EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / media / dvb-frontends / s5h1411.c
blob90f86e82b087e3cb19874aff7c99557a046fd65b
1 /*
2 Samsung S5H1411 VSB/QAM demodulator driver
4 Copyright (C) 2008 Steven Toth <stoth@linuxtv.org>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include "dvb_frontend.h"
29 #include "s5h1411.h"
31 struct s5h1411_state {
33 struct i2c_adapter *i2c;
35 /* configuration settings */
36 const struct s5h1411_config *config;
38 struct dvb_frontend frontend;
40 enum fe_modulation current_modulation;
41 unsigned int first_tune:1;
43 u32 current_frequency;
44 int if_freq;
46 u8 inversion;
49 static int debug;
51 #define dprintk(arg...) do { \
52 if (debug) \
53 printk(arg); \
54 } while (0)
56 /* Register values to initialise the demod, defaults to VSB */
57 static struct init_tab {
58 u8 addr;
59 u8 reg;
60 u16 data;
61 } init_tab[] = {
62 { S5H1411_I2C_TOP_ADDR, 0x00, 0x0071, },
63 { S5H1411_I2C_TOP_ADDR, 0x08, 0x0047, },
64 { S5H1411_I2C_TOP_ADDR, 0x1c, 0x0400, },
65 { S5H1411_I2C_TOP_ADDR, 0x1e, 0x0370, },
66 { S5H1411_I2C_TOP_ADDR, 0x1f, 0x342c, },
67 { S5H1411_I2C_TOP_ADDR, 0x24, 0x0231, },
68 { S5H1411_I2C_TOP_ADDR, 0x25, 0x1011, },
69 { S5H1411_I2C_TOP_ADDR, 0x26, 0x0f07, },
70 { S5H1411_I2C_TOP_ADDR, 0x27, 0x0f04, },
71 { S5H1411_I2C_TOP_ADDR, 0x28, 0x070f, },
72 { S5H1411_I2C_TOP_ADDR, 0x29, 0x2820, },
73 { S5H1411_I2C_TOP_ADDR, 0x2a, 0x102e, },
74 { S5H1411_I2C_TOP_ADDR, 0x2b, 0x0220, },
75 { S5H1411_I2C_TOP_ADDR, 0x2e, 0x0d0e, },
76 { S5H1411_I2C_TOP_ADDR, 0x2f, 0x1013, },
77 { S5H1411_I2C_TOP_ADDR, 0x31, 0x171b, },
78 { S5H1411_I2C_TOP_ADDR, 0x32, 0x0e0f, },
79 { S5H1411_I2C_TOP_ADDR, 0x33, 0x0f10, },
80 { S5H1411_I2C_TOP_ADDR, 0x34, 0x170e, },
81 { S5H1411_I2C_TOP_ADDR, 0x35, 0x4b10, },
82 { S5H1411_I2C_TOP_ADDR, 0x36, 0x0f17, },
83 { S5H1411_I2C_TOP_ADDR, 0x3c, 0x1577, },
84 { S5H1411_I2C_TOP_ADDR, 0x3d, 0x081a, },
85 { S5H1411_I2C_TOP_ADDR, 0x3e, 0x77ee, },
86 { S5H1411_I2C_TOP_ADDR, 0x40, 0x1e09, },
87 { S5H1411_I2C_TOP_ADDR, 0x41, 0x0f0c, },
88 { S5H1411_I2C_TOP_ADDR, 0x42, 0x1f10, },
89 { S5H1411_I2C_TOP_ADDR, 0x4d, 0x0509, },
90 { S5H1411_I2C_TOP_ADDR, 0x4e, 0x0a00, },
91 { S5H1411_I2C_TOP_ADDR, 0x50, 0x0000, },
92 { S5H1411_I2C_TOP_ADDR, 0x5b, 0x0000, },
93 { S5H1411_I2C_TOP_ADDR, 0x5c, 0x0008, },
94 { S5H1411_I2C_TOP_ADDR, 0x57, 0x1101, },
95 { S5H1411_I2C_TOP_ADDR, 0x65, 0x007c, },
96 { S5H1411_I2C_TOP_ADDR, 0x68, 0x0512, },
97 { S5H1411_I2C_TOP_ADDR, 0x69, 0x0258, },
98 { S5H1411_I2C_TOP_ADDR, 0x70, 0x0004, },
99 { S5H1411_I2C_TOP_ADDR, 0x71, 0x0007, },
100 { S5H1411_I2C_TOP_ADDR, 0x76, 0x00a9, },
101 { S5H1411_I2C_TOP_ADDR, 0x78, 0x3141, },
102 { S5H1411_I2C_TOP_ADDR, 0x7a, 0x3141, },
103 { S5H1411_I2C_TOP_ADDR, 0xb3, 0x8003, },
104 { S5H1411_I2C_TOP_ADDR, 0xb5, 0xa6bb, },
105 { S5H1411_I2C_TOP_ADDR, 0xb6, 0x0609, },
106 { S5H1411_I2C_TOP_ADDR, 0xb7, 0x2f06, },
107 { S5H1411_I2C_TOP_ADDR, 0xb8, 0x003f, },
108 { S5H1411_I2C_TOP_ADDR, 0xb9, 0x2700, },
109 { S5H1411_I2C_TOP_ADDR, 0xba, 0xfac8, },
110 { S5H1411_I2C_TOP_ADDR, 0xbe, 0x1003, },
111 { S5H1411_I2C_TOP_ADDR, 0xbf, 0x103f, },
