3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/pci.h>
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
26 #include "hw-me-regs.h"
28 #include "mei-trace.h"
31 * mei_me_reg_read - Reads 32bit data from the mei device
33 * @hw: the me hardware structure
34 * @offset: offset from which to read the data
36 * Return: register value (u32)
38 static inline u32
mei_me_reg_read(const struct mei_me_hw
*hw
,
41 return ioread32(hw
->mem_addr
+ offset
);
46 * mei_me_reg_write - Writes 32bit data to the mei device
48 * @hw: the me hardware structure
49 * @offset: offset from which to write the data
50 * @value: register value to write (u32)
52 static inline void mei_me_reg_write(const struct mei_me_hw
*hw
,
53 unsigned long offset
, u32 value
)
55 iowrite32(value
, hw
->mem_addr
+ offset
);
59 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
60 * read window register
62 * @dev: the device structure
64 * Return: ME_CB_RW register value (u32)
66 static inline u32
mei_me_mecbrw_read(const struct mei_device
*dev
)
68 return mei_me_reg_read(to_me_hw(dev
), ME_CB_RW
);
72 * mei_me_hcbww_write - write 32bit data to the host circular buffer
74 * @dev: the device structure
75 * @data: 32bit data to be written to the host circular buffer
77 static inline void mei_me_hcbww_write(struct mei_device
*dev
, u32 data
)
79 mei_me_reg_write(to_me_hw(dev
), H_CB_WW
, data
);
83 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
85 * @dev: the device structure
87 * Return: ME_CSR_HA register value (u32)
89 static inline u32
mei_me_mecsr_read(const struct mei_device
*dev
)
93 reg
= mei_me_reg_read(to_me_hw(dev
), ME_CSR_HA
);
94 trace_mei_reg_read(dev
->dev
, "ME_CSR_HA", ME_CSR_HA
, reg
);
100 * mei_hcsr_read - Reads 32bit data from the host CSR
102 * @dev: the device structure
104 * Return: H_CSR register value (u32)
106 static inline u32
mei_hcsr_read(const struct mei_device
*dev
)
110 reg
= mei_me_reg_read(to_me_hw(dev
), H_CSR
);
111 trace_mei_reg_read(dev
->dev
, "H_CSR", H_CSR
, reg
);
117 * mei_hcsr_write - writes H_CSR register to the mei device
119 * @dev: the device structure
120 * @reg: new register value
122 static inline void mei_hcsr_write(struct mei_device
*dev
, u32 reg
)
124 trace_mei_reg_write(dev
->dev
, "H_CSR", H_CSR
, reg
);
125 mei_me_reg_write(to_me_hw(dev
), H_CSR
, reg
);
129 * mei_hcsr_set - writes H_CSR register to the mei device,
130 * and ignores the H_IS bit for it is write-one-to-zero.
132 * @dev: the device structure
133 * @reg: new register value
135 static inline void mei_hcsr_set(struct mei_device
*dev
, u32 reg
)
137 reg
&= ~H_CSR_IS_MASK
;
138 mei_hcsr_write(dev
, reg
);
142 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
144 * @dev: the device structure
146 * Return: H_D0I3C register value (u32)
148 static inline u32
mei_me_d0i3c_read(const struct mei_device
*dev
)
152 reg
= mei_me_reg_read(to_me_hw(dev
), H_D0I3C
);
153 trace_mei_reg_read(dev
->dev
, "H_D0I3C", H_D0I3C
, reg
);
159 * mei_me_d0i3c_write - writes H_D0I3C register to device
161 * @dev: the device structure
162 * @reg: new register value
164 static inline void mei_me_d0i3c_write(struct mei_device
*dev
, u32 reg
)
166 trace_mei_reg_write(dev
->dev
, "H_D0I3C", H_D0I3C
, reg
);
167 mei_me_reg_write(to_me_hw(dev
), H_D0I3C
, reg
);
171 * mei_me_fw_status - read fw status register from pci config space
174 * @fw_status: fw status register values
176 * Return: 0 on success, error otherwise
178 static int mei_me_fw_status(struct mei_device
*dev
,
179 struct mei_fw_status
*fw_status
)
181 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
182 struct mei_me_hw
*hw
= to_me_hw(dev
);
183 const struct mei_fw_status
*fw_src
= &hw
->cfg
->fw_status
;
190 fw_status
->count
= fw_src
->count
;
191 for (i
= 0; i
< fw_src
->count
&& i
< MEI_FW_STATUS_MAX
; i
++) {
192 ret
= pci_read_config_dword(pdev
, fw_src
->status
[i
],
193 &fw_status
->status
[i
]);
194 trace_mei_pci_cfg_read(dev
->dev
