EDAC: i7core, sb_edac: Don't return NOTIFY_BAD from mce_decoder callback
[linux/fpc-iii.git] / drivers / misc / mic / scif / scif_api.c
blobddc9e4b08b5cd809f4ce6e43fe1ec313dfb75e0d
1 /*
2 * Intel MIC Platform Software Stack (MPSS)
4 * Copyright(c) 2014 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
15 * Intel SCIF driver.
18 #include <linux/scif.h>
19 #include "scif_main.h"
20 #include "scif_map.h"
22 static const char * const scif_ep_states[] = {
23 "Unbound",
24 "Bound",
25 "Listening",
26 "Connected",
27 "Connecting",
28 "Mapping",
29 "Closing",
30 "Close Listening",
31 "Disconnected",
32 "Zombie"};
34 enum conn_async_state {
35 ASYNC_CONN_IDLE = 1, /* ep setup for async connect */
36 ASYNC_CONN_INPROGRESS, /* async connect in progress */
37 ASYNC_CONN_FLUSH_WORK /* async work flush in progress */
41 * File operations for anonymous inode file associated with a SCIF endpoint,
42 * used in kernel mode SCIF poll. Kernel mode SCIF poll calls portions of the
43 * poll API in the kernel and these take in a struct file *. Since a struct
44 * file is not available to kernel mode SCIF, it uses an anonymous file for
45 * this purpose.
47 const struct file_operations scif_anon_fops = {
48 .owner = THIS_MODULE,
51 scif_epd_t scif_open(void)
53 struct scif_endpt *ep;
54 int err;
56 might_sleep();
57 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
58 if (!ep)
59 goto err_ep_alloc;
61 ep->qp_info.qp = kzalloc(sizeof(*ep->qp_info.qp), GFP_KERNEL);
62 if (!ep->qp_info.qp)
63 goto err_qp_alloc;
65 err = scif_anon_inode_getfile(ep);
66 if (err)
67 goto err_anon_inode;
69 spin_lock_init(&ep->lock);
70 mutex_init(&ep->sendlock);
71 mutex_init(&ep->recvlock);
73 scif_rma_ep_init(ep);
74 ep->state = SCIFEP_UNBOUND;
75 dev_dbg(scif_info.mdev.this_device,
76 "SCIFAPI open: ep %p success\n", ep);
77 return ep;
79 err_anon_inode:
80 kfree(ep->qp_info.qp);
81 err_qp_alloc:
82 kfree(ep);
83 err_ep_alloc:
84 return NULL;
86 EXPORT_SYMBOL_GPL(scif_open);
89 * scif_disconnect_ep - Disconnects the endpoint if found
90 * @epd: The end point returned from scif_open()
92 static struct scif_endpt *scif_disconnect_ep(struct scif_endpt *ep)
94 struct scifmsg msg;
95 struct scif_endpt *fep = NULL;
96 struct scif_endpt *tmpep;
97 struct list_head *pos, *tmpq;
98 int err;
101 * Wake up any threads blocked in send()/recv() before closing
102 * out the connection. Grabbing and releasing the send/recv lock
103 * will ensure that any blocked senders/receivers have exited for
104 * Ring 0 endpoints. It is a Ring 0 bug to call send/recv after
105 * close. Ring 3 endpoints are not affected since close will not
106 * be called while there are IOCTLs executing.
108 wake_up_interruptible(&ep->sendwq);
109 wake_up_interruptible(&ep->recvwq);
110 mutex_lock(&ep->sendlock);
111 mutex_unlock(&ep->sendlock);
112 mutex_lock(&ep->recvlock);
113 mutex_unlock(&ep->recvlock);
115 /* Remove from the connected list */
116 mutex_lock(&scif_info.connlock);
117 list_for_each_safe(pos, tmpq, &scif_info.connected) {
118 tmpep = list_entry(pos, struct scif_endpt, list);
119 if (tmpep == ep) {
120 list_del(pos);
121 fep = tmpep;
122 spin_lock(&ep->lock);
123 break;
127 if (!fep) {
129 * The other side has completed the disconnect before
130 * the end point can be removed from the list. Therefore
131 * the ep lock is not locked, traverse the disconnected
132 * list to find the endpoint and release the conn lock.
134 list_for_each_safe(pos, tmpq, &scif_info.disconnected) {
135 tmpep = list_entry(pos, struct scif_endpt, list);
136 if (tmpep == ep) {
137 list_del(pos);
138 break;
141 mutex_unlock(&scif_info.connlock);
142 return NULL;
145 init_completion(&ep->discon);
146 msg.uop = SCIF_DISCNCT;
147 msg.src = ep->port;
148 msg.dst = ep->peer;
149 msg.payload[0] = (u64)ep;
150 msg.payload[1] = ep->remote_ep;
152 err = scif_nodeqp_send(ep->remote_dev, &msg);
153 spin_unlock(&ep->lock);
154 mutex_unlock(&scif_info.connlock);
156 if (!err)
157 /* Wait for the remote node to respond with SCIF_DISCNT_ACK */
158 wait_for_completion_timeout(&ep->discon,
159 SCIF_NODE_ALIVE_TIMEOUT);
160 return ep;
163 int scif_close(scif_epd_t epd)
165 struct scif_endpt *ep = (struct scif_endpt *)epd;
166 struct scif_endpt *tmpep;
167 struct list_head *pos, *tmpq;
168 enum scif_epd_state oldstate;
169 bool flush_conn;
171 dev_dbg(scif_info.mdev.this_device, "SCIFAPI close: ep %p %s\n",
172 ep, scif_ep_states[ep->state]);
173 might_sleep();