112 { S5H1411_I2C_TOP_ADDR, 0xce, 0x2000, },
113 { S5H1411_I2C_TOP_ADDR, 0xcf, 0x0800, },
114 { S5H1411_I2C_TOP_ADDR, 0xd0, 0x0800, },
115 { S5H1411_I2C_TOP_ADDR, 0xd1, 0x0400, },
116 { S5H1411_I2C_TOP_ADDR, 0xd2, 0x0800, },
117 { S5H1411_I2C_TOP_ADDR, 0xd3, 0x2000, },
118 { S5H1411_I2C_TOP_ADDR, 0xd4, 0x3000, },
119 { S5H1411_I2C_TOP_ADDR, 0xdb, 0x4a9b, },
120 { S5H1411_I2C_TOP_ADDR, 0xdc, 0x1000, },
121 { S5H1411_I2C_TOP_ADDR, 0xde, 0x0001, },
122 { S5H1411_I2C_TOP_ADDR, 0xdf, 0x0000, },
123 { S5H1411_I2C_TOP_ADDR, 0xe3, 0x0301, },
124 { S5H1411_I2C_QAM_ADDR, 0xf3, 0x0000, },
125 { S5H1411_I2C_QAM_ADDR, 0xf3, 0x0001, },
126 { S5H1411_I2C_QAM_ADDR, 0x08, 0x0600, },
127 { S5H1411_I2C_QAM_ADDR, 0x18, 0x4201, },
128 { S5H1411_I2C_QAM_ADDR, 0x1e, 0x6476, },
129 { S5H1411_I2C_QAM_ADDR, 0x21, 0x0830, },
130 { S5H1411_I2C_QAM_ADDR, 0x0c, 0x5679, },
131 { S5H1411_I2C_QAM_ADDR, 0x0d, 0x579b, },
132 { S5H1411_I2C_QAM_ADDR, 0x24, 0x0102, },
133 { S5H1411_I2C_QAM_ADDR, 0x31, 0x7488, },
134 { S5H1411_I2C_QAM_ADDR, 0x32, 0x0a08, },
135 { S5H1411_I2C_QAM_ADDR, 0x3d, 0x8689, },
136 { S5H1411_I2C_QAM_ADDR, 0x49, 0x0048, },
137 { S5H1411_I2C_QAM_ADDR, 0x57, 0x2012, },
138 { S5H1411_I2C_QAM_ADDR, 0x5d, 0x7676, },
139 { S5H1411_I2C_QAM_ADDR, 0x04, 0x0400, },
140 { S5H1411_I2C_QAM_ADDR, 0x58, 0x00c0, },
141 { S5H1411_I2C_QAM_ADDR, 0x5b, 0x0100, },
144 /* VSB SNR lookup table */
145 static struct vsb_snr_tab {
146 u16 val;
147 u16 data;
148 } vsb_snr_tab[] = {
149 { 0x39f, 300, },
150 { 0x39b, 295, },
151 { 0x397, 290, },
152 { 0x394, 285, },
153 { 0x38f, 280, },
154 { 0x38b, 275, },
155 { 0x387, 270, },
156 { 0x382, 265, },
157 { 0x37d, 260, },
158 { 0x377, 255, },
159 { 0x370, 250, },
160 { 0x36a, 245, },
161 { 0x364, 240, },
162 { 0x35b, 235, },
163 { 0x353, 230, },
164 { 0x349, 225, },
165 { 0x340, 320, },
166 { 0x337, 215, },
167 { 0x327, 210, },
168 { 0x31b, 205, },
169 { 0x310, 200, },
170 { 0x302, 195, },
171 { 0x2f3, 190, },
172 { 0x2e4, 185, },
173 { 0x2d7, 180, },
174 { 0x2cd, 175, },
175 { 0x2bb, 170, },
176 { 0x2a9, 165, },
177 { 0x29e, 160, },
178 { 0x284, 155, },
179 { 0x27a, 150, },
180 { 0x260, 145, },
181 { 0x23a, 140, },
182 { 0x224, 135, },
183 { 0x213, 130, },
184 { 0x204, 125, },
185 { 0x1fe, 120, },
186 { 0, 0, },
189 /* QAM64 SNR lookup table */
190 static struct qam64_snr_tab {
191 u16 val;
192 u16 data;
193 } qam64_snr_tab[] = {
194 { 0x0001, 0, },
195 { 0x0af0, 300, },
196 { 0x0d80, 290, },
197 { 0x10a0, 280, },
198 { 0x14b5, 270, },
199 { 0x1590, 268, },
200 { 0x1680, 266, },
201 { 0x17b0, 264, },
202 { 0x18c0, 262, },
203 { 0x19b0, 260, },
204 { 0x1ad0, 258, },
205 { 0x1d00, 256, },
206 { 0x1da0, 254, },
207 { 0x1ef0, 252, },
208 { 0x2050, 250, },
209 { 0x20f0, 249, },
210 { 0x21d0, 248, },
211 { 0x22b0, 247, },
212 { 0x23a0, 246, },
213 { 0x2470, 245, },
214 { 0x24f0, 244, },
215 { 0x25a0, 243, },
216 { 0x26c0, 242, },
217 { 0x27b0, 241, },
218 { 0x28d0, 240, },
219 { 0x29b0, 239, },
220 { 0x2ad0, 238, },
221 { 0x2ba0, 237, },
222 { 0x2c80, 236, },
223 { 0x2d20, 235, },
224 { 0x2e00, 234, },
225 { 0x2f10, 233, },
226 { 0x3050, 232, },
227 { 0x3190, 231, },