, "PCI_CFG_HSF_X",
196 fw_status
->status
[i
]);
205 * mei_me_hw_config - configure hw dependent settings
209 static void mei_me_hw_config(struct mei_device
*dev
)
211 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
212 struct mei_me_hw
*hw
= to_me_hw(dev
);
215 /* Doesn't change in runtime */
216 hcsr
= mei_hcsr_read(dev
);
217 dev
->hbuf_depth
= (hcsr
& H_CBD
) >> 24;
220 pci_read_config_dword(pdev
, PCI_CFG_HFS_1
, ®
);
221 trace_mei_pci_cfg_read(dev
->dev
, "PCI_CFG_HFS_1", PCI_CFG_HFS_1
, reg
);
223 ((reg
& PCI_CFG_HFS_1_D0I3_MSK
) == PCI_CFG_HFS_1_D0I3_MSK
);
225 hw
->pg_state
= MEI_PG_OFF
;
226 if (hw
->d0i3_supported
) {
227 reg
= mei_me_d0i3c_read(dev
);
228 if (reg
& H_D0I3C_I3
)
229 hw
->pg_state
= MEI_PG_ON
;
234 * mei_me_pg_state - translate internal pg state
235 * to the mei power gating state
239 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
241 static inline enum mei_pg_state
mei_me_pg_state(struct mei_device
*dev
)
243 struct mei_me_hw
*hw
= to_me_hw(dev
);
249 * mei_me_intr_clear - clear and stop interrupts
251 * @dev: the device structure
253 static void mei_me_intr_clear(struct mei_device
*dev
)
255 u32 hcsr
= mei_hcsr_read(dev
);
257 if (hcsr
& H_CSR_IS_MASK
)
258 mei_hcsr_write(dev
, hcsr
);
261 * mei_me_intr_enable - enables mei device interrupts
263 * @dev: the device structure
265 static void mei_me_intr_enable(struct mei_device
*dev
)
267 u32 hcsr
= mei_hcsr_read(dev
);
269 hcsr
|= H_CSR_IE_MASK
;
270 mei_hcsr_set(dev
, hcsr
);
274 * mei_me_intr_disable - disables mei device interrupts
276 * @dev: the device structure
278 static void mei_me_intr_disable(struct mei_device
*dev
)
280 u32 hcsr
= mei_hcsr_read(dev
);
282 hcsr
&= ~H_CSR_IE_MASK
;
283 mei_hcsr_set(dev
, hcsr
);
287 * mei_me_hw_reset_release - release device from the reset
289 * @dev: the device structure
291 static void mei_me_hw_reset_release(struct mei_device
*dev
)
293 u32 hcsr
= mei_hcsr_read(dev
);
297 mei_hcsr_set(dev
, hcsr
);
299 /* complete this write before we set host ready on another CPU */
304 * mei_me_host_set_ready - enable device
308 static void mei_me_host_set_ready(struct mei_device
*dev
)
310 u32 hcsr
= mei_hcsr_read(dev
);
312 hcsr
|= H_CSR_IE_MASK
| H_IG
| H_RDY
;
313 mei_hcsr_set(dev
, hcsr
);
317 * mei_me_host_is_ready - check whether the host has turned ready
322 static bool mei_me_host_is_ready(struct mei_device
*dev
)
324 u32 hcsr
= mei_hcsr_read(dev
);
326 return (hcsr
& H_RDY
) == H_RDY
;
330 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
335 static bool mei_me_hw_is_ready(struct mei_device
*dev
)
337 u32 mecsr
= mei_me_mecsr_read(dev
);
339 return (mecsr
& ME_RDY_HRA
) == ME_RDY_HRA
;
343 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
344 * or timeout is reached
347 * Return: 0 on success, error otherwise
349 static int mei_me_hw_ready_wait(struct mei_device
*dev
)
351 mutex_unlock(&dev
->device_lock
);
352 wait_event_timeout(dev
->wait_hw_ready
,
354 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT
));
355 mutex_lock(&dev
->device_lock
);
356 if (!dev
->recvd_hw_ready
) {
357 dev_err(dev
->dev
, "wait hw ready failed\n");
361 mei_me_hw_reset_release(dev
);
362 dev
->recvd_hw_ready
= false;
367 * mei_me_hw_start - hw start routine
370 * Return: 0 on success, error otherwise
372 static int mei_me_hw_start(struct mei_device
*dev
)
374 int ret
= mei_me_hw_ready_wait(dev
);
378 dev_dbg(dev
->dev
, "hw is ready\n");
380 mei_me_host_set_ready(dev
);
386 * mei_hbuf_filled_slots - gets number of device filled buffer slots
388 * @dev: the device structure
390 * Return: number of filled slots
392 static unsigned char mei_hbuf_filled_slots(struct mei_device
*dev
)
395 char read_ptr
, write_ptr
;
397 hcsr
= mei_hcsr_read(dev
);
399 read_ptr
= (char) ((hcsr
& H_CBRP
) >> 8);
400 write_ptr
= (char) ((hcsr
& H_CBWP
) >> 16);
402 return (unsigned char) (write_ptr
- read_ptr
);
406 * mei_me_hbuf_is_empty - checks if host buffer is empty.
