560 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
562 * Note: It is safe to call this function more than once for the same device.
564 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
566 struct ib_port_modify port_modify = {
567 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
569 struct srpt_port *sport;
570 int i;
572 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
573 sport = &sdev->port[i - 1];
574 WARN_ON(sport->port != i);
575 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
576 pr_err("disabling MAD processing failed.\n");
577 if (sport->mad_agent) {
578 ib_unregister_mad_agent(sport->mad_agent);
579 sport->mad_agent = NULL;
585 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
587 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
588 int ioctx_size, int dma_size,
589 enum dma_data_direction dir)
591 struct srpt_ioctx *ioctx;
593 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
594 if (!ioctx)
595 goto err;
597 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
598 if (!ioctx->buf)
599 goto err_free_ioctx;
601 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
602 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
603 goto err_free_buf;
605 return ioctx;
607 err_free_buf:
608 kfree(ioctx->buf);
609 err_free_ioctx:
610 kfree(ioctx);
611 err:
612 return NULL;
616 * srpt_free_ioctx() - Free an SRPT I/O context structure.
618 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
619 int dma_size, enum dma_data_direction dir)
621 if (!ioctx)
622 return;
624 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
625 kfree(ioctx->buf);
626 kfree(ioctx);
630 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
631 * @sdev: Device to allocate the I/O context ring for.
632 * @ring_size: Number of elements in the I/O context ring.
633 * @ioctx_size: I/O context size.
634 * @dma_size: DMA buffer size.
635 * @dir: DMA data direction.
637 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
638 int ring_size, int ioctx_size,
639 int dma_size, enum dma_data_direction dir)
641 struct srpt_ioctx **ring;
642 int i;
644 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
645 && ioctx_size != sizeof(struct srpt_send_ioctx));
647 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
648 if (!ring)
649 goto out;
650 for (i = 0; i < ring_size; ++i) {
651 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
652 if (!ring[i])
653 goto err;
654 ring[i]->index = i;
656 goto out;
658 err:
659 while (--i >= 0)
660 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
661 kfree(ring);
662 ring = NULL;
663 out:
664 return ring;
668 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
670 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
671 struct srpt_device *sdev, int ring_size,
672 int dma_size, enum dma_data_direction dir)
674 int i;
676 for (i = 0; i < ring_size; ++i)
677 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
678 kfree(ioctx_ring);
682 * srpt_get_cmd_state() - Get the state of a SCSI command.
684 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
686 enum srpt_command_state state;
687 unsigned long flags;
689 BUG_ON(!ioctx);
691 spin_lock_irqsave(&ioctx->spinlock, flags);
692 state = ioctx->state;
693 spin_unlock_irqrestore(&ioctx->spinlock, flags);
694 return state;
698 * srpt_set_cmd_state() - Set the state of a SCSI command.
700 * Does not modify the state of aborted commands. Returns the previous command
701 * state.
703 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
704 enum srpt_command_state new)
706 enum srpt_command_state previous;
707 unsigned long flags;
709 BUG_ON(!ioctx);
711 spin_lock_irqsave(&ioctx->spinlock, flags);
712 previous = ioctx->state;
713 if (previous != SRPT_STATE_DONE)
714 ioctx->state = new;
715 spin_unlock_irqrestore(&ioctx->spinlock, flags);
717 return previous;
721 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
723 * Returns true if and only if the previous command state was equal to 'old'.
725 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
726 enum srpt_command_state old,
727 enum srpt_command_state new)
729 enum srpt_command_state previous;
730 unsigned long flags;
732 WARN_ON(!ioctx);
733 WARN_ON(old == SRPT_STATE_DONE);
734 WARN_ON(new == SRPT_STATE_NEW);
736 spin_lock_irqsave(&ioctx->spinlock, flags);
737 previous = ioctx->state;
738 if (previous == old)
739 ioctx->state = new;
740 spin_unlock_irqrestore(&ioctx->spinlock, flags);
741 return previous == old;
745 * srpt_post_recv() - Post an IB receive request.
747 static int srpt_post_recv(struct srpt_device *sdev,
748 struct srpt_recv_ioctx *ioctx)
750 struct ib_sge list;
751 struct ib_recv_wr wr, *bad_wr;
753 BUG_ON(!sdev);
754 list.addr = ioctx->ioctx.dma;
755 list.length = srp_max_req_size;
756 list.lkey = sdev->pd->local_dma_lkey;
758 ioctx->ioctx.cqe.done = srpt_recv_done;
759 wr.wr_cqe = &ioctx->ioctx.cqe;
760 wr.next = NULL;
761 wr.sg_list = &list;
762 wr.num_sge = 1;
764 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
768 * srpt_post_send() - Post an IB send request.
770 * Returns zero upon success and a non-zero value upon failure.
772 static int srpt_post_send(struct srpt_rdma_ch *ch,
773 struct srpt_send_ioctx *ioctx, int len)
775 struct ib_sge list;
776 struct ib_send_wr wr, *bad_wr;
777 struct srpt_device *sdev = ch->sport->sdev;
778 int ret;
780 atomic_inc(&ch->req_lim);
782 ret = -ENOMEM;
783 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
784 pr_warn("IB send queue full (needed 1)\n");
785 goto out;
788 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
789 DMA_TO_DEVICE);
791 list.addr = ioctx->ioctx.dma;
792 list.length = len;
793 list.lkey = sdev->pd->local_dma_lkey;
795 ioctx->ioctx.cqe.done = srpt_send_done;
796 wr.next = NULL;
797 wr.wr_cqe = &ioctx->ioctx.cqe;
798 wr.sg_list = &list;
799 wr.num_sge = 1;
800 wr.opcode = IB_WR_SEND;
801 wr.send_flags = IB_SEND_SIGNALED;
803 ret = ib_post_send(ch->qp, &wr, &bad_wr);
805 out:
806 if (ret < 0) {
807 atomic_inc(&ch->sq_wr_avail);
808 atomic_dec(&ch->req_lim);
810 return ret;
814 * srpt_zerolength_write() - Perform a zero-length RDMA write.
816 * A quote from the InfiniBand specification: C9-88: For an HCA responder
817 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
818 * request, the R_Key shall not be validated, even if the request includes
819 * Immediate data.
821 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
823 struct ib_send_wr wr, *bad_wr;
825 memset(&wr, 0, sizeof(wr));
826 wr.opcode = IB_WR_RDMA_WRITE;
827 wr.wr_cqe = &ch->zw_cqe;
828 wr.send_flags = IB_SEND_SIGNALED;
829 return ib_post_send(ch->qp, &wr, &bad_wr);
832 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
834 struct srpt_rdma_ch *ch = cq->cq_context;
836 if (wc->status == IB_WC_SUCCESS) {
837 srpt_process_wait_list(ch);
838 } else {
839 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
840 schedule_work(&ch->release_work);
841 else
842 WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num);
847 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
848 * @ioctx: Pointer to the I/O context associated with the request.
849 * @srp_cmd: Pointer to the SRP_CMD request data.
850 * @dir: Pointer to the variable to which the transfer direction will be
851 * written.
852 * @data_len: Pointer to the variable to which the total data length of all
853 * descriptors in the SRP_CMD request will be written.
855 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
857 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
858 * -ENOMEM when memory allocation fails and zero upon success.
860 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
861 struct srp_cmd *srp_cmd,
862 enum dma_data_direction *dir, u64 *data_len)
864 struct srp_indirect_buf *idb;
865 struct srp_direct_buf *db;
866 unsigned add_cdb_offset;
867 int ret;
870 * The pointer computations below will only be compiled correctly
871 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
872 * whether srp_cmd::add_data has been declared as a byte pointer.
874 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
875 && !__same_type(srp_cmd->add_data[0], (u8)0));
877 BUG_ON(!dir);
878 BUG_ON(!data_len);
880 ret = 0;
881 *data_len = 0;
884 * The lower four bits of the buffer format field contain the DATA-IN
885 * buffer descriptor format, and the highest four bits contain the
886 * DATA-OUT buffer descriptor format.
888 *dir = DMA_NONE;
889 if (srp_cmd->buf_fmt & 0xf)
890 /* DATA-IN: transfer data from target to initiator (read). */
891 *dir = DMA_FROM_DEVICE;
892 else if (srp_cmd->buf_fmt >> 4)
893 /* DATA-OUT: transfer data from initiator to target (write). */
894 *dir = DMA_TO_DEVICE;
897 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
898 * CDB LENGTH' field are reserved and the size in bytes of this field
899 * is four times the value specified in bits 3..7. Hence the "& ~3".
901 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
902 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
903 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
904 ioctx->n_rbuf = 1;
905 ioctx->rbufs = &ioctx->single_rbuf;
907 db = (struct srp_direct_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
909 memcpy(ioctx->rbufs, db, sizeof(*db));
910 *data_len = be32_to_cpu(db->len);
911 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
912 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
913 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
914 + add_cdb_offset);
916 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof(*db);
918 if (ioctx->n_rbuf >
919 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
920 pr_err("received unsupported SRP_CMD request"
921 " type (%u out + %u in != %u / %zu)\n",
922 srp_cmd->data_out_desc_cnt,
923 srp_cmd->data_in_desc_cnt,
924 be32_to_cpu(idb->table_desc.len),
925 sizeof(*db));
926 ioctx->n_rbuf = 0;
927 ret = -EINVAL;
928 goto out;
931 if (ioctx->n_rbuf == 1)
932 ioctx->rbufs = &ioctx->single_rbuf;
933 else {
934 ioctx->rbufs =
935 kmalloc(ioctx->n_rbuf * sizeof(*db), GFP_ATOMIC);
936 if (!ioctx->rbufs) {
937 ioctx->n_rbuf = 0;
938 ret = -ENOMEM;
939 goto out;
943 db = idb->desc_list;
944 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof(*db));
945 *data_len = be32_to_cpu(idb->len);
947 out:
948 return ret;
952 * srpt_init_ch_qp() - Initialize queue pair attributes.