228 { 0x3300, 230, },
229 { 0x3340, 229, },
230 { 0x3200, 228, },
231 { 0x3550, 227, },
232 { 0x3610, 226, },
233 { 0x3600, 225, },
234 { 0x3700, 224, },
235 { 0x3800, 223, },
236 { 0x3920, 222, },
237 { 0x3a20, 221, },
238 { 0x3b30, 220, },
239 { 0x3d00, 219, },
240 { 0x3e00, 218, },
241 { 0x4000, 217, },
242 { 0x4100, 216, },
243 { 0x4300, 215, },
244 { 0x4400, 214, },
245 { 0x4600, 213, },
246 { 0x4700, 212, },
247 { 0x4800, 211, },
248 { 0x4a00, 210, },
249 { 0x4b00, 209, },
250 { 0x4d00, 208, },
251 { 0x4f00, 207, },
252 { 0x5050, 206, },
253 { 0x5200, 205, },
254 { 0x53c0, 204, },
255 { 0x5450, 203, },
256 { 0x5650, 202, },
257 { 0x5820, 201, },
258 { 0x6000, 200, },
259 { 0xffff, 0, },
262 /* QAM256 SNR lookup table */
263 static struct qam256_snr_tab {
264 u16 val;
265 u16 data;
266 } qam256_snr_tab[] = {
267 { 0x0001, 0, },
268 { 0x0970, 400, },
269 { 0x0a90, 390, },
270 { 0x0b90, 380, },
271 { 0x0d90, 370, },
272 { 0x0ff0, 360, },
273 { 0x1240, 350, },
274 { 0x1345, 348, },
275 { 0x13c0, 346, },
276 { 0x14c0, 344, },
277 { 0x1500, 342, },
278 { 0x1610, 340, },
279 { 0x1700, 338, },
280 { 0x1800, 336, },
281 { 0x18b0, 334, },
282 { 0x1900, 332, },
283 { 0x1ab0, 330, },
284 { 0x1bc0, 328, },
285 { 0x1cb0, 326, },
286 { 0x1db0, 324, },
287 { 0x1eb0, 322, },
288 { 0x2030, 320, },
289 { 0x2200, 318, },
290 { 0x2280, 316, },
291 { 0x2410, 314, },
292 { 0x25b0, 312, },
293 { 0x27a0, 310, },
294 { 0x2840, 308, },
295 { 0x29d0, 306, },
296 { 0x2b10, 304, },
297 { 0x2d30, 302, },
298 { 0x2f20, 300, },
299 { 0x30c0, 298, },
300 { 0x3260, 297, },
301 { 0x32c0, 296, },
302 { 0x3300, 295, },
303 { 0x33b0, 294, },
304 { 0x34b0, 293, },
305 { 0x35a0, 292, },
306 { 0x3650, 291, },
307 { 0x3800, 290, },
308 { 0x3900, 289, },
309 { 0x3a50, 288, },
310 { 0x3b30, 287, },
311 { 0x3cb0, 286, },
312 { 0x3e20, 285, },
313 { 0x3fa0, 284, },
314 { 0x40a0, 283, },
315 { 0x41c0, 282, },
316 { 0x42f0, 281, },
317 { 0x44a0, 280, },
318 { 0x4600, 279, },
319 { 0x47b0, 278, },
320 { 0x4900, 277, },
321 { 0x4a00, 276, },
322 { 0x4ba0, 275, },
323 { 0x4d00, 274, },
324 { 0x4f00, 273, },
325 { 0x5000, 272, },
326 { 0x51f0, 272, },
327 { 0x53a0, 270, },
328 { 0x5520, 269, },
329 { 0x5700, 268, },
330 { 0x5800, 267, },
331 { 0x5a00, 266, },
332 { 0x5c00, 265, },
333 { 0x5d00, 264, },
334 { 0x5f00, 263, },
335 { 0x6000, 262, },
336 { 0x6200, 261, },
337 { 0x6400, 260, },
338 { 0xffff, 0, },
341 /* 8 bit registers, 16 bit values */
342 static int s5h1411_writereg(struct s5h1411_state *state,
343 u8 addr, u8 reg, u16 data)
345 int ret;
346 u8 buf[] = { reg, data >> 8, data & 0xff };
348 struct i2c_msg msg = { .addr = addr, .flags = 0, .buf = buf, .len = 3 };
350 ret = i2c_transfer(state->i2c, &msg, 1);
352 if (ret != 1)
353 printk(KERN_ERR "%s: writereg error 0x%02x 0x%02x 0x%04x, "
354 "ret == %i)\n", __func__, addr, reg, data, ret);
356 return (ret != 1) ? -1 : 0;
359 static u16 s5h1411_readreg(struct s5h1411_state *state, u8 addr, u8 reg)
361 int ret;
362 u8 b0[] = { reg };
363 u8 b1[] = { 0, 0 };
365 struct i2c_msg msg[] = {
366 { .addr = addr, .flags = 0, .buf = b0, .len = 1 },