174 spin_lock(&ep->lock);
175 flush_conn = (ep->conn_async_state == ASYNC_CONN_INPROGRESS);
176 spin_unlock(&ep->lock);
178 if (flush_conn)
179 flush_work(&scif_info.conn_work);
181 spin_lock(&ep->lock);
182 oldstate = ep->state;
184 ep->state = SCIFEP_CLOSING;
186 switch (oldstate) {
187 case SCIFEP_ZOMBIE:
188 dev_err(scif_info.mdev.this_device,
189 "SCIFAPI close: zombie state unexpected\n");
190 case SCIFEP_DISCONNECTED:
191 spin_unlock(&ep->lock);
192 scif_unregister_all_windows(epd);
193 /* Remove from the disconnected list */
194 mutex_lock(&scif_info.connlock);
195 list_for_each_safe(pos, tmpq, &scif_info.disconnected) {
196 tmpep = list_entry(pos, struct scif_endpt, list);
197 if (tmpep == ep) {
198 list_del(pos);
199 break;
202 mutex_unlock(&scif_info.connlock);
203 break;
204 case SCIFEP_UNBOUND:
205 case SCIFEP_BOUND:
206 case SCIFEP_CONNECTING:
207 spin_unlock(&ep->lock);
208 break;
209 case SCIFEP_MAPPING:
210 case SCIFEP_CONNECTED:
211 case SCIFEP_CLOSING:
213 spin_unlock(&ep->lock);
214 scif_unregister_all_windows(epd);
215 scif_disconnect_ep(ep);
216 break;
218 case SCIFEP_LISTENING:
219 case SCIFEP_CLLISTEN:
221 struct scif_conreq *conreq;
222 struct scifmsg msg;
223 struct scif_endpt *aep;
225 spin_unlock(&ep->lock);
226 mutex_lock(&scif_info.eplock);
228 /* remove from listen list */
229 list_for_each_safe(pos, tmpq, &scif_info.listen) {
230 tmpep = list_entry(pos, struct scif_endpt, list);
231 if (tmpep == ep)
232 list_del(pos);
234 /* Remove any dangling accepts */
235 while (ep->acceptcnt) {
236 aep = list_first_entry(&ep->li_accept,
237 struct scif_endpt, liacceptlist);
238 list_del(&aep->liacceptlist);
239 scif_put_port(aep->port.port);
240 list_for_each_safe(pos, tmpq, &scif_info.uaccept) {
241 tmpep = list_entry(pos, struct scif_endpt,
242 miacceptlist);
243 if (tmpep == aep) {
244 list_del(pos);
245 break;
248 mutex_unlock(&scif_info.eplock);
249 mutex_lock(&scif_info.connlock);
250 list_for_each_safe(pos, tmpq, &scif_info.connected) {
251 tmpep = list_entry(pos,
252 struct scif_endpt, list);
253 if (tmpep == aep) {
254 list_del(pos);
255 break;
258 list_for_each_safe(pos, tmpq, &scif_info.disconnected) {
259 tmpep = list_entry(pos,
260 struct scif_endpt, list);
261 if (tmpep == aep) {
262 list_del(pos);
263 break;
266 mutex_unlock(&scif_info.connlock);
267 scif_teardown_ep(aep);
268 mutex_lock(&scif_info.eplock);
269 scif_add_epd_to_zombie_list(aep, SCIF_EPLOCK_HELD);
270 ep->acceptcnt--;
273 spin_lock(&ep->lock);
274 mutex_unlock(&scif_info.eplock);
276 /* Remove and reject any pending connection requests. */
277 while (ep->conreqcnt) {
278 conreq = list_first_entry(&ep->conlist,
279 struct scif_conreq, list);
280 list_del(&conreq->list);
282 msg.uop = SCIF_CNCT_REJ;
283 msg.dst.node = conreq->msg.src.node;
284 msg.dst.port = conreq->msg.src.port;
285 msg.payload[0] = conreq->msg.payload[0];
286 msg.payload[1] = conreq->msg.payload[1];
288 * No Error Handling on purpose for scif_nodeqp_send().
289 * If the remote node is lost we still want free the
290 * connection requests on the self node.
292 scif_nodeqp_send(&scif_dev[conreq->msg.src.node],
293 &msg);
294 ep->conreqcnt--;
295 kfree(conreq);
298 spin_unlock(&ep->lock);
299 /* If a kSCIF accept is waiting wake it up */
300 wake_up_interruptible(&ep->conwq);
301 break;
304 scif_put_port(ep->port.port);
305 scif_anon_inode_fput(ep);
306 scif_teardown_ep(ep);
307 scif_add_epd_to_zombie_list(ep, !SCIF_EPLOCK_HELD);
308 return 0;
310 EXPORT_SYMBOL_GPL(scif_close);
313 * scif_flush() - Wakes up any blocking accepts. The endpoint will no longer
314 * accept new connections.
315 * @epd: The end point returned from scif_open()
317 int __scif_flush(scif_epd_t epd)
319 struct scif_endpt *ep = (struct scif_endpt *)epd;
321 switch (ep->state) {
322 case SCIFEP_LISTENING:
324 ep->state = SCIFEP_CLLISTEN;
326 /* If an accept is waiting wake it up */
327 wake_up_interruptible(&ep->conwq);
328 break;
330 default:
331 break;
333 return 0;
336 int scif_bind(scif_epd_t epd, u16 pn)
338 struct scif_endpt *ep = (struct scif_endpt *)epd;
339 int ret = 0;
340 int tmp;
342 dev_dbg(scif_info.mdev.this_device,
343 "SCIFAPI bind: ep %p %s requested port number %d\n",
344 ep, scif_ep_states[ep->state], pn);
345 if (pn) {
347 * Similar to IETF RFC 1700, SCIF ports below
348 * SCIF_ADMIN_PORT_END can only be bound by system (or root)
349 * processes or by processes executed by privileged users.