954 * Initialized the attributes of queue pair 'qp' by allowing local write,
955 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
957 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
959 struct ib_qp_attr *attr;
960 int ret;
962 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
963 if (!attr)
964 return -ENOMEM;
966 attr->qp_state = IB_QPS_INIT;
967 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
968 IB_ACCESS_REMOTE_WRITE;
969 attr->port_num = ch->sport->port;
970 attr->pkey_index = 0;
972 ret = ib_modify_qp(qp, attr,
973 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
974 IB_QP_PKEY_INDEX);
976 kfree(attr);
977 return ret;
981 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
982 * @ch: channel of the queue pair.
983 * @qp: queue pair to change the state of.
985 * Returns zero upon success and a negative value upon failure.
987 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
988 * If this structure ever becomes larger, it might be necessary to allocate
989 * it dynamically instead of on the stack.
991 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
993 struct ib_qp_attr qp_attr;
994 int attr_mask;
995 int ret;
997 qp_attr.qp_state = IB_QPS_RTR;
998 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
999 if (ret)
1000 goto out;
1002 qp_attr.max_dest_rd_atomic = 4;
1004 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1006 out:
1007 return ret;
1011 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1012 * @ch: channel of the queue pair.
1013 * @qp: queue pair to change the state of.
1015 * Returns zero upon success and a negative value upon failure.
1017 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1018 * If this structure ever becomes larger, it might be necessary to allocate
1019 * it dynamically instead of on the stack.
1021 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1023 struct ib_qp_attr qp_attr;
1024 int attr_mask;
1025 int ret;
1027 qp_attr.qp_state = IB_QPS_RTS;
1028 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1029 if (ret)
1030 goto out;
1032 qp_attr.max_rd_atomic = 4;
1034 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1036 out:
1037 return ret;
1041 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1043 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1045 struct ib_qp_attr qp_attr;
1047 qp_attr.qp_state = IB_QPS_ERR;
1048 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1052 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1054 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1055 struct srpt_send_ioctx *ioctx)
1057 struct scatterlist *sg;
1058 enum dma_data_direction dir;
1060 BUG_ON(!ch);
1061 BUG_ON(!ioctx);
1062 BUG_ON(ioctx->n_rdma && !ioctx->rdma_wrs);
1064 while (ioctx->n_rdma)
1065 kfree(ioctx->rdma_wrs[--ioctx->n_rdma].wr.sg_list);
1067 kfree(ioctx->rdma_wrs);
1068 ioctx->rdma_wrs = NULL;
1070 if (ioctx->mapped_sg_count) {
1071 sg = ioctx->sg;
1072 WARN_ON(!sg);
1073 dir = ioctx->cmd.data_direction;
1074 BUG_ON(dir == DMA_NONE);
1075 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1076 target_reverse_dma_direction(&ioctx->cmd));
1077 ioctx->mapped_sg_count = 0;
1082 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1084 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1085 struct srpt_send_ioctx *ioctx)
1087 struct ib_device *dev = ch->sport->sdev->device;
1088 struct se_cmd *cmd;
1089 struct scatterlist *sg, *sg_orig;
1090 int sg_cnt;
1091 enum dma_data_direction dir;
1092 struct ib_rdma_wr *riu;
1093 struct srp_direct_buf *db;
1094 dma_addr_t dma_addr;
1095 struct ib_sge *sge;
1096 u64 raddr;
1097 u32 rsize;
1098 u32 tsize;
1099 u32 dma_len;
1100 int count, nrdma;
1101 int i, j, k;
1103 BUG_ON(!ch);
1104 BUG_ON(!ioctx);
1105 cmd = &ioctx->cmd;
1106 dir = cmd->data_direction;
1107 BUG_ON(dir == DMA_NONE);
1109 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1110 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1112 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1113 target_reverse_dma_direction(cmd));
1114 if (unlikely(!count))
1115 return -EAGAIN;
1117 ioctx->mapped_sg_count = count;
1119 if (ioctx->rdma_wrs && ioctx->n_rdma_wrs)
1120 nrdma = ioctx->n_rdma_wrs;
1121 else {
1122 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1123 + ioctx->n_rbuf;
1125 ioctx->rdma_wrs = kcalloc(nrdma, sizeof(*ioctx->rdma_wrs),
1126 GFP_KERNEL);
1127 if (!ioctx->rdma_wrs)
1128 goto free_mem;
1130 ioctx->n_rdma_wrs = nrdma;
1133 db = ioctx->rbufs;
1134 tsize = cmd->data_length;
1135 dma_len = ib_sg_dma_len(dev, &sg[0]);
1136 riu = ioctx->rdma_wrs;
1139 * For each remote desc - calculate the #ib_sge.
1140 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1141 * each remote desc rdma_iu is required a rdma wr;
1142 * else
1143 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1144 * another rdma wr
1146 for (i = 0, j = 0;
1147 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1148 rsize = be32_to_cpu(db->len);
1149 raddr = be64_to_cpu(db->va);
1150 riu->remote_addr = raddr;
1151 riu->rkey = be32_to_cpu(db->key);
1152 riu->wr.num_sge = 0;
1154 /* calculate how many sge required for this remote_buf */
1155 while (rsize > 0 && tsize > 0) {
1157 if (rsize >= dma_len) {
1158 tsize -= dma_len;
1159 rsize -= dma_len;
1160 raddr += dma_len;
1162 if (tsize > 0) {
1163 ++j;
1164 if (j < count) {
1165 sg = sg_next(sg);
1166 dma_len = ib_sg_dma_len(
1167 dev, sg);
1170 } else {
1171 tsize -= rsize;
1172 dma_len -= rsize;
1173 rsize = 0;
1176 ++riu->wr.num_sge;
1178 if (rsize > 0 &&
1179 riu->wr.num_sge == SRPT_DEF_SG_PER_WQE) {
1180 ++ioctx->n_rdma;
1181 riu->wr.sg_list = kmalloc_array(riu->wr.num_sge,
1182 sizeof(*riu->wr.sg_list),
1183 GFP_KERNEL);
1184 if (!riu->wr.sg_list)
1185 goto free_mem;
1187 ++riu;
1188 riu->wr.num_sge = 0;
1189 riu->remote_addr = raddr;
1190 riu->rkey = be32_to_cpu(db->key);
1194 ++ioctx->n_rdma;
1195 riu->wr.sg_list = kmalloc_array(riu->wr.num_sge,
1196 sizeof(*riu->wr.sg_list),
1197 GFP_KERNEL);
1198 if (!riu->wr.sg_list)
1199 goto free_mem;
1202 db = ioctx->rbufs;
1203 tsize = cmd->data_length;
1204 riu = ioctx->rdma_wrs;
1205 sg = sg_orig;
1206 dma_len = ib_sg_dma_len(dev, &sg[0]);
1207 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1209 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1210 for (i = 0, j = 0;
1211 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1212 rsize = be32_to_cpu(db->len);
1213 sge = riu->wr.sg_list;
1214 k = 0;
1216 while (rsize > 0 && tsize > 0) {
1217 sge->addr = dma_addr;
1218 sge->lkey = ch->sport->sdev->pd->local_dma_lkey;
1220 if (rsize >= dma_len) {
1221 sge->length =
1222 (tsize < dma_len) ? tsize : dma_len;
1223 tsize -= dma_len;
1224 rsize -= dma_len;
1226 if (tsize > 0) {
1227 ++j;
1228 if (j < count) {
1229 sg = sg_next(sg);
1230 dma_len = ib_sg_dma_len(
1231 dev, sg);
1232 dma_addr = ib_sg_dma_address(
1233 dev, sg);
1236 } else {
1237 sge->length = (tsize < rsize) ? tsize : rsize;
1238 tsize -= rsize;
1239 dma_len -= rsize;
1240 dma_addr += rsize;
1241 rsize = 0;
1244 ++k;
1245 if (k == riu->wr.num_sge && rsize > 0 && tsize > 0) {
1246 ++riu;
1247 sge = riu->wr.sg_list;
1248 k = 0;
1249 } else if (rsize > 0 && tsize > 0)
1250 ++sge;
1254 return 0;
1256 free_mem:
1257 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1259 return -ENOMEM;
1263 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1265 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1267 struct srpt_send_ioctx *ioctx;
1268 unsigned long flags;
1270 BUG_ON(!ch);
1272 ioctx = NULL;
1273 spin_lock_irqsave(&ch->spinlock, flags);
1274 if (!list_empty(&ch->free_list)) {
1275 ioctx = list_first_entry(&ch->free_list,
1276 struct srpt_send_ioctx, free_list);
1277 list_del(&ioctx->free_list);
1279 spin_unlock_irqrestore(&ch->spinlock, flags);
1281 if (!ioctx)
1282 return ioctx;
1284 BUG_ON(ioctx->ch != ch);
1285 spin_lock_init(&ioctx->spinlock);
1286 ioctx->state = SRPT_STATE_NEW;
1287 ioctx->n_rbuf = 0;
1288 ioctx->rbufs = NULL;
1289 ioctx->n_rdma = 0;
1290 ioctx->n_rdma_wrs = 0;
1291 ioctx->rdma_wrs = NULL;
1292 ioctx->mapped_sg_count = 0;
1293 init_completion(&ioctx->tx_done);
1294 ioctx->queue_status_only = false;
1296 * transport_init_se_cmd() does not initialize all fields, so do it
1297 * here.