367 { .addr = addr, .flags = I2C_M_RD, .buf = b1, .len = 2 } };
369 ret = i2c_transfer(state->i2c, msg, 2);
371 if (ret != 2)
372 printk(KERN_ERR "%s: readreg error (ret == %i)\n",
373 __func__, ret);
374 return (b1[0] << 8) | b1[1];
377 static int s5h1411_softreset(struct dvb_frontend *fe)
379 struct s5h1411_state *state = fe->demodulator_priv;
381 dprintk("%s()\n", __func__);
383 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 0);
384 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 1);
385 return 0;
388 static int s5h1411_set_if_freq(struct dvb_frontend *fe, int KHz)
390 struct s5h1411_state *state = fe->demodulator_priv;
392 dprintk("%s(%d KHz)\n", __func__, KHz);
394 switch (KHz) {
395 case 3250:
396 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x10d5);
397 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x5342);
398 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x10d9);
399 break;
400 case 3500:
401 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1225);
402 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x1e96);
403 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1225);
404 break;
405 case 4000:
406 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x14bc);
407 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0xb53e);
408 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x14bd);
409 break;
410 default:
411 dprintk("%s(%d KHz) Invalid, defaulting to 5380\n",
412 __func__, KHz);
413 /* no break, need to continue */
414 case 5380:
415 case 44000:
416 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1be4);
417 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x3655);
418 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1be4);
419 break;
422 state->if_freq = KHz;
424 return 0;
427 static int s5h1411_set_mpeg_timing(struct dvb_frontend *fe, int mode)
429 struct s5h1411_state *state = fe->demodulator_priv;
430 u16 val;
432 dprintk("%s(%d)\n", __func__, mode);
434 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbe) & 0xcfff;
435 switch (mode) {
436 case S5H1411_MPEGTIMING_CONTINOUS_INVERTING_CLOCK:
437 val |= 0x0000;
438 break;
439 case S5H1411_MPEGTIMING_CONTINOUS_NONINVERTING_CLOCK:
440 dprintk("%s(%d) Mode1 or Defaulting\n", __func__, mode);
441 val |= 0x1000;
442 break;
443 case S5H1411_MPEGTIMING_NONCONTINOUS_INVERTING_CLOCK:
444 val |= 0x2000;
445 break;
446 case S5H1411_MPEGTIMING_NONCONTINOUS_NONINVERTING_CLOCK:
447 val |= 0x3000;
448 break;
449 default:
450 return -EINVAL;
453 /* Configure MPEG Signal Timing charactistics */
454 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbe, val);
457 static int s5h1411_set_spectralinversion(struct dvb_frontend *fe, int inversion)
459 struct s5h1411_state *state = fe->demodulator_priv;
460 u16 val;
462 dprintk("%s(%d)\n", __func__, inversion);
463 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x24) & ~0x1000;
465 if (inversion == 1)
466 val |= 0x1000; /* Inverted */
468 state->inversion = inversion;
469 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x24, val);
472 static int s5h1411_set_serialmode(struct dvb_frontend *fe, int serial)