351 if (pn < SCIF_ADMIN_PORT_END && !capable(CAP_SYS_ADMIN)) {
352 ret = -EACCES;
353 goto scif_bind_admin_exit;
357 spin_lock(&ep->lock);
358 if (ep->state == SCIFEP_BOUND) {
359 ret = -EINVAL;
360 goto scif_bind_exit;
361 } else if (ep->state != SCIFEP_UNBOUND) {
362 ret = -EISCONN;
363 goto scif_bind_exit;
366 if (pn) {
367 tmp = scif_rsrv_port(pn);
368 if (tmp != pn) {
369 ret = -EINVAL;
370 goto scif_bind_exit;
372 } else {
373 pn = scif_get_new_port();
374 if (!pn) {
375 ret = -ENOSPC;
376 goto scif_bind_exit;
380 ep->state = SCIFEP_BOUND;
381 ep->port.node = scif_info.nodeid;
382 ep->port.port = pn;
383 ep->conn_async_state = ASYNC_CONN_IDLE;
384 ret = pn;
385 dev_dbg(scif_info.mdev.this_device,
386 "SCIFAPI bind: bound to port number %d\n", pn);
387 scif_bind_exit:
388 spin_unlock(&ep->lock);
389 scif_bind_admin_exit:
390 return ret;
392 EXPORT_SYMBOL_GPL(scif_bind);
394 int scif_listen(scif_epd_t epd, int backlog)
396 struct scif_endpt *ep = (struct scif_endpt *)epd;
398 dev_dbg(scif_info.mdev.this_device,
399 "SCIFAPI listen: ep %p %s\n", ep, scif_ep_states[ep->state]);
400 spin_lock(&ep->lock);
401 switch (ep->state) {
402 case SCIFEP_ZOMBIE:
403 case SCIFEP_CLOSING:
404 case SCIFEP_CLLISTEN:
405 case SCIFEP_UNBOUND:
406 case SCIFEP_DISCONNECTED:
407 spin_unlock(&ep->lock);
408 return -EINVAL;
409 case SCIFEP_LISTENING:
410 case SCIFEP_CONNECTED:
411 case SCIFEP_CONNECTING:
412 case SCIFEP_MAPPING:
413 spin_unlock(&ep->lock);
414 return -EISCONN;
415 case SCIFEP_BOUND:
416 break;
419 ep->state = SCIFEP_LISTENING;
420 ep->backlog = backlog;
422 ep->conreqcnt = 0;
423 ep->acceptcnt = 0;
424 INIT_LIST_HEAD(&ep->conlist);
425 init_waitqueue_head(&ep->conwq);
426 INIT_LIST_HEAD(&ep->li_accept);
427 spin_unlock(&ep->lock);
430 * Listen status is complete so delete the qp information not needed
431 * on a listen before placing on the list of listening ep's
433 scif_teardown_ep(ep);
434 ep->qp_info.qp = NULL;
436 mutex_lock(&scif_info.eplock);
437 list_add_tail(&ep->list, &scif_info.listen);
438 mutex_unlock(&scif_info.eplock);
439 return 0;
441 EXPORT_SYMBOL_GPL(scif_listen);
444 ************************************************************************
445 * SCIF connection flow:
447 * 1) A SCIF listening endpoint can call scif_accept(..) to wait for SCIF
448 * connections via a SCIF_CNCT_REQ message
449 * 2) A SCIF endpoint can initiate a SCIF connection by calling
450 * scif_connect(..) which calls scif_setup_qp_connect(..) which
451 * allocates the local qp for the endpoint ring buffer and then sends
452 * a SCIF_CNCT_REQ to the remote node and waits for a SCIF_CNCT_GNT or
453 * a SCIF_CNCT_REJ message
454 * 3) The peer node handles a SCIF_CNCT_REQ via scif_cnctreq_resp(..) which
455 * wakes up any threads blocked in step 1 or sends a SCIF_CNCT_REJ
456 * message otherwise
457 * 4) A thread blocked waiting for incoming connections allocates its local
458 * endpoint QP and ring buffer following which it sends a SCIF_CNCT_GNT
459 * and waits for a SCIF_CNCT_GNT(N)ACK. If the allocation fails then
460 * the node sends a SCIF_CNCT_REJ message
461 * 5) Upon receipt of a SCIF_CNCT_GNT or a SCIF_CNCT_REJ message the
462 * connecting endpoint is woken up as part of handling
463 * scif_cnctgnt_resp(..) following which it maps the remote endpoints'
464 * QP, updates its outbound QP and sends a SCIF_CNCT_GNTACK message on
465 * success or a SCIF_CNCT_GNTNACK message on failure and completes
466 * the scif_connect(..) API
467 * 6) Upon receipt of a SCIF_CNCT_GNT(N)ACK the accepting endpoint blocked
468 * in step 4 is woken up and completes the scif_accept(..) API
469 * 7) The SCIF connection is now established between the two SCIF endpoints.
471 static int scif_conn_func(struct scif_endpt *ep)
473 int err = 0;
474 struct scifmsg msg;
475 struct device *spdev;
477 err = scif_reserve_dma_chan(ep);
478 if (err) {
479 dev_err(&ep->remote_dev->sdev->dev,
480 "%s %d err %d\n", __func__, __LINE__, err);
481 ep->state = SCIFEP_BOUND;
482 goto connect_error_simple;
484 /* Initiate the first part of the endpoint QP setup */
485 err = scif_setup_qp_connect(ep->qp_info.qp, &ep->qp_info.qp_offset,
486 SCIF_ENDPT_QP_SIZE, ep->remote_dev);
487 if (err) {
488 dev_err(&ep->remote_dev->sdev->dev,
489 "%s err %d qp_offset 0x%llx\n",
490 __func__, err, ep->qp_info.qp_offset);
491 ep->state = SCIFEP_BOUND;
492 goto connect_error_simple;
495 spdev = scif_get_peer_dev(ep->remote_dev);
496 if (IS_ERR(spdev)) {
497 err = PTR_ERR(spdev);
498 goto cleanup_qp;
500 /* Format connect message and send it */
501 msg.src = ep->port;
502 msg.dst = ep->conn_port;
503 msg.uop = SCIF_CNCT_REQ;
504 msg.payload[0] = (u64)ep;
505 msg.payload[1] = ep->qp_info.qp_offset;
506 err = _scif_nodeqp_send(ep->remote_dev, &msg);
507 if (err)
508 goto connect_error_dec;
509 scif_put_peer_dev(spdev);
511 * Wait for the remote node to respond with SCIF_CNCT_GNT or
512 * SCIF_CNCT_REJ message.