1299 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1300 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1302 return ioctx;
1306 * srpt_abort_cmd() - Abort a SCSI command.
1307 * @ioctx: I/O context associated with the SCSI command.
1308 * @context: Preferred execution context.
1310 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1312 enum srpt_command_state state;
1313 unsigned long flags;
1315 BUG_ON(!ioctx);
1318 * If the command is in a state where the target core is waiting for
1319 * the ib_srpt driver, change the state to the next state.
1322 spin_lock_irqsave(&ioctx->spinlock, flags);
1323 state = ioctx->state;
1324 switch (state) {
1325 case SRPT_STATE_NEED_DATA:
1326 ioctx->state = SRPT_STATE_DATA_IN;
1327 break;
1328 case SRPT_STATE_CMD_RSP_SENT:
1329 case SRPT_STATE_MGMT_RSP_SENT:
1330 ioctx->state = SRPT_STATE_DONE;
1331 break;
1332 default:
1333 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1334 __func__, state);
1335 break;
1337 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1339 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1340 ioctx->cmd.tag);
1342 switch (state) {
1343 case SRPT_STATE_NEW:
1344 case SRPT_STATE_DATA_IN:
1345 case SRPT_STATE_MGMT:
1346 case SRPT_STATE_DONE:
1348 * Do nothing - defer abort processing until
1349 * srpt_queue_response() is invoked.
1351 break;
1352 case SRPT_STATE_NEED_DATA:
1353 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1354 transport_generic_request_failure(&ioctx->cmd,
1355 TCM_CHECK_CONDITION_ABORT_CMD);
1356 break;
1357 case SRPT_STATE_CMD_RSP_SENT:
1359 * SRP_RSP sending failed or the SRP_RSP send completion has
1360 * not been received in time.
1362 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1363 transport_generic_free_cmd(&ioctx->cmd, 0);
1364 break;
1365 case SRPT_STATE_MGMT_RSP_SENT:
1366 transport_generic_free_cmd(&ioctx->cmd, 0);
1367 break;
1368 default:
1369 WARN(1, "Unexpected command state (%d)", state);
1370 break;
1373 return state;
1377 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1378 * the data that has been transferred via IB RDMA had to be postponed until the
1379 * check_stop_free() callback. None of this is necessary anymore and needs to
1380 * be cleaned up.
1382 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1384 struct srpt_rdma_ch *ch = cq->cq_context;
1385 struct srpt_send_ioctx *ioctx =
1386 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1388 WARN_ON(ioctx->n_rdma <= 0);
1389 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1391 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1392 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1393 ioctx, wc->status);
1394 srpt_abort_cmd(ioctx);
1395 return;
1398 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1399 SRPT_STATE_DATA_IN))
1400 target_execute_cmd(&ioctx->cmd);
1401 else
1402 pr_err("%s[%d]: wrong state = %d\n", __func__,
1403 __LINE__, srpt_get_cmd_state(ioctx));
1406 static void srpt_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc)
1408 struct srpt_send_ioctx *ioctx =
1409 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1411 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1413 * Note: if an RDMA write error completion is received that
1414 * means that a SEND also has been posted. Defer further
1415 * processing of the associated command until the send error
1416 * completion has been received.
1418 pr_info("RDMA_WRITE for ioctx 0x%p failed with status %d\n",
1419 ioctx, wc->status);
1424 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1425 * @ch: RDMA channel through which the request has been received.
1426 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1427 * be built in the buffer ioctx->buf points at and hence this function will
1428 * overwrite the request data.
1429 * @tag: tag of the request for which this response is being generated.
1430 * @status: value for the STATUS field of the SRP_RSP information unit.
1432 * Returns the size in bytes of the SRP_RSP response.
1434 * An SRP_RSP response contains a SCSI status or service response. See also
1435 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1436 * response. See also SPC-2 for more information about sense data.
1438 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1439 struct srpt_send_ioctx *ioctx, u64 tag,
1440 int status)
1442 struct srp_rsp *srp_rsp;
1443 const u8 *sense_data;
1444 int sense_data_len, max_sense_len;
1447 * The lowest bit of all SAM-3 status codes is zero (see also
1448 * paragraph 5.3 in SAM-3).
1450 WARN_ON(status & 1);
1452 srp_rsp = ioctx->ioctx.buf;
1453 BUG_ON(!srp_rsp);
1455 sense_data = ioctx->sense_data;
1456 sense_data_len = ioctx->cmd.scsi_sense_length;
1457 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1459 memset(srp_rsp, 0, sizeof(*srp_rsp));
1460 srp_rsp->opcode = SRP_RSP;
1461 srp_rsp->req_lim_delta =
1462 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1463 srp_rsp->tag = tag;
1464 srp_rsp->status = status;
1466 if (sense_data_len) {
1467 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1468 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1469 if (sense_data_len > max_sense_len) {
1470 pr_warn("truncated sense data from %d to %d"
1471 " bytes\n", sense_data_len, max_sense_len);
1472 sense_data_len = max_sense_len;
1475 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1476 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1477 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1480 return sizeof(*srp_rsp) + sense_data_len;
1484 * srpt_build_tskmgmt_rsp() - Build a task management response.
1485 * @ch: RDMA channel through which the request has been received.
1486 * @ioctx: I/O context in which the SRP_RSP response will be built.
1487 * @rsp_code: RSP_CODE that will be stored in the response.
1488 * @tag: Tag of the request for which this response is being generated.
1490 * Returns the size in bytes of the SRP_RSP response.
1492 * An SRP_RSP response contains a SCSI status or service response. See also
1493 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1494 * response.
1496 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1497 struct srpt_send_ioctx *ioctx,
1498 u8 rsp_code, u64 tag)
1500 struct srp_rsp *srp_rsp;
1501 int resp_data_len;
1502 int resp_len;
1504 resp_data_len = 4;
1505 resp_len = sizeof(*srp_rsp) + resp_data_len;
1507 srp_rsp = ioctx->ioctx.buf;
1508 BUG_ON(!srp_rsp);
1509 memset(srp_rsp, 0, sizeof(*srp_rsp));
1511 srp_rsp->opcode = SRP_RSP;
1512 srp_rsp->req_lim_delta =
1513 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1514 srp_rsp->tag = tag;
1516 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1517 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1518 srp_rsp->data[3] = rsp_code;
1520 return resp_len;
1523 static int srpt_check_stop_free(struct se_cmd *cmd)
1525 struct srpt_send_ioctx *ioctx = container_of(cmd,
1526 struct srpt_send_ioctx, cmd);
1528 return target_put_sess_cmd(&ioctx->cmd);
1532 * srpt_handle_cmd() - Process SRP_CMD.
1534 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1535 struct srpt_recv_ioctx *recv_ioctx,
1536 struct srpt_send_ioctx *send_ioctx)
1538 struct se_cmd *cmd;
1539 struct srp_cmd *srp_cmd;
1540 u64 data_len;
1541 enum dma_data_direction dir;
1542 int rc;
1544 BUG_ON(!send_ioctx);
1546 srp_cmd = recv_ioctx->ioctx.buf;
1547 cmd = &send_ioctx->cmd;
1548 cmd->tag = srp_cmd->tag;
1550 switch (srp_cmd->task_attr) {
1551 case SRP_CMD_SIMPLE_Q:
1552 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1553 break;
1554 case SRP_CMD_ORDERED_Q:
1555 default:
1556 cmd->sam_task_attr = TCM_ORDERED_TAG;
1557 break;
1558 case SRP_CMD_HEAD_OF_Q:
1559 cmd->sam_task_attr = TCM_HEAD_TAG;
1560 break;
1561 case SRP_CMD_ACA:
1562 cmd->sam_task_attr = TCM_ACA_TAG;
1563 break;
1566 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1567 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1568 srp_cmd->tag);
1569 goto release_ioctx;
1572 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1573 &send_ioctx->sense_data[0],
1574 scsilun_to_int(&srp_cmd->lun), data_len,
1575 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1576 if (rc != 0) {
1577 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1578 srp_cmd->tag);
1579 goto release_ioctx;
1581 return;
1583 release_ioctx:
1584 send_ioctx->state = SRPT_STATE_DONE;
1585 srpt_release_cmd(cmd);
1588 static int srp_tmr_to_tcm(int fn)
1590 switch (fn) {
1591 case SRP_TSK_ABORT_TASK:
1592 return TMR_ABORT_TASK;
1593 case SRP_TSK_ABORT_TASK_SET:
1594 return TMR_ABORT_TASK_SET;
1595 case SRP_TSK_CLEAR_TASK_SET:
1596 return TMR_CLEAR_TASK_SET;
1597 case SRP_TSK_LUN_RESET:
1598 return TMR_LUN_RESET;
1599 case SRP_TSK_CLEAR_ACA:
1600 return TMR_CLEAR_ACA;
1601 default:
1602 return -1;
1607 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1609 * Returns 0 if and only if the request will be processed by the target core.
1611 * For more information about SRP_TSK_MGMT information units, see also section
1612 * 6.7 in the SRP r16a document.