474 struct s5h1411_state *state = fe->demodulator_priv;
475 u16 val;
477 dprintk("%s(%d)\n", __func__, serial);
478 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbd) & ~0x100;
480 if (serial == 1)
481 val |= 0x100;
483 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbd, val);
486 static int s5h1411_enable_modulation(struct dvb_frontend *fe,
487 enum fe_modulation m)
489 struct s5h1411_state *state = fe->demodulator_priv;
491 dprintk("%s(0x%08x)\n", __func__, m);
493 if ((state->first_tune == 0) && (m == state->current_modulation)) {
494 dprintk("%s() Already at desired modulation. Skipping...\n",
495 __func__);
496 return 0;
499 switch (m) {
500 case VSB_8:
501 dprintk("%s() VSB_8\n", __func__);
502 s5h1411_set_if_freq(fe, state->config->vsb_if);
503 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x71);
504 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x00);
505 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0xf1);
506 break;
507 case QAM_64:
508 case QAM_256:
509 case QAM_AUTO:
510 dprintk("%s() QAM_AUTO (64/256)\n", __func__);
511 s5h1411_set_if_freq(fe, state->config->qam_if);
512 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x0171);
513 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x0001);
514 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x16, 0x1101);
515 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0x00f0);
516 break;
517 default:
518 dprintk("%s() Invalid modulation\n", __func__);
519 return -EINVAL;
522 state->current_modulation = m;
523 state->first_tune = 0;
524 s5h1411_softreset(fe);
526 return 0;
529 static int s5h1411_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
531 struct s5h1411_state *state = fe->demodulator_priv;
533 dprintk("%s(%d)\n", __func__, enable);
535 if (enable)
536 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
537 else
538 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 0);
541 static int s5h1411_set_gpio(struct dvb_frontend *fe, int enable)
543 struct s5h1411_state *state = fe->demodulator_priv;
544 u16 val;
546 dprintk("%s(%d)\n", __func__, enable);
548 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xe0) & ~0x02;
550 if (enable)
551 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0,
552 val | 0x02);
553 else
554 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0, val);
557 static int s5h1411_set_powerstate(struct dvb_frontend *fe, int enable)
559 struct s5h1411_state *state = fe->demodulator_priv;
561 dprintk("%s(%d)\n", __func__, enable);
563 if (enable)
564 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 1);
565 else {
566 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 0);
567 s5h1411_softreset(fe);
570 return 0;
573 static int s5h1411_sleep(struct dvb_frontend *fe)
575 return s5h1411_set_powerstate(fe, 1);
578 static int s5h1411_register_reset(struct dvb_frontend *fe)
580 struct s5h1411_state *state = fe->demodulator_priv;
582 dprintk("%s()\n", __func__);
584 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf3, 0);
587 /* Talk to the demod, set the FEC, GUARD, QAM settings etc */