514 err = wait_event_timeout(ep->conwq, ep->state != SCIFEP_CONNECTING,
515 SCIF_NODE_ALIVE_TIMEOUT);
516 if (!err) {
517 dev_err(&ep->remote_dev->sdev->dev,
518 "%s %d timeout\n", __func__, __LINE__);
519 ep->state = SCIFEP_BOUND;
521 spdev = scif_get_peer_dev(ep->remote_dev);
522 if (IS_ERR(spdev)) {
523 err = PTR_ERR(spdev);
524 goto cleanup_qp;
526 if (ep->state == SCIFEP_MAPPING) {
527 err = scif_setup_qp_connect_response(ep->remote_dev,
528 ep->qp_info.qp,
529 ep->qp_info.gnt_pld);
531 * If the resource to map the queue are not available then
532 * we need to tell the other side to terminate the accept
534 if (err) {
535 dev_err(&ep->remote_dev->sdev->dev,
536 "%s %d err %d\n", __func__, __LINE__, err);
537 msg.uop = SCIF_CNCT_GNTNACK;
538 msg.payload[0] = ep->remote_ep;
539 _scif_nodeqp_send(ep->remote_dev, &msg);
540 ep->state = SCIFEP_BOUND;
541 goto connect_error_dec;
544 msg.uop = SCIF_CNCT_GNTACK;
545 msg.payload[0] = ep->remote_ep;
546 err = _scif_nodeqp_send(ep->remote_dev, &msg);
547 if (err) {
548 ep->state = SCIFEP_BOUND;
549 goto connect_error_dec;
551 ep->state = SCIFEP_CONNECTED;
552 mutex_lock(&scif_info.connlock);
553 list_add_tail(&ep->list, &scif_info.connected);
554 mutex_unlock(&scif_info.connlock);
555 dev_dbg(&ep->remote_dev->sdev->dev,
556 "SCIFAPI connect: ep %p connected\n", ep);
557 } else if (ep->state == SCIFEP_BOUND) {
558 dev_dbg(&ep->remote_dev->sdev->dev,
559 "SCIFAPI connect: ep %p connection refused\n", ep);
560 err = -ECONNREFUSED;
561 goto connect_error_dec;
563 scif_put_peer_dev(spdev);
564 return err;
565 connect_error_dec:
566 scif_put_peer_dev(spdev);
567 cleanup_qp:
568 scif_cleanup_ep_qp(ep);
569 connect_error_simple:
570 return err;
574 * scif_conn_handler:
576 * Workqueue handler for servicing non-blocking SCIF connect
579 void scif_conn_handler(struct work_struct *work)
581 struct scif_endpt *ep;
583 do {
584 ep = NULL;
585 spin_lock(&scif_info.nb_connect_lock);
586 if (!list_empty(&scif_info.nb_connect_list)) {
587 ep = list_first_entry(&scif_info.nb_connect_list,
588 struct scif_endpt, conn_list);
589 list_del(&ep->conn_list);
591 spin_unlock(&scif_info.nb_connect_lock);
592 if (ep) {
593 ep->conn_err = scif_conn_func(ep);
594 wake_up_interruptible(&ep->conn_pend_wq);
596 } while (ep);
599 int __scif_connect(scif_epd_t epd, struct scif_port_id *dst, bool non_block)
601 struct scif_endpt *ep = (struct scif_endpt *)epd;
602 int err = 0;
603 struct scif_dev *remote_dev;
604 struct device *spdev;
606 dev_dbg(scif_info.mdev.this_device, "SCIFAPI connect: ep %p %s\n", ep,
607 scif_ep_states[ep->state]);
609 if (!scif_dev || dst->node > scif_info.maxid)
610 return -ENODEV;
612 might_sleep();
614 remote_dev = &scif_dev[dst->node];
615 spdev = scif_get_peer_dev(remote_dev);
616 if (IS_ERR(spdev)) {
617 err = PTR_ERR(spdev);
618 return err;
621 spin_lock(&ep->lock);
622 switch (ep->state) {
623 case SCIFEP_ZOMBIE:
624 case SCIFEP_CLOSING:
625 err = -EINVAL;
626 break;
627 case SCIFEP_DISCONNECTED:
628 if (ep->conn_async_state == ASYNC_CONN_INPROGRESS)
629 ep->conn_async_state = ASYNC_CONN_FLUSH_WORK;
630 else
631 err = -EINVAL;
632 break;
633 case SCIFEP_LISTENING:
634 case SCIFEP_CLLISTEN:
635 err = -EOPNOTSUPP;
636 break;
637 case SCIFEP_CONNECTING:
638 case SCIFEP_MAPPING:
639 if (ep->conn_async_state == ASYNC_CONN_INPROGRESS)
640 err = -EINPROGRESS;
641 else
642 err = -EISCONN;
643 break;
644 case SCIFEP_CONNECTED:
645 if (ep->conn_async_state == ASYNC_CONN_INPROGRESS)
646 ep->conn_async_state = ASYNC_CONN_FLUSH_WORK;
647 else
648 err = -EISCONN;
649 break;
650 case SCIFEP_UNBOUND:
651 ep->port.port = scif_get_new_port();
652 if (!ep->port.port) {
653 err = -ENOSPC;
654 } else {
655 ep->port.node = scif_info.nodeid;
656 ep->conn_async_state = ASYNC_CONN_IDLE;
658 /* Fall through */
659 case SCIFEP_BOUND:
661 * If a non-blocking connect has been already initiated
662 * (conn_async_state is either ASYNC_CONN_INPROGRESS or
663 * ASYNC_CONN_FLUSH_WORK), the end point could end up in
664 * SCIF_BOUND due an error in the connection process
665 * (e.g., connection refused) If conn_async_state is
666 * ASYNC_CONN_INPROGRESS - transition to ASYNC_CONN_FLUSH_WORK
667 * so that the error status can be collected. If the state is
668 * already ASYNC_CONN_FLUSH_WORK - then set the error to
669 * EINPROGRESS since some other thread is waiting to collect
670 * error status.
672 if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
673 ep->conn_async_state = ASYNC_CONN_FLUSH_WORK;
674 } else if (ep->conn_async_state == ASYNC_CONN_FLUSH_WORK) {
675 err = -EINPROGRESS;
676 } else {
677 ep->conn_port = *dst;
678 init_waitqueue_head(&ep->sendwq);
679 init_waitqueue_head(&ep->recvwq);
680 init_waitqueue_head(&ep->conwq);
681 ep->conn_async_state = 0;
683 if (unlikely(non_block))
684 ep->conn_async_state = ASYNC_CONN_INPROGRESS;
686 break;
689 if (err || ep->conn_async_state == ASYNC_CONN_FLUSH_WORK)
690 goto connect_simple_unlock1;
692 ep->state = SCIFEP_CONNECTING;
693 ep->remote_dev = &scif_dev[dst->node];
694 ep->qp_info.qp->magic = SCIFEP_MAGIC;
695 if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
696 init_waitqueue_head(&ep->conn_pend_wq);
697 spin_lock(&scif_info.nb_connect_lock);
698 list_add_tail(&ep->conn_list, &scif_info.nb_connect_list);
699 spin_unlock(&scif_info.nb_connect_lock);
700 err = -EINPROGRESS;
701 schedule_work(&scif_info.conn_work);
703 connect_simple_unlock1:
704 spin_unlock(&ep->lock);
705 scif_put_peer_dev(spdev);
706 if (err) {
707 return err;
708 } else if (ep->conn_async_state == ASYNC_CONN_FLUSH_WORK) {
709 flush_work(&scif_info.conn_work);
710 err = ep->conn_err;
711 spin_lock(&ep->lock);
712 ep->conn_async_state = ASYNC_CONN_IDLE;
713 spin_unlock(&ep->lock);
714 } else {
715 err = scif_conn_func(ep);
717 return err;
720 int scif_connect(scif_epd_t epd, struct scif_port_id *dst)
722 return __scif_connect(epd, dst, false);
724 EXPORT_SYMBOL_GPL(scif_connect);
727 * scif_accept() - Accept a connection request from the remote node
729 * The function accepts a connection request from the remote node. Successful
730 * complete is indicate by a new end point being created and passed back
731 * to the caller for future reference.
733 * Upon successful complete a zero will be returned and the peer information
734 * will be filled in.
736 * If the end point is not in the listening state -EINVAL will be returned.
738 * If during the connection sequence resource allocation fails the -ENOMEM
739 * will be returned.
741 * If the function is called with the ASYNC flag set and no connection requests
742 * are pending it will return -EAGAIN.
744 * If the remote side is not sending any connection requests the caller may
745 * terminate this function with a signal. If so a -EINTR will be returned.