1614 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1615 struct srpt_recv_ioctx *recv_ioctx,
1616 struct srpt_send_ioctx *send_ioctx)
1618 struct srp_tsk_mgmt *srp_tsk;
1619 struct se_cmd *cmd;
1620 struct se_session *sess = ch->sess;
1621 int tcm_tmr;
1622 int rc;
1624 BUG_ON(!send_ioctx);
1626 srp_tsk = recv_ioctx->ioctx.buf;
1627 cmd = &send_ioctx->cmd;
1629 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1630 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1631 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1633 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1634 send_ioctx->cmd.tag = srp_tsk->tag;
1635 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1636 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1637 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1638 GFP_KERNEL, srp_tsk->task_tag,
1639 TARGET_SCF_ACK_KREF);
1640 if (rc != 0) {
1641 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1642 goto fail;
1644 return;
1645 fail:
1646 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1650 * srpt_handle_new_iu() - Process a newly received information unit.
1651 * @ch: RDMA channel through which the information unit has been received.
1652 * @ioctx: SRPT I/O context associated with the information unit.
1654 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1655 struct srpt_recv_ioctx *recv_ioctx,
1656 struct srpt_send_ioctx *send_ioctx)
1658 struct srp_cmd *srp_cmd;
1660 BUG_ON(!ch);
1661 BUG_ON(!recv_ioctx);
1663 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1664 recv_ioctx->ioctx.dma, srp_max_req_size,
1665 DMA_FROM_DEVICE);
1667 if (unlikely(ch->state == CH_CONNECTING)) {
1668 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1669 goto out;
1672 if (unlikely(ch->state != CH_LIVE))
1673 goto out;
1675 srp_cmd = recv_ioctx->ioctx.buf;
1676 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1677 if (!send_ioctx)
1678 send_ioctx = srpt_get_send_ioctx(ch);
1679 if (unlikely(!send_ioctx)) {
1680 list_add_tail(&recv_ioctx->wait_list,
1681 &ch->cmd_wait_list);
1682 goto out;
1686 switch (srp_cmd->opcode) {
1687 case SRP_CMD:
1688 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1689 break;
1690 case SRP_TSK_MGMT:
1691 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1692 break;
1693 case SRP_I_LOGOUT:
1694 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1695 break;
1696 case SRP_CRED_RSP:
1697 pr_debug("received SRP_CRED_RSP\n");
1698 break;
1699 case SRP_AER_RSP:
1700 pr_debug("received SRP_AER_RSP\n");
1701 break;
1702 case SRP_RSP:
1703 pr_err("Received SRP_RSP\n");
1704 break;
1705 default:
1706 pr_err("received IU with unknown opcode 0x%x\n",
1707 srp_cmd->opcode);
1708 break;
1711 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1712 out:
1713 return;
1716 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1718 struct srpt_rdma_ch *ch = cq->cq_context;
1719 struct srpt_recv_ioctx *ioctx =
1720 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1722 if (wc->status == IB_WC_SUCCESS) {
1723 int req_lim;
1725 req_lim = atomic_dec_return(&ch->req_lim);
1726 if (unlikely(req_lim < 0))
1727 pr_err("req_lim = %d < 0\n", req_lim);
1728 srpt_handle_new_iu(ch, ioctx, NULL);
1729 } else {
1730 pr_info("receiving failed for ioctx %p with status %d\n",
1731 ioctx, wc->status);
1736 * This function must be called from the context in which RDMA completions are
1737 * processed because it accesses the wait list without protection against
1738 * access from other threads.
1740 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1742 struct srpt_send_ioctx *ioctx;
1744 while (!list_empty(&ch->cmd_wait_list) &&
1745 ch->state >= CH_LIVE &&
1746 (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
1747 struct srpt_recv_ioctx *recv_ioctx;
1749 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1750 struct srpt_recv_ioctx,
1751 wait_list);
1752 list_del(&recv_ioctx->wait_list);
1753 srpt_handle_new_iu(ch, recv_ioctx, ioctx);
1758 * Note: Although this has not yet been observed during tests, at least in
1759 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1760 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1761 * value in each response is set to one, and it is possible that this response
1762 * makes the initiator send a new request before the send completion for that
1763 * response has been processed. This could e.g. happen if the call to
1764 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1765 * if IB retransmission causes generation of the send completion to be
1766 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1767 * are queued on cmd_wait_list. The code below processes these delayed
1768 * requests one at a time.
1770 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1772 struct srpt_rdma_ch *ch = cq->cq_context;
1773 struct srpt_send_ioctx *ioctx =
1774 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1775 enum srpt_command_state state;
1777 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1779 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1780 state != SRPT_STATE_MGMT_RSP_SENT);
1782 atomic_inc(&ch->sq_wr_avail);
1784 if (wc->status != IB_WC_SUCCESS)
1785 pr_info("sending response for ioctx 0x%p failed"
1786 " with status %d\n", ioctx, wc->status);
1788 if (state != SRPT_STATE_DONE) {
1789 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1790 transport_generic_free_cmd(&ioctx->cmd, 0);
1791 } else {
1792 pr_err("IB completion has been received too late for"
1793 " wr_id = %u.\n", ioctx->ioctx.index);
1796 srpt_process_wait_list(ch);
1800 * srpt_create_ch_ib() - Create receive and send completion queues.
1802 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1804 struct ib_qp_init_attr *qp_init;
1805 struct srpt_port *sport = ch->sport;
1806 struct srpt_device *sdev = sport->sdev;
1807 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
1808 int ret;
1810 WARN_ON(ch->rq_size < 1);
1812 ret = -ENOMEM;
1813 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1814 if (!qp_init)
1815 goto out;
1817 retry:
1818 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size,
1819 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1820 if (IS_ERR(ch->cq)) {
1821 ret = PTR_ERR(ch->cq);
1822 pr_err("failed to create CQ cqe= %d ret= %d\n",
1823 ch->rq_size + srp_sq_size, ret);
1824 goto out;
1827 qp_init->qp_context = (void *)ch;
1828 qp_init->event_handler
1829 = (void(*)(struct ib_event *, void*))srpt_qp_event;
1830 qp_init->send_cq = ch->cq;
1831 qp_init->recv_cq = ch->cq;
1832 qp_init->srq = sdev->srq;
1833 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1834 qp_init->qp_type = IB_QPT_RC;
1835 qp_init->cap.max_send_wr = srp_sq_size;
1836 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
1838 ch->qp = ib_create_qp(sdev->pd, qp_init);
1839 if (IS_ERR(ch->qp)) {
1840 ret = PTR_ERR(ch->qp);
1841 if (ret == -ENOMEM) {
1842 srp_sq_size /= 2;
1843 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
1844 ib_destroy_cq(ch->cq);
1845 goto retry;
1848 pr_err("failed to create_qp ret= %d\n", ret);
1849 goto err_destroy_cq;
1852 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1854 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1855 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1856 qp_init->cap.max_send_wr, ch->cm_id);
1858 ret = srpt_init_ch_qp(ch, ch->qp);
1859 if (ret)
1860 goto err_destroy_qp;
1862 out:
1863 kfree(qp_init);
1864 return ret;
1866 err_destroy_qp:
1867 ib_destroy_qp(ch->qp);
1868 err_destroy_cq:
1869 ib_free_cq(ch->cq);
1870 goto out;
1873 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1875 ib_destroy_qp(ch->qp);
1876 ib_free_cq(ch->cq);
1880 * srpt_close_ch() - Close an RDMA channel.
1882 * Make sure all resources associated with the channel will be deallocated at
1883 * an appropriate time.
1885 * Returns true if and only if the channel state has been modified into
1886 * CH_DRAINING.
1888 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1890 int ret;
1892 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1893 pr_debug("%s-%d: already closed\n", ch->sess_name,
1894 ch->qp->qp_num);
1895 return false;
1898 kref_get(&ch->kref);
1900 ret = srpt_ch_qp_err(ch);
1901 if (ret < 0)
1902 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1903 ch->sess_name, ch->qp->qp_num, ret);
1905 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
1906 ch->qp->qp_num);
1907 ret = srpt_zerolength_write(ch);
1908 if (ret < 0) {
1909 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1910 ch->sess_name, ch->qp->qp_num, ret);
1911 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1912 schedule_work(&ch->release_work);
1913 else
1914 WARN_ON_ONCE(true);
1917 kref_put(&ch->kref, srpt_free_ch);
1919 return true;
1923 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1924 * reached the connected state, close it. If a channel is in the connected
1925 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1926 * the responsibility of the caller to ensure that this function is not
1927 * invoked concurrently with the code that accepts a connection. This means
1928 * that this function must either be invoked from inside a CM callback
1929 * function or that it must be invoked with the srpt_port.mutex held.
1931 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1933 int ret;
1935 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1936 return -ENOTCONN;
1938 ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
1939 if (ret < 0)
1940 ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1942 if (ret < 0 && srpt_close_ch(ch))
1943 ret = 0;
1945 return ret;
1948 static void __srpt_close_all_ch(struct srpt_device *sdev)
1950 struct srpt_rdma_ch *ch;
1952 lockdep_assert_held(&sdev->mutex);
1954 list_for_each_entry(ch, &sdev->rch_list, list) {
1955 if (srpt_disconnect_ch(ch) >= 0)
1956 pr_info("Closing channel %s-%d because target %s has been disabled\n",
1957 ch->sess_name, ch->qp->qp_num,
1958 sdev->device->name);
1959 srpt_close_ch(ch);
1964 * srpt_shutdown_session() - Whether or not a session may be shut down.