588 static int s5h1411_set_frontend(struct dvb_frontend *fe)
590 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
591 struct s5h1411_state *state = fe->demodulator_priv;
593 dprintk("%s(frequency=%d)\n", __func__, p->frequency);
595 s5h1411_softreset(fe);
597 state->current_frequency = p->frequency;
599 s5h1411_enable_modulation(fe, p->modulation);
601 if (fe->ops.tuner_ops.set_params) {
602 if (fe->ops.i2c_gate_ctrl)
603 fe->ops.i2c_gate_ctrl(fe, 1);
605 fe->ops.tuner_ops.set_params(fe);
607 if (fe->ops.i2c_gate_ctrl)
608 fe->ops.i2c_gate_ctrl(fe, 0);
611 /* Issue a reset to the demod so it knows to resync against the
612 newly tuned frequency */
613 s5h1411_softreset(fe);
615 return 0;
618 /* Reset the demod hardware and reset all of the configuration registers
619 to a default state. */
620 static int s5h1411_init(struct dvb_frontend *fe)
622 struct s5h1411_state *state = fe->demodulator_priv;
623 int i;
625 dprintk("%s()\n", __func__);
627 s5h1411_set_powerstate(fe, 0);
628 s5h1411_register_reset(fe);
630 for (i = 0; i < ARRAY_SIZE(init_tab); i++)
631 s5h1411_writereg(state, init_tab[i].addr,
632 init_tab[i].reg,
633 init_tab[i].data);
635 /* The datasheet says that after initialisation, VSB is default */
636 state->current_modulation = VSB_8;
638 /* Although the datasheet says it's in VSB, empirical evidence
639 shows problems getting lock on the first tuning request. Make
640 sure we call enable_modulation the first time around */
641 state->first_tune = 1;
643 if (state->config->output_mode == S5H1411_SERIAL_OUTPUT)
644 /* Serial */
645 s5h1411_set_serialmode(fe, 1);
646 else
647 /* Parallel */
648 s5h1411_set_serialmode(fe, 0);
650 s5h1411_set_spectralinversion(fe, state->config->inversion);
651 s5h1411_set_if_freq(fe, state->config->vsb_if);
652 s5h1411_set_gpio(fe, state->config->gpio);
653 s5h1411_set_mpeg_timing(fe, state->config->mpeg_timing);
654 s5h1411_softreset(fe);
656 /* Note: Leaving the I2C gate closed. */
657 s5h1411_i2c_gate_ctrl(fe, 0);
659 return 0;
662 static int s5h1411_read_status(struct dvb_frontend *fe, enum fe_status *status)
664 struct s5h1411_state *state = fe->demodulator_priv;
665 u16 reg;
666 u32 tuner_status = 0;
668 *status = 0;
670 /* Register F2 bit 15 = Master Lock, removed */
672 switch (state->current_modulation) {
673 case QAM_64:
674 case QAM_256:
675 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf0);
676 if (reg & 0x10) /* QAM FEC Lock */
677 *status |= FE_HAS_SYNC | FE_HAS_LOCK;
678 if (reg & 0x100) /* QAM EQ Lock */
679 *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
681 break;
682 case VSB_8:
683 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf2);
684 if (reg & 0x1000) /* FEC Lock */
685 *status |= FE_HAS_SYNC | FE_HAS_LOCK;
686 if (reg & 0x2000) /* EQ Lock */
687 *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
689 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x53);
690 if (reg & 0x1) /* AFC Lock */
691 *status |= FE_HAS_SIGNAL;
693 break;
694 default:
695 return -EINVAL;
698 switch (state->config->status_mode) {
699 case S5H1411_DEMODLOCKING:
700 if (*status & FE_HAS_VITERBI)