408 * @dev: the device structure
410 * Return: true if empty, false - otherwise.
412 static bool mei_me_hbuf_is_empty(struct mei_device
*dev
)
414 return mei_hbuf_filled_slots(dev
) == 0;
418 * mei_me_hbuf_empty_slots - counts write empty slots.
420 * @dev: the device structure
422 * Return: -EOVERFLOW if overflow, otherwise empty slots count
424 static int mei_me_hbuf_empty_slots(struct mei_device
*dev
)
426 unsigned char filled_slots
, empty_slots
;
428 filled_slots
= mei_hbuf_filled_slots(dev
);
429 empty_slots
= dev
->hbuf_depth
- filled_slots
;
431 /* check for overflow */
432 if (filled_slots
> dev
->hbuf_depth
)
439 * mei_me_hbuf_max_len - returns size of hw buffer.
441 * @dev: the device structure
443 * Return: size of hw buffer in bytes
445 static size_t mei_me_hbuf_max_len(const struct mei_device
*dev
)
447 return dev
->hbuf_depth
* sizeof(u32
) - sizeof(struct mei_msg_hdr
);
452 * mei_me_write_message - writes a message to mei device.
454 * @dev: the device structure
455 * @header: mei HECI header of message
456 * @buf: message payload will be written
458 * Return: -EIO if write has failed
460 static int mei_me_write_message(struct mei_device
*dev
,
461 struct mei_msg_hdr
*header
,
465 unsigned long length
= header
->length
;
466 u32
*reg_buf
= (u32
*)buf
;
472 dev_dbg(dev
->dev
, MEI_HDR_FMT
, MEI_HDR_PRM(header
));
474 empty_slots
= mei_hbuf_empty_slots(dev
);
475 dev_dbg(dev
->dev
, "empty slots = %hu.\n", empty_slots
);
477 dw_cnt
= mei_data2slots(length
);
478 if (empty_slots
< 0 || dw_cnt
> empty_slots
)
481 mei_me_hcbww_write(dev
, *((u32
*) header
));
483 for (i
= 0; i
< length
/ 4; i
++)
484 mei_me_hcbww_write(dev
, reg_buf
[i
]);
490 memcpy(®
, &buf
[length
- rem
], rem
);
491 mei_me_hcbww_write(dev
, reg
);
494 hcsr
= mei_hcsr_read(dev
) | H_IG
;
495 mei_hcsr_set(dev
, hcsr
);
496 if (!mei_me_hw_is_ready(dev
))
503 * mei_me_count_full_read_slots - counts read full slots.
505 * @dev: the device structure
507 * Return: -EOVERFLOW if overflow, otherwise filled slots count
509 static int mei_me_count_full_read_slots(struct mei_device
*dev
)
512 char read_ptr
, write_ptr
;
513 unsigned char buffer_depth
, filled_slots
;
515 me_csr
= mei_me_mecsr_read(dev
);
516 buffer_depth
= (unsigned char)((me_csr
& ME_CBD_HRA
) >> 24);
517 read_ptr
= (char) ((me_csr
& ME_CBRP_HRA
) >> 8);
518 write_ptr
= (char) ((me_csr
& ME_CBWP_HRA
) >> 16);
519 filled_slots
= (unsigned char) (write_ptr
- read_ptr
);
521 /* check for overflow */
522 if (filled_slots
> buffer_depth
)
525 dev_dbg(dev
->dev
, "filled_slots =%08x\n", filled_slots
);
526 return (int)filled_slots
;
530 * mei_me_read_slots - reads a message from mei device.