1966 static int srpt_shutdown_session(struct se_session *se_sess)
1968 return 1;
1971 static void srpt_free_ch(struct kref *kref)
1973 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
1975 kfree(ch);
1978 static void srpt_release_channel_work(struct work_struct *w)
1980 struct srpt_rdma_ch *ch;
1981 struct srpt_device *sdev;
1982 struct se_session *se_sess;
1984 ch = container_of(w, struct srpt_rdma_ch, release_work);
1985 pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
1986 ch->qp->qp_num, ch->release_done);
1988 sdev = ch->sport->sdev;
1989 BUG_ON(!sdev);
1991 se_sess = ch->sess;
1992 BUG_ON(!se_sess);
1994 target_sess_cmd_list_set_waiting(se_sess);
1995 target_wait_for_sess_cmds(se_sess);
1997 transport_deregister_session_configfs(se_sess);
1998 transport_deregister_session(se_sess);
1999 ch->sess = NULL;
2001 ib_destroy_cm_id(ch->cm_id);
2003 srpt_destroy_ch_ib(ch);
2005 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2006 ch->sport->sdev, ch->rq_size,
2007 ch->rsp_size, DMA_TO_DEVICE);
2009 mutex_lock(&sdev->mutex);
2010 list_del_init(&ch->list);
2011 if (ch->release_done)
2012 complete(ch->release_done);
2013 mutex_unlock(&sdev->mutex);
2015 wake_up(&sdev->ch_releaseQ);
2017 kref_put(&ch->kref, srpt_free_ch);
2021 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2023 * Ownership of the cm_id is transferred to the target session if this
2024 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2026 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2027 struct ib_cm_req_event_param *param,
2028 void *private_data)
2030 struct srpt_device *sdev = cm_id->context;
2031 struct srpt_port *sport = &sdev->port[param->port - 1];
2032 struct srp_login_req *req;
2033 struct srp_login_rsp *rsp;
2034 struct srp_login_rej *rej;
2035 struct ib_cm_rep_param *rep_param;
2036 struct srpt_rdma_ch *ch, *tmp_ch;
2037 u32 it_iu_len;
2038 int i, ret = 0;
2039 unsigned char *p;
2041 WARN_ON_ONCE(irqs_disabled());
2043 if (WARN_ON(!sdev || !private_data))
2044 return -EINVAL;
2046 req = (struct srp_login_req *)private_data;
2048 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2050 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2051 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2052 " (guid=0x%llx:0x%llx)\n",
2053 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2054 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2055 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2056 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2057 it_iu_len,
2058 param->port,
2059 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2060 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2062 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2063 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2064 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2066 if (!rsp || !rej || !rep_param) {
2067 ret = -ENOMEM;
2068 goto out;
2071 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2072 rej->reason = cpu_to_be32(
2073 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2074 ret = -EINVAL;
2075 pr_err("rejected SRP_LOGIN_REQ because its"
2076 " length (%d bytes) is out of range (%d .. %d)\n",
2077 it_iu_len, 64, srp_max_req_size);
2078 goto reject;
2081 if (!sport->enabled) {
2082 rej->reason = cpu_to_be32(
2083 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2084 ret = -EINVAL;
2085 pr_err("rejected SRP_LOGIN_REQ because the target port"
2086 " has not yet been enabled\n");
2087 goto reject;
2090 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2091 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2093 mutex_lock(&sdev->mutex);
2095 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2096 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2097 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2098 && param->port == ch->sport->port
2099 && param->listen_id == ch->sport->sdev->cm_id
2100 && ch->cm_id) {
2101 if (srpt_disconnect_ch(ch) < 0)
2102 continue;
2103 pr_info("Relogin - closed existing channel %s\n",
2104 ch->sess_name);
2105 rsp->rsp_flags =
2106 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2110 mutex_unlock(&sdev->mutex);
2112 } else
2113 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2115 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2116 || *(__be64 *)(req->target_port_id + 8) !=
2117 cpu_to_be64(srpt_service_guid)) {
2118 rej->reason = cpu_to_be32(
2119 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2120 ret = -ENOMEM;
2121 pr_err("rejected SRP_LOGIN_REQ because it"
2122 " has an invalid target port identifier.\n");
2123 goto reject;
2126 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2127 if (!ch) {
2128 rej->reason = cpu_to_be32(
2129 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2130 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2131 ret = -ENOMEM;
2132 goto reject;
2135 kref_init(&ch->kref);
2136 ch->zw_cqe.done = srpt_zerolength_write_done;
2137 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2138 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2139 memcpy(ch->t_port_id, req->target_port_id, 16);
2140 ch->sport = &sdev->port[param->port - 1];
2141 ch->cm_id = cm_id;
2142 cm_id->context = ch;
2144 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2145 * for the SRP protocol to the command queue size.
2147 ch->rq_size = SRPT_RQ_SIZE;
2148 spin_lock_init(&ch->spinlock);
2149 ch->state = CH_CONNECTING;
2150 INIT_LIST_HEAD(&ch->cmd_wait_list);
2151 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2153 ch->ioctx_ring = (struct srpt_send_ioctx **)
2154 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2155 sizeof(*ch->ioctx_ring[0]),
2156 ch->rsp_size, DMA_TO_DEVICE);
2157 if (!ch->ioctx_ring)
2158 goto free_ch;
2160 INIT_LIST_HEAD(&ch->free_list);
2161 for (i = 0; i < ch->rq_size; i++) {
2162 ch->ioctx_ring[i]->ch = ch;
2163 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2166 ret = srpt_create_ch_ib(ch);
2167 if (ret) {
2168 rej->reason = cpu_to_be32(
2169 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2170 pr_err("rejected SRP_LOGIN_REQ because creating"
2171 " a new RDMA channel failed.\n");
2172 goto free_ring;
2175 ret = srpt_ch_qp_rtr(ch, ch->qp);
2176 if (ret) {
2177 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2178 pr_err("rejected SRP_LOGIN_REQ because enabling"
2179 " RTR failed (error code = %d)\n", ret);
2180 goto destroy_ib;
2184 * Use the initator port identifier as the session name, when
2185 * checking against se_node_acl->initiatorname[] this can be
2186 * with or without preceeding '0x'.
2188 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2189 be64_to_cpu(*(__be64 *)ch->i_port_id),
2190 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2192 pr_debug("registering session %s\n", ch->sess_name);
2193 p = &ch->sess_name[0];
2195 try_again:
2196 ch->sess = target_alloc_session(&sport->port_tpg_1, 0, 0,
2197 TARGET_PROT_NORMAL, p, ch, NULL);
2198 if (IS_ERR(ch->sess)) {
2199 pr_info("Rejected login because no ACL has been"
2200 " configured yet for initiator %s.\n", p);
2202 * XXX: Hack to retry of ch->i_port_id without leading '0x'
2204 if (p == &ch->sess_name[0]) {
2205 p += 2;
2206 goto try_again;
2208 rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
2209 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2210 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2211 goto destroy_ib;
2214 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2215 ch->sess_name, ch->cm_id);
2217 /* create srp_login_response */
2218 rsp->opcode = SRP_LOGIN_RSP;
2219 rsp->tag = req->tag;
2220 rsp->max_it_iu_len = req->req_it_iu_len;
2221 rsp->max_ti_iu_len = req->req_it_iu_len;
2222 ch->max_ti_iu_len = it_iu_len;
2223 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2224 | SRP_BUF_FORMAT_INDIRECT);
2225 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2226 atomic_set(&ch->req_lim, ch->rq_size);
2227 atomic_set(&ch->req_lim_delta, 0);
2229 /* create cm reply */
2230 rep_param->qp_num = ch->qp->qp_num;
2231 rep_param->private_data = (void *)rsp;
2232 rep_param->private_data_len = sizeof(*rsp);
2233 rep_param->rnr_retry_count = 7;
2234 rep_param->flow_control = 1;
2235 rep_param->failover_accepted = 0;
2236 rep_param->srq = 1;
2237 rep_param->responder_resources = 4;
2238 rep_param->initiator_depth = 4;
2240 ret = ib_send_cm_rep(cm_id, rep_param);
2241 if (ret) {
2242 pr_err("sending SRP_LOGIN_REQ response failed"
2243 " (error code = %d)\n", ret);
2244 goto release_channel;
2247 mutex_lock(&sdev->mutex);
2248 list_add_tail(&ch->list, &sdev->rch_list);
2249 mutex_unlock(&sdev->mutex);
2251 goto out;
2253 release_channel:
2254 srpt_disconnect_ch(ch);
2255 transport_deregister_session_configfs(ch->sess);
2256 transport_deregister_session(ch->sess);
2257 ch->sess = NULL;
2259 destroy_ib:
2260 srpt_destroy_ch_ib(ch);
2262 free_ring:
2263 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2264 ch->sport->sdev, ch->rq_size,
2265 ch->rsp_size, DMA_TO_DEVICE);
2266 free_ch:
2267 kfree(ch);
2269 reject:
2270 rej->opcode = SRP_LOGIN_REJ;
2271 rej->tag = req->tag;
2272 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2273 | SRP_BUF_FORMAT_INDIRECT);
2275 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2276 (void *)rej, sizeof(*rej));
2278 out:
2279 kfree(rep_param);
2280 kfree(rsp);
2281 kfree(rej);
2283 return ret;
2286 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2287 enum ib_cm_rej_reason reason,
2288 const u8 *private_data,
2289 u8 private_data_len)
2291 char *priv = NULL;
2292 int i;
2294 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2295 GFP_KERNEL))) {
2296 for (i = 0; i < private_data_len; i++)
2297 sprintf(priv + 3 * i, " %02x", private_data[i]);
2299 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2300 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2301 "; private data" : "", priv ? priv : " (?)");
2302 kfree(priv);
2306 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2308 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2309 * and that the recipient may begin transmitting (RTU = ready to use).