701 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
702 break;
703 case S5H1411_TUNERLOCKING:
704 /* Get the tuner status */
705 if (fe->ops.tuner_ops.get_status) {
706 if (fe->ops.i2c_gate_ctrl)
707 fe->ops.i2c_gate_ctrl(fe, 1);
709 fe->ops.tuner_ops.get_status(fe, &tuner_status);
711 if (fe->ops.i2c_gate_ctrl)
712 fe->ops.i2c_gate_ctrl(fe, 0);
714 if (tuner_status)
715 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
716 break;
719 dprintk("%s() status 0x%08x\n", __func__, *status);
721 return 0;
724 static int s5h1411_qam256_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
726 int i, ret = -EINVAL;
727 dprintk("%s()\n", __func__);
729 for (i = 0; i < ARRAY_SIZE(qam256_snr_tab); i++) {
730 if (v < qam256_snr_tab[i].val) {
731 *snr = qam256_snr_tab[i].data;
732 ret = 0;
733 break;
736 return ret;
739 static int s5h1411_qam64_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
741 int i, ret = -EINVAL;
742 dprintk("%s()\n", __func__);
744 for (i = 0; i < ARRAY_SIZE(qam64_snr_tab); i++) {
745 if (v < qam64_snr_tab[i].val) {
746 *snr = qam64_snr_tab[i].data;
747 ret = 0;
748 break;
751 return ret;
754 static int s5h1411_vsb_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
756 int i, ret = -EINVAL;
757 dprintk("%s()\n", __func__);
759 for (i = 0; i < ARRAY_SIZE(vsb_snr_tab); i++) {
760 if (v > vsb_snr_tab[i].val) {
761 *snr = vsb_snr_tab[i].data;
762 ret = 0;
763 break;
766 dprintk("%s() snr=%d\n", __func__, *snr);
767 return ret;
770 static int s5h1411_read_snr(struct dvb_frontend *fe, u16 *snr)
772 struct s5h1411_state *state = fe->demodulator_priv;
773 u16 reg;
774 dprintk("%s()\n", __func__);
776 switch (state->current_modulation) {
777 case QAM_64:
778 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
779 return s5h1411_qam64_lookup_snr(fe, snr, reg);
780 case QAM_256:
781 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
782 return s5h1411_qam256_lookup_snr(fe, snr, reg);
783 case VSB_8:
784 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR,
785 0xf2) & 0x3ff;
786 return s5h1411_vsb_lookup_snr(fe, snr, reg);
787 default:
788 break;
791 return -EINVAL;
794 static int s5h1411_read_signal_strength(struct dvb_frontend *fe,
795 u16 *signal_strength)
797 /* borrowed from lgdt330x.c
799 * Calculate strength from SNR up to 35dB
800 * Even though the SNR can go higher than 35dB,
801 * there is some comfort factor in having a range of
802 * strong signals that can show at 100%
804 u16 snr;
805 u32 tmp;
806 int ret = s5h1411_read_snr(fe, &snr);
808 *signal_strength = 0;
810 if (0 == ret) {
811 /* The following calculation method was chosen
812 * purely for the sake of code re-use from the
813 * other demod drivers that use this method */
815 /* Convert from SNR in dB * 10 to 8.24 fixed-point */
816 tmp = (snr * ((1 << 24) / 10));
818 /* Convert from 8.24 fixed-point to
819 * scale the range 0 - 35*2^24 into 0 - 65535*/
820 if (tmp >= 8960 * 0x10000)
821 *signal_strength = 0xffff;
822 else
823 *signal_strength = tmp / 8960;
826 return ret;
829 static int s5h1411_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