747 int scif_accept(scif_epd_t epd, struct scif_port_id *peer,
748 scif_epd_t *newepd, int flags)
750 struct scif_endpt *lep = (struct scif_endpt *)epd;
751 struct scif_endpt *cep;
752 struct scif_conreq *conreq;
753 struct scifmsg msg;
754 int err;
755 struct device *spdev;
757 dev_dbg(scif_info.mdev.this_device,
758 "SCIFAPI accept: ep %p %s\n", lep, scif_ep_states[lep->state]);
760 if (flags & ~SCIF_ACCEPT_SYNC)
761 return -EINVAL;
763 if (!peer || !newepd)
764 return -EINVAL;
766 might_sleep();
767 spin_lock(&lep->lock);
768 if (lep->state != SCIFEP_LISTENING) {
769 spin_unlock(&lep->lock);
770 return -EINVAL;
773 if (!lep->conreqcnt && !(flags & SCIF_ACCEPT_SYNC)) {
774 /* No connection request present and we do not want to wait */
775 spin_unlock(&lep->lock);
776 return -EAGAIN;
779 lep->files = current->files;
780 retry_connection:
781 spin_unlock(&lep->lock);
782 /* Wait for the remote node to send us a SCIF_CNCT_REQ */
783 err = wait_event_interruptible(lep->conwq,
784 (lep->conreqcnt ||
785 (lep->state != SCIFEP_LISTENING)));
786 if (err)
787 return err;
789 if (lep->state != SCIFEP_LISTENING)
790 return -EINTR;
792 spin_lock(&lep->lock);
794 if (!lep->conreqcnt)
795 goto retry_connection;
797 /* Get the first connect request off the list */
798 conreq = list_first_entry(&lep->conlist, struct scif_conreq, list);
799 list_del(&conreq->list);
800 lep->conreqcnt--;
801 spin_unlock(&lep->lock);
803 /* Fill in the peer information */
804 peer->node = conreq->msg.src.node;
805 peer->port = conreq->msg.src.port;
807 cep = kzalloc(sizeof(*cep), GFP_KERNEL);
808 if (!cep) {
809 err = -ENOMEM;
810 goto scif_accept_error_epalloc;
812 spin_lock_init(&cep->lock);
813 mutex_init(&cep->sendlock);
814 mutex_init(&cep->recvlock);
815 cep->state = SCIFEP_CONNECTING;
816 cep->remote_dev = &scif_dev[peer->node];
817 cep->remote_ep = conreq->msg.payload[0];
819 scif_rma_ep_init(cep);
821 err = scif_reserve_dma_chan(cep);
822 if (err) {
823 dev_err(scif_info.mdev.this_device,
824 "%s %d err %d\n", __func__, __LINE__, err);
825 goto scif_accept_error_qpalloc;
828 cep->qp_info.qp = kzalloc(sizeof(*cep->qp_info.qp), GFP_KERNEL);
829 if (!cep->qp_info.qp) {
830 err = -ENOMEM;
831 goto scif_accept_error_qpalloc;
834 err = scif_anon_inode_getfile(cep);
835 if (err)
836 goto scif_accept_error_anon_inode;
838 cep->qp_info.qp->magic = SCIFEP_MAGIC;
839 spdev = scif_get_peer_dev(cep->remote_dev);
840 if (IS_ERR(spdev)) {
841 err = PTR_ERR(spdev);
842 goto scif_accept_error_map;
844 err = scif_setup_qp_accept(cep->qp_info.qp, &cep->qp_info.qp_offset,
845 conreq->msg.payload[1], SCIF_ENDPT_QP_SIZE,
846 cep->remote_dev);
847 if (err) {
848 dev_dbg(&cep->remote_dev->sdev->dev,
849 "SCIFAPI accept: ep %p new %p scif_setup_qp_accept %d qp_offset 0x%llx\n",
850 lep, cep, err, cep->qp_info.qp_offset);
851 scif_put_peer_dev(spdev);
852 goto scif_accept_error_map;
855 cep->port.node = lep->port.node;
856 cep->port.port = lep->port.port;
857 cep->peer.node = peer->node;
858 cep->peer.port = peer->port;
859 init_waitqueue_head(&cep->sendwq);
860 init_waitqueue_head(&cep->recvwq);
861 init_waitqueue_head(&cep->conwq);
863 msg.uop = SCIF_CNCT_GNT;
864 msg.src = cep->port;
865 msg.payload[0] = cep->remote_ep;
866 msg.payload[1] = cep->qp_info.qp_offset;
867 msg.payload[2] = (u64)cep;
869 err = _scif_nodeqp_send(cep->remote_dev, &msg);
870 scif_put_peer_dev(spdev);
871 if (err)
872 goto scif_accept_error_map;
873 retry:
874 /* Wait for the remote node to respond with SCIF_CNCT_GNT(N)ACK */
875 err = wait_event_timeout(cep->conwq, cep->state != SCIFEP_CONNECTING,
876 SCIF_NODE_ACCEPT_TIMEOUT);
877 if (!err && scifdev_alive(cep))
878 goto retry;
879 err = !err ? -ENODEV : 0;
880 if (err)
881 goto scif_accept_error_map;
882 kfree(conreq);
884 spin_lock(&cep->lock);
886 if (cep->state == SCIFEP_CLOSING) {
888 * Remote failed to allocate resources and NAKed the grant.
889 * There is at this point nothing referencing the new end point.
891 spin_unlock(&cep->lock);
892 scif_teardown_ep(cep);
893 kfree(cep);
895 /* If call with sync flag then go back and wait. */
896 if (flags & SCIF_ACCEPT_SYNC) {
897 spin_lock(&lep->lock);
898 goto retry_connection;
900 return -EAGAIN;
903 scif_get_port(cep->port.port);
904 *newepd = (scif_epd_t)cep;
905 spin_unlock(&cep->lock);
906 return 0;
907 scif_accept_error_map:
908 scif_anon_inode_fput(cep);
909 scif_accept_error_anon_inode:
910 scif_teardown_ep(cep);
911 scif_accept_error_qpalloc:
912 kfree(cep);
913 scif_accept_error_epalloc:
914 msg.uop = SCIF_CNCT_REJ;
915 msg.dst.node = conreq->msg.src.node;
916 msg.dst.port = conreq->msg.src.port;
917 msg.payload[0] = conreq->msg.payload[0];
918 msg.payload[1] = conreq->msg.payload[1];
919 scif_nodeqp_send(&scif_dev[conreq->msg.src.node], &msg);
920 kfree(conreq);
921 return err;
923 EXPORT_SYMBOL_GPL(scif_accept);
926 * scif_msg_param_check:
927 * @epd: The end point returned from scif_open()
928 * @len: Length to receive
929 * @flags: blocking or non blocking
931 * Validate parameters for messaging APIs scif_send(..)/scif_recv(..).