532 * @dev: the device structure
533 * @buffer: message buffer will be written
534 * @buffer_length: message size will be read
538 static int mei_me_read_slots(struct mei_device
*dev
, unsigned char *buffer
,
539 unsigned long buffer_length
)
541 u32
*reg_buf
= (u32
*)buffer
;
544 for (; buffer_length
>= sizeof(u32
); buffer_length
-= sizeof(u32
))
545 *reg_buf
++ = mei_me_mecbrw_read(dev
);
547 if (buffer_length
> 0) {
548 u32 reg
= mei_me_mecbrw_read(dev
);
550 memcpy(reg_buf
, ®
, buffer_length
);
553 hcsr
= mei_hcsr_read(dev
) | H_IG
;
554 mei_hcsr_set(dev
, hcsr
);
559 * mei_me_pg_set - write pg enter register
561 * @dev: the device structure
563 static void mei_me_pg_set(struct mei_device
*dev
)
565 struct mei_me_hw
*hw
= to_me_hw(dev
);
568 reg
= mei_me_reg_read(hw
, H_HPG_CSR
);
569 trace_mei_reg_read(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
571 reg
|= H_HPG_CSR_PGI
;
573 trace_mei_reg_write(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
574 mei_me_reg_write(hw
, H_HPG_CSR
, reg
);
578 * mei_me_pg_unset - write pg exit register
580 * @dev: the device structure
582 static void mei_me_pg_unset(struct mei_device
*dev
)
584 struct mei_me_hw
*hw
= to_me_hw(dev
);
587 reg
= mei_me_reg_read(hw
, H_HPG_CSR
);
588 trace_mei_reg_read(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
590 WARN(!(reg
& H_HPG_CSR_PGI
), "PGI is not set\n");
592 reg
|= H_HPG_CSR_PGIHEXR
;
594 trace_mei_reg_write(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
595 mei_me_reg_write(hw
, H_HPG_CSR
, reg
);
599 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
601 * @dev: the device structure
603 * Return: 0 on success an error code otherwise
605 static int mei_me_pg_legacy_enter_sync(struct mei_device
*dev
)
607 struct mei_me_hw
*hw
= to_me_hw(dev
);
608 unsigned long timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
611 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
613 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_ENTRY_REQ_CMD
);
617 mutex_unlock(&dev
->device_lock
);
618 wait_event_timeout(dev
->wait_pg
,
619 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
620 mutex_lock(&dev
->device_lock
);
622 if (dev
->pg_event
== MEI_PG_EVENT_RECEIVED
) {
629 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
630 hw
->pg_state
= MEI_PG_ON
;
636 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
638 * @dev: the device structure
640 * Return: 0 on success an error code otherwise
642 static int mei_me_pg_legacy_exit_sync(struct mei_device
*dev
)
644 struct mei_me_hw
*hw
= to_me_hw(dev
);
645 unsigned long timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
648 if (dev
->pg_event
== MEI_PG_EVENT_RECEIVED
)
651 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
653 mei_me_pg_unset(dev
);
655 mutex_unlock(&dev
->device_lock
);
656 wait_event_timeout(dev
->wait_pg
,
657 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
658 mutex_lock(&dev
->device_lock
);
661 if (dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
666 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
667 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_EXIT_RES_CMD
);
671 mutex_unlock(&dev
->device_lock
);
672 wait_event_timeout(dev
->wait_pg
,
673 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, timeout
);
674 mutex_lock(&dev
->device_lock
);
676 if (dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
)
682 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
683 hw
->pg_state
= MEI_PG_OFF
;
689 * mei_me_pg_in_transition - is device now in pg transition
691 * @dev: the device structure
693 * Return: true if in pg transition, false otherwise
695 static bool mei_me_pg_in_transition(struct mei_device
*dev
)
697 return dev
->pg_event
>= MEI_PG_EVENT_WAIT
&&
698 dev
->pg_event
<= MEI_PG_EVENT_INTR_WAIT
;
702 * mei_me_pg_is_enabled - detect if PG is supported by HW
704 * @dev: the device structure
706 * Return: true is pg supported, false otherwise
708 static bool mei_me_pg_is_enabled(struct mei_device
*dev
)
710 struct mei_me_hw
*hw
= to_me_hw(dev
);
711 u32 reg
= mei_me_mecsr_read(dev
);
713 if (hw
->d0i3_supported
)
716 if ((reg
& ME_PGIC_HRA
) == 0)
719 if (!dev
->hbm_f_pg_supported
)
725 dev_dbg(dev
->dev
, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
727 !!(reg
& ME_PGIC_HRA
),
728 dev
->version
.major_version
,
729 dev
->version
.minor_version
,
730 HBM_MAJOR_VERSION_PGI
,
731 HBM_MINOR_VERSION_PGI
);
737 * mei_me_d0i3_set - write d0i3 register bit on mei device.