831 struct s5h1411_state *state = fe->demodulator_priv;
833 *ucblocks = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xc9);
835 return 0;
838 static int s5h1411_read_ber(struct dvb_frontend *fe, u32 *ber)
840 return s5h1411_read_ucblocks(fe, ber);
843 static int s5h1411_get_frontend(struct dvb_frontend *fe,
844 struct dtv_frontend_properties *p)
846 struct s5h1411_state *state = fe->demodulator_priv;
848 p->frequency = state->current_frequency;
849 p->modulation = state->current_modulation;
851 return 0;
854 static int s5h1411_get_tune_settings(struct dvb_frontend *fe,
855 struct dvb_frontend_tune_settings *tune)
857 tune->min_delay_ms = 1000;
858 return 0;
861 static void s5h1411_release(struct dvb_frontend *fe)
863 struct s5h1411_state *state = fe->demodulator_priv;
864 kfree(state);
867 static struct dvb_frontend_ops s5h1411_ops;
869 struct dvb_frontend *s5h1411_attach(const struct s5h1411_config *config,
870 struct i2c_adapter *i2c)
872 struct s5h1411_state *state = NULL;
873 u16 reg;
875 /* allocate memory for the internal state */
876 state = kzalloc(sizeof(struct s5h1411_state), GFP_KERNEL);
877 if (state == NULL)
878 goto error;
880 /* setup the state */
881 state->config = config;
882 state->i2c = i2c;
883 state->current_modulation = VSB_8;
884 state->inversion = state->config->inversion;
886 /* check if the demod exists */
887 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x05);
888 if (reg != 0x0066)
889 goto error;
891 /* create dvb_frontend */
892 memcpy(&state->frontend.ops, &s5h1411_ops,
893 sizeof(struct dvb_frontend_ops));
895 state->frontend.demodulator_priv = state;
897 if (s5h1411_init(&state->frontend) != 0) {
898 printk(KERN_ERR "%s: Failed to initialize correctly\n",
899 __func__);
900 goto error;
903 /* Note: Leaving the I2C gate open here. */
904 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
906 /* Put the device into low-power mode until first use */
907 s5h1411_set_powerstate(&state->frontend, 1);
909 return &state->frontend;
911 error:
912 kfree(state);
913 return NULL;
915 EXPORT_SYMBOL(s5h1411_attach);
917 static struct dvb_frontend_ops s5h1411_ops = {
918 .delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B },
919 .info = {
920 .name = "Samsung S5H1411 QAM/8VSB Frontend",
921 .frequency_min = 54000000,
922 .frequency_max = 858000000,
923 .frequency_stepsize = 62500,
924 .caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB
927 .init = s5h1411_init,
928 .sleep = s5h1411_sleep,
929 .i2c_gate_ctrl = s5h1411_i2c_gate_ctrl,
930 .set_frontend = s5h1411_set_frontend,
931 .get_frontend = s5h1411_get_frontend,
932 .get_tune_settings = s5h1411_get_tune_settings,
933 .read_status = s5h1411_read_status,
934 .read_ber = s5h1411_read_ber,
935 .read_signal_strength = s5h1411_read_signal_strength,
936 .read_snr = s5h1411_read_snr,
937 .read_ucblocks = s5h1411_read_ucblocks,
938 .release = s5h1411_release,
941 module_param(debug, int, 0644);
942 MODULE_PARM_DESC(debug, "Enable verbose debug messages");
944 MODULE_DESCRIPTION("Samsung S5H1411 QAM-B/ATSC Demodulator driver");
945 MODULE_AUTHOR("Steven Toth");
946 MODULE_LICENSE("GPL");