933 static inline int scif_msg_param_check(scif_epd_t epd, int len, int flags)
935 int ret = -EINVAL;
937 if (len < 0)
938 goto err_ret;
939 if (flags && (!(flags & SCIF_RECV_BLOCK)))
940 goto err_ret;
941 ret = 0;
942 err_ret:
943 return ret;
946 static int _scif_send(scif_epd_t epd, void *msg, int len, int flags)
948 struct scif_endpt *ep = (struct scif_endpt *)epd;
949 struct scifmsg notif_msg;
950 int curr_xfer_len = 0, sent_len = 0, write_count;
951 int ret = 0;
952 struct scif_qp *qp = ep->qp_info.qp;
954 if (flags & SCIF_SEND_BLOCK)
955 might_sleep();
957 spin_lock(&ep->lock);
958 while (sent_len != len && SCIFEP_CONNECTED == ep->state) {
959 write_count = scif_rb_space(&qp->outbound_q);
960 if (write_count) {
961 /* Best effort to send as much data as possible */
962 curr_xfer_len = min(len - sent_len, write_count);
963 ret = scif_rb_write(&qp->outbound_q, msg,
964 curr_xfer_len);
965 if (ret < 0)
966 break;
967 /* Success. Update write pointer */
968 scif_rb_commit(&qp->outbound_q);
970 * Send a notification to the peer about the
971 * produced data message.
973 notif_msg.src = ep->port;
974 notif_msg.uop = SCIF_CLIENT_SENT;
975 notif_msg.payload[0] = ep->remote_ep;
976 ret = _scif_nodeqp_send(ep->remote_dev, &notif_msg);
977 if (ret)
978 break;
979 sent_len += curr_xfer_len;
980 msg = msg + curr_xfer_len;
981 continue;
983 curr_xfer_len = min(len - sent_len, SCIF_ENDPT_QP_SIZE - 1);
984 /* Not enough RB space. return for the Non Blocking case */
985 if (!(flags & SCIF_SEND_BLOCK))
986 break;
988 spin_unlock(&ep->lock);
989 /* Wait for a SCIF_CLIENT_RCVD message in the Blocking case */
990 ret =
991 wait_event_interruptible(ep->sendwq,
992 (SCIFEP_CONNECTED != ep->state) ||
993 (scif_rb_space(&qp->outbound_q) >=
994 curr_xfer_len));
995 spin_lock(&ep->lock);
996 if (ret)
997 break;
999 if (sent_len)
1000 ret = sent_len;
1001 else if (!ret && SCIFEP_CONNECTED != ep->state)
1002 ret = SCIFEP_DISCONNECTED == ep->state ?
1003 -ECONNRESET : -ENOTCONN;
1004 spin_unlock(&ep->lock);
1005 return ret;
1008 static int _scif_recv(scif_epd_t epd, void *msg, int len, int flags)
1010 int read_size;
1011 struct scif_endpt *ep = (struct scif_endpt *)epd;
1012 struct scifmsg notif_msg;
1013 int curr_recv_len = 0, remaining_len = len, read_count;
1014 int ret = 0;
1015 struct scif_qp *qp = ep->qp_info.qp;
1017 if (flags & SCIF_RECV_BLOCK)
1018 might_sleep();
1019 spin_lock(&ep->lock);
1020 while (remaining_len && (SCIFEP_CONNECTED == ep->state ||
1021 SCIFEP_DISCONNECTED == ep->state)) {
1022 read_count = scif_rb_count(&qp->inbound_q, remaining_len);
1023 if (read_count) {
1025 * Best effort to recv as much data as there
1026 * are bytes to read in the RB particularly
1027 * important for the Non Blocking case.
1029 curr_recv_len = min(remaining_len, read_count);
1030 read_size = scif_rb_get_next(&qp->inbound_q,
1031 msg, curr_recv_len);
1032 if (ep->state == SCIFEP_CONNECTED) {
1034 * Update the read pointer only if the endpoint
1035 * is still connected else the read pointer
1036 * might no longer exist since the peer has
1037 * freed resources!
1039 scif_rb_update_read_ptr(&qp->inbound_q);
1041 * Send a notification to the peer about the
1042 * consumed data message only if the EP is in
1043 * SCIFEP_CONNECTED state.
1045 notif_msg.src = ep->port;
1046 notif_msg.uop = SCIF_CLIENT_RCVD;
1047 notif_msg.payload[0] = ep->remote_ep;
1048 ret = _scif_nodeqp_send(ep->remote_dev,
1049 &notif_msg);
1050 if (ret)
1051 break;
1053 remaining_len -= curr_recv_len;
1054 msg = msg + curr_recv_len;
1055 continue;
1058 * Bail out now if the EP is in SCIFEP_DISCONNECTED state else
1059 * we will keep looping forever.
1061 if (ep->state == SCIFEP_DISCONNECTED)
1062 break;
1064 * Return in the Non Blocking case if there is no data
1065 * to read in this iteration.
1067 if (!(flags & SCIF_RECV_BLOCK))
1068 break;
1069 curr_recv_len = min(remaining_len, SCIF_ENDPT_QP_SIZE - 1);
1070 spin_unlock(&ep->lock);
1072 * Wait for a SCIF_CLIENT_SEND message in the blocking case
1073 * or until other side disconnects.
1075 ret =
1076 wait_event_interruptible(ep->recvwq,
1077 SCIFEP_CONNECTED != ep->state ||
1078 scif_rb_count(&qp->inbound_q,
1079 curr_recv_len)
1080 >= curr_recv_len);
1081 spin_lock(&ep->lock);
1082 if (ret)
1083 break;
1085 if (len - remaining_len)
1086 ret = len - remaining_len;
1087 else if (!ret && ep->state != SCIFEP_CONNECTED)
1088 ret = ep->state == SCIFEP_DISCONNECTED ?
1089 -ECONNRESET : -ENOTCONN;
1090 spin_unlock(&ep->lock);
1091 return ret;
1095 * scif_user_send() - Send data to connection queue
1096 * @epd: The end point returned from scif_open()
1097 * @msg: Address to place data
1098 * @len: Length to receive
1099 * @flags: blocking or non blocking
1101 * This function is called from the driver IOCTL entry point
1102 * only and is a wrapper for _scif_send().