2311 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2313 int ret;
2315 if (srpt_set_ch_state(ch, CH_LIVE)) {
2316 ret = srpt_ch_qp_rts(ch, ch->qp);
2318 if (ret == 0) {
2319 /* Trigger wait list processing. */
2320 ret = srpt_zerolength_write(ch);
2321 WARN_ONCE(ret < 0, "%d\n", ret);
2322 } else {
2323 srpt_close_ch(ch);
2329 * srpt_cm_handler() - IB connection manager callback function.
2331 * A non-zero return value will cause the caller destroy the CM ID.
2333 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2334 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2335 * a non-zero value in any other case will trigger a race with the
2336 * ib_destroy_cm_id() call in srpt_release_channel().
2338 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2340 struct srpt_rdma_ch *ch = cm_id->context;
2341 int ret;
2343 ret = 0;
2344 switch (event->event) {
2345 case IB_CM_REQ_RECEIVED:
2346 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2347 event->private_data);
2348 break;
2349 case IB_CM_REJ_RECEIVED:
2350 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2351 event->private_data,
2352 IB_CM_REJ_PRIVATE_DATA_SIZE);
2353 break;
2354 case IB_CM_RTU_RECEIVED:
2355 case IB_CM_USER_ESTABLISHED:
2356 srpt_cm_rtu_recv(ch);
2357 break;
2358 case IB_CM_DREQ_RECEIVED:
2359 srpt_disconnect_ch(ch);
2360 break;
2361 case IB_CM_DREP_RECEIVED:
2362 pr_info("Received CM DREP message for ch %s-%d.\n",
2363 ch->sess_name, ch->qp->qp_num);
2364 srpt_close_ch(ch);
2365 break;
2366 case IB_CM_TIMEWAIT_EXIT:
2367 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2368 ch->sess_name, ch->qp->qp_num);
2369 srpt_close_ch(ch);
2370 break;
2371 case IB_CM_REP_ERROR:
2372 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2373 ch->qp->qp_num);
2374 break;
2375 case IB_CM_DREQ_ERROR:
2376 pr_info("Received CM DREQ ERROR event.\n");
2377 break;
2378 case IB_CM_MRA_RECEIVED:
2379 pr_info("Received CM MRA event\n");
2380 break;
2381 default:
2382 pr_err("received unrecognized CM event %d\n", event->event);
2383 break;
2386 return ret;
2390 * srpt_perform_rdmas() - Perform IB RDMA.
2392 * Returns zero upon success or a negative number upon failure.
2394 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2395 struct srpt_send_ioctx *ioctx)
2397 struct ib_send_wr *bad_wr;
2398 int sq_wr_avail, ret, i;
2399 enum dma_data_direction dir;
2400 const int n_rdma = ioctx->n_rdma;
2402 dir = ioctx->cmd.data_direction;
2403 if (dir == DMA_TO_DEVICE) {
2404 /* write */
2405 ret = -ENOMEM;
2406 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2407 if (sq_wr_avail < 0) {
2408 pr_warn("IB send queue full (needed %d)\n",
2409 n_rdma);
2410 goto out;
2414 for (i = 0; i < n_rdma; i++) {
2415 struct ib_send_wr *wr = &ioctx->rdma_wrs[i].wr;
2417 wr->opcode = (dir == DMA_FROM_DEVICE) ?
2418 IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
2420 if (i == n_rdma - 1) {
2421 /* only get completion event for the last rdma read */
2422 if (dir == DMA_TO_DEVICE) {
2423 wr->send_flags = IB_SEND_SIGNALED;
2424 ioctx->rdma_cqe.done = srpt_rdma_read_done;
2425 } else {
2426 ioctx->rdma_cqe.done = srpt_rdma_write_done;
2428 wr->wr_cqe = &ioctx->rdma_cqe;
2429 wr->next = NULL;
2430 } else {
2431 wr->wr_cqe = NULL;
2432 wr->next = &ioctx->rdma_wrs[i + 1].wr;
2436 ret = ib_post_send(ch->qp, &ioctx->rdma_wrs->wr, &bad_wr);
2437 if (ret)
2438 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2439 __func__, __LINE__, ret, i, n_rdma);
2440 out:
2441 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2442 atomic_add(n_rdma, &ch->sq_wr_avail);
2443 return ret;
2447 * srpt_xfer_data() - Start data transfer from initiator to target.
2449 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2450 struct srpt_send_ioctx *ioctx)
2452 int ret;
2454 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2455 if (ret) {
2456 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2457 goto out;
2460 ret = srpt_perform_rdmas(ch, ioctx);
2461 if (ret) {
2462 if (ret == -EAGAIN || ret == -ENOMEM)
2463 pr_info("%s[%d] queue full -- ret=%d\n",
2464 __func__, __LINE__, ret);
2465 else
2466 pr_err("%s[%d] fatal error -- ret=%d\n",
2467 __func__, __LINE__, ret);
2468 goto out_unmap;
2471 out:
2472 return ret;
2473 out_unmap:
2474 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2475 goto out;
2478 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2480 struct srpt_send_ioctx *ioctx;
2482 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2483 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2487 * srpt_write_pending() - Start data transfer from initiator to target (write).
2489 static int srpt_write_pending(struct se_cmd *se_cmd)
2491 struct srpt_send_ioctx *ioctx =
2492 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2493 struct srpt_rdma_ch *ch = ioctx->ch;
2494 enum srpt_command_state new_state;
2496 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2497 WARN_ON(new_state == SRPT_STATE_DONE);
2498 return srpt_xfer_data(ch, ioctx);
2501 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2503 switch (tcm_mgmt_status) {
2504 case TMR_FUNCTION_COMPLETE:
2505 return SRP_TSK_MGMT_SUCCESS;
2506 case TMR_FUNCTION_REJECTED:
2507 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2509 return SRP_TSK_MGMT_FAILED;
2513 * srpt_queue_response() - Transmits the response to a SCSI command.
2515 * Callback function called by the TCM core. Must not block since it can be
2516 * invoked on the context of the IB completion handler.
2518 static void srpt_queue_response(struct se_cmd *cmd)
2520 struct srpt_rdma_ch *ch;
2521 struct srpt_send_ioctx *ioctx;
2522 enum srpt_command_state state;
2523 unsigned long flags;
2524 int ret;
2525 enum dma_data_direction dir;
2526 int resp_len;
2527 u8 srp_tm_status;
2529 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2530 ch = ioctx->ch;
2531 BUG_ON(!ch);
2533 spin_lock_irqsave(&ioctx->spinlock, flags);
2534 state = ioctx->state;
2535 switch (state) {
2536 case SRPT_STATE_NEW:
2537 case SRPT_STATE_DATA_IN:
2538 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2539 break;
2540 case SRPT_STATE_MGMT:
2541 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2542 break;
2543 default:
2544 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2545 ch, ioctx->ioctx.index, ioctx->state);
2546 break;
2548 spin_unlock_irqrestore(&ioctx->spinlock, flags);
2550 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2551 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2552 atomic_inc(&ch->req_lim_delta);
2553 srpt_abort_cmd(ioctx);
2554 return;
2557 dir = ioctx->cmd.data_direction;
2559 /* For read commands, transfer the data to the initiator. */
2560 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
2561 !ioctx->queue_status_only) {
2562 ret = srpt_xfer_data(ch, ioctx);
2563 if (ret) {
2564 pr_err("xfer_data failed for tag %llu\n",
2565 ioctx->cmd.tag);
2566 return;
2570 if (state != SRPT_STATE_MGMT)
2571 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2572 cmd->scsi_status);
2573 else {
2574 srp_tm_status
2575 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2576 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2577 ioctx->cmd.tag);
2579 ret = srpt_post_send(ch, ioctx, resp_len);
2580 if (ret) {
2581 pr_err("sending cmd response failed for tag %llu\n",
2582 ioctx->cmd.tag);
2583 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2584 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2585 target_put_sess_cmd(&ioctx->cmd);
2589 static int srpt_queue_data_in(struct se_cmd *cmd)
2591 srpt_queue_response(cmd);
2592 return 0;
2595 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2597 srpt_queue_response(cmd);
2600 static void srpt_aborted_task(struct se_cmd *cmd)
2602 struct srpt_send_ioctx *ioctx = container_of(cmd,
2603 struct srpt_send_ioctx, cmd);
2605 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
2608 static int srpt_queue_status(struct se_cmd *cmd)
2610 struct srpt_send_ioctx *ioctx;
2612 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2613 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2614 if (cmd->se_cmd_flags &
2615 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2616 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2617 ioctx->queue_status_only = true;
2618 srpt_queue_response(cmd);
2619 return 0;
2622 static void srpt_refresh_port_work(struct work_struct *work)
2624 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2626 srpt_refresh_port(sport);
2630 * srpt_release_sdev() - Free the channel resources associated with a target.