739 * @dev: the device structure
740 * @intr: ask for interrupt
742 * Return: D0I3C register value
744 static u32
mei_me_d0i3_set(struct mei_device
*dev
, bool intr
)
746 u32 reg
= mei_me_d0i3c_read(dev
);
753 mei_me_d0i3c_write(dev
, reg
);
754 /* read it to ensure HW consistency */
755 reg
= mei_me_d0i3c_read(dev
);
760 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
762 * @dev: the device structure
764 * Return: D0I3C register value
766 static u32
mei_me_d0i3_unset(struct mei_device
*dev
)
768 u32 reg
= mei_me_d0i3c_read(dev
);
772 mei_me_d0i3c_write(dev
, reg
);
773 /* read it to ensure HW consistency */
774 reg
= mei_me_d0i3c_read(dev
);
779 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
781 * @dev: the device structure
783 * Return: 0 on success an error code otherwise
785 static int mei_me_d0i3_enter_sync(struct mei_device
*dev
)
787 struct mei_me_hw
*hw
= to_me_hw(dev
);
788 unsigned long d0i3_timeout
= mei_secs_to_jiffies(MEI_D0I3_TIMEOUT
);
789 unsigned long pgi_timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
793 reg
= mei_me_d0i3c_read(dev
);
794 if (reg
& H_D0I3C_I3
) {
795 /* we are in d0i3, nothing to do */
796 dev_dbg(dev
->dev
, "d0i3 set not needed\n");
801 /* PGI entry procedure */
802 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
804 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_ENTRY_REQ_CMD
);
806 /* FIXME: should we reset here? */
809 mutex_unlock(&dev
->device_lock
);
810 wait_event_timeout(dev
->wait_pg
,
811 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, pgi_timeout
);
812 mutex_lock(&dev
->device_lock
);
814 if (dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
818 /* end PGI entry procedure */
820 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
822 reg
= mei_me_d0i3_set(dev
, true);
823 if (!(reg
& H_D0I3C_CIP
)) {
824 dev_dbg(dev
->dev
, "d0i3 enter wait not needed\n");
829 mutex_unlock(&dev
->device_lock
);
830 wait_event_timeout(dev
->wait_pg
,
831 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, d0i3_timeout
);
832 mutex_lock(&dev
->device_lock
);
834 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_RECEIVED
) {
835 reg
= mei_me_d0i3c_read(dev
);
836 if (!(reg
& H_D0I3C_I3
)) {
844 hw
->pg_state
= MEI_PG_ON
;
846 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
847 dev_dbg(dev
->dev
, "d0i3 enter ret = %d\n", ret
);
852 * mei_me_d0i3_enter - perform d0i3 entry procedure
853 * no hbm PG handshake
854 * no waiting for confirmation; runs with interrupts
857 * @dev: the device structure
859 * Return: 0 on success an error code otherwise
861 static int mei_me_d0i3_enter(struct mei_device
*dev
)
863 struct mei_me_hw
*hw
= to_me_hw(dev
);
866 reg
= mei_me_d0i3c_read(dev
);
867 if (reg
& H_D0I3C_I3
) {
868 /* we are in d0i3, nothing to do */
869 dev_dbg(dev
->dev
, "already d0i3 : set not needed\n");
873 mei_me_d0i3_set(dev
, false);
875 hw
->pg_state
= MEI_PG_ON
;
876 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
877 dev_dbg(dev
->dev
, "d0i3 enter\n");
882 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
884 * @dev: the device structure
886 * Return: 0 on success an error code otherwise
888 static int mei_me_d0i3_exit_sync(struct mei_device
*dev
)
890 struct mei_me_hw
*hw
= to_me_hw(dev
);
891 unsigned long timeout
= mei_secs_to_jiffies(MEI_D0I3_TIMEOUT
);
895 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
897 reg
= mei_me_d0i3c_read(dev
);
898 if (!(reg
& H_D0I3C_I3
)) {
899 /* we are not in d0i3, nothing to do */
900 dev_dbg(dev
->dev
, "d0i3 exit not needed\n");
905 reg
= mei_me_d0i3_unset(dev
);
906 if (!(reg
& H_D0I3C_CIP
)) {
907 dev_dbg(dev
->dev
, "d0i3 exit wait not needed\n");
912 mutex_unlock(&dev
->device_lock
);
913 wait_event_timeout(dev
->wait_pg
,
914 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, timeout
);
915 mutex_lock(&dev
->device_lock