1104 int scif_user_send(scif_epd_t epd, void __user *msg, int len, int flags)
1106 struct scif_endpt *ep = (struct scif_endpt *)epd;
1107 int err = 0;
1108 int sent_len = 0;
1109 char *tmp;
1110 int loop_len;
1111 int chunk_len = min(len, (1 << (MAX_ORDER + PAGE_SHIFT - 1)));
1113 dev_dbg(scif_info.mdev.this_device,
1114 "SCIFAPI send (U): ep %p %s\n", ep, scif_ep_states[ep->state]);
1115 if (!len)
1116 return 0;
1118 err = scif_msg_param_check(epd, len, flags);
1119 if (err)
1120 goto send_err;
1122 tmp = kmalloc(chunk_len, GFP_KERNEL);
1123 if (!tmp) {
1124 err = -ENOMEM;
1125 goto send_err;
1128 * Grabbing the lock before breaking up the transfer in
1129 * multiple chunks is required to ensure that messages do
1130 * not get fragmented and reordered.
1132 mutex_lock(&ep->sendlock);
1133 while (sent_len != len) {
1134 loop_len = len - sent_len;
1135 loop_len = min(chunk_len, loop_len);
1136 if (copy_from_user(tmp, msg, loop_len)) {
1137 err = -EFAULT;
1138 goto send_free_err;
1140 err = _scif_send(epd, tmp, loop_len, flags);
1141 if (err < 0)
1142 goto send_free_err;
1143 sent_len += err;
1144 msg += err;
1145 if (err != loop_len)
1146 goto send_free_err;
1148 send_free_err:
1149 mutex_unlock(&ep->sendlock);
1150 kfree(tmp);
1151 send_err:
1152 return err < 0 ? err : sent_len;
1156 * scif_user_recv() - Receive data from connection queue
1157 * @epd: The end point returned from scif_open()
1158 * @msg: Address to place data
1159 * @len: Length to receive
1160 * @flags: blocking or non blocking
1162 * This function is called from the driver IOCTL entry point
1163 * only and is a wrapper for _scif_recv().
1165 int scif_user_recv(scif_epd_t epd, void __user *msg, int len, int flags)
1167 struct scif_endpt *ep = (struct scif_endpt *)epd;
1168 int err = 0;
1169 int recv_len = 0;
1170 char *tmp;
1171 int loop_len;
1172 int chunk_len = min(len, (1 << (MAX_ORDER + PAGE_SHIFT - 1)));
1174 dev_dbg(scif_info.mdev.this_device,
1175 "SCIFAPI recv (U): ep %p %s\n", ep, scif_ep_states[ep->state]);
1176 if (!len)
1177 return 0;
1179 err = scif_msg_param_check(epd, len, flags);
1180 if (err)
1181 goto recv_err;
1183 tmp = kmalloc(chunk_len, GFP_KERNEL);
1184 if (!tmp) {
1185 err = -ENOMEM;
1186 goto recv_err;
1189 * Grabbing the lock before breaking up the transfer in
1190 * multiple chunks is required to ensure that messages do
1191 * not get fragmented and reordered.
1193 mutex_lock(&ep->recvlock);
1194 while (recv_len != len) {
1195 loop_len = len - recv_len;
1196 loop_len = min(chunk_len, loop_len);
1197 err = _scif_recv(epd, tmp, loop_len, flags);
1198 if (err < 0)
1199 goto recv_free_err;
1200 if (copy_to_user(msg, tmp, err)) {
1201 err = -EFAULT;
1202 goto recv_free_err;
1204 recv_len += err;
1205 msg += err;
1206 if (err != loop_len)
1207 goto recv_free_err;
1209 recv_free_err:
1210 mutex_unlock(&ep->recvlock);
1211 kfree(tmp);
1212 recv_err:
1213 return err < 0 ? err : recv_len;
1217 * scif_send() - Send data to connection queue
1218 * @epd: The end point returned from scif_open()
1219 * @msg: Address to place data
1220 * @len: Length to receive
1221 * @flags: blocking or non blocking
1223 * This function is called from the kernel mode only and is
1224 * a wrapper for _scif_send().
1226 int scif_send(scif_epd_t epd, void *msg, int len, int flags)
1228 struct scif_endpt *ep = (struct scif_endpt *)epd;
1229 int ret;
1231 dev_dbg(scif_info.mdev.this_device,
1232 "SCIFAPI send (K): ep %p %s\n", ep, scif_ep_states[ep->state]);
1233 if (!len)
1234 return 0;
1236 ret = scif_msg_param_check(epd, len, flags);
1237 if (ret)
1238 return ret;
1239 if (!ep->remote_dev)
1240 return -ENOTCONN;
1242 * Grab the mutex lock in the blocking case only
1243 * to ensure messages do not get fragmented/reordered.
1244 * The non blocking mode is protected using spin locks
1245 * in _scif_send().
1247 if (flags & SCIF_SEND_BLOCK)
1248 mutex_lock(&ep->sendlock);
1250 ret = _scif_send(epd, msg, len, flags);
1252 if (flags & SCIF_SEND_BLOCK)
1253 mutex_unlock(&ep->sendlock);
1254 return ret;
1256 EXPORT_SYMBOL_GPL(scif_send);
1259 * scif_recv() - Receive data from connection queue
1260 * @epd: The end point returned from scif_open()
1261 * @msg: Address to place data
1262 * @len: Length to receive
1263 * @flags: blocking or non blocking
1265 * This function is called from the kernel mode only and is
1266 * a wrapper for _scif_recv().
1268 int scif_recv(scif_epd_t epd, void *msg, int len, int flags)
1270 struct scif_endpt *ep = (struct scif_endpt *)epd;
1271 int ret;
1273 dev_dbg(scif_info.mdev.this_device,
1274 "SCIFAPI recv (K): ep %p %s\n", ep, scif_ep_states[ep->state]);
1275 if (!len)
1276 return 0;
1278 ret = scif_msg_param_check(epd, len, flags);
1279 if (ret)
1280 return ret;
1282 * Grab the mutex lock in the blocking case only
1283 * to ensure messages do not get fragmented/reordered.
1284 * The non blocking mode is protected using spin locks
1285 * in _scif_send().
1287 if (flags & SCIF_RECV_BLOCK)
1288 mutex_lock(&ep->recvlock);
1290 ret = _scif_recv(epd, msg, len, flags);
1292 if (flags & SCIF_RECV_BLOCK)
1293 mutex_unlock(&ep->recvlock);
1295 return ret;
1297 EXPORT_SYMBOL_GPL(scif_recv);
1299 static inline void _scif_poll_wait(struct file *f, wait_queue_head_t *wq,
1300 poll_table *p, struct scif_endpt *ep)
1303 * Because poll_wait makes a GFP_KERNEL allocation, give up the lock
1304 * and regrab it afterwards. Because the endpoint state might have
1305 * changed while the lock was given up, the state must be checked
1306 * again after re-acquiring the lock. The code in __scif_pollfd(..)