2632 static int srpt_release_sdev(struct srpt_device *sdev)
2634 int i, res;
2636 WARN_ON_ONCE(irqs_disabled());
2638 BUG_ON(!sdev);
2640 mutex_lock(&sdev->mutex);
2641 for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2642 sdev->port[i].enabled = false;
2643 __srpt_close_all_ch(sdev);
2644 mutex_unlock(&sdev->mutex);
2646 res = wait_event_interruptible(sdev->ch_releaseQ,
2647 list_empty_careful(&sdev->rch_list));
2648 if (res)
2649 pr_err("%s: interrupted.\n", __func__);
2651 return 0;
2654 static struct srpt_port *__srpt_lookup_port(const char *name)
2656 struct ib_device *dev;
2657 struct srpt_device *sdev;
2658 struct srpt_port *sport;
2659 int i;
2661 list_for_each_entry(sdev, &srpt_dev_list, list) {
2662 dev = sdev->device;
2663 if (!dev)
2664 continue;
2666 for (i = 0; i < dev->phys_port_cnt; i++) {
2667 sport = &sdev->port[i];
2669 if (!strcmp(sport->port_guid, name))
2670 return sport;
2674 return NULL;
2677 static struct srpt_port *srpt_lookup_port(const char *name)
2679 struct srpt_port *sport;
2681 spin_lock(&srpt_dev_lock);
2682 sport = __srpt_lookup_port(name);
2683 spin_unlock(&srpt_dev_lock);
2685 return sport;
2689 * srpt_add_one() - Infiniband device addition callback function.
2691 static void srpt_add_one(struct ib_device *device)
2693 struct srpt_device *sdev;
2694 struct srpt_port *sport;
2695 struct ib_srq_init_attr srq_attr;
2696 int i;
2698 pr_debug("device = %p, device->dma_ops = %p\n", device,
2699 device->dma_ops);
2701 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2702 if (!sdev)
2703 goto err;
2705 sdev->device = device;
2706 INIT_LIST_HEAD(&sdev->rch_list);
2707 init_waitqueue_head(&sdev->ch_releaseQ);
2708 mutex_init(&sdev->mutex);
2710 sdev->pd = ib_alloc_pd(device);
2711 if (IS_ERR(sdev->pd))
2712 goto free_dev;
2714 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2716 srq_attr.event_handler = srpt_srq_event;
2717 srq_attr.srq_context = (void *)sdev;
2718 srq_attr.attr.max_wr = sdev->srq_size;
2719 srq_attr.attr.max_sge = 1;
2720 srq_attr.attr.srq_limit = 0;
2721 srq_attr.srq_type = IB_SRQT_BASIC;
2723 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
2724 if (IS_ERR(sdev->srq))
2725 goto err_pd;
2727 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
2728 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr,
2729 device->name);
2731 if (!srpt_service_guid)
2732 srpt_service_guid = be64_to_cpu(device->node_guid);
2734 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
2735 if (IS_ERR(sdev->cm_id))
2736 goto err_srq;
2738 /* print out target login information */
2739 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
2740 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
2741 srpt_service_guid, srpt_service_guid);
2744 * We do not have a consistent service_id (ie. also id_ext of target_id)
2745 * to identify this target. We currently use the guid of the first HCA
2746 * in the system as service_id; therefore, the target_id will change
2747 * if this HCA is gone bad and replaced by different HCA
2749 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2750 goto err_cm;
2752 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
2753 srpt_event_handler);
2754 if (ib_register_event_handler(&sdev->event_handler))
2755 goto err_cm;
2757 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
2758 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
2759 sizeof(*sdev->ioctx_ring[0]),
2760 srp_max_req_size, DMA_FROM_DEVICE);
2761 if (!sdev->ioctx_ring)
2762 goto err_event;
2764 for (i = 0; i < sdev->srq_size; ++i)
2765 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
2767 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2769 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
2770 sport = &sdev->port[i - 1];
2771 sport->sdev = sdev;
2772 sport->port = i;
2773 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
2774 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
2775 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2776 INIT_WORK(&sport->work, srpt_refresh_port_work);
2778 if (srpt_refresh_port(sport)) {
2779 pr_err("MAD registration failed for %s-%d.\n",
2780 sdev->device->name, i);
2781 goto err_ring;
2783 snprintf(sport->port_guid, sizeof(sport->port_guid),
2784 "0x%016llx%016llx",
2785 be64_to_cpu(sport->gid.global.subnet_prefix),
2786 be64_to_cpu(sport->gid.global.interface_id));
2789 spin_lock(&srpt_dev_lock);
2790 list_add_tail(&sdev->list, &srpt_dev_list);
2791 spin_unlock(&srpt_dev_lock);
2793 out:
2794 ib_set_client_data(device, &srpt_client, sdev);
2795 pr_debug("added %s.\n", device->name);
2796 return;
2798 err_ring:
2799 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2800 sdev->srq_size, srp_max_req_size,
2801 DMA_FROM_DEVICE);
2802 err_event:
2803 ib_unregister_event_handler(&sdev->event_handler);
2804 err_cm:
2805 ib_destroy_cm_id(sdev->cm_id);
2806 err_srq:
2807 ib_destroy_srq(sdev->srq);
2808 err_pd:
2809 ib_dealloc_pd(sdev->pd);
2810 free_dev:
2811 kfree(sdev);
2812 err:
2813 sdev = NULL;
2814 pr_info("%s(%s) failed.\n", __func__, device->name);
2815 goto out;
2819 * srpt_remove_one() - InfiniBand device removal callback function.
2821 static void srpt_remove_one(struct ib_device *device, void *client_data)
2823 struct srpt_device *sdev = client_data;
2824 int i;
2826 if (!sdev) {
2827 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2828 return;
2831 srpt_unregister_mad_agent(sdev);
2833 ib_unregister_event_handler(&sdev->event_handler);
2835 /* Cancel any work queued by the just unregistered IB event handler. */
2836 for (i = 0; i < sdev->device->phys_port_cnt; i++)
2837 cancel_work_sync(&sdev->port[i].work);
2839 ib_destroy_cm_id(sdev->cm_id);
2842 * Unregistering a target must happen after destroying sdev->cm_id
2843 * such that no new SRP_LOGIN_REQ information units can arrive while
2844 * destroying the target.
2846 spin_lock(&srpt_dev_lock);
2847 list_del(&sdev->list);
2848 spin_unlock(&srpt_dev_lock);
2849 srpt_release_sdev(sdev);
2851 ib_destroy_srq(sdev->srq);
2852 ib_dealloc_pd(sdev->pd);
2854 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2855 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
2856 sdev->ioctx_ring = NULL;
2857 kfree(sdev);
2860 static struct ib_client srpt_client = {
2861 .name = DRV_NAME,
2862 .add = srpt_add_one,
2863 .remove = srpt_remove_one
2866 static int srpt_check_true(struct se_portal_group *se_tpg)
2868 return 1;
2871 static int srpt_check_false(struct se_portal_group *se_tpg)
2873 return 0;
2876 static char *srpt_get_fabric_name(void)
2878 return "srpt";
2881 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
2883 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
2885 return sport->port_guid;
2888 static u16 srpt_get_tag(struct se_portal_group *tpg)
2890 return 1;
2893 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
2895 return 1;
2898 static void srpt_release_cmd(struct se_cmd *se_cmd)
2900 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
2901 struct srpt_send_ioctx, cmd);
2902 struct srpt_rdma_ch *ch = ioctx->ch;
2903 unsigned long flags;
2905 WARN_ON(ioctx->state != SRPT_STATE_DONE);
2906 WARN_ON(ioctx->mapped_sg_count != 0);
2908 if (ioctx->n_rbuf > 1) {
2909 kfree(ioctx->rbufs);
2910 ioctx->rbufs = NULL;
2911 ioctx->n_rbuf = 0;
2914 spin_lock_irqsave(&ch->spinlock, flags);
2915 list_add(&ioctx->free_list, &ch->free_list);
2916 spin_unlock_irqrestore(&ch->spinlock, flags);
2920 * srpt_close_session() - Forcibly close a session.
2922 * Callback function invoked by the TCM core to clean up sessions associated
2923 * with a node ACL when the user invokes
2924 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
2926 static void srpt_close_session(struct se_session *se_sess)
2928 DECLARE_COMPLETION_ONSTACK(release_done);
2929 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2930 struct srpt_device *sdev = ch->sport->sdev;
2931 bool wait;
2933 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
2934 ch->state);
2936 mutex_lock(&sdev->mutex);
2937 BUG_ON(ch->release_done);
2938 ch->release_done = &release_done;
2939 wait = !list_empty(&ch->list);
2940 srpt_disconnect_ch(ch);
2941 mutex_unlock(&sdev->mutex);
2943 if (!wait)
2944 return;
2946 while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
2947 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
2948 ch->sess_name, ch->qp->qp_num, ch->state);
2952 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
2954 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
2955 * This object represents an arbitrary integer used to uniquely identify a
2956 * particular attached remote initiator port to a particular SCSI target port
2957 * within a particular SCSI target device within a particular SCSI instance.
2959 static u32 srpt_sess_get_index(struct se_session *se_sess)
2961 return 0;
2964 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
2968 /* Note: only used from inside debug printk's by the TCM core. */
2969 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
2971 struct srpt_send_ioctx *ioctx;
2973 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2974 return srpt_get_cmd_state(ioctx);
2978 * srpt_parse_i_port_id() - Parse an initiator port ID.
2979 * @name: ASCII representation of a 128-bit initiator port ID.
2980 * @i_port_id: Binary 128-bit port ID.