);
917 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_RECEIVED
) {
918 reg
= mei_me_d0i3c_read(dev
);
919 if (reg
& H_D0I3C_I3
) {
927 hw
->pg_state
= MEI_PG_OFF
;
929 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
931 dev_dbg(dev
->dev
, "d0i3 exit ret = %d\n", ret
);
936 * mei_me_pg_legacy_intr - perform legacy pg processing
937 * in interrupt thread handler
939 * @dev: the device structure
941 static void mei_me_pg_legacy_intr(struct mei_device
*dev
)
943 struct mei_me_hw
*hw
= to_me_hw(dev
);
945 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_WAIT
)
948 dev
->pg_event
= MEI_PG_EVENT_INTR_RECEIVED
;
949 hw
->pg_state
= MEI_PG_OFF
;
950 if (waitqueue_active(&dev
->wait_pg
))
951 wake_up(&dev
->wait_pg
);
955 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
957 * @dev: the device structure
959 static void mei_me_d0i3_intr(struct mei_device
*dev
)
961 struct mei_me_hw
*hw
= to_me_hw(dev
);
963 if (dev
->pg_event
== MEI_PG_EVENT_INTR_WAIT
&&
964 (hw
->intr_source
& H_D0I3C_IS
)) {
965 dev
->pg_event
= MEI_PG_EVENT_INTR_RECEIVED
;
966 if (hw
->pg_state
== MEI_PG_ON
) {
967 hw
->pg_state
= MEI_PG_OFF
;
968 if (dev
->hbm_state
!= MEI_HBM_IDLE
) {
970 * force H_RDY because it could be
971 * wiped off during PG
973 dev_dbg(dev
->dev
, "d0i3 set host ready\n");
974 mei_me_host_set_ready(dev
);
977 hw
->pg_state
= MEI_PG_ON
;
980 wake_up(&dev
->wait_pg
);
983 if (hw
->pg_state
== MEI_PG_ON
&& (hw
->intr_source
& H_IS
)) {
985 * HW sent some data and we are in D0i3, so
986 * we got here because of HW initiated exit from D0i3.
987 * Start runtime pm resume sequence to exit low power state.
989 dev_dbg(dev
->dev
, "d0i3 want resume\n");
990 mei_hbm_pg_resume(dev
);
995 * mei_me_pg_intr - perform pg processing in interrupt thread handler
997 * @dev: the device structure
999 static void mei_me_pg_intr(struct mei_device
*dev
)
1001 struct mei_me_hw
*hw
= to_me_hw(dev
);
1003 if (hw
->d0i3_supported
)
1004 mei_me_d0i3_intr(dev
);
1006 mei_me_pg_legacy_intr(dev
);
1010 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1012 * @dev: the device structure
1014 * Return: 0 on success an error code otherwise
1016 int mei_me_pg_enter_sync(struct mei_device
*dev
)
1018 struct mei_me_hw
*hw
= to_me_hw(dev
);
1020 if (hw
->d0i3_supported
)
1021 return mei_me_d0i3_enter_sync(dev
);
1023 return mei_me_pg_legacy_enter_sync(dev
);
1027 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1029 * @dev: the device structure
1031 * Return: 0 on success an error code otherwise
1033 int mei_me_pg_exit_sync(struct mei_device
*dev
)
1035 struct mei_me_hw
*hw
= to_me_hw(dev
);
1037 if (hw
->d0i3_supported
)
1038 return mei_me_d0i3_exit_sync(dev
);
1040 return mei_me_pg_legacy_exit_sync(dev
);
1044 * mei_me_hw_reset - resets fw via mei csr register.
1046 * @dev: the device structure
1047 * @intr_enable: if interrupt should be enabled after reset.
1049 * Return: 0 on success an error code otherwise
1051 static int mei_me_hw_reset(struct mei_device
*dev
, bool intr_enable
)
1053 struct mei_me_hw
*hw
= to_me_hw(dev
);
1058 mei_me_intr_enable(dev
);
1059 if (hw
->d0i3_supported
) {
1060 ret
= mei_me_d0i3_exit_sync(dev
);
1066 hcsr
= mei_hcsr_read(dev
);
1067 /* H_RST may be found lit before reset is started,
1068 * for example if preceding reset flow hasn't completed.
1069 * In that case asserting H_RST will be ignored, therefore
1070 * we need to clean H_RST bit to start a successful reset sequence.
1072 if ((hcsr
& H_RST
) == H_RST
) {
1073 dev_warn(dev
->dev
, "H_RST is set = 0x%08X", hcsr
);
1075 mei_hcsr_set(dev
, hcsr
);
1076 hcsr
= mei_hcsr_read(dev
);
1079 hcsr
|= H_RST
| H_IG
| H_CSR_IS_MASK
;
1082 hcsr
&= ~H_CSR_IE_MASK
;
1084 dev
->recvd_hw_ready
= false;
1085 mei_hcsr_write(dev
, hcsr
);
1088 * Host reads the H_CSR once to ensure that the
1089 * posted write to H_CSR completes.
1091 hcsr
= mei_hcsr_read(dev
);
1093 if ((hcsr
& H_RST
) == 0)
1094 dev_warn(dev
->dev
, "H_RST is not set = 0x%08X", hcsr
);
1096 if ((hcsr
& H_RDY
) == H_RDY
)
1097 dev_warn(dev
->dev
, "H_RDY is not cleared 0x%08X", hcsr
);
1100 mei_me_hw_reset_release(dev
);
1101 if (hw
->d0i3_supported
) {
1102 ret
= mei_me_d0i3_enter(dev
);
1111 * mei_me_irq_quick_handler - The ISR of the MEI device
1113 * @irq: The irq number
1114 * @dev_id: pointer to the device structure
1116 * Return: irqreturn_t
1118 irqreturn_t
mei_me_irq_quick_handler(int irq
, void *dev_id
)
1120 struct mei_device
*dev
= (struct mei_device
*)dev_id
;
1121 struct mei_me_hw
*hw
= to_me_hw(dev
);
1124 hcsr
= mei_hcsr_read(dev
);
1125 if (!(hcsr
& H_CSR_IS_MASK
))
1128 hw
->intr_source
= hcsr
& H_CSR_IS_MASK
;
1129 dev_dbg(dev
->dev
, "interrupt source 0x%08X.\n", hw
->intr_source
);
1131 /* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
1132 mei_hcsr_write(dev
, hcsr
);
1134 return IRQ_WAKE_THREAD
;
1138 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1141 * @irq: The irq number
1142 * @dev_id: pointer to the device structure
1144 * Return: irqreturn_t
1147 irqreturn_t
mei_me_irq_thread_handler(int irq
, void *dev_id
)
1149 struct mei_device
*dev
= (struct mei_device
*) dev_id
;
1150 struct mei_cl_cb complete_list
;
1154 dev_dbg(dev
->dev
, "function called after ISR to handle the interrupt processing.\n");
1155 /* initialize our complete list */
1156 mutex_lock(&dev
->device_lock
);
1157 mei_io_list_init(&complete_list
);
1159 /* check if ME wants a reset */
1160 if (!mei_hw_is_ready(dev
) && dev
->dev_state
!= MEI_DEV_RESETTING
) {
1161 dev_warn(dev
->dev
, "FW not ready: resetting.\n");
1162 schedule_work(&dev
->reset_work
);
1166 mei_me_pg_intr(dev
);
1168 /* check if we need to start the dev */
1169 if (!mei_host_is_ready(dev
)) {
1170 if (mei_hw_is_ready(dev
)) {
1171 dev_dbg(dev
->dev
, "we need to start the dev.\n");
1172 dev
->recvd_hw_ready
= true;
1173 wake_up(&dev
->wait_hw_ready
);
1175 dev_dbg(dev
->dev
, "Spurious Interrupt\n");
1179 /* check slots available for reading */
1180 slots
= mei_count_full_read_slots(dev
);
1182 dev_dbg(dev
->dev
, "slots to read = %08x\n", slots
);
1183 rets
= mei_irq_read_handler(dev
, &complete_list
, &slots
);
1184 /* There is a race between ME write and interrupt delivery:
1185 * Not all data is always available immediately after the
1186 * interrupt, so try to read again on the next interrupt.
1188 if (rets
== -ENODATA
)
1191 if (rets
&& dev
->dev_state
!= MEI_DEV_RESETTING
) {
1192 dev_err(dev
->dev
, "mei_irq_read_handler ret = %d.\n",
1194 schedule_work(&dev
->reset_work
);
1199 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1202 * During PG handshake only allowed write is the replay to the
1203 * PG exit message, so block calling write function
1204 * if the pg event is in PG handshake
1206 if (dev
->pg_event
!= MEI_PG_EVENT_WAIT
&&
1207 dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
1208 rets
= mei_irq_write_handler(dev
, &complete_list
);
1209 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1212 mei_irq_compl_handler(dev
, &complete_list
);
1215 dev_dbg(dev
->dev
, "interrupt thread end ret = %d\n", rets
);
1216 mutex_unlock(&dev
->device_lock
);
1220 static const struct mei_hw_ops mei_me_hw_ops
= {
1222 .fw_status
= mei_me_fw_status
,
1223 .pg_state
= mei_me_pg_state
,
1225 .host_is_ready
= mei_me_host_is_ready
,
1227 .hw_is_ready
= mei_me_hw_is_ready
,
1228 .hw_reset
= mei_me_hw_reset
,
1229 .hw_config
= mei_me_hw_config
,
1230 .hw_start
= mei_me_hw_start
,
1232 .pg_in_transition
= mei_me_pg_in_transition
,
1233 .pg_is_enabled
= mei_me_pg_is_enabled
,
1235 .intr_clear
= mei_me_intr_clear
,
1236 .intr_enable
= mei_me_intr_enable
,
1237 .intr_disable
= mei_me_intr_disable
,
1239 .hbuf_free_slots
= mei_me_hbuf_empty_slots
,
1240 .hbuf_is_ready
= mei_me_hbuf_is_empty
,
1241 .hbuf_max_len
= mei_me_hbuf_max_len
,
1243 .write
= mei_me_write_message
,
1245 .rdbuf_full_slots
= mei_me_count_full_read_slots
,
1246 .read_hdr
= mei_me_mecbrw_read
,
1247 .read
= mei_me_read_slots
1250 static bool mei_me_fw_type_nm(struct pci_dev
*pdev
)
1254 pci_read_config_dword(pdev
, PCI_CFG_HFS_2
, ®
);
1255 trace_mei_pci_cfg_read(&pdev
->dev
, "PCI_CFG_HFS_2", PCI_CFG_HFS_2
, reg
);
1256 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1257 return (reg
& 0x600) == 0x200;
1260 #define MEI_CFG_FW_NM \
1261 .quirk_probe = mei_me_fw_type_nm
1263 static bool mei_me_fw_type_sps(struct pci_dev
*pdev
)
1266 /* Read ME FW Status check for SPS Firmware */
1267 pci_read_config_dword(pdev
, PCI_CFG_HFS_1
, ®
);
1268 trace_mei_pci_cfg_read(&pdev
->dev
, "PCI_CFG_HFS_1", PCI_CFG_HFS_1
, reg
);
1269 /* if bits [19:16] = 15, running SPS Firmware */
1270 return (reg
& 0xf0000) == 0xf0000;
1273 #define MEI_CFG_FW_SPS \
1274 .quirk_probe = mei_me_fw_type_sps
1277 #define MEI_CFG_LEGACY_HFS \
1278 .fw_status.count = 0
1280 #define MEI_CFG_ICH_HFS \
1281 .fw_status.count = 1, \
1282 .fw_status.status[0] = PCI_CFG_HFS_1
1284 #define MEI_CFG_PCH_HFS \
1285 .fw_status.count = 2, \
1286 .fw_status.status[0] = PCI_CFG_HFS_1, \
1287 .fw_status.status[1] = PCI_CFG_HFS_2
1289 #define MEI_CFG_PCH8_HFS \
1290 .fw_status.count = 6, \
1291 .fw_status.status[0] = PCI_CFG_HFS_1, \
1292 .fw_status.status[1] = PCI_CFG_HFS_2, \
1293 .fw_status.status[2] = PCI_CFG_HFS_3, \
1294 .fw_status.status[3] = PCI_CFG_HFS_4, \
1295 .fw_status.status[4] = PCI_CFG_HFS_5, \
1296 .fw_status.status[5] = PCI_CFG_HFS_6
1298 /* ICH Legacy devices */
1299 const struct mei_cfg mei_me_legacy_cfg
= {
1304 const struct mei_cfg mei_me_ich_cfg
= {
1309 const struct mei_cfg mei_me_pch_cfg
= {
1314 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1315 const struct mei_cfg mei_me_pch_cpt_pbg_cfg
= {
1320 /* PCH8 Lynx Point and newer devices */
1321 const struct mei_cfg mei_me_pch8_cfg
= {
1325 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1326 const struct mei_cfg mei_me_pch8_sps_cfg
= {
1332 * mei_me_dev_init - allocates and initializes the mei device structure
1334 * @pdev: The pci device structure
1335 * @cfg: per device generation config
1337 * Return: The mei_device_device pointer on success, NULL on failure.
1339 struct mei_device
*mei_me_dev_init(struct pci_dev
*pdev
,
1340 const struct mei_cfg
*cfg
)
1342 struct mei_device
*dev
;
1343 struct mei_me_hw
*hw
;
1345 dev
= kzalloc(sizeof(struct mei_device
) +
1346 sizeof(struct mei_me_hw
), GFP_KERNEL
);
1351 mei_device_init(dev
, &pdev
->dev
, &mei_me_hw_ops
);