1307 * does this.
1309 spin_unlock(&ep->lock);
1310 poll_wait(f, wq, p);
1311 spin_lock(&ep->lock);
1314 unsigned int
1315 __scif_pollfd(struct file *f, poll_table *wait, struct scif_endpt *ep)
1317 unsigned int mask = 0;
1319 dev_dbg(scif_info.mdev.this_device,
1320 "SCIFAPI pollfd: ep %p %s\n", ep, scif_ep_states[ep->state]);
1322 spin_lock(&ep->lock);
1324 /* Endpoint is waiting for a non-blocking connect to complete */
1325 if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
1326 _scif_poll_wait(f, &ep->conn_pend_wq, wait, ep);
1327 if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
1328 if (ep->state == SCIFEP_CONNECTED ||
1329 ep->state == SCIFEP_DISCONNECTED ||
1330 ep->conn_err)
1331 mask |= POLLOUT;
1332 goto exit;
1336 /* Endpoint is listening for incoming connection requests */
1337 if (ep->state == SCIFEP_LISTENING) {
1338 _scif_poll_wait(f, &ep->conwq, wait, ep);
1339 if (ep->state == SCIFEP_LISTENING) {
1340 if (ep->conreqcnt)
1341 mask |= POLLIN;
1342 goto exit;
1346 /* Endpoint is connected or disconnected */
1347 if (ep->state == SCIFEP_CONNECTED || ep->state == SCIFEP_DISCONNECTED) {
1348 if (poll_requested_events(wait) & POLLIN)
1349 _scif_poll_wait(f, &ep->recvwq, wait, ep);
1350 if (poll_requested_events(wait) & POLLOUT)
1351 _scif_poll_wait(f, &ep->sendwq, wait, ep);
1352 if (ep->state == SCIFEP_CONNECTED ||
1353 ep->state == SCIFEP_DISCONNECTED) {
1354 /* Data can be read without blocking */
1355 if (scif_rb_count(&ep->qp_info.qp->inbound_q, 1))
1356 mask |= POLLIN;
1357 /* Data can be written without blocking */
1358 if (scif_rb_space(&ep->qp_info.qp->outbound_q))
1359 mask |= POLLOUT;
1360 /* Return POLLHUP if endpoint is disconnected */
1361 if (ep->state == SCIFEP_DISCONNECTED)
1362 mask |= POLLHUP;
1363 goto exit;
1367 /* Return POLLERR if the endpoint is in none of the above states */
1368 mask |= POLLERR;
1369 exit:
1370 spin_unlock(&ep->lock);
1371 return mask;
1375 * scif_poll() - Kernel mode SCIF poll
1376 * @ufds: Array of scif_pollepd structures containing the end points
1377 * and events to poll on
1378 * @nfds: Size of the ufds array
1379 * @timeout_msecs: Timeout in msecs, -ve implies infinite timeout
1381 * The code flow in this function is based on do_poll(..) in select.c
1383 * Returns the number of endpoints which have pending events or 0 in
1384 * the event of a timeout. If a signal is used for wake up, -EINTR is
1385 * returned.
1388 scif_poll(struct scif_pollepd *ufds, unsigned int nfds, long timeout_msecs)
1390 struct poll_wqueues table;
1391 poll_table *pt;
1392 int i, mask, count = 0, timed_out = timeout_msecs == 0;
1393 u64 timeout = timeout_msecs < 0 ? MAX_SCHEDULE_TIMEOUT
1394 : msecs_to_jiffies(timeout_msecs);
1396 poll_initwait(&table);
1397 pt = &table.pt;
1398 while (1) {
1399 for (i = 0; i < nfds; i++) {
1400 pt->_key = ufds[i].events | POLLERR | POLLHUP;
1401 mask = __scif_pollfd(ufds[i].epd->anon,
1402 pt, ufds[i].epd);
1403 mask &= ufds[i].events | POLLERR | POLLHUP;
1404 if (mask) {
1405 count++;
1406 pt->_qproc = NULL;
1408 ufds[i].revents = mask;
1410 pt->_qproc = NULL;
1411 if (!count) {
1412 count = table.error;
1413 if (signal_pending(current))
1414 count = -EINTR;
1416 if (count || timed_out)
1417 break;
1419 if (!schedule_timeout_interruptible(timeout))
1420 timed_out = 1;
1422 poll_freewait(&table);
1423 return count;
1425 EXPORT_SYMBOL_GPL(scif_poll);
1427 int scif_get_node_ids(u16 *nodes, int len, u16 *self)
1429 int online = 0;
1430 int offset = 0;
1431 int node;
1433 if (!scif_is_mgmt_node())
1434 scif_get_node_info();
1436 *self = scif_info.nodeid;
1437 mutex_lock(&scif_info.conflock);
1438 len = min_t(int, len, scif_info.total);
1439 for (node = 0; node <= scif_info.maxid; node++) {
1440 if (_scifdev_alive(&scif_dev[node])) {
1441 online++;
1442 if (offset < len)
1443 nodes[offset++] = node;
1446 dev_dbg(scif_info.mdev.this_device,
1447 "SCIFAPI get_node_ids total %d online %d filled in %d nodes\n",
1448 scif_info.total, online, offset);
1449 mutex_unlock(&scif_info.conflock);
1451 return online;
1453 EXPORT_SYMBOL_GPL(scif_get_node_ids);
1455 static int scif_add_client_dev(struct device *dev, struct subsys_interface *si)
1457 struct scif_client *client =
1458 container_of(si, struct scif_client, si);
1459 struct scif_peer_dev *spdev =
1460 container_of(dev, struct scif_peer_dev, dev);
1462 if (client->probe)
1463 client->probe(spdev);
1464 return 0;
1467 static void scif_remove_client_dev(struct device *dev,
1468 struct subsys_interface *si)
1470 struct scif_client *client =
1471 container_of(si, struct scif_client, si);
1472 struct scif_peer_dev *spdev =
1473 container_of(dev, struct scif_peer_dev, dev);
1475 if (client->remove)
1476 client->remove(spdev);
1479 void scif_client_unregister(struct scif_client *client)
1481 subsys_interface_unregister(&client->si);
1483 EXPORT_SYMBOL_GPL(scif_client_unregister);
1485 int scif_client_register(struct scif_client *client)
1487 struct subsys_interface *si = &client->si;
1489 si->name = client->name;
1490 si->subsys = &scif_peer_bus;
1491 si->add_dev = scif_add_client_dev;
1492 si->remove_dev = scif_remove_client_dev;
1494 return subsys_interface_register(&client->si);
1496 EXPORT_SYMBOL_GPL(scif_client_register);