2982 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
2984 const char *p;
2985 unsigned len, count, leading_zero_bytes;
2986 int ret, rc;
2988 p = name;
2989 if (strncasecmp(p, "0x", 2) == 0)
2990 p += 2;
2991 ret = -EINVAL;
2992 len = strlen(p);
2993 if (len % 2)
2994 goto out;
2995 count = min(len / 2, 16U);
2996 leading_zero_bytes = 16 - count;
2997 memset(i_port_id, 0, leading_zero_bytes);
2998 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
2999 if (rc < 0)
3000 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3001 ret = 0;
3002 out:
3003 return ret;
3007 * configfs callback function invoked for
3008 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3010 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3012 u8 i_port_id[16];
3014 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3015 pr_err("invalid initiator port ID %s\n", name);
3016 return -EINVAL;
3018 return 0;
3021 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3022 char *page)
3024 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3025 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3027 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3030 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3031 const char *page, size_t count)
3033 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3034 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3035 unsigned long val;
3036 int ret;
3038 ret = kstrtoul(page, 0, &val);
3039 if (ret < 0) {
3040 pr_err("kstrtoul() failed with ret: %d\n", ret);
3041 return -EINVAL;
3043 if (val > MAX_SRPT_RDMA_SIZE) {
3044 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3045 MAX_SRPT_RDMA_SIZE);
3046 return -EINVAL;
3048 if (val < DEFAULT_MAX_RDMA_SIZE) {
3049 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3050 val, DEFAULT_MAX_RDMA_SIZE);
3051 return -EINVAL;
3053 sport->port_attrib.srp_max_rdma_size = val;
3055 return count;
3058 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3059 char *page)
3061 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3062 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3064 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3067 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3068 const char *page, size_t count)
3070 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3071 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3072 unsigned long val;
3073 int ret;
3075 ret = kstrtoul(page, 0, &val);
3076 if (ret < 0) {
3077 pr_err("kstrtoul() failed with ret: %d\n", ret);
3078 return -EINVAL;
3080 if (val > MAX_SRPT_RSP_SIZE) {
3081 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3082 MAX_SRPT_RSP_SIZE);
3083 return -EINVAL;
3085 if (val < MIN_MAX_RSP_SIZE) {
3086 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3087 MIN_MAX_RSP_SIZE);
3088 return -EINVAL;
3090 sport->port_attrib.srp_max_rsp_size = val;
3092 return count;
3095 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3096 char *page)
3098 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3099 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3101 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3104 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3105 const char *page, size_t count)
3107 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3108 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3109 unsigned long val;
3110 int ret;
3112 ret = kstrtoul(page, 0, &val);
3113 if (ret < 0) {
3114 pr_err("kstrtoul() failed with ret: %d\n", ret);
3115 return -EINVAL;
3117 if (val > MAX_SRPT_SRQ_SIZE) {
3118 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3119 MAX_SRPT_SRQ_SIZE);
3120 return -EINVAL;
3122 if (val < MIN_SRPT_SRQ_SIZE) {
3123 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3124 MIN_SRPT_SRQ_SIZE);
3125 return -EINVAL;
3127 sport->port_attrib.srp_sq_size = val;
3129 return count;
3132 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3133 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3134 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3136 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3137 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3138 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3139 &srpt_tpg_attrib_attr_srp_sq_size,
3140 NULL,
3143 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3145 struct se_portal_group *se_tpg = to_tpg(item);
3146 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3148 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3151 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3152 const char *page, size_t count)
3154 struct se_portal_group *se_tpg = to_tpg(item);
3155 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3156 struct srpt_device *sdev = sport->sdev;
3157 struct srpt_rdma_ch *ch;
3158 unsigned long tmp;
3159 int ret;
3161 ret = kstrtoul(page, 0, &tmp);
3162 if (ret < 0) {
3163 pr_err("Unable to extract srpt_tpg_store_enable\n");
3164 return -EINVAL;
3167 if ((tmp != 0) && (tmp != 1)) {
3168 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3169 return -EINVAL;
3171 if (sport->enabled == tmp)
3172 goto out;
3173 sport->enabled = tmp;
3174 if (sport->enabled)
3175 goto out;
3177 mutex_lock(&sdev->mutex);
3178 list_for_each_entry(ch, &sdev->rch_list, list) {
3179 if (ch->sport == sport) {
3180 pr_debug("%s: ch %p %s-%d\n", __func__, ch,
3181 ch->sess_name, ch->qp->qp_num);
3182 srpt_disconnect_ch(ch);
3183 srpt_close_ch(ch);
3186 mutex_unlock(&sdev->mutex);
3188 out:
3189 return count;
3192 CONFIGFS_ATTR(srpt_tpg_, enable);
3194 static struct configfs_attribute *srpt_tpg_attrs[] = {
3195 &srpt_tpg_attr_enable,
3196 NULL,
3200 * configfs callback invoked for
3201 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3203 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3204 struct config_group *group,
3205 const char *name)
3207 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3208 int res;
3210 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3211 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3212 if (res)
3213 return ERR_PTR(res);
3215 return &sport->port_tpg_1;
3219 * configfs callback invoked for
3220 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3222 static void srpt_drop_tpg(struct se_portal_group *tpg)
3224 struct srpt_port *sport = container_of(tpg,
3225 struct srpt_port, port_tpg_1);
3227 sport->enabled = false;
3228 core_tpg_deregister(&sport->port_tpg_1);
3232 * configfs callback invoked for
3233 * mkdir /sys/kernel/config/target/$driver/$port
3235 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3236 struct config_group *group,
3237 const char *name)
3239 struct srpt_port *sport;
3240 int ret;
3242 sport = srpt_lookup_port(name);
3243 pr_debug("make_tport(%s)\n", name);
3244 ret = -EINVAL;
3245 if (!sport)
3246 goto err;
3248 return &sport->port_wwn;
3250 err:
3251 return ERR_PTR(ret);
3255 * configfs callback invoked for
3256 * rmdir /sys/kernel/config/target/$driver/$port
3258 static void srpt_drop_tport(struct se_wwn *wwn)
3260 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3262 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3265 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3267 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3270 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3272 static struct configfs_attribute *srpt_wwn_attrs[] = {
3273 &srpt_wwn_attr_version,
3274 NULL,
3277 static const struct target_core_fabric_ops srpt_template = {
3278 .module = THIS_MODULE,
3279 .name = "srpt",
3280 .get_fabric_name = srpt_get_fabric_name,
3281 .tpg_get_wwn = srpt_get_fabric_wwn,
3282 .tpg_get_tag = srpt_get_tag,
3283 .tpg_check_demo_mode = srpt_check_false,
3284 .tpg_check_demo_mode_cache = srpt_check_true,
3285 .tpg_check_demo_mode_write_protect = srpt_check_true,
3286 .tpg_check_prod_mode_write_protect = srpt_check_false,
3287 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3288 .release_cmd = srpt_release_cmd,
3289 .check_stop_free = srpt_check_stop_free,
3290 .shutdown_session = srpt_shutdown_session,
3291 .close_session = srpt_close_session,
3292 .sess_get_index = srpt_sess_get_index,
3293 .sess_get_initiator_sid = NULL,
3294 .write_pending = srpt_write_pending,
3295 .write_pending_status = srpt_write_pending_status,
3296 .set_default_node_attributes = srpt_set_default_node_attrs,
3297 .get_cmd_state = srpt_get_tcm_cmd_state,
3298 .queue_data_in = srpt_queue_data_in,
3299 .queue_status = srpt_queue_status,
3300 .queue_tm_rsp = srpt_queue_tm_rsp,
3301 .aborted_task = srpt_aborted_task,
3303 * Setup function pointers for generic logic in
3304 * target_core_fabric_configfs.c
3306 .fabric_make_wwn = srpt_make_tport,
3307 .fabric_drop_wwn = srpt_drop_tport,
3308 .fabric_make_tpg = srpt_make_tpg,
3309 .fabric_drop_tpg = srpt_drop_tpg,
3310 .fabric_init_nodeacl = srpt_init_nodeacl,
3312 .tfc_wwn_attrs = srpt_wwn_attrs,
3313 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3314 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3318 * srpt_init_module() - Kernel module initialization.
3320 * Note: Since ib_register_client() registers callback functions, and since at
3321 * least one of these callback functions (srpt_add_one()) calls target core
3322 * functions, this driver must be registered with the target core before
3323 * ib_register_client() is called.
3325 static int __init srpt_init_module(void)
3327 int ret;
3329 ret = -EINVAL;
3330 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3331 pr_err("invalid value %d for kernel module parameter"
3332 " srp_max_req_size -- must be at least %d.\n",
3333 srp_max_req_size, MIN_MAX_REQ_SIZE);
3334 goto out;
3337 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3338 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3339 pr_err("invalid value %d for kernel module parameter"
3340 " srpt_srq_size -- must be in the range [%d..%d].\n",
3341 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3342 goto out;
3345 ret = target_register_template(&srpt_template);
3346 if (ret)
3347 goto out;
3349 ret = ib_register_client(&srpt_client);
3350 if (ret) {
3351 pr_err("couldn't register IB client\n");
3352 goto out_unregister_target;
3355 return 0;
3357 out_unregister_target:
3358 target_unregister_template(&srpt_template);
3359 out:
3360 return ret;
3363 static void __exit srpt_cleanup_module(void)
3365 ib_unregister_client(&srpt_client);
3366 target_unregister_template(&srpt_template);
3369 module_init(srpt_init_module);
3370 module_exit(srpt_cleanup